US20020012219A1 - Electrostatic chucks and electrostatically adsorbing structures - Google Patents

Electrostatic chucks and electrostatically adsorbing structures Download PDF

Info

Publication number
US20020012219A1
US20020012219A1 US09/859,738 US85973801A US2002012219A1 US 20020012219 A1 US20020012219 A1 US 20020012219A1 US 85973801 A US85973801 A US 85973801A US 2002012219 A1 US2002012219 A1 US 2002012219A1
Authority
US
United States
Prior art keywords
electrostatic chuck
wafer
substrate
electrostatically
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/859,738
Other languages
English (en)
Inventor
Hideyoshi Tsuruta
Naohito Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Assigned to NGK INSULATORS, LTD. reassignment NGK INSULATORS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSURUTA, HIDEYOSHI, YAMADA, NAOHITO
Publication of US20020012219A1 publication Critical patent/US20020012219A1/en
Priority to US10/675,524 priority Critical patent/US7042697B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/23Chucks or sockets with magnetic or electrostatic means

Definitions

  • the present invention relates to electrostatic chucks.
  • the electrostatic chucks are usually provided with a number of projections or embossed portions projection from installing faces of their insulating layers and having top faces (contacting faces) to be contacted with semiconductor wafers. Applying of DC voltage to an internal electrode inside the insulating layer produces Johnsen-Rahbek force at a contacting interface between the semiconductor wafer and the contacting faces of the projections, which adsorbs the semiconductor wafer onto the contacting faces.
  • high-density plasma is formed above the semi-conductor wafer in the case of high-density plasma (HDP) CVD and etching for the semiconductor wafers.
  • HDP high-density plasma
  • the semiconductor wafer is adsorbed by means of the electrostatic chuck, and a cooling member is provided under the electrostatic chuck.
  • rise in temperature of the semiconductor wafer is prevented by escaping heat flowing from the high-density plasma to the semiconductor into a side of the electrostatic chuck.
  • the temperature of the semiconductor wafer is controlled to a desired temperature by escaping the heat flowing from the high-density plasma to the semiconductor wafer into the side of the electrostatic chuck from the semiconductor wafer at a constant rate.
  • the substrate is made of a semiconductor, and electrons or positive holes are moved inside the substrate.
  • the substrate is made of an aluminum nitride-based ceramic material
  • the ceramic material is an n-type semiconductor.
  • the conducting mechanism in the n-type semiconductor relies mainly upon the movement of electrons, and almost no positive holes move.
  • the present inventors produced electrostatic chucks of the Johnsen-Rahbek type. During this production, it happened that after the electrostatic chucks were joined to the cooling members, the adsorbing forces for the wafers decreased. In particular, such a problem hardly occurred at voltages of around 100 V, whereas the adsorbing voltage did not reach the intended level in the case of high voltages not less than 500 V.
  • the present invention relates to an electrostatic chuck comprising a substrate having a wafer-installing face and a back face on an opposite side of the wafer-installing face, an electrostatically chucking electrode buried in said substrate, and an insulating layer provided at the back face of the substrate, said substrate comprising a dielectric layer having at least said wafer-installing face and surrounding the electrostatically chucking electrode, and said insulating layer comprising an insulating material having a volume resistivity higher than that of the dielectric layer
  • the substrate is preferably provided at its back face with an electrically conductive member, which is particularly preferably a cooling member, particularly a metallic cooling member.
  • an electrically conductive member which is particularly preferably a cooling member, particularly a metallic cooling member.
  • the conductive member is not limited to the cooling member.
  • the present inventors examined reduction in the adsorbing voltage occurring after the electrostatic chuck is joined to the electrically conductive member, and consequently reached the following hypothesis.
  • FIG. 1 is a schematic view illustrating an embodiment of the electrostatically adsorbing structure according to the present invention
  • FIG. 2 is a schematic view illustrating an electrostatically adsorbing structure as the prior art.
  • FIG. 3 is an enlarged schematic view illustrating the electrostatically adsorbing structure in FIG. 1.
  • a 1 and A 2 denote Johnsen-Rahbek currents flowing from the electrode 4 to the wafer-installing face 2 a .
  • the current flows from the electrode 4 to the wafer-installing face 2 a , and current also flows from the electrode 4 to the back face 2 b .
  • the potential difference (VO ⁇ VR) between the potential VR at the peripheral edge of the highly resistive area 10 and the potential VO of the electrode is a value obtained by multiplying a total of the Johnsen-Rahbek currents A 1 , A 2 and the leakage currents B 1 , B 2 by the resistance of the highly resistive area 10 . Assuming that the volume resistivity of the highly resistive area 10 is sufficiently larger than that of the surrounding area, the potential difference (VO ⁇ VR) is larger than that (VR ⁇ VS). Also assuming that the leakage currents B 1 , B 2 are sufficiently large, the potential difference (VO ⁇ VR) depends upon the magnitude of the leakage currents B 1 , B 2 .
  • the present inventors provided an insulating layer 7 at a side of the rear face 2 b of the electrostatic chuck 2 as shown in FIGS. 1 and 3. As a result, reduction in the adsorption voltage due to the joint of the electrostatic chuck to the cooling member as mentioned above was not observed. This is because the leakage currents like B 1 , B 2 are largely reduced by the insulating layer 7 .
  • 1 is a wafer, 4 A, 4 B electrodes, 5 a a passage for a cooling medium, and P heat entering the wafer.
  • the insulating layer 7 is made of an insulating material having a volume resistivity higher than that of the dielectric layer. It is preferable that the volume resistivity of the insulating material is higher than that of the dielectric layer by not less than 10 times at a use temperature of the electrostatic chuck.
  • the volume resistivity of the dielectric body is preferably 10 8 to 10 12 ⁇ -cm in the use temperature range.
  • the volume resistivity of the insulating layer in the use temperature range of the electrostatic chuck is preferably 10 12 to 10 15 ⁇ -cm.
  • the electrostatically chucking electrode preferably consists of at least two electrodes having mutually different load potentials.
  • the dielectric body is not particularly limited, aluminum nitride, silicon nitride, alumina, and silicon carbide are preferred.
  • As the insulating material aluminum nitride, silicon nitride, alumina, boron nitride, and magnesia are preferred.
  • the dielectric body and the insulating material are made of the same kind of ceramic materials.
  • the “same kind of ceramic materials” means that a base material is the same, and additives differ.
  • the dielectric body and the insulating material are based on aluminum nitride, silicon nitride or aluminum, and more preferably aluminum nitride.
  • the configuration, the material or the tissue of the highly resistive area 10 in the electrostatic chuck are not clear yet.
  • the highly resistive area is likely to be formed during firing the ceramics. Further, it is more likely that the highly resistive area is formed particularly when the dielectric body is of aluminum nitride. Further, the highly resistive area is particularly likely to be formed when the electrode is made of molybdenum metal or a molybdenum alloy.
  • the aluminum nitride-based ceramics are n-type semiconductors in which electrons act as carriers. Therefore, it is considered that molybdenum metal is diffused in the ceramic material, functions as a counter-doped material, and reduces the number of the electrons as the carrier.
  • the material of the electrostatically chucking electrode is not limited, metallic molybdenum or a molybdenum alloy is preferred.
  • the molybdenum alloy alloys between molybdenum and tungsten, aluminum or platinum are preferred.
  • no upper limitation is posed upon the rate of molybdenum. It may be increased up to 100 wt %.
  • the lower limit for the rate of the molybdenum is preferably 50 wt %.
  • the joining method between the back face of the electrostatic chuck and the conductive member is not limited, a joining method such as brazing joining, glass joining, resin joining, solid-phase diffusion method or the like may be employed.
  • the configuration of the electrode is not limited, the above-mentioned problems are likely to occur in cases of a network shape or a punched metal shape, and the invention is effective for these cases. This is considered to be attributable to an effect owing to the electrode.
  • the method for producing the electrostatic chuck according to the present invention is not limited, any of the following methods can be adopted.
  • a powdery ceramic material for a dielectric body is press molded, an electrode is placed on the molded body, and the powdery ceramic material for the dielectric body is further charged onto the resultant, followed by press molding. Then, a powdery ceramic material for an insulating layer is charged on the thus molded body, and the resultant is further press molded, thereby obtaining a molded body.
  • a fired body is obtained by integrally firing the molded body, and the fired body is worked to obtain an electrostatic chuck.
  • a powdery ceramic material for a dielectric body is press molded, an electrode is placed on the molded body, and the powdery ceramic material for the dielectric body is further charged onto the resultant, followed by press molding.
  • a ceramic bulk body for an insulating layer is placed on the molded powdery body, a fired body is obtained by integrally firing the molded powdery body and the bulk body, and the fired body is worked.
  • a powdery ceramic material for a dielectric body is press molded, an electrode is placed on the molded body, the powdery ceramic material for the dielectric body is further charged onto the resultant, followed by press molding and integral firing. Thereby, a fired body is obtained.
  • a ceramic bulk body for an insulating layer is joined to the fired body, and the joined body is worked into a given configuration, thereby obtaining an electrostatic chuck.
  • the joining method may be glass joining, resin joining, diffusion joining or the like.
  • An electrostatic chuck of a double electrode type shown in FIG. 1 was produced according to the above-mentioned producing method (1). More particularly, powdery aluminum nitride for a dielectric body obtained by a reducing/nitriding method was used, an acrylic resin binder was added to this powder, and the mixture was granulated by a spray dryer, thereby obtaining granulated powder. A discoid preliminarily molded body of 200 mm in diameter and 30 mm in thickness was produced by molding the granulated powder. At that time, electrodes were buried in the molded body. The molding pressure was 200 kg/cm 2 at that time. A metal net of molybdenum was used as the electrode.
  • This discoid molded body was placed in a hot press mold, and sealed therein.
  • the temperature was raised at a heating rate of 300° C./h, and the pressure was reduced at that time in a temperature range of room temperature to 1300° C.
  • the pressing pressure was increased simultaneously with increase in the temperature.
  • the maximum temperature was set 1900° C., and the molded body was held at the maximum temperature for 5 hours, thereby obtaining a fired body. Numerous projections each having a circular shape as viewed in plane are formed on an adsorbing plane of the fired body by blasting, thereby obtaining the electrostatic chuck in Example 1.
  • the depth of the electrode from a wafer-installing face was 1 mm, the volume resistivity of the dielectric layer was adjusted to 1 ⁇ 10 10 ⁇ -cm at room temperature, and the volume resistivity of the insulating layer was to about 1 ⁇ 10 13 ⁇ -cm.
  • the adsorbing force of the electrostatic chuck was measured. Load voltages were set at +300 V and ⁇ 300 V. The adsorbing force of this electrostatic chuck for a silicon wafer was measured at pressure unit (Torr). As a result, the adsorbing force was 50 to 70 Torr at room temperature.
  • a silver paste was coated onto a back face of the electrostatic chuck, and baked at 400° C. Then, the adsorbing force was measured in the same manner as above to be 50 to 70 Torr at room temperature.
  • An electrostatic chuck was produced in the same manner as in Example 1, provided that the above method (2) was employed in Example 2. Electrodes were buried in a molded body of aluminum nitride for a dielectric layer, and a planar plate (3 mm in thickness) was also prepared from a sintered body of aluminum nitride for an insulating layer. The molded body was laminated with the planar plate. The thus obtained laminated body was placed in the hot press mold, and fired in the same manner as in Example 1.
  • the volume resistivity of the dielectric layer was 1 ⁇ 10 10 ⁇ -cm, whereas that of the insulating layer was 2 ⁇ 10 13 ⁇ -cm.
  • Measurement of the adsorbing force of this electrostatic chuck for the silicon wafer gave 50 to 70 Torr. After a silver paste was baked onto a back face of the electrostatic chuck, adsorbing force was measured to be 50 to 70 Torr.
  • An electrostatic chuck was produced in the same manner as in Example 1, provided that the above method (3) was employed in Example 3. Electrodes were buried in a molded body of aluminum nitride for a dielectric layer, and the molded body was fired in the same manner as in Example 1, thereby obtaining a fired body having a volume resistivity of 3 ⁇ 10 10 ⁇ -cm. A planar plate (5 mm in thickness, volume resistivity 1 ⁇ 10 14 ⁇ -cm) of a sintered body of aluminum nitride for an insulating layer was also prepared. The above fired body in which the electrodes were buried was laminated with the planar plate for the insulating layer, and both were joined by the solid phase joining method.
  • An electrostatic chuck was produced in the same manner as in Example 1, provided that a substrate of the electrostatic chuck was entirely formed by the above-mentioned aluminum nitride for the dielectric layer, while the aluminum nitride for the insulating layer was not used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)
US09/859,738 2000-05-19 2001-05-16 Electrostatic chucks and electrostatically adsorbing structures Abandoned US20020012219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/675,524 US7042697B2 (en) 2000-05-19 2003-09-30 Electrostatic chucks and electrostatically attracting structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-147,170 2000-05-19
JP2000147170 2000-05-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/675,524 Continuation US7042697B2 (en) 2000-05-19 2003-09-30 Electrostatic chucks and electrostatically attracting structures

Publications (1)

Publication Number Publication Date
US20020012219A1 true US20020012219A1 (en) 2002-01-31

Family

ID=18653384

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/859,738 Abandoned US20020012219A1 (en) 2000-05-19 2001-05-16 Electrostatic chucks and electrostatically adsorbing structures
US10/675,524 Expired - Lifetime US7042697B2 (en) 2000-05-19 2003-09-30 Electrostatic chucks and electrostatically attracting structures

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/675,524 Expired - Lifetime US7042697B2 (en) 2000-05-19 2003-09-30 Electrostatic chucks and electrostatically attracting structures

Country Status (4)

Country Link
US (2) US20020012219A1 (ko)
EP (1) EP1156522B1 (ko)
KR (1) KR100450476B1 (ko)
TW (1) TWI254403B (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773723B1 (ko) 2005-09-08 2007-11-06 주식회사 아이피에스 플라즈마 처리장치
US20100254065A1 (en) * 2009-04-07 2010-10-07 Ngk Insulators, Ltd. Electrostatic chuck
US8861170B2 (en) 2009-05-15 2014-10-14 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
US8879233B2 (en) 2009-05-15 2014-11-04 Entegris, Inc. Electrostatic chuck with polymer protrusions
US9025305B2 (en) 2010-05-28 2015-05-05 Entegris, Inc. High surface resistivity electrostatic chuck
US9543187B2 (en) 2008-05-19 2017-01-10 Entegris, Inc. Electrostatic chuck
CN111868913A (zh) * 2018-03-23 2020-10-30 住友大阪水泥股份有限公司 静电卡盘装置及静电卡盘装置的制造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108189A (en) * 1996-04-26 2000-08-22 Applied Materials, Inc. Electrostatic chuck having improved gas conduits
US20030010292A1 (en) * 2001-07-16 2003-01-16 Applied Materials, Inc. Electrostatic chuck with dielectric coating
US7494894B2 (en) * 2002-08-29 2009-02-24 Micron Technology, Inc. Protection in integrated circuits
FR2850790B1 (fr) * 2003-02-05 2005-04-08 Semco Engineering Sa Semelle de collage electrostatique avec electrode radiofrequence et moyens thermostatiques integres
US7369393B2 (en) 2004-04-15 2008-05-06 Saint-Gobain Ceramics & Plastics, Inc. Electrostatic chucks having barrier layer
KR101064872B1 (ko) * 2004-06-30 2011-09-16 주성엔지니어링(주) 정전척
WO2008082978A2 (en) * 2006-12-26 2008-07-10 Saint-Gobain Ceramics & Plastics, Inc. Electrostatic chuck and method of forming
US8593779B2 (en) * 2010-01-05 2013-11-26 Nikon Corporation Hybrid electrostatic chuck
JP5441020B1 (ja) * 2012-08-29 2014-03-12 Toto株式会社 静電チャック
WO2016025573A1 (en) 2014-08-15 2016-02-18 Applied Materials, Inc. Method and apparatus of processing wafers with compressive or tensile stress at elevated temperatures in a plasma enhanced chemical vapor deposition system
EP3730265B1 (en) * 2017-12-14 2024-07-17 Koka Chrome Industry Co., Ltd. Cooling roll and method for producing thermoplastic resin sheet using same
SG11202112198UA (en) 2019-05-03 2021-12-30 Therm X Of California Inc High temperature aluminum nitride heater with multi-zone capability

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665242B2 (ja) 1988-09-19 1997-10-22 東陶機器株式会社 静電チャック
JPH06737A (ja) * 1991-03-29 1994-01-11 Shin Etsu Chem Co Ltd 静電チャック基板
JPH04342155A (ja) * 1991-05-20 1992-11-27 Fujitsu Ltd 半導体製造装置
JP3357991B2 (ja) * 1991-07-15 2002-12-16 株式会社アルバック 静電吸着装置
DE69231299T2 (de) * 1991-11-07 2001-01-18 Varian Semiconductor Equipment Verfahren zur Herstellung einer elektrostatischen Halteplatte
US5800618A (en) * 1992-11-12 1998-09-01 Ngk Insulators, Ltd. Plasma-generating electrode device, an electrode-embedded article, and a method of manufacturing thereof
JP3050716B2 (ja) 1993-02-20 2000-06-12 東京エレクトロン株式会社 プラズマ処理装置
JP3040630B2 (ja) 1993-02-16 2000-05-15 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
US5384681A (en) * 1993-03-01 1995-01-24 Toto Ltd. Electrostatic chuck
KR100430643B1 (ko) * 1994-01-31 2004-05-12 어플라이드 머티어리얼스, 인코포레이티드 두께가 균일한 절연체 막을 갖는 정전기 척
JPH07297265A (ja) 1994-04-26 1995-11-10 Shin Etsu Chem Co Ltd 静電チャック
US5886863A (en) * 1995-05-09 1999-03-23 Kyocera Corporation Wafer support member
JP3457477B2 (ja) * 1995-09-06 2003-10-20 日本碍子株式会社 静電チャック
JPH09172055A (ja) * 1995-12-19 1997-06-30 Fujitsu Ltd 静電チャック及びウエハの吸着方法
JPH09213781A (ja) * 1996-02-01 1997-08-15 Tokyo Electron Ltd 載置台構造及びそれを用いた処理装置
JP3172671B2 (ja) * 1996-03-19 2001-06-04 信越化学工業株式会社 静電チャック
US6071630A (en) * 1996-03-04 2000-06-06 Shin-Etsu Chemical Co., Ltd. Electrostatic chuck
JP3457495B2 (ja) * 1996-03-29 2003-10-20 日本碍子株式会社 窒化アルミニウム焼結体、金属埋設品、電子機能材料および静電チャック
JP3428836B2 (ja) 1996-11-19 2003-07-22 信越化学工業株式会社 静電チャック
JPH11111828A (ja) 1997-09-30 1999-04-23 Shin Etsu Chem Co Ltd 静電吸着装置
US5880924A (en) * 1997-12-01 1999-03-09 Applied Materials, Inc. Electrostatic chuck capable of rapidly dechucking a substrate
US6104596A (en) 1998-04-21 2000-08-15 Applied Materials, Inc. Apparatus for retaining a subtrate in a semiconductor wafer processing system and a method of fabricating same
JPH11354504A (ja) * 1998-06-08 1999-12-24 Sony Corp ガラス基板処理装置
US6256187B1 (en) * 1998-08-03 2001-07-03 Tomoegawa Paper Co., Ltd. Electrostatic chuck device
US6125025A (en) * 1998-09-30 2000-09-26 Lam Research Corporation Electrostatic dechucking method and apparatus for dielectric workpieces in vacuum processors
JP3805134B2 (ja) * 1999-05-25 2006-08-02 東陶機器株式会社 絶縁性基板吸着用静電チャック

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773723B1 (ko) 2005-09-08 2007-11-06 주식회사 아이피에스 플라즈마 처리장치
US9543187B2 (en) 2008-05-19 2017-01-10 Entegris, Inc. Electrostatic chuck
US10395963B2 (en) 2008-05-19 2019-08-27 Entegris, Inc. Electrostatic chuck
US20100254065A1 (en) * 2009-04-07 2010-10-07 Ngk Insulators, Ltd. Electrostatic chuck
US8279576B2 (en) 2009-04-07 2012-10-02 Ngk Insulators, Ltd. Electrostatic chuck
TWI474434B (zh) * 2009-04-07 2015-02-21 Ngk Insulators Ltd 靜電夾頭
US8861170B2 (en) 2009-05-15 2014-10-14 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
US8879233B2 (en) 2009-05-15 2014-11-04 Entegris, Inc. Electrostatic chuck with polymer protrusions
US9721821B2 (en) 2009-05-15 2017-08-01 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
US9025305B2 (en) 2010-05-28 2015-05-05 Entegris, Inc. High surface resistivity electrostatic chuck
CN111868913A (zh) * 2018-03-23 2020-10-30 住友大阪水泥股份有限公司 静电卡盘装置及静电卡盘装置的制造方法

Also Published As

Publication number Publication date
KR100450476B1 (ko) 2004-10-01
EP1156522A2 (en) 2001-11-21
US7042697B2 (en) 2006-05-09
EP1156522B1 (en) 2014-11-19
US20040070916A1 (en) 2004-04-15
KR20010105236A (ko) 2001-11-28
EP1156522A3 (en) 2002-03-27
TWI254403B (en) 2006-05-01

Similar Documents

Publication Publication Date Title
US7042697B2 (en) Electrostatic chucks and electrostatically attracting structures
US6215643B1 (en) Electrostatic chuck and production method therefor
EP0791956B1 (en) Electrostatic chuck
KR100793676B1 (ko) 정전 척 및 그 제조 방법
US6490145B1 (en) Substrate support pedestal
US7264699B2 (en) Workpiece holder for processing apparatus, and processing apparatus using the same
KR20010086294A (ko) 정전 척
JP3699349B2 (ja) ウエハー吸着加熱装置
JP2017507484A (ja) 静電チャックおよびその作製方法
JP2006287210A (ja) 静電チャック及びその製造方法
US7369393B2 (en) Electrostatic chucks having barrier layer
US6603651B2 (en) Electrostatic chuck
US6488820B1 (en) Method and apparatus for reducing migration of conductive material on a component
US20050022744A1 (en) Susceptor for Semiconductor Manufacturing Equipment, and Semiconductor Manufacturing Equipment in Which the Susceptor Is Installed
US20040121192A1 (en) ALN material and electrostatic chuck incorporating same
JPH09283606A (ja) 静電チャック
JPH09283607A (ja) 静電チャック
JP4849887B2 (ja) 静電チャック
JP4540252B2 (ja) 静電チャックおよび静電吸着構造
JP3662909B2 (ja) ウエハー吸着加熱装置及びウエハー吸着装置
JPH07273175A (ja) 保持装置
JP2001274228A (ja) 静電チャック
JP3180998B2 (ja) 静電チャック
JP2006049357A (ja) 静電チャックおよび静電チャックを搭載した装置
JPH10189698A (ja) 静電チャック

Legal Events

Date Code Title Description
AS Assignment

Owner name: NGK INSULATORS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TSURUTA, HIDEYOSHI;YAMADA, NAOHITO;REEL/FRAME:012187/0150

Effective date: 20010531

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE