US20010014715A1 - Aqueous barrier coating compositions containing polyurethane dispersions - Google Patents
Aqueous barrier coating compositions containing polyurethane dispersions Download PDFInfo
- Publication number
- US20010014715A1 US20010014715A1 US09/770,027 US77002701A US2001014715A1 US 20010014715 A1 US20010014715 A1 US 20010014715A1 US 77002701 A US77002701 A US 77002701A US 2001014715 A1 US2001014715 A1 US 2001014715A1
- Authority
- US
- United States
- Prior art keywords
- acid
- molecular weight
- polyurethane
- dispersion
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920003009 polyurethane dispersion Polymers 0.000 title claims abstract description 35
- 239000008199 coating composition Substances 0.000 title claims abstract description 27
- 230000004888 barrier function Effects 0.000 title description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 49
- 239000002253 acid Substances 0.000 claims abstract description 45
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 27
- 239000007787 solid Substances 0.000 claims abstract description 27
- 229920002635 polyurethane Polymers 0.000 claims abstract description 24
- 239000004814 polyurethane Substances 0.000 claims abstract description 24
- 230000003472 neutralizing effect Effects 0.000 claims abstract description 23
- 239000012948 isocyanate Substances 0.000 claims abstract description 21
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- 229920005989 resin Polymers 0.000 claims abstract description 20
- 239000011347 resin Substances 0.000 claims abstract description 20
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 18
- 150000001875 compounds Chemical class 0.000 claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 12
- 229920005862 polyol Polymers 0.000 claims abstract description 12
- 150000003077 polyols Chemical class 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 10
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract description 8
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims abstract description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000006185 dispersion Substances 0.000 claims description 58
- 238000000576 coating method Methods 0.000 claims description 43
- 229920000728 polyester Polymers 0.000 claims description 27
- 150000002009 diols Chemical class 0.000 claims description 23
- 229920001228 polyisocyanate Polymers 0.000 claims description 21
- 239000005056 polyisocyanate Substances 0.000 claims description 21
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 20
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 20
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 19
- 238000001035 drying Methods 0.000 claims description 18
- 239000000945 filler Substances 0.000 claims description 18
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims description 14
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 14
- -1 carbonate diol Chemical class 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 239000004417 polycarbonate Substances 0.000 claims description 13
- 229920000515 polycarbonate Polymers 0.000 claims description 13
- 239000003431 cross linking reagent Substances 0.000 claims description 12
- 239000003960 organic solvent Substances 0.000 claims description 12
- PTBDIHRZYDMNKB-UHFFFAOYSA-N 2,2-Bis(hydroxymethyl)propionic acid Chemical compound OCC(C)(CO)C(O)=O PTBDIHRZYDMNKB-UHFFFAOYSA-N 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 claims description 11
- 239000001361 adipic acid Substances 0.000 claims description 10
- 235000011037 adipic acid Nutrition 0.000 claims description 10
- 125000001931 aliphatic group Chemical group 0.000 claims description 10
- 239000000049 pigment Substances 0.000 claims description 10
- 229920000877 Melamine resin Polymers 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 9
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 claims description 9
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 claims description 7
- 229920003232 aliphatic polyester Polymers 0.000 claims description 6
- 229920000570 polyether Polymers 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- RDFQSFOGKVZWKF-UHFFFAOYSA-N 3-hydroxy-2,2-dimethylpropanoic acid Chemical compound OCC(C)(C)C(O)=O RDFQSFOGKVZWKF-UHFFFAOYSA-N 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- JVYDLYGCSIHCMR-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)butanoic acid Chemical compound CCC(CO)(CO)C(O)=O JVYDLYGCSIHCMR-UHFFFAOYSA-N 0.000 claims description 3
- 229920001225 polyester resin Polymers 0.000 claims description 3
- 239000004645 polyester resin Substances 0.000 claims description 3
- 229920005749 polyurethane resin Polymers 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 2
- 239000004640 Melamine resin Substances 0.000 claims 3
- 238000002360 preparation method Methods 0.000 claims 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 abstract description 14
- 150000001298 alcohols Chemical class 0.000 abstract description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 36
- 239000011248 coating agent Substances 0.000 description 31
- 239000004575 stone Substances 0.000 description 28
- 238000012360 testing method Methods 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 239000003973 paint Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 11
- 239000012153 distilled water Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 238000004821 distillation Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 238000004132 cross linking Methods 0.000 description 7
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 235000011187 glycerol Nutrition 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 6
- 239000004922 lacquer Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229920003277 CYMEL® 328 Polymers 0.000 description 5
- 125000005442 diisocyanate group Chemical group 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 238000010422 painting Methods 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 150000003839 salts Chemical group 0.000 description 4
- 238000004901 spalling Methods 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- NNOZGCICXAYKLW-UHFFFAOYSA-N 1,2-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC=C1C(C)(C)N=C=O NNOZGCICXAYKLW-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- IABRWXCXQSTUSS-UHFFFAOYSA-N [H]N(C)C(=O)N([H])CC Chemical compound [H]N(C)C(=O)N([H])CC IABRWXCXQSTUSS-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 2
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 2
- GNQKHBSIBXSFFD-UHFFFAOYSA-N 1,3-diisocyanatocyclohexane Chemical compound O=C=NC1CCCC(N=C=O)C1 GNQKHBSIBXSFFD-UHFFFAOYSA-N 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- VYZKQGGPNIFCLD-UHFFFAOYSA-N 3,3-dimethylhexane-2,2-diol Chemical compound CCCC(C)(C)C(C)(O)O VYZKQGGPNIFCLD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical group NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 2
- 125000005587 carbonate group Chemical group 0.000 description 2
- 150000007942 carboxylates Chemical group 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229960002887 deanol Drugs 0.000 description 2
- 239000012975 dibutyltin dilaurate Substances 0.000 description 2
- 239000012972 dimethylethanolamine Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000007888 film coating Substances 0.000 description 2
- 238000009501 film coating Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- ULWOJODHECIZAU-UHFFFAOYSA-N n,n-diethylpropan-2-amine Chemical compound CCN(CC)C(C)C ULWOJODHECIZAU-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- WHIVNJATOVLWBW-PLNGDYQASA-N (nz)-n-butan-2-ylidenehydroxylamine Chemical compound CC\C(C)=N/O WHIVNJATOVLWBW-PLNGDYQASA-N 0.000 description 1
- FDYWJVHETVDSRA-UHFFFAOYSA-N 1,1-diisocyanatobutane Chemical compound CCCC(N=C=O)N=C=O FDYWJVHETVDSRA-UHFFFAOYSA-N 0.000 description 1
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical group O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 1
- NCXUNZWLEYGQAH-UHFFFAOYSA-N 1-(dimethylamino)propan-2-ol Chemical compound CC(O)CN(C)C NCXUNZWLEYGQAH-UHFFFAOYSA-N 0.000 description 1
- SVZXPYMXOAPDNI-UHFFFAOYSA-N 1-[di(propan-2-yl)amino]ethanol Chemical compound CC(C)N(C(C)C)C(C)O SVZXPYMXOAPDNI-UHFFFAOYSA-N 0.000 description 1
- PPNCOQHHSGMKGI-UHFFFAOYSA-N 1-cyclononyldiazonane Chemical compound C1CCCCCCCC1N1NCCCCCCC1 PPNCOQHHSGMKGI-UHFFFAOYSA-N 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- LXOFYPKXCSULTL-UHFFFAOYSA-N 2,4,7,9-tetramethyldec-5-yne-4,7-diol Chemical compound CC(C)CC(C)(O)C#CC(C)(O)CC(C)C LXOFYPKXCSULTL-UHFFFAOYSA-N 0.000 description 1
- JVZZUPJFERSVRN-UHFFFAOYSA-N 2-methyl-2-propylpropane-1,3-diol Chemical compound CCCC(C)(CO)CO JVZZUPJFERSVRN-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- SDXAWLJRERMRKF-UHFFFAOYSA-N 3,5-dimethyl-1h-pyrazole Chemical compound CC=1C=C(C)NN=1 SDXAWLJRERMRKF-UHFFFAOYSA-N 0.000 description 1
- ULMZOZMSDIOZAF-UHFFFAOYSA-N 3-hydroxy-2-(hydroxymethyl)propanoic acid Chemical compound OCC(CO)C(O)=O ULMZOZMSDIOZAF-UHFFFAOYSA-N 0.000 description 1
- CCTFMNIEFHGTDU-UHFFFAOYSA-N 3-methoxypropyl acetate Chemical compound COCCCOC(C)=O CCTFMNIEFHGTDU-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- MGYGFNQQGAQEON-UHFFFAOYSA-N 4-tolyl isocyanate Chemical compound CC1=CC=C(N=C=O)C=C1 MGYGFNQQGAQEON-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- ZHESOIPTRUDICE-UHFFFAOYSA-N CCCCCCCCC.N=C=O.N=C=O.N=C=O Chemical compound CCCCCCCCC.N=C=O.N=C=O.N=C=O ZHESOIPTRUDICE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical compound [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- JGCWKVKYRNXTMD-UHFFFAOYSA-N bicyclo[2.2.1]heptane;isocyanic acid Chemical compound N=C=O.N=C=O.C1CC2CCC1C2 JGCWKVKYRNXTMD-UHFFFAOYSA-N 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920001727 cellulose butyrate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- BEPAFCGSDWSTEL-UHFFFAOYSA-N dimethyl malonate Chemical compound COC(=O)CC(=O)OC BEPAFCGSDWSTEL-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- COPLXRFZXQINJM-UHFFFAOYSA-N isocyanic acid;hydrate Chemical compound O.N=C=O COPLXRFZXQINJM-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- VMOWKUTXPNPTEN-UHFFFAOYSA-N n,n-dimethylpropan-2-amine Chemical compound CC(C)N(C)C VMOWKUTXPNPTEN-UHFFFAOYSA-N 0.000 description 1
- YCWSUKQGVSGXJO-NTUHNPAUSA-N nifuroxazide Chemical group C1=CC(O)=CC=C1C(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 YCWSUKQGVSGXJO-NTUHNPAUSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N phthalic anhydride Chemical compound C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 150000005619 secondary aliphatic amines Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- KNXVOGGZOFOROK-UHFFFAOYSA-N trimagnesium;dioxido(oxo)silane;hydroxy-oxido-oxosilane Chemical compound [Mg+2].[Mg+2].[Mg+2].O[Si]([O-])=O.O[Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O KNXVOGGZOFOROK-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical group NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
- C08G18/12—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/0804—Manufacture of polymers containing ionic or ionogenic groups
- C08G18/0819—Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
- C08G18/0823—Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6633—Compounds of group C08G18/42
- C08G18/6659—Compounds of group C08G18/42 with compounds of group C08G18/34
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/06—Polyurethanes from polyesters
Definitions
- the invention relates to novel polyurethane dispersions, a process for their production and their use in aqueous binders for rapidly drying coating compositions in automotive painting.
- a coat to protect against impact from flying stones and a filler coat or a combination of both (“filler protecting against impact from flying stones”) is/are initially applied to a metal surface primed by cathodic electrophoretic coating (CEC). After that a pigmented base coat and then a clear top coat is applied or, alternatively, a pigmented top coat is applied.
- CEC cathodic electrophoretic coating
- the filler coat protecting against impact from flying stones serves to smooth out unevenness in the surface and produces a good resistance to impact from flying stones through its high elasticity and deformability.
- Polyesters and polyurethanes as well as polyisocyanate or melamine crosslinking agents have previously been used for this coat.
- the filler protecting against impact from flying stones is stoved prior to the application of the base coat and the clear lacquer or top coat. This is necessary to improve the “take” of the top coat and to seal any defects still present in the filler coat. Further stoving then takes place after the application of the clear lacquer or top coat. This process has the disadvantage that two expensive stoving operations are required.
- Known coatings that dry rapidly without a stoving operation such as those containing polyacrylates, do not exhibit the required resistance to impact from flying stones, since on curing they lead to films with inadequate mechanical properties.
- An object of the present invention is to provide a binder for a barrier coat that protects against impact from flying stones and additionally dries very rapidly such that the resulting coating has very good water-resistance and is resistant to being dissolved by the subsequently applied base or top coat. It is an additional object of the present invention that the adhesion or inter-layer adhesion should also be exceptional, in order to ensure an optimum multi-layer coating. It is a further object of the present invention for the binder to provide a light-fast, weather-resistant coating for those instances when moderately opaque top or base coats are used or when a pigmented top or base coat is completely omitted. It is a final object of the present invention for the binder to have outstanding stability, in particular viscosity stability, when formulated in coating compositions and the ability to be repaired directly on the coating line.
- EP-A-0 498 156 describes polyester dispersions containing urethane groups, which are very suitable for producing intermediate primer coats protecting against impact from flying stones or stoving fillers with high resistance to impact from flying stones. In order to achieve these superior properties, however, high curing temperatures or long stoving times are required.
- DE-A-3,936,794 describes polyurethane dispersions containing carbonate groups and their use in automotive painting, e.g. for base coats. Stoving conditions of approx. 140° C. and, in cases of repair on the line, curing at approx. 80° C. are mentioned. Important requirements for these dispersions are e.g. adhesion, weathering resistance and resistance to condensation also at 80° C. drying.
- DE-A-4,438,504 describes coating compositions based on water-thinnable polyurethane resins with a number average molecular weight (Mn) of 4000 to 25000 g/mole.
- Mn number average molecular weight
- the present invention relates to aqueous polyurethane dispersions wherein the polyurethanes are reaction products of
- the neutralizing agent is added in an amount sufficient to neutralize 40 to 105% of the acid groups and an amount sufficient to neutralize at least 60% of the acid groups is added prior to the chain extension reaction,
- the polyurethane contains 1 to 4 wt. % of the urea groups set forth in brackets in the following formula:
- the present invention also relates to a process for preparing these polyurethane dispersions which comprises forming an isocyanate- and acid-functional polyurethane by reacting
- the present invention additionally relates to coating compositions containing these polyurethane dispersions.
- Suitable components A) include at least difunctional polyesters, polyethers, polyether polyamines, polycarbonates and polyester amides having a number average molecular weight of 500 to 6000.
- polyesters prepared from dicarboxylic acids or their anhydrides e.g.
- adipic acid succinic acid, phthalic acid anhydride, isophthalic acid, terephthalic acid, suberic acid, azelaic acid, sebacic acid, tetrahydrophthalic acid, maleic anhydride, dimeric fatty acids and diols, e.g., ethylene glycol, propylene glycol, 1,3-propanediol, diethylene glycol, triethylene glycol, 1,4-butanediol, 1,6-hexanediol, trimethylpentanediol, 1,4-cyclo-hexanediol, 1,4-cyclohexane-dimethanol, neopentyl glycol and 1,8-octanediol.
- dimeric fatty acids and diols e.g., ethylene glycol, propylene glycol, 1,3-propanediol, diethylene glycol, triethylene glycol, 1,4-butan
- the polyesters can also be prepared from mono-, tri- or tetrafunctional raw materials, such as 2-ethylhexanoic acid, benzoic acid, soya bean oil fatty acid, oleic acid, stearic fatty acid, sunflower oil fatty acid, trimellitic anhydride, trimethylol propane, glycerine and pentaerythritol.
- mono-, tri- or tetrafunctional raw materials such as 2-ethylhexanoic acid, benzoic acid, soya bean oil fatty acid, oleic acid, stearic fatty acid, sunflower oil fatty acid, trimellitic anhydride, trimethylol propane, glycerine and pentaerythritol.
- polyesters made from lactones, in particular ⁇ -caprolactone; polycarbonates, available by reacting for example of the diols mentioned above with diaryl or dialkyl carbonates or phosgene; and castor oil.
- polyethers such as can be obtained by the polymerization of propylene oxide and/or tetrahydrofuran, optionally with the additional use of small amounts of ethylene oxide and/or styrene oxide wherein diols, triols, water or amines are used as starter molecule(s).
- Preferred components A) are difunctional polyesters having a number average molecular weight of 840 to 2600, preferably 1700 to 2100, which are prepared from aliphatic raw materials, such as adipic acid, maleic anhydride, hexanediol, neopentyl glycol, ethylene glycol, propylene glycol and diethylene glycol, more preferably adipic acid, hexanediol and neopentyl glycol.
- aliphatic raw materials such as adipic acid, maleic anhydride, hexanediol, neopentyl glycol, ethylene glycol, propylene glycol and diethylene glycol, more preferably adipic acid, hexanediol and neopentyl glycol.
- Preferred components A) are also aliphatic polycarbonate diols or polyester carbonate diols having a number average molecular weight of 840 to 2600.
- component A) contains a mixture of 20 to 80 wt. % of an aliphatic polyester diol with a number average molecular weight of 840 to 2100 and 20 to 80 wt. % of an aliphatic polycarbonate diol or polyester carbonate diol with a number average molecular weight of 1000 to 2100.
- polyester diols are used alone, it is advantageous for good water resistance and resistance to hydrolysis to select particular polyester diols, e.g. those based on adipic acid, hexanediol, neopentyl glycol and having a molecular weight of 1700 to 2100.
- polycarbonate diols alone can lead to problems in the film appearance, e.g. due to non-optimal flow, and in unfavorable conditions also to non-optimal inter-layer adhesion.
- Suitable low molecular weight components B) have a number average molecular weight of less than 500, preferably 62 to 400, and include ethylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, trimethylol propane, glycerine, pentaerythritol, trimethyl-pentanediol, propylene glycol, 1,3-propanediol, 1,4-cyclohexadimethanol, or their reaction products with ethylene and/or propylene oxide.
- component B) is a tri- or higher-functional low molecular weight alcohol such as trimethylol propane, glycerine, pentaerythritol or their reaction products with 1 to 6 moles of ethylene and/or propylene oxide.
- trifunctional alcohols such as trimethylol propane or glycerin in an amount of 0.5 to 4.0, preferably 1.0 to 3.0 wt. %.
- Suitable components C) include di- and/or trifunctional aliphatic isocyanates such as hexamethylene diisocyanate, butane diisocyanate, isophorone diisocyanate, 1-methyl-2,4- and/or 2,6-diisocyanatocyclo-hexane, norbornane diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, hexahydro xylylene diisocyanate, nonane triisocyanate and 4,4′-diisocyanatodicyclohexylmethane.
- di- and/or trifunctional aliphatic isocyanates such as hexamethylene diisocyanate, butane diisocyanate, isophorone diisocyanate, 1-methyl-2,4- and/or 2,6-diisocyanatocyclo-hexane, norbornane diisocyanate, xy
- aromatic isocyanates such as 2,4- and/or 2,6-diisocyanatotoluene or 4,4′-diisocyanato-diphenylmethane, as well as higher molecular weight or oligomeric polyisocyanates having a number average molecular weight of 336 to 1500 and based on the above-mentioned aliphatic isocyanates.
- preferred components C) results in the production of high quality polyurethane dispersions for barrier coats having an exceptional level of protection against impact from flying stones.
- Component D) is selected from (potentially) ionic compounds having at least one acid group and at least one hydroxyl and/or amino group, which is reactive to isocyanate groups.
- these compounds contain at least one carboxylic acid group and one or two hydroxyl and/or amino groups.
- Suitable acids include 2,2-bis(hydroxymethyl)alkanecarboxylic acids (such as dimethylol acetic acid, 2,2-dimethylol propionic acid, 2,2-dimethylol butyric acid or 2,2-dimethylol-pentane acid), dihydroxy-succinic acid, hydroxypivalic acid or mixtures of such acids.
- dimethylol propionic acid and/or hydroxypivalic acid is used as component D).
- sulfonic acid diols optionally containing ether groups as described in U.S. Pat. No. 4,108,814.
- the free acid groups represent the above-mentioned “potentially ionic” groups, while the salt groups obtained by neutralizing the acid groups with neutralizing agents are “ionic” groups.
- Component D) is used in amounts sufficient to provide an acid number, based on resin solids, ⁇ 25, preferably ⁇ 20 mg/KOH g of substance.
- the dispersions may also be prepared from less than 4 wt. % of component E), which is selected from nonionic-hydrophilic polyethers containing one or two isocyanate-reactive groups, preferably hydroxyl groups, and preferably having a number-average molecular weight of 350 to 2500.
- component E is selected from nonionic-hydrophilic polyethers containing one or two isocyanate-reactive groups, preferably hydroxyl groups, and preferably having a number-average molecular weight of 350 to 2500.
- aqueous polyurethane dispersions according to the invention are preferably reaction products of
- the neutralizing agent is added in an amount sufficient to neutralize 60 to 105% of the acid groups and an amount sufficient to neutralize at least 60% of the acid groups is added prior to the chain extension reaction,
- the polyurethane contains 1 to 4, preferably 1.75 to 3.25 wt. % of the urea groups set forth in brackets in formula I.
- the calculation of the urea group content is based on the assumption that half of the isocyanate groups of the polyurethane prepolymer react with water to form amino groups (accompanied by CO 2 formation), which then react with the other half of the isocyanate groups to form isolated monourea bridges, which increases the molecular weight.
- aqueous polyurethane dispersions according to the invention are reaction products of
- reaction of hydroxy-functional components A), B), D) and optionally E) with the isocyanate component C) takes place in known manner in one or more stages, wherein the quantitative ratios of the reactants are selected such that the equivalent ratio of NCO:OH groups is 2.5:1 to 1.2:1, preferably 1.7:1 to 1.4:1.
- the reaction can be carried out with the addition of small amounts of catalysts, such as dibutyltin dilaurate, tin-2-octoate, dibutyltin oxide or diazabicyclononane.
- the reaction is preferably carried out in a 35 to 97% organic solution, more preferably in a 55 to 75% acetone solution.
- a preferred process for preparing the polyurethane dispersion of the invention comprises forming an isocyanate- and acid-functional polyurethane by reacting
- neutralizing agent Prior to the dispersing of the organically dissolved, isocyanate-functional polyurethane prepolymer, or else already prior to the reacting of components A), B), D), and optionally E) with the isocyanate-functional component C), neutralizing agent is added in an amount sufficient to neutralize 40% to 105%, preferably 50% to 105% of the acid groups. It is also possible to add the neutralizing agent to the dispersing water.
- Preferred neutralizing agents include triethylamine, N-methyl morpholine, dimethyl-isopropylamine, diisopropylaminoethanol, dimethyl ethanolamine and dimethyl isopropanolamine. Mixtures of different neutralizing agents can also be used. Ammonia is also suitable as a neutralizing agent in certain cases. Particularly preferred is diethyl isopropylamine, optionally in admixture with other amines.
- the solvents used to produce the polyurethane prepolymer can be partially or preferably completely separated out of the dispersion by distillation.
- the dispersions according to the invention contain less than 2.5 wt. % and more preferably do not contain organic solvent.
- chain extension of the isocyanate-functional polyurethane prepolymer in water can optionally be added to react with up to 40% of the isocyanate groups present. They can optionally also contain ionic groups, acid groups or hydroxyl groups. Preferably, however, chain extension is carried out exclusively via the isocyanate-water reaction.
- the dispersions according to the invention have particle diameters, determined e.g. by LKS measurements, of 20 to 600, preferably of 50 to 150 nm.
- the solids content of the dispersions is at least 30%, preferably at least 35%.
- the pH value of the dispersion is less than 8.5, preferably below 7.8.
- the number average molecular weight (Mn) of the dispersion is >20,000, preferably >30,000 and more preferably >40,000 g/mole (as determined by gel permeation chromatography).
- Mn number average molecular weight
- a portion of the dispersion contains very high molecular weight portions, which are no longer completely soluble in organic solvents and for which molecular weight cannot be determined.
- the products according to the invention are suitable for coating any substrates, in particular wood, ceramics, stone, concrete, bitumen, hard fiber, glass, china, plastics and metal undersurfaces.
- substrates in particular wood, ceramics, stone, concrete, bitumen, hard fiber, glass, china, plastics and metal undersurfaces.
- they can be used as a finish or dressing in textile or leather coating.
- the preferred field of use is the initial coating of vehicles, in particular as a barrier coat to obtain high level of protection against impact from flying stones and exceptional water resistance.
- the dispersions according to the invention can also contain known additives, e.g., inorganic or organic pigments, fillers (such as carbon black, silica, talc, chalk, siliceous earth and kaolin), glass in the form of powder or fibers, and cellulose or cellulose acetate butyrate.
- the dispersions can also contain crosslinking agents such as blocked polyisocyanates, polyisocyanates, melamine resins, urea resins, urea-aldehyde resins, carbodiimides, carbamates, tris(alkoxycarbonylamino)-triazines and carbamate-modified amino-crosslinking resins.
- the crosslinking agents can be used in water-dispersible or in non-water-dispersible (hydrophobic) form.
- polyisocyanates which may be blocked, include cycloaliphatic or aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI), 1-iso-cyanato-3,3,5-trimethyl-5-isocyanatomethylcyclo-hexane (isophorone diisocyanate, IPDI), methylene-bis-(4-isocyanato-cyclohexane) and tetramethyl xylylene diisocyanate (TMXDI).
- cycloaliphatic or aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI), 1-iso-cyanato-3,3,5-trimethyl-5-isocyanatomethylcyclo-hexane (isophorone diisocyanate, IPDI), methylene-bis-(4-isocyanato-cyclohexane) and tetramethyl xylylene diisocyanate (TMXDI).
- polyisocyanates are the known prepolymers containing terminal isocyanate groups and obtained in particular by reacting the above-mentioned monomeric polyisocyanates, in particular diisocyanates, with less than equivalent amounts of organic compounds having at least two isocyanate-reactive groups, preferably the polyols previously described.
- Suitable blocking agents for preparing the blocked polyisocyanates include dimethyl malonate, diethyl malonate, ethyl acetoacetate, caprolactam, secondary aliphatic amines, butanone oxime and 3,5-dimethyl pyrazole.
- the blocked polyisocyanates can be used in hydrophobic form, wherein the transfer into the aqueous dispersion can be obtained, e.g., by mixing and joint dispersion with the polyurethane prepolymer.
- the polyurethane dispersion according to the invention can also be used as a polymeric emulsifier for non-water-dispersible crosslinking agents. It is also possible to add to the polyurethane dispersion according to the invention a hydrophilic blocked polyisocyanate that is water-dispersible or already present in water-dispersible form. Hydrophilic blocked polyisocyanates are known and described, e.g., in EP-A-0 566 953 (U.S. Pat. No. 5,455,297, herein incorporated by reference).
- Preferred crosslinking agents are reactive amino-crosslinking resins or melamine resins such as Cymel 328 (Cytec); trisalkoxycarbonyl-aminotriazines such as TACT (Cytec); and/or reactive malonic ester-blocked polyisocyanate crosslinking agents and/or urethanized melamine resins.
- reactive amino-crosslinking resins or melamine resins such as Cymel 328 (Cytec); trisalkoxycarbonyl-aminotriazines such as TACT (Cytec); and/or reactive malonic ester-blocked polyisocyanate crosslinking agents and/or urethanized melamine resins.
- polyurethane dispersions according to the invention can be combined with other binders. Preferred is the combination with water-soluble or water insoluble melamine resins as well as water-emulsifiable or water dispersible polyester resins or polyester-polyurethane resins.
- the handling of the dispersion for producing coatings can take place according to any method known in the art, for example by brushing, pouring, spraying, dipping, rolling or knife coating.
- the dispersions according to the invention are suitable for producing coating compositions, sealants and adhesives.
- the drying of the products obtained by various application techniques can take place at room temperature or at elevated temperatures of up to 200° C., preferably at 60 to 150° C.
- the application preferably takes place by spraying and drying preferably for 5 to 10 minutes at 50 to 80° C.
- the dry film coating thickness is preferably between 15 and 50 ⁇ m, but coatings with higher coating thicknesses are possible.
- the coating can be adjusted to be highly flexible, but also hard, depending upon the requirements.
- After drying the barrier coat is sandable and very easy to overcoat.
- the resulting coating has optical and mechanical properties that are comparable to or better than a multi-layer coating in which, instead of the barrier coat, a filler is applied in known manner at a 35 to 45 ⁇ m dry film coating thickness and individually stoved for 20 to 25 minutes at 135 to 165° C., and subsequently a base coat/clear coat or pigmented top coat is applied.
- the dispersions according to the invention can be mixed with other ionic or nonionic dispersions or aqueous dispersions, e.g., with polyester-polyvinyl acetate, polyethylene, polystyrene, polybutadiene, polyurethane, polyvinyl chloride, polyester-polyacrylate, polyacrylate and copolymer dispersions or solutions.
- ionic or nonionic dispersions or aqueous dispersions e.g., with polyester-polyvinyl acetate, polyethylene, polystyrene, polybutadiene, polyurethane, polyvinyl chloride, polyester-polyacrylate, polyacrylate and copolymer dispersions or solutions.
- polyester-polyvinyl acetate polyethylene
- polystyrene polybutadiene
- polyurethane polyvinyl chloride
- polyester-polyacrylate polyacrylate
- copolymer dispersions or solutions e.g., poly
- Preferred is the use of water-soluble or water-dispersible polyesters, polyester-polyurethanes, polyester-polyacrylates as well as other polyurethane dispersions, in particular of polyurethane dispersions with rapid natural drying and high rigid segment contents.
- the coating compositions for barrier coats contain in addition to the known additives used in automotive coatings and optionally water for adjusting the spraying consistency
- the coating compositions for barrier coats have solids contents of at least 45, preferably at least 50% with application consistency and also exhibit a very good stability to viscosity during storage in the presence of highly reactive crosslinking agents for stoving compositions, e.g. melamine resins.
- barrier coats prepared from the dispersions according to the invention have an outstanding resistance to impact from flying stones and very good adhesion and intercoat adhesion.
- the polyurethane dispersions according to the invention can also be used to produce reactive stoving compositions curable at low temperatures, in particular stoving fillers. They are preferably combined with reactive crosslinking resins and optionally other polymers such that coatings are obtained at 90 to 120° C. optionally with the additional use of suitable catalysts and known pigments and additives.
- a polyester dispersion containing urethane groups was prepared according to EP-A-0 498 156 (U.S. Pat. No. 5,280,062), Example 2; solids content approx. 41%, viscosity approx. 1000 mPa.s/23° C.
- a paint for a barrier coat 3 was produced from 117 g of pigment paste A), 182 g of dispersion 1), 9.8 g of an amino-crosslinking resin (Cymel 328, Cytec) and 10 g of distilled water.
- the coating composition had a pH of 7.6, a solids content of 52% and a flow time in ISO 5 cup of 21 seconds. After storage for 14 days at room temperature the viscosity of the coating composition had increased only slightly (24 seconds).
- Pigment paste A was produced from the following raw materials by grinding on a pearl mill: 42.2 g of a water dispersible polyester resin (Bayhydrol D270, dissolved 70% in organic solvents, Bayer), 82.4 g distilled water, 6 g of a 10% aqueous solution of dimethyl ethanolamine, 5.4 g of a 50% solution of a wetting agent (Surfynol 104, Air Products) in NMP, 5.4 g of an additive (Additol XW 395), 108.2 g of titanium dioxide (Bayertitan R-FD, Bayer), 1.2 g of iron oxide (Bayferrox 303T, Bayer), 108.9 g of an additive (Blanc fixe micro, Sachtleben), 26.6 g of talc (Talkum IT extra, Norwegian Talk) and 3.7 g of an additive (Aerosil R 972, Degussa).
- a water dispersible polyester resin Boyhydrol D270,
- CEC cathodic electrodeposition coating
- barrier coat 3 20 ⁇ m dry film thickness, 10 minutes 70° C. surface drying,
- Intercoat adhesion barrier coat/top coat (marks from 1 to 3, 1—very good, 3—poor): 1
- Solvent resistance incipient solubility test with one minute of exposure to the following solvents: toluene, methoxypropyl acetate, ethyl acetate, acetone, rating 0 to 5, 0—unchanged, 5—dissolved: 2/2/2/2
- Dispersion 1) meets all of the requirements needed for a barrier coat.
- a paint for a barrier coat was produced with the use of comparison dispersion 2) instead of dispersion 1), corresponding coatings were applied and cured, and the properties were tested.
- the comparison product was unsuitable as a barrier coat. Also, the solvent resistance and in particular the film hardness and the water resistance were inadequate.
- Heating was carried out until the isocyanate content was at or below the theoretical isocyanate value.
- 5.8 g of ethylene diamine diluted with 30 g water were added within 5 minutes, which corresponded to a degree of chain extension of approx. 60% (i.e. sufficient reactive amino groups in the form of a diamine were added to react with approx. 60% of the isocyanate groups still remaining).
- After stirring for 15 minutes 10.0 g triethylamine (degree of neutralization 75%) and thereafter 5500 g of distilled water were added. Stirring was carried out at 40 to 50° C. until free isocyanate groups were no longer detected. The acetone was then removed by distillation.
- a finely divided dispersion 5 having a solids content of 32%, a pH of 7.8 and a viscosity of approx. 1100 mPa.s/23° C. was obtained.
- Example 3 As described in Example 3), a coating composition for a barrier coat was produced with the use of comparison dispersion 5) instead of dispersion 1), coatings were applied and cured, and the properties were tested.
- a paint for a barrier coat was produced with the use of comparison dispersion 7) instead of dispersion 1), coatings were applied and cured, and the properties were tested.
- the comparison coating composition was unsuitable as a barrier coat, since neither a homogeneous multi-layer coating was achieved and the film hardness and water resistance was inadequate.
- a coating composition for a barrier coat 10) was produced from 117 g of a pigment paste A), 195 g of dispersion 9), 9.8 g of an amino-crosslinking resin (Cymel 328, Cytec) and 8 g of distilled water.
- the paint had a pH of 7.5, a solids content of 50.3% and a flow time in an ISO 5 cup of 21 seconds. After storage for 14 days at room temperature the viscosity of the coating composition increased only slightly (27 seconds).
- Dispersion 9 meets all the requirements for a barrier coat.
- a paint for a barrier coat 12 was produced from 117 g of a pigment paste A) , 195 g of dispersion 11), 9.8 g of amino-crosslinking resin (® Cymel 328, Cytec) and 8 g of distilled water.
- the paint had a pH value of 7.4, a solids content of 50.5% and a flow time in the ISO 5 cup of 16 seconds. After 14 days' storage of the paint at room temperature the viscosity had increased only slightly (18 seconds).
- Inter-layer adhesion barrier coat/top coat (marks from 1 to 3, 1 is very good, 3 is poor): 1
- Interlayer adhesion barrier coat/CEC (marks from 1 to 3, 1 is very good, 3 is poor): 1
- Dispersion 11 meets all the requirements.
- a paint for a barrier coat 10 was produced from 117 g of a pigment paste A), 209 g of the dispersion 13), 9.8 g of amino-crosslinking resin (Cymel® 328, Cytec) and 8 g of distilled water.
- the paint had a pH value of 7.5, a solids content of approx. 49% and a flow time in the ISO 5 cup of 15 seconds. After 14 days' storage of the paint at room temperature the viscosity had increased only slightly (17 seconds).
- Inter-layer adhesion barrier coat/top coat (marks from 1 to 3, 1 is very good, 3 is poor): 1
- Interlayer adhesion barrier coat/CEC (marks from 1 to 3, 1 is very good, 3 is poor): 1
- Dispersion 13 meets all the requirements, however because of the reduced content of dimethylolpropionic acid the film hardness is in the lower range of the acceptable values.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- Paints Or Removers (AREA)
- Polyurethanes Or Polyureas (AREA)
- Organic Insulating Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10004723.8 | 2000-02-03 | ||
DE10004723A DE10004723A1 (de) | 2000-02-03 | 2000-02-03 | Wässrige Sperrschicht auf Basis von Polyurethan-Disperionen |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010014715A1 true US20010014715A1 (en) | 2001-08-16 |
Family
ID=7629693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/770,027 Abandoned US20010014715A1 (en) | 2000-02-03 | 2001-01-25 | Aqueous barrier coating compositions containing polyurethane dispersions |
Country Status (11)
Country | Link |
---|---|
US (1) | US20010014715A1 (cs) |
EP (1) | EP1122269A1 (cs) |
JP (1) | JP2001213933A (cs) |
KR (1) | KR20010078182A (cs) |
BR (1) | BR0100314A (cs) |
CA (1) | CA2333443A1 (cs) |
CZ (1) | CZ2001417A3 (cs) |
DE (1) | DE10004723A1 (cs) |
MX (1) | MXPA01001313A (cs) |
PL (1) | PL345529A1 (cs) |
SK (1) | SK1642001A3 (cs) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020107336A1 (en) * | 2000-09-25 | 2002-08-08 | Joachim Petzoldt | Low temperature-drying waterborne coatings |
US20040204559A1 (en) * | 2002-11-07 | 2004-10-14 | Martin Melchiors | Polyurethane resin with high carbonate group content |
US20060290901A1 (en) * | 2005-06-23 | 2006-12-28 | Cam Co., Ltd. | Light shielding heat-resistant sheet material, and light amount regulating apparatus and projector apparatus utilizing the same |
US20100273939A1 (en) * | 2007-12-26 | 2010-10-28 | Friederike Stollmaier | Polyurethane dispersions and coatings produced therefrom |
US8361273B2 (en) | 2006-07-08 | 2013-01-29 | Ferring B.V. | Polyurethane elastomers |
US8460707B2 (en) | 2004-08-05 | 2013-06-11 | Ferring B.V. | Stabilised prostaglandin composition |
US8524254B2 (en) | 2006-10-18 | 2013-09-03 | Ferring B.V. | Bioresorbable polymers |
US8557281B2 (en) | 2002-09-27 | 2013-10-15 | Ferring B.V. | Water-swellable polymers |
US8974813B2 (en) | 2006-07-05 | 2015-03-10 | Ferring B.V. | Hydrophilic polyurethane compositions |
CN104966847A (zh) * | 2015-05-06 | 2015-10-07 | 深圳高远通新材料科技有限公司 | 一种高锂盐浓度的水性聚氨酯离聚体的制备方法及应用 |
JP2016017157A (ja) * | 2014-07-09 | 2016-02-01 | 旭化成ケミカルズ株式会社 | ポリイソシアネート組成物 |
CN106243317A (zh) * | 2016-07-28 | 2016-12-21 | 上海维凯光电新材料有限公司 | 基于丙酮法的水性聚氨酯合成方法 |
US20210253775A1 (en) * | 2018-05-14 | 2021-08-19 | Dainichiseika Color & Chemicals Mfg. Co., Ltd. | Aqueous polyurethane resin dispersion and method for producing same, paint, film arrangement, and structure |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10114872A1 (de) * | 2001-03-22 | 2002-09-26 | Volkswagen Ag | Kunststoffhohlkörper mit Sperrschicht gegen Permeation |
DE10155184A1 (de) * | 2001-11-12 | 2003-05-22 | Bayer Ag | Emulsionspolymerisate als Abziehlack |
AT411062B (de) * | 2001-11-19 | 2003-09-25 | Solutia Austria Gmbh | Beschichtungsmittel |
WO2008077766A1 (de) * | 2006-12-22 | 2008-07-03 | Basf Se | Mikrokapseln, enthaltend verbindungen mit carbodiimidgruppen |
CN109096468A (zh) * | 2018-09-11 | 2018-12-28 | 洛阳盛嘉新材料有限公司 | 一种无溶剂水性聚氨酯树脂及其制备方法 |
CN109627417A (zh) * | 2018-10-25 | 2019-04-16 | 湖南湘江关西涂料有限公司 | 一种水性抗石击聚氨酯分散体及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01193367A (ja) * | 1988-01-27 | 1989-08-03 | Sanyo Chem Ind Ltd | 金属用水系焼付け塗料組成物 |
DE4216536A1 (de) * | 1992-05-19 | 1993-11-25 | Bayer Ag | Wasserverdünnbare Polyesterpolyole und ihre Verwendung |
DE4224617A1 (de) * | 1992-07-25 | 1994-01-27 | Herberts Gmbh | Wäßriges Überzugsmittel, Verfahren zu dessen Herstellung und dessen Verwendung bei Verfahren zur Mehrschichtlackierung |
DE4308079A1 (de) * | 1993-03-13 | 1994-09-15 | Basf Ag | Verwendung von wäßrigen Polyurethandispersionen als Verbundfolienklebstoff |
DE19630905A1 (de) * | 1996-08-01 | 1998-02-05 | Wolff Walsrode Ag | Wäßrige Dispersionen, ihre Herstellung und Verwendung als Lackbindemittel |
DE19824484A1 (de) * | 1998-06-02 | 1999-12-09 | Bayer Ag | Festkörperreiche Polyurethandispersionen mit hoher Applikationssicherheit |
-
2000
- 2000-02-03 DE DE10004723A patent/DE10004723A1/de not_active Withdrawn
-
2001
- 2001-01-22 EP EP01101142A patent/EP1122269A1/de not_active Withdrawn
- 2001-01-25 US US09/770,027 patent/US20010014715A1/en not_active Abandoned
- 2001-01-30 CA CA002333443A patent/CA2333443A1/en not_active Abandoned
- 2001-01-31 PL PL01345529A patent/PL345529A1/xx not_active Application Discontinuation
- 2001-01-31 KR KR1020010004488A patent/KR20010078182A/ko not_active Application Discontinuation
- 2001-02-01 CZ CZ2001417A patent/CZ2001417A3/cs unknown
- 2001-02-01 SK SK164-2001A patent/SK1642001A3/sk unknown
- 2001-02-02 MX MXPA01001313A patent/MXPA01001313A/es unknown
- 2001-02-02 BR BR0100314-3A patent/BR0100314A/pt not_active Application Discontinuation
- 2001-02-02 JP JP2001026819A patent/JP2001213933A/ja active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6827983B2 (en) | 2000-09-25 | 2004-12-07 | Bayer Aktiengesellschaft | Low temperature-drying waterborne coatings |
US20020107336A1 (en) * | 2000-09-25 | 2002-08-08 | Joachim Petzoldt | Low temperature-drying waterborne coatings |
US8557281B2 (en) | 2002-09-27 | 2013-10-15 | Ferring B.V. | Water-swellable polymers |
US9987364B2 (en) | 2002-09-27 | 2018-06-05 | Ferring B.V. | Water-swellable polymers |
US8628798B2 (en) | 2002-09-27 | 2014-01-14 | Ferring B.V. | Water-swellable polymers |
US20040204559A1 (en) * | 2002-11-07 | 2004-10-14 | Martin Melchiors | Polyurethane resin with high carbonate group content |
US6927254B2 (en) | 2002-11-07 | 2005-08-09 | Bayer Aktiengesellschaft | Polyurethane resin with high carbonate group content |
US8709482B2 (en) | 2004-08-05 | 2014-04-29 | Ferring B.V. | Stabilised prostaglandin composition |
US8460707B2 (en) | 2004-08-05 | 2013-06-11 | Ferring B.V. | Stabilised prostaglandin composition |
US8491934B2 (en) | 2004-08-05 | 2013-07-23 | Ferring B.V. | Stabilised prostaglandin composition |
US20060290901A1 (en) * | 2005-06-23 | 2006-12-28 | Cam Co., Ltd. | Light shielding heat-resistant sheet material, and light amount regulating apparatus and projector apparatus utilizing the same |
US8974813B2 (en) | 2006-07-05 | 2015-03-10 | Ferring B.V. | Hydrophilic polyurethane compositions |
US10105445B2 (en) | 2006-07-05 | 2018-10-23 | Ferring B.V. | Hydrophilic polyurethane compositions |
US8361273B2 (en) | 2006-07-08 | 2013-01-29 | Ferring B.V. | Polyurethane elastomers |
US8361272B2 (en) | 2006-07-08 | 2013-01-29 | Ferring B.V. | Polyurethane elastomers |
US8524254B2 (en) | 2006-10-18 | 2013-09-03 | Ferring B.V. | Bioresorbable polymers |
CN101959914A (zh) * | 2007-12-26 | 2011-01-26 | 陶氏环球技术公司 | 聚氨酯分散体和从该分散体制得的涂层 |
US20100273939A1 (en) * | 2007-12-26 | 2010-10-28 | Friederike Stollmaier | Polyurethane dispersions and coatings produced therefrom |
US8362142B2 (en) | 2007-12-26 | 2013-01-29 | Dow Global Technologies Llc | Polyurethane dispersions and coatings produced therefrom |
JP2016017157A (ja) * | 2014-07-09 | 2016-02-01 | 旭化成ケミカルズ株式会社 | ポリイソシアネート組成物 |
CN104966847A (zh) * | 2015-05-06 | 2015-10-07 | 深圳高远通新材料科技有限公司 | 一种高锂盐浓度的水性聚氨酯离聚体的制备方法及应用 |
CN106243317A (zh) * | 2016-07-28 | 2016-12-21 | 上海维凯光电新材料有限公司 | 基于丙酮法的水性聚氨酯合成方法 |
US20210253775A1 (en) * | 2018-05-14 | 2021-08-19 | Dainichiseika Color & Chemicals Mfg. Co., Ltd. | Aqueous polyurethane resin dispersion and method for producing same, paint, film arrangement, and structure |
Also Published As
Publication number | Publication date |
---|---|
PL345529A1 (en) | 2001-08-13 |
EP1122269A1 (de) | 2001-08-08 |
JP2001213933A (ja) | 2001-08-07 |
CZ2001417A3 (cs) | 2001-09-12 |
KR20010078182A (ko) | 2001-08-20 |
BR0100314A (pt) | 2001-10-09 |
DE10004723A1 (de) | 2001-08-09 |
SK1642001A3 (en) | 2002-06-04 |
MXPA01001313A (es) | 2002-08-06 |
CA2333443A1 (en) | 2001-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6610779B1 (en) | Aqueous barrier layer based on polyurethane dispersions | |
CA2272759C (en) | High solids polyurethane-urea dispersions having improved storage stability | |
US20010014715A1 (en) | Aqueous barrier coating compositions containing polyurethane dispersions | |
JP3662622B2 (ja) | 水性ポリエステル−ポリウレタン分散液およびそれらの塗料における使用 | |
US5710209A (en) | Aqueous binders for coating compositions based on polyester polyurethanes | |
US7902302B2 (en) | Hydroxy-functional polyester-polyurethane dispersions, methods of preparing the same, compositions containing such dispersions and uses therefor | |
KR100290996B1 (ko) | 수용성또는수분산성폴리이소시아네이트혼합물및스토빙조성물중에서의그의용도 | |
US7049367B2 (en) | Self-crosslinking PU dispersions | |
US9469716B2 (en) | Single-component polyurethane system comprising aqueous or water-soluble polyurethanes | |
US5047294A (en) | Use of polyurethane resins for aqueous filler compositions | |
US20090264587A1 (en) | Aqueous polyurethane solutions for polyurethane systems | |
JP2003504434A (ja) | 水性塗料、特に水性サーフェイサーまたは落石保護プライマー | |
JPH03162469A (ja) | 水‐分散性バインダー組成物、焼付け目止剤の製造法およびそれから形成した塗膜 | |
US7557156B2 (en) | Aqueous hydroxy-functional polyester dispersions containing urethane groups | |
CA2059571C (en) | Aqueous polyesters, a process for their production and their use in high-solids stoving lacquers | |
JP2002536474A (ja) | ポリウレタン及び水性合成樹脂塗膜におけるその使用 | |
US6824834B2 (en) | Coating composition | |
US20020165334A1 (en) | Aqueous dispersions | |
US5334651A (en) | Water-thinnable two-component coating preparation, a process for its preparation, and its use | |
MXPA01008649A (en) | Aqueous barrier layer based on polyurethane dispersions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAYER AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLUM, HARALD;MEIXNER, JURGEN;MULLER, HEINO;AND OTHERS;REEL/FRAME:011509/0042;SIGNING DATES FROM 20001204 TO 20001206 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |