US11566002B2 - Substituted tetrahydrocyclopenta[C]pyrroles, substituted dihydropyrrolizines, analogues thereof, and methods using same - Google Patents

Substituted tetrahydrocyclopenta[C]pyrroles, substituted dihydropyrrolizines, analogues thereof, and methods using same Download PDF

Info

Publication number
US11566002B2
US11566002B2 US17/259,751 US201917259751A US11566002B2 US 11566002 B2 US11566002 B2 US 11566002B2 US 201917259751 A US201917259751 A US 201917259751A US 11566002 B2 US11566002 B2 US 11566002B2
Authority
US
United States
Prior art keywords
methyl
chloro
fluorophenyl
carbamoyl
tetrahydrocyclopenta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US17/259,751
Other languages
English (en)
Other versions
US20210179557A1 (en
Inventor
Andrew G. Cole
Steven Kultgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arbutus Biopharma Corp
Original Assignee
Arbutus Biopharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arbutus Biopharma Corp filed Critical Arbutus Biopharma Corp
Priority to US17/259,751 priority Critical patent/US11566002B2/en
Publication of US20210179557A1 publication Critical patent/US20210179557A1/en
Assigned to ARBUTUS BIOPHARMA CORPORATION reassignment ARBUTUS BIOPHARMA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARBUTUS BIOPHARMA, INC.
Assigned to ARBUTUS BIOPHARMA, INC. reassignment ARBUTUS BIOPHARMA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLE, ANDREW G., KULTGEN, STEVEN
Application granted granted Critical
Publication of US11566002B2 publication Critical patent/US11566002B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41551,2-Diazoles non condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41921,2,3-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41961,2,4-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/422Oxazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/52Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring condensed with a ring other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • Hepatitis B is one of the world's most prevalent diseases, being listed by National Institute of Allergy and Infectious Diseases (NIAID) as a High Priority Area of Interest. Although most individuals resolve the infection following acute symptoms, approximately 30% of cases become chronic. 350-400 million people worldwide are estimated to have chronic hepatitis B, leading to 0.5-1 million deaths per year, due largely to the development of hepatocellular carcinoma, cirrhosis and/or other complications.
  • NIAID National Institute of Allergy and Infectious Diseases
  • Hepatitis B is caused by infection with Hepatitis B virus (HBV), which is a noncytopathic, liver tropic DNA virus belonging to Hepadnaviridae family.
  • HBV Hepatitis B virus
  • Pregenomic (pg) RNA is the template for reverse transcriptional replication of HBV DNA.
  • the encapsidation of pg RNA, together with viral DNA polymerase, into a nucleocapsid is essential for the subsequent viral DNA synthesis. Inhibition of pg RNA encapsidation may block HBV replication and provide a new therapeutic approach to HBV treatment.
  • a capsid inhibitor acts by inhibiting the expression and/or function of a capsid protein either directly or indirectly: for example, it may inhibit capsid assembly, induce formation of non-capsid polymers, promote excess capsid assembly or misdirected capsid assembly, affect capsid stabilization, and/or inhibit RNA encapsidation.
  • a capsid inhibitor may also act by inhibiting capsid function in one or more downstream events within the replication process, such as, but not limited to, viral DNA synthesis, transport of relaxed circular DNA (rcDNA) into the nucleus, covalently closed circular DNA (cccDNA) formation, virus maturation, budding and/or release.
  • a limited number of drugs are currently approved for the management of chronic hepatitis B, including two formulations of alpha-interferon (standard and pegylated) and five nucleoside/nucleotide analogues (lamivudine, adefovir, entecavir, telbivudine, and tenofovir) that inhibit HBV DNA polymerase.
  • the first-line treatment choices are entecavir, tenofovir and/or peg-interferon alfa-2a.
  • peg-interferon alfa-2a achieves desirable serological milestones in only one third of treated patients, and is frequently associated with severe side effects.
  • Entecavir and tenofovir are potent HBV inhibitors, but require long-term or possibly lifetime administration to continuously suppress HBV replication, and may eventually fail due to emergence of drug-resistant viruses. There is thus a pressing need for the introduction of novel, safe, and effective therapies for chronic hepatitis B.
  • Hepatitis D virus is a small circular enveloped RNA virus that can propagate only in the presence of HBV.
  • HDV requires the HBV surface antigen protein to propagate itself. Infection with both HBV and HDV results in more severe complications compared to infection with HBV alone. These complications include a greater likelihood of experiencing liver failure in acute infections and a rapid progression to liver cirrhosis, with an increased chance of developing liver cancer in chronic infections.
  • hepatitis D In combination with hepatitis B, hepatitis D has the highest mortality rate of all the hepatitis infections.
  • the routes of transmission of HDV are similar to those for HBV. Infection is largely restricted to persons at high risk of HBV infection, particularly injecting drug users and persons receiving dotting factor concentrates.
  • inhibition of pg RNA encapsidation may offer certain therapeutic advantages for treatment of hepatitis B and/or hepatitis D.
  • inhibition of pg RNA encapsidation may complement the current medications by providing an option for a subpopulation of patients that do not tolerate or benefit from the current medications.
  • inhibition of pg RNA encapsidation may be effective against HBV and/or HDV variants resistant to the currently available DNA polymerase inhibitors.
  • combination therapy of the pg RNA encapsidation inhibitors with DNA polymerase inhibitors may synergistically suppress HBV and/or HDV replication and prevent drug resistance emergence, thus offering a more effective treatment for chronic hepatitis B and/or hepatitis D infection.
  • novel compounds that can be used to treat and/or prevent HBV and/or HDV infection in a subject.
  • the novel compounds inhibit HBV and/or HDV nucleocapsid assembly.
  • the novel compounds can be used in patients that are HBV and/or HBV-HDV infected, patients who are at risk of becoming HBV and/or HBV-HDV infected, and/or patients that are infected with drug-resistant HBV and/or HDV. The present invention addresses this need.
  • the disclosure provides a compound of formula (I) or (II), or a salt, solvate, prodrug, stereoisomer, tautomer, or isotopically labeled derivative thereof, or any mixtures thereof:
  • the disclosure further provides a pharmaceutical composition comprising at least one compound of the disclosure and a pharmaceutically acceptable carrier.
  • the disclosure further provides a method of treating or preventing hepatitis B virus (HBV) infection and/or hepatitis D virus (HDV) infection in a subject.
  • HBV hepatitis B virus
  • HDV hepatitis D virus
  • the disclosure further provides a method of inhibiting expression and/or function of a viral capsid protein directly or indirectly in a HBV-infected and/or HDV-infected subject.
  • the method of the disclosure comprises administering to the subject in need thereof a therapeutically effective amount of at least one compound of the disclosure.
  • the invention relates, in certain aspects, to the discovery of certain substituted bicyclic compounds that are useful to treat and/or prevent hepatitis B virus (HBV) infection and/or HBV-hepatitis D virus (HDV) infection and related conditions in a subject.
  • the compounds of the invention are viral capsid inhibitors.
  • an element or component is said to be included in and/or selected from a list of recited elements or components, it should be understood that the element or component can be any one of the recited elements or components and can be selected from a group consisting of two or more of the recited elements or components.
  • the acts can be carried out in any order, except when a temporal or operational sequence is explicitly recited. Furthermore, specified acts can be carried out concurrently unless explicit claim language recites that they be carried out separately. For example, a claimed act of doing X and a claimed act of doing Y can be conducted simultaneously within a single operation, and the resulting process will fall within the literal scope of the claimed process.
  • the term “about” will be understood by persons of ordinary skill in the art and will vary to some extent on the context in which it is used. As used herein, “about” when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of ⁇ 20%, ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.1% from the specified value, as such variations are appropriate to perform the disclosed methods.
  • alkenyl means, unless otherwise stated, a stable monounsaturated or diunsaturated straight chain or branched chain hydrocarbon group having the stated number of carbon atoms. Examples include vinyl, propenyl (or allyl), crotyl, isopentenyl, butadienyl, 1,3-pentadienyl, 1,4-pentadienyl, and the higher homologs and isomers.
  • a functional group representing an alkene is exemplified by —CH 2 —CH ⁇ CH 2 .
  • alkoxy employed alone or in combination with other terms means, unless otherwise stated, an alkyl group having the designated number of carbon atoms, as defined elsewhere herein, connected to the rest of the molecule via an oxygen atom, such as, for example, methoxy, ethoxy, 1-propoxy, 2-propoxy (or isopropoxy) and the higher homologs and isomers.
  • oxygen atom such as, for example, methoxy, ethoxy, 1-propoxy, 2-propoxy (or isopropoxy) and the higher homologs and isomers.
  • a specific example is (C 1 -C 3 )alkoxy, such as, but not limited to, ethoxy and methoxy.
  • alkyl by itself or as part of another substituent means, unless otherwise stated, a straight or branched chain hydrocarbon having the number of carbon atoms designated (i.e., C 1 -C 10 means one to ten carbon atoms) and includes straight, branched chain, or cyclic substituent groups. Examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, and cyclopropylmethyl.
  • a specific embodiment is (C 1 -C 6 )alkyl, such as, but not limited to, ethyl, methyl, isopropyl, isobutyl, n-pentyl, n-hexyl, and cyclopropylmethyl.
  • alkynyl employed alone or in combination with other terms means, unless otherwise stated, a stable straight chain or branched chain hydrocarbon group with a triple carbon-carbon bond, having the stated number of carbon atoms. Non-limiting examples include ethynyl and propynyl, and the higher homologs and isomers.
  • the term “propargylic” refers to a group exemplified by —CH 2 —C ⁇ CH.
  • the term “homopropargylic” refers to a group exemplified by —CH 2 CH 2 —C ⁇ CH.
  • aromatic refers to a carbocycle or heterocycle with one or more polyunsaturated rings and having aromatic character, i.e., having (4n+2) delocalized ⁇ (pi) electrons, where ‘n’ is an integer.
  • aryl employed alone or in combination with other terms means, unless otherwise stated, a carbocyclic aromatic system containing one or more rings (typically one, two or three rings) wherein such rings may be attached together in a pendent manner, such as a biphenyl, or may be fused, such as naphthalene. Examples include phenyl, anthracyl and naphthyl.
  • Aryl groups also include, for example, phenyl or naphthyl rings fused with one or more saturated or partially saturated carbon rings (e.g., bicyclo[4.2.0]octa-1,3,5-trienyl, or indanyl), which can be substituted at one or more carbon atoms of the aromatic and/or saturated or partially saturated rings.
  • phenyl or naphthyl rings fused with one or more saturated or partially saturated carbon rings (e.g., bicyclo[4.2.0]octa-1,3,5-trienyl, or indanyl), which can be substituted at one or more carbon atoms of the aromatic and/or saturated or partially saturated rings.
  • aryl-(C 1 -C 6 )alkyl refers to a functional group wherein a one-to-six carbon alkylene chain is attached to an aryl group, e.g., —CH 2 CH 2 -phenyl or —CH 2 — phenyl (or benzyl). Specific examples are aryl-CH 2 — and aryl-CH(CH 3 )—.
  • substituted aryl-(C 1 -C 6 )alkyl refers to an aryl-(C 1 -C 6 )alkyl functional group in which the aryl group is substituted. A specific example is substituted aryl(CH 2 )—.
  • heteroaryl-(C 1 -C 6 )alkyl refers to a functional group wherein a one-to-three carbon alkylene chain is attached to a heteroaryl group, e.g., —CH 2 CH 2 -pyridyl.
  • a specific example is heteroaryl-(CH 2 )—.
  • substituted heteroaryl-(C 1 -C 6 )alkyl refers to a heteroaryl-(C 1 -C 6 )alkyl functional group in which the heteroaryl group is substituted.
  • a specific example is substituted heteroaryl-(CH 2 )—.
  • co-administered and “co-administration” as relating to a subject refer to administering to the subject a compound and/or composition of the invention along with a compound and/or composition that may also treat or prevent a disease or disorder contemplated herein.
  • the co-administered compounds and/or compositions are administered separately, or in any kind of combination as part of a single therapeutic approach.
  • the co-administered compound and/or composition may be formulated in any kind of combinations as mixtures of solids and liquids under a variety of solid, gel, and liquid formulations, and as a solution.
  • cycloalkyl by itself or as part of another substituent refers to, unless otherwise stated, a cyclic chain hydrocarbon having the number of carbon atoms designated (i.e., C 3 -C 6 refers to a cyclic group comprising a ring group consisting of three to six carbon atoms) and includes straight, branched chain or cyclic substituent groups.
  • Examples of (C 3 -C 6 )cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Cycloalkyl rings can be optionally substituted.
  • Non-limiting examples of cycloalkyl groups include: cyclopropyl, 2-methyl-cyclopropyl, cyclopropenyl, cyclobutyl, 2,3-dihydroxycyclobutyl, cyclobutenyl, cyclopentyl, cyclopentenyl, cyclopentadienyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctanyl, decalinyl, 2,5-dimethylcyclopentyl, 3,5-dichlorocyclohexyl, 4-hydroxycyclohexyl, 3,3,5-trimethylcyclohex-1-yl, octahydropentalenyl, octahydro-1H-indenyl, 3a,4,5,6,7,7a-hexahydro-3H-inden-4-yl, decahydroazulenyl; bicyclo[6.2.0]decanyl
  • cycloalkyl also includes bicyclic hydrocarbon rings, non-limiting examples of which include, bicyclo[2.1.1]hexanyl, bicyclo[2.2.1]heptanyl, bicyclo[3.1.1]heptanyl, 1,3-dimethyl[2.2.1]heptan-2-yl, bicyclo[2.2.2]octanyl, and bicyclo[3.3.3]undecanyl.
  • a “disease” is a state of health of a subject wherein the subject cannot maintain homeostasis, and wherein if the disease is not ameliorated then the subject's health continues to deteriorate.
  • a “disorder” in a subject is a state of health in which the subject is able to maintain homeostasis, but in which the subject's state of health is less favorable than it would be in the absence of the disorder. Left untreated, a disorder does not necessarily cause a further decrease in the subject's state of health.
  • halide refers to a halogen atom bearing a negative charge.
  • the halide anions are fluoride (F ⁇ ), chloride (Cl ⁇ ), bromide (Br ⁇ ), and iodide (I ⁇ ).
  • halo or “halogen” alone or as part of another substituent refers to, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom.
  • heteroalkenyl by itself or in combination with another term refers to, unless otherwise stated, a stable straight or branched chain monounsaturated or diunsaturated hydrocarbon group consisting of the stated number of carbon atoms and one or two heteroatoms selected from the group consisting of O, N, and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. Up to two heteroatoms may be placed consecutively.
  • Examples include —CH ⁇ CH—O—CH 3 , —CH ⁇ CH—CH 2 —OH, —CH 2 —CH ⁇ N—OCH 3 , —CH ⁇ CH—N(CH 3 )—CH 3 , and —CH 2 —CH ⁇ CH—CH 2 —SH.
  • heteroalkyl by itself or in combination with another term refers to, unless otherwise stated, a stable straight or branched chain alkyl group consisting of the stated number of carbon atoms and one or two heteroatoms selected from the group consisting of O, N, and S, and wherein the nitrogen and sulfur atoms may be optionally oxidized and the nitrogen heteroatom may be optionally quaternized.
  • the heteroatom(s) may be placed at any position of the heteroalkyl group, including between the rest of the heteroalkyl group and the fragment to which it is attached, as well as attached to the most distal carbon atom in the heteroalkyl group.
  • Examples include: —OCH 2 CH 2 CH 3 , —CH 2 CH 2 CH 2 OH, —CH 2 CH 2 NHCH 3 , —CH 2 SCH 2 CH 3 , and —CH 2 CH 2 S( ⁇ O)CH 3 .
  • Up to two heteroatoms may be consecutive, such as, for example, —CH 2 NH—OCH 3 , or —CH 2 CH 2 SSCH 3 .
  • heteroaryl or “heteroaromatic” refers to a heterocycle having aromatic character.
  • a polycyclic heteroaryl may include one or more rings that are partially saturated. Examples include tetrahydroquinoline and 2,3-dihydrobenzofuryl.
  • heterocycle or “heterocyclyl” or “heterocyclic” by itself or as part of another substituent refers to, unless otherwise stated, an unsubstituted or substituted, stable, mono- or multi-cyclic heterocyclic ring system that comprises carbon atoms and at least one heteroatom selected from the group consisting of N, O, and S, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen atom may be optionally quaternized.
  • the heterocyclic system may be attached, unless otherwise stated, at any heteroatom or carbon atom that affords a stable structure.
  • a heterocycle may be aromatic or non-aromatic in nature. In certain embodiments, the heterocycle is a heteroaryl.
  • non-aromatic heterocycles include monocyclic groups such as aziridine, oxirane, thiirane, azetidine, oxetane, thietane, pyrrolidine, pyrroline, imidazoline, pyrazolidine, dioxolane, sulfolane, 2,3-dihydrofuran, 2,5-dihydrofuran, tetrahydrofuran, thiophane, piperidine, 1,2,3,6-tetrahydropyridine, 1,4-dihydropyridine, piperazine, morpholine, thiomorpholine, pyran, 2,3-dihydropyran, tetrahydropyran, 1,4-dioxane, 1,3-dioxane, homopiperazine, homopiperidine, 1,3-dioxepane, 4,7-dihydro-1,3-dioxepin, and hexamethyleneoxide
  • heteroaryl groups include pyridyl, pyrazinyl, pyrimidinyl (such as, but not limited to, 2- and 4-pyrimidinyl), pyridazinyl, thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyrazolyl, isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,3,4-triazolyl, tetrazolyl, 1,2,3-thiadiazolyl, 1,2,3-oxadiazolyl, 1,3,4-thiadiazolyl, and 1,3,4-oxadiazolyl.
  • polycyclic heterocycles include indolyl (such as, but not limited to, 3-, 4-, 5-, 6- and 7-indolyl), indolinyl, quinolyl, tetrahydroquinolyl, isoquinolyl (such as, but not limited to, 1- and 5-isoquinolyl), 1,2,3,4-tetrahydroisoquinolyl, cinnolinyl, quinoxalinyl (such as, but not limited to, 2- and 5-quinoxalinyl), quinazolinyl, phthalazinyl, 1,8-naphthyridinyl, 1,4-benzodioxanyl, coumarin, dihydrocoumarin, 1,5-naphthyridinyl, benzofuryl (such as, but not limited to, 3-, 4-, 5-, 6- and 7-benzofuryl), 2,3-dihydrobenzofuryl, 1,2-benzisoxazolyl, benzothienyl (such as
  • heterocyclyl and heteroaryl moieties are intended to be representative and not limiting.
  • composition refers to a mixture of at least one compound useful within the invention with a pharmaceutically acceptable carrier.
  • the pharmaceutical composition facilitates administration of the compound to a subject.
  • the term “pharmaceutically acceptable” refers to a material, such as a carrier or diluent, which does not abrogate the biological activity or properties of the compound useful within the invention, and is relatively non-toxic, i.e., the material may be administered to a subject without causing undesirable biological effects or interacting in a deleterious manner with any of the components of the composition in which it is contained.
  • the term “pharmaceutically acceptable carrier” means a pharmaceutically acceptable material, composition or carrier, such as a liquid or solid filler, stabilizer, dispersing agent, suspending agent, diluent, excipient, thickening agent, solvent or encapsulating material, involved in carrying or transporting a compound useful within the invention within or to the subject such that it may perform its intended function.
  • a pharmaceutically acceptable material, composition or carrier such as a liquid or solid filler, stabilizer, dispersing agent, suspending agent, diluent, excipient, thickening agent, solvent or encapsulating material, involved in carrying or transporting a compound useful within the invention within or to the subject such that it may perform its intended function.
  • Such constructs are carried or transported from one organ, or portion of the body, to another organ, or portion of the body.
  • Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation, including the compound useful within the invention, and not injurious to the subject.
  • materials that may serve as pharmaceutically acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; surface-active agents; alginic acid; pyrogen-free water; isotonic sa
  • “pharmaceutically acceptable carrier” also includes any and all coatings, antibacterial and antifungal agents, and absorption delaying agents, and the like that are compatible with the activity of the compound useful within the invention, and are physiologically acceptable to the subject. Supplementary active compounds may also be incorporated into the compositions.
  • the “pharmaceutically acceptable carrier” may further include a pharmaceutically acceptable salt of the compound useful within the invention.
  • Other additional ingredients that may be included in the pharmaceutical compositions used in the practice of the invention are known in the art and described, for example in Remington's Pharmaceutical Sciences (Genaro, Ed., Mack Publishing Co., 1985, Easton, Pa.), which is incorporated herein by reference.
  • pharmaceutically acceptable salt refers to a salt of the administered compound prepared from pharmaceutically acceptable non-toxic acids and/or bases, including inorganic acids, inorganic bases, organic acids, inorganic bases, solvates (including hydrates) and clathrates thereof.
  • a “pharmaceutically effective amount,” “therapeutically effective amount,” or “effective amount” of a compound is that amount of compound that is sufficient to provide a beneficial effect to the subject to which the compound is administered.
  • prevent means avoiding or delaying the onset of symptoms associated with a disease or condition in a subject that has not developed such symptoms at the time the administering of an agent or compound commences.
  • Disease, condition and disorder are used interchangeably herein.
  • the terms “subject” and “individual” and “patient” can be used interchangeably and may refer to a human or non-human mammal or a bird.
  • Non-human mammals include, for example, livestock and pets, such as ovine, bovine, porcine, canine, feline and murine mammals.
  • the subject is human.
  • substituted refers to that an atom or group of atoms has replaced hydrogen as the substituent attached to another group.
  • substituted alkyl refers to alkyl, cycloalkyl, alkenyl, or alkynyl, as defined elsewhere herein, substituted by one, two or three substituents independently selected from the group consisting of halogen, —OH, alkoxy, tetrahydro-2-H-pyranyl, —NH 2 , —NH(C 1 -C 6 alkyl), —N(C 1 -C 6 alkyl) 2 , 1-methyl-imidazol-2-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, —C( ⁇ O)OH, —C( ⁇ O)O(C 1 -C 6 )alkyl, trifluoromethyl, —C( ⁇ O)NH 2 ,
  • substituted refers to any level of substitution, namely mono-, di-, tri-, tetra-, or penta-substitution, where such substitution is permitted.
  • the substituents are independently selected, and substitution may be at any chemically accessible position. In certain embodiments, the substituents vary in number between one and four. In other embodiments, the substituents vary in number between one and three. In yet another embodiments, the substituents vary in number between one and two.
  • the substituents are independently selected from the group consisting of C 1 -C 6 alkyl, —OH, C 1 -C 6 alkoxy, halo, cyano, amino, acetamido, and nitro.
  • the carbon chain may be branched, straight or cyclic.
  • the ring when two substituents are taken together to form a ring having a specified number of ring atoms (e.g., R 2 and R 3 taken together with the nitrogen to which they are attached to form a ring having from 3 to 7 ring members), the ring can have carbon atoms and optionally one or more (e.g., 1 to 3) additional heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • the ring can be saturated or partially saturated, and can be optionally substituted.
  • substituents of compounds are disclosed in groups or in ranges. It is specifically intended that the description include each and every individual subcombination of the members of such groups and ranges.
  • C 1-6 alkyl is specifically intended to individually disclose C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 1 -C 6 , C 1 -C 5 , C 1 -C 4 , C 1 -C 3 , C 1 -C 2 , C 2 -C 6 , C 2 -C 5 , C 2 -C 4 , C 2 -C 3 , C 3 -C 6 , C 3 -C 8 , C 3 -C 4 , C 4 -C 6 , C 4 -C 5 , and C 5 -C 6 alkyl.
  • treat means reducing the frequency or severity with which symptoms of a disease or condition are experienced by a subject by virtue of administering an agent or compound to the subject.
  • cccDNA covalently closed circular DNA
  • DMSO dimethylsulfoxide
  • HBsAg HBV surface antigen
  • HBV hepatitis B virus
  • HDV hepatitis D virus
  • HPLC high performance liquid chromatography
  • LCMS liquid chromatography mass spectrometry
  • NARTI or NRTI reverse-transcriptase inhibitor
  • NMR Nuclear Magnetic Resonance
  • NtARTI or NtRTI nucleotide analog reverse-transcriptase inhibitor
  • pg RNA pregenomic RNA
  • rcDNA relaxed circular DNA
  • sAg surface antigen
  • TLC thin layer chromatography
  • ranges throughout this disclosure, various aspects of the present invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the present invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, and 6.
  • a range of “about 0.1% to about 5%” or “about 0.1% to 5%” should be interpreted to include not just about 0.1% to about 5%, but also the individual values (e.g., 1%, 2%, 3%, and 4%) and the sub-ranges (e.g., 0.1% to 0.5%, 1.1% to 2.2%, 3.3% to 4.4%) within the indicated range.
  • the statement “about X to Y” has the same meaning as “about X to about Y,” unless indicated otherwise.
  • the statement “about X, Y, or about Z” has the same meaning as “about X, about Y, or about Z,” unless indicated otherwise. This applies regardless of the breadth of the range.
  • the invention includes a compound of formula (I) or (II), or a salt, solvate, prodrug, isotopically labeled derivative, stereoisomer (such as, in a non-limiting example, an enantiomer or diastereoisomer, and/or any mixtures thereof, such as, in a non-limiting example, mixtures in any proportions of enantiomers and/or diastereoisomers thereof), tautomer and any mixtures thereof, and/or geometric isomer and any mixtures thereof:
  • —X 1 —X 2 — is selected from the group consisting of —CH 2 CH 2 —*, —CH 2 CH(CH 3 )—*, —CH 2 C(CH 3 ) 2 —*, —CH(CH 3 )CH 2 —*, —C(CH 3 ) 2 CH 2 —*, —CH(CH 3 )CH(CH 3 )—*, —C(CH 3 ) 2 CH(CH 3 )—*, and —CH(CH 3 )C(CH 3 ) 2 —*, wherein the single bond marked as “*” is formed with X 3 ;
  • —X 3 — is selected from the group consisting of a bond (i.e., absent), —CH 2 —, —CH(CH 3 )—, —C(CH 3 ) 2 —, —CH 2 CH 2 —, *—CH 2 CH(CH 3 )—, *—CH 2 C(CH 3 ) 2 —, *—CH(CH 3 )CH 2 —, *—C(CH 3 ) 2 CH 2 —, —CH(CH 3 )CH(CH 3 )—, *—C(CH 3 ) 2 CH(CH 3 )—*, and *—CH(CH 3 )C(CH 3 ) 2 —, wherein the single bond marked as “*” is formed with X 1 —X 2 —;
  • R 1 is selected from the group consisting of optionally substituted phenyl, optionally substituted benzyl, optionally substituted heteroaryl, and —(CH 2 )(optionally substituted heteroaryl);
  • R 2 is selected from the group consisting of H, —OH, —OR 6 , —NH 2 , —NHR 6 , —NR 6 R 6a , —OC( ⁇ O)OR 6 , —OC( ⁇ O)N(R 4 )R 6 , —N(R 3 )C( ⁇ O)OR 6 [such as but not limited to N(R 4 )C( ⁇ O)O (optionally substituted C 1 -C 6 alkyl), such as, for example, —N(R 4 )C( ⁇ O)O(CH 2 ) 1-3 (optionally substituted cycloalkyl), —N(R 4 )C( ⁇ O)O-(optionally substituted benzyl), —N(R 4 )C( ⁇ O)O(CH 2 ) 1-3 (optionally substituted pyridinyl), —N(R 4 )C( ⁇ O)O(CH 2 ) 1-3 (optionally substituted azolyl, such as but not limited
  • R 3 is H or C 1 -C 6 alkyl
  • each occurrence of R 4 is independently selected from the group consisting of H and C 1 -C 6 alkyl;
  • R 5 is selected from the group consisting of H and C 1 -C 6 alkyl
  • each occurrence of R 6 is independently selected from the group consisting of optionally substituted C 1 -C 6 alkyl, optionally substituted C 1 -C 6 alkenyl, optionally substituted C 1 -C 6 alkynyl, optionally substituted C 3 -C 8 cycloalkyl, optionally substituted phenyl, and optionally substituted hetereoaryl;
  • each occurrence of R h a is independently selected from the group consisting of H, optionally substituted C 1 -C 6 alkyl, optionally substituted C 3 -C 8 cycloalkyl, optionally substituted phenyl, and optionally substituted hetereoaryl;
  • each occurrence of R 7 is independently selected from the group consisting of H and optionally substituted C 1 -C 6 alkyl;
  • R 8 is selected from the group consisting of H, halo, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl (such as, but not limited to, trifluoromethyl), C 3 -C 8 cycloalkyl, and optionally substituted phenyl; and
  • R 9 is selected from the group consisting of H and C 1 -C 6 alkyl.
  • the configuration is (R) at the C(R 2 )(R 3 ) center.
  • the compound of formula (I) is a compound of formula (I-1):
  • the compound of formula (I) is a compound of formula (I-2):
  • the compound of formula (I) is a compound of formula (I-3):
  • the compound of formula (I) is selected from the group consisting of:
  • the compound of formula (I) is selected from the group consisting of:
  • the compound of formula (I) is selected from the group consisting of:
  • the compound of formula (I) is selected from the group consisting of:
  • the compound of formula (I) is selected from the group consisting of:
  • the compound of formula (I) is selected from the group consisting of:
  • the compound of formula (I) is selected from the group consisting of:
  • the compound of formula (I) is selected from the group consisting of:
  • the compound of formula (I) is selected from the group consisting of:
  • the compound of formula (I) is selected from the group consisting of:
  • the compound of formula (II) is a compound of formula (II-1):
  • the compound of formula (II) is a compound of formula (II-2):
  • the compound of formula (II) is a compound of formula (II-3):
  • the compound of formula (II) is selected from the group consisting of:
  • the compound of formula (II) is selected from the group consisting of:
  • the compound of formula (II) is selected from the group consisting of:
  • the compound of formula (II) is selected from the group consisting of:
  • the compound of formula (II) is selected from the group consisting of:
  • the compound of formula (II) is selected from the group consisting of:
  • the compound of formula (II) is selected from the group consisting of:
  • the compound of formula (II) is selected from the group consisting of:
  • the compound of formula (II) is selected from the group consisting of:
  • the compound of formula (II) is selected from the group consisting of:
  • each occurrence of alkyl, alkenyl, alkynyl, or cycloalkyl is independently optionally substituted with at least one substituent selected from the group consisting of C 1 -C 6 alkyl, C 2 -C 8 alkenyl, C 2 -C 8 alkynyl, C 3 -C 8 cycloalkyl, halo, cyano, —OR a , optionally substituted phenyl (thus yielding, in non-limiting examples, optionally substituted phenyl-(C 1 -C 3 alkyl), such as, but not limited to, benzyl or substituted benzyl), optionally substituted heteroaryl, optionally substituted heterocyclyl, —N(R a )C( ⁇ O)R a , —C( ⁇ O)OH, —C( ⁇ O)OR a , —C( ⁇ O)NR a R a , and —N(R a )(R
  • each occurrence of aryl or heteroaryl is independently optionally substituted with at least one substituent selected from the group consisting of C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkoxy, heterocyclyl, halo, —CN, —N(R c )(R c ), and C 1 -C 6 alkoxycarbonyl, wherein each occurrence of R c is independently H, C 1 -C 6 alkyl or C 3 -C 8 cycloalkyl.
  • the alkyl, cycloalkyl, heteroaryl, heterocyclyl, aryl, or benzyl group is optionally independently substituted with at least one group selected from the group consisting of C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 haloalkyl, C 1 -C 6 haloalkoxy, —NH 2 , —NH(C 1 -C 6 alkyl), —N(C 1 -C 6 alkyl)(C 1 -C 6 alkyl), halogen, —OH, —CN, phenoxy, —NHC( ⁇ O)H, —NHC( ⁇ O)C 1 -C 6 alkyl, —C( ⁇ O)NH 2 , —C( ⁇ O)NHC 1 -C 6 alkyl, —C( ⁇ O)N(C 1 -C 6 alkyl)(C 1 -C 6 alkyl), tetrahydropyr
  • each occurrence of the heteroaryl is independently selected from the group consisting of quinolinyl, imidazo[1,2-a]pyridyl, pyridyl, pyrimidyl, pyrazinyl, imidazolyl, thiazolyl, pyrazolyl, isoxazolyl, oxadiazolyl (including 1,2,3-, 1,2,4-, 1,2,5-, and 1,3,4-oxadiazolyl), tetrazolyl, and triazolyl (such as, but not limited to, 1,2,4-triazolyl or 1,2,3-triazolyl).
  • the heteroaryl is quinolinyl.
  • the heteroaryl is imidazo[1,2-a]pyridyl. In certain embodiments, the heteroaryl is pyridyl. In certain embodiments, the heteroaryl is pyrimidyl. In certain embodiments, the heteroaryl is pyrazinyl. In certain embodiments, the heteroaryl is imidazolyl. In certain embodiments, the heteroaryl is thiazolyl. In certain embodiments, the heteroaryl is pyrazolyl. In certain embodiments, the heteroaryl is is isoxazolyl. In certain embodiments, the heteroaryl is oxadiazolyl. In certain embodiments, the heteroaryl is 1,2,3-oxadiazolyl.
  • the heteroaryl is 1,2,4-oxadiazolyl. In certain embodiments, the heteroaryl is 1,2,5-oxadiazolyl. In certain embodiments, the heteroaryl is 1,3,4-oxadiazolyl. In certain embodiments, the heteroaryl is tetrazolyl. In certain embodiments, the heteroaryl is triazolyl. In certain embodiments, the heteroaryl is 1,2,4-triazolyl. In certain embodiments, the heteroaryl is 1,2,3-triazolyl.
  • each occurrence of the heterocyclyl group is independently selected from the group consisting of tetrahydrofuranyl, tetrahydropyranyl, piperidinyl, piperazinyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, 1-oxido-thiomorpholinyl, 1,1-dioxido-thiomorpholinyl, oxazolidinyl, azetidinyl, and the corresponding oxo analogues (where a methylene ring group is replaced with a carbonyl) thereof, such as but not limited to pyrrolidinonyl, piperidinonyl, piperazinonyl, and/or morpholinonyl.
  • the heterocyclyl group is tetrahydrofuranyl. In certain embodiments, the heterocyclyl group is tetrahydropyranyl. In certain embodiments, the heterocyclyl group is piperidinyl. In certain embodiments, the heterocyclyl group is piperazinyl. In certain embodiments, the heterocyclyl group is pyrrolidinyl. In certain embodiments, the heterocyclyl group is morpholinyl. In certain embodiments, the heterocyclyl group is thiomorpholinyl. In certain embodiments, the heterocyclyl group is 1-oxido-thiomorpholinyl. In certain embodiments, the heterocyclyl group is 1,1-dioxido-thiomorpholinyl.
  • the heterocyclyl group is oxazolidinyl. In certain embodiments, the heterocyclyl group is azetidinyl. In certain embodiments, the heterocyclyl group is pyrrolidinonyl. In certain embodiments, the heterocyclyl group is piperidinonyl. In certain embodiments, the heterocyclyl group is piperazinonyl. In certain embodiments, the heterocyclyl group is morpholinonyl.
  • R 1 is optionally substituted phenyl. In certain embodiments, R 1 is optionally substituted benzyl. In certain embodiments, R 1 is optionally substituted heteroaryl. In certain embodiments, R 1 is —(CH 2 )(optionally substituted heteroaryl).
  • R 1 is selected from the group consisting of optionally substituted phenyl, optionally substituted benzyl, and —(CH 2 )(optionally substituted heteroaryl), wherein the phenyl, benzyl, or heteroaryl is optionally substituted with at least one selected from the group consisting of C 1 -C 6 alkyl (such as, for example, methyl, ethyl, and isopropyl), halo (such as, for example, F, Cl, Br, and I), C 1 -C 3 haloalkyl (such as, for example, monofluoromethyl, difluoromethyl, and trifluoromethyl), and —CN.
  • C 1 -C 6 alkyl such as, for example, methyl, ethyl, and isopropyl
  • halo such as, for example, F, Cl, Br, and I
  • C 1 -C 3 haloalkyl such as, for example, monofluoromethyl, difluoromethyl
  • R 1 is selected from the group consisting of: phenyl, 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl, 4-fluorophenyl, 3,4-difluorophenyl, 3,5-difluorophenyl, 2,4,5-trifluorophenyl, 3,4,5-trifluorophenyl, 3,4-dichlorophenyl, 3-chloro-4-fluorophenyl, 4-chloro-3-fluorophenyl, 4-chloro-3-methylphenyl, 3-chloro-4-methylphenyl, 4-fluoro-3-methylphenyl, 3-fluoro-4-methylphenyl, 4-chloro-3-methoxyphenyl, 3-chloro-4-methoxyphenyl, 4-fluoro-3-methoxyphenyl, 3-fluoro-4-methoxyphenyl, 4-fluoro-3-methoxyphenyl, 3-fluoro-4-methoxyphenyl, 4-flu
  • R 2 is H. In certain embodiments, R 2 is —OH. In certain embodiments, R 2 is —OR 6 . In certain embodiments, R 2 is —NH 2 . In certain embodiments, R 2 is —NHR 6 . In certain embodiments, R 2 is —NR 6 R 6a . In certain embodiments, R 2 is —OC( ⁇ O)OR 6 . In certain embodiments, R 2 is —OC( ⁇ O)N(R 4 )R 6 . In certain embodiments, R 2 is —N(R 3 )C( ⁇ O)OR 6 . In certain embodiments, R 2 is N(R 4 )C( ⁇ O)O (optionally substituted C 1 -C 6 alkyl).
  • R 2 is —N(R 4 )C( ⁇ O)O(CH 2 ) 1-3 (optionally substituted isoxazolyl). In certain embodiments, R 2 is —N(R 4 )C( ⁇ O)O(CH 2 ) 1-3 (optionally substituted oxazolyl). In certain embodiments, R 2 is —NR 7 C( ⁇ O)N(R 6 )(R 7 ). In certain embodiments, R 2 is —N(R 4 )C( ⁇ O)R 6 . In certain embodiments, R 2 is —NR 4 S( ⁇ O) 1-2 R 6 .
  • R 2 is selected from the group consisting of —NHS( ⁇ O) 2 (C 1 -C 6 alkyl) and —NHS( ⁇ O) 2 (C 3 -C 6 cycloalkyl).
  • R 2 is selected from the group consisting of —NHC( ⁇ O)(C 1 -C 6 alkyl) and —NHC( ⁇ O)(C 3 -C 8 cycloalkyl).
  • R 2 is selected from the group consisting of —NHC( ⁇ O)O(C 1 -C 6 alkyl); —NHC( ⁇ O)O(C 3 -C 8 cycloalkyl); —NHC( ⁇ O)O(C 1 -C 6 haloalkyl); —NHC( ⁇ O)O(CH 2 ) 1-3 (C 3 -C 8 cycloalkyl); —NHC( ⁇ O)O(CH 2 ) 1-3 (pyridinyl); —NHC( ⁇ O)O(CH 2 ) 1-3 (pyrazinyl); —NHC( ⁇ O)O(CH 2 ) 1-3 (pyrimidinyl); —NHC( ⁇ O)O(CH 2 ) 1-3 (isoxazolyl); —NHC( ⁇ O)O(CH 2 ) 1-3 (oxazolyl); —NHC( ⁇ O)O(CH 2 ) 1-3 (oxadiazolyl); —NHC( ⁇ O)
  • R 2 is selected from the group consisting of —NHC( ⁇ O)NH(C 1 -C 6 alkyl); —NHC( ⁇ O)NH(C 3 -C 8 cycloalkyl); —NHC( ⁇ O)NH(C 1 -C 6 haloalkyl); —NHC( ⁇ O)NH(CH 2 ) 1-3 (pyridinyl); —NHC( ⁇ O)NH(CH 2 ) 1-3 (pyrazinyl); —NHC( ⁇ O)NH(CH 2 ) 1-3 (pyrimidinyl); —NHC( ⁇ O)NH(CH 2 ) 1-3 (isoxazolyl); —NHC( ⁇ O)NH(CH 2 ) 1-3 (oxazolyl); —NHC( ⁇ O)NH(CH 2 ) 1-3 (oxadiazolyl); —NHC( ⁇ O)NH(CH 2 ) 1-3 (triazolyl); —NHC( ⁇ O)NH(CH 2 ) 1-3
  • R 3 is H. In certain embodiments, R 3 is C 1 -C 6 alkyl. In certain embodiments, R 3 is H or methyl. In certain embodiments, R 3 is methyl.
  • R 2 and R 3 combine to form ⁇ O.
  • R 4 is H. In certain embodiments, R 4 is C 1 -C 6 alkyl. In certain embodiments, each occurrence of R 4 is independently selected from the group consisting of H and methyl. In certain embodiments, R 4 is methyl.
  • R 5 is H. In certain embodiments, R 5 is C 1 -C 6 alkyl. In certain embodiments, R 5 is H or methyl. In certain embodiments, R 5 is methyl.
  • R 6 is optionally substituted C 1 -C 6 alkyl. In certain embodiments, R 6 is optionally substituted C 1 -C 6 alkenyl. In certain embodiments, R 6 is optionally substituted C 1 -C 6 alkynyl. In certain embodiments, R 6 is optionally substituted C 3 -C 8 cycloalkyl. In certain embodiments, R 6 is optionally substituted phenyl. In certain embodiments, R 6 is optionally substituted hetereoaryl. In certain embodiments, R 6 is C 1 -C 6 alkyl. In certain embodiments, R 6 is C 1 -C 6 alkenyl. In certain embodiments, R 6 is C 1 -C 6 alkynyl.
  • R 6 is C 3 -C 8 cycloalkyl. In certain embodiments, R 6 is phenyl. In certain embodiments, R 6 is hetereoaryl. In certain embodiments, each occurrence of R 6 is independently selected from the group consisting of C 1 -C 6 alkyl optionally substituted with at least one selected from the group consisting of halogen, OH, C 1 -C 3 alkoxy, and cyano; —(CH 2 ) 0-3 (optionally substituted heterocyclyl); —(CH 2 ) 0-3 (optionally substituted heteroaryl); and —(CH 2 ) 0-3 (optionally substituted heteroaryl).
  • R 6a is H. In certain embodiments, R 6a is optionally substituted C 1 -C 6 alkyl. In certain embodiments, R 6a is optionally substituted C 3 -C 8 cycloalkyl. In certain embodiments, R 6a is optionally substituted phenyl. In certain embodiments, R 6a is optionally substituted hetereoaryl. In certain embodiments, R 6a is C 1 -C 6 alkyl. In certain embodiments, R 6a is C 3 -C 8 cycloalkyl. In certain embodiments, R 6a is phenyl. In certain embodiments, R 6a is hetereoaryl.
  • each occurrence of R 6a is independently selected from the group consisting of C 1 -C 6 alkyl optionally substituted with at least one selected from the group consisting of halogen, OH, C 1 -C 3 alkoxy, and cyano; —(CH 2 ) 0-3 (optionally substituted heterocyclyl); —(CH 2 ) 0-3 (optionally substituted heteroaryl); and —(CH 2 ) 0-3 (optionally substituted heteroaryl).
  • R 7 is H. In certain embodiments, R 7 is optionally substituted C 1 -C 6 alkyl. In certain embodiments, R 7 is C 1 -C 6 alkyl. In certain embodiments, R 7 is H or methyl. In certain embodiments, R 7 is H. In certain embodiments, R 7 is methyl.
  • R 6 and R 7 are bound to the same N atom and optionally combine with the N atom to which both are bound to form an optionally substituted 3-7 membered heterocycle.
  • R 8 is H. In certain embodiments, R 8 is halo. In certain embodiments, R 8 is C 1 -C 6 alkyl. In certain embodiments, R 8 is C 1 -C 6 haloalkyl. In certain embodiments, R 8 is trifluoromethyl. In certain embodiments, R 8 is C 3 -C 8 cycloalkyl. In certain embodiments, R 8 is optionally substituted phenyl. In certain embodiments, R 8 is phenyl. In certain embodiments, R 8 is selected from the group consisting of H, halo, and methyl. In certain embodiments, R 8 is H. In certain embodiments, R 8 is methyl. In certain embodiments, R 8 is fluoro. In certain embodiments, R 8 is chloro. In certain embodiments, R 8 is bromo. In certain embodiments, R 8 is iodo.
  • R 9 is H. In certain embodiments, R 9 is C 1 -C 6 alkyl. In certain embodiments, R 9 is selected from the group consisting of H and methyl. In certain embodiments, R 9 is H. In certain embodiments, R 9 is methyl.
  • —X 1 —X 2 — is —CH 2 CH 2 —*. In certain embodiments, —X 1 —X 2 — is —CH 2 CH(CH 3 )—*. In certain embodiments, —X 1 —X 2 — is —CH 2 C(CH 3 ) 2 —*. In certain embodiments, —X 1 —X 2 — is —CH(CH 3 )CH 2 —*. In certain embodiments, —X 1 —X 2 — is —C(CH 3 ) 2 CH 2 —*. In certain embodiments, —X 1 —X 2 — is —CH(CH 3 )CH(CH 3 )—*.
  • —X 1 —X 2 — is —C(CH 3 ) 2 CH(CH 3 )—*. In certain embodiments, —X 1 —X 2 — is —CH(CH 3 )C(CH 3 ) 2 —*. As defined elsewhere herein, the single bond marked as “*” is formed with X 3 .
  • —X 3 — is a bond (i.e., absent). In certain embodiments, —X 3 — is —CH 2 —. In certain embodiments, —X 3 — is —CH(CH 3 )—. In certain embodiments, —X 3 — is —C(CH 3 ) 2 —. In certain embodiments, —X 3 — is —CH 2 CH 2 —. In certain embodiments, —X 3 — is *—CH 2 CH(CH 3 )—.
  • —X 3 — is *—CH 2 C(CH 3 ) 2 —. In certain embodiments, —X 3 — is *—CH(CH 3 )CH 2 —. In certain embodiments, —X 3 — is *—C(CH 3 ) 2 CH 2 —. In certain embodiments, —X 3 — is —CH(CH 3 )CH(CH 3 )—. In certain embodiments, —X 3 — is *—C(CH 3 ) 2 CH(CH 3 )—*. In certain embodiments, —X 3 — is *—CH(CH 3 )C(CH 3 ) 2 —. As defined elsewhere herein, the single bond marked as “*” is formed with X 1 —X 2 —;
  • the compound of the invention is any compound disclosed herein, or a salt, solvate, prodrug, isotopically labeled (such as for example at least partially deuterated), stereoisomer, any mixture of stereoisomers, tautomer, and/or any mixture of tautomers thereof.
  • the compound is at least one selected from Table 1, or a salt, solvate, prodrug, isotopically labeled, stereoisomer, any mixture of stereoisomers, tautomer, and/or any mixture of tautomers thereof.
  • the compounds of the invention may possess one or more stereocenters, and each stereocenter may exist independently in either the (R) or (S) configuration.
  • compounds described herein are present in optically active or racemic forms.
  • the compounds described herein encompass racemic, optically active, regioisomeric and stereoisomeric forms, or combinations thereof that possess the therapeutically useful properties described herein. Preparation of optically active forms is achieved in any suitable manner, including, by way of non-limiting example, by resolution of the racemic form with recrystallization techniques, synthesis from optically active starting materials, chiral synthesis, or chromatographic separation using a chiral stationary phase.
  • a compound illustrated herein by the racemic formula further represents either of the two enantiomers or any mixtures thereof, or in the case where two or more chiral centers are present, all diastereomers or any mixtures thereof.
  • the compounds of the invention exist as tautomers. All tautomers are included within the scope of the compounds recited herein.
  • Compounds described herein also include isotopically labeled compounds wherein one or more atoms is replaced by an atom having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
  • isotopes suitable for inclusion in the compounds described herein include and are not limited to 2 H, 3 H, 11 C, 13 C, 14 C, 36 Cl, 18 F, 123 I, 125 I, 13 N, 15 N, 15 O, 17 O, 18 O, 32 P, and 35 S. In certain embodiments, substitution with heavier isotopes such as deuterium affords greater chemical stability.
  • Isotopically labeled compounds are prepared by any suitable method or by processes using an appropriate isotopically labeled reagent in place of the non-labeled reagent otherwise employed.
  • the compounds described herein are labeled by other means, including, but not limited to, the use of chromophores or fluorescent moieties, bioluminescent labels, or chemiluminescent labels.
  • salts embraces addition salts of free acids or bases that are useful within the methods of the invention.
  • pharmaceutically acceptable salt refers to salts that possess toxicity profiles within a range that affords utility in pharmaceutical applications.
  • the salts are pharmaceutically acceptable salts.
  • Pharmaceutically unacceptable salts may nonetheless possess properties such as high crystallinity, which have utility in the practice of the present invention, such as for example utility in process of synthesis, purification or formulation of compounds useful within the methods of the invention.
  • Suitable pharmaceutically acceptable acid addition salts may be prepared from an inorganic acid or from an organic acid.
  • inorganic acids include sulfate, hydrogen sulfate, hydrochloric, hydrobromic, hydriodic, nitric, carbonic, sulfuric, and phosphoric acids (including hydrogen phosphate and dihydrogen phosphate).
  • organic acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, examples of which include formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, 4-hydroxybenzoic, phenylacetic, mandelic, embonic (or pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, sulfanilic, 2-hydroxyethanesulfonic, trifluoromethanesulfonic, p-toluenesulfonic, cyclohexylaminosulfonic, stearic, alginic, ⁇ -hydroxybutyric, sal
  • Suitable pharmaceutically acceptable base addition salts of compounds of the invention include, for example, ammonium salts and metallic salts including alkali metal, alkaline earth metal and transition metal salts such as, for example, calcium, magnesium, potassium, sodium and zinc salts.
  • Pharmaceutically acceptable base addition salts also include organic salts made from basic amines such as, for example, N,N′-dibenzylethylene-diamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (or N-methylglucamine) and procaine. All of these salts may be prepared from the corresponding compound by reacting, for example, the appropriate acid or base with the compound.
  • the compounds of the invention are useful within the methods of the invention in combination with one or more additional agents useful for treating HBV and/or HDV infections.
  • additional agents may comprise compounds or compositions identified herein, or compounds (e.g., commercially available compounds) known to treat, prevent, or reduce the symptoms of HBV and/or HDV infections.
  • Non-limiting examples of one or more additional agents useful for treating HBV infections include: (a) reverse transcriptase inhibitors; (b) capsid inhibitors; (c) cccDNA formation inhibitors; (d) RNA destabilizers; (e) oligomeric nucleotides targeted against the HBV genome; (f) immunostimulators, such as checkpoint inhibitors (e.g., PD-L1 inhibitors); and (g) GalNAc-siRNA conjugates targeted against an HBV gene transcript.
  • the reverse transcriptase inhibitor is a reverse-transcriptase inhibitor (NARTI or NRTI). In other embodiments, the reverse transcriptase inhibitor is a nucleotide analog reverse-transcriptase inhibitor (NtARTI or NtRTI).
  • Reported reverse transcriptase inhibitors include, but are not limited to, entecavir, clevudine, telbivudine, lamivudine, adefovir, and tenofovir, tenofovir disoproxil, tenofovir alafenamide, adefovir dipovoxil, (1R,2R,3R,5R)-3-(6-amino-9H-9-purinyl)-2-fluoro-5-(hydroxymethyl)-4-methylenecyclopentan-1-ol (described in U.S. Pat. No.
  • Reported reverse transcriptase inhibitors further include, but are not limited to, entecavir, lamivudine, and (1R,2R,3R,5R)-3-(6-amino-9H-9-purinyl)-2-fluoro-5-(hydroxy methyl)-4-methylenecyclopentan-1-ol.
  • Reported reverse transcriptase inhibitors further include, but are not limited to, a covalently bound phosphoramidate or phosphonamidate moiety of the above-mentioned reverse transcriptase inhibitors, or as described in for example U.S. Pat. No. 8,816,074, US Patent Application Publications No. US 2011/0245484 A1, and US 2008/0286230A1, all of which incorporated herein in their entireties by reference.
  • Reported reverse transcriptase inhibitors further include, but are not limited to, nucleotide analogs that comprise a phosphoramidate moiety, such as, for example, methyl (4(1R,3R,4R,5R)-3-(6-amino-9H-purin-9-yl)-4-fluoro-5-hydroxy-2-methylenecyclopentyl) methoxy)(phenoxy) phosphoryl)-(D or L)-alaninate and methyl (((1R,2R,3R,4R)-3-fluoro-2-hydroxy-5-methylene-4-(6-oxo-1,6-dihydro-9H-purin-9-yl)cyclopentyl)methoxy)(phenoxy) phosphoryl)-(D or L)-alaninate.
  • nucleotide analogs that comprise a phosphoramidate moiety, such as, for example, methyl (4(1R,3R,4R,5R)-3-(6-amino-9
  • the individual diastereomers thereof include, for example, methyl ((R)-(((1R,3R,4R,5R)-3-(6-amino-9H-purin-9-yl)-4-fluoro-5-hydroxy-2-methylenecyclopentyl)methoxy)(phenoxy)phosphoryl)-(D or L)-alaninate and methyl ((S)-(((1R,3R,4R,5R)-3-(6-amino-9H-purin-9-yl)-4-fluoro-5-hydroxy-2-methylenecyclopentyl) methoxy)(phenoxy)phosphoryl)-(D or L)-alaninate.
  • Reported reverse transcriptase inhibitors further include, but are not limited to, compounds comprising a phosphonamidate moiety, such as, for example, tenofovir alafenamide, as well as those described in U.S. Patent Application Publication No. US 2008/0286230 A1, incorporated herein in its entirety by reference.
  • Methods for preparing stereoselective phosphoramidate or phosphonamidate containing actives are described in, for example, U.S. Pat. No. 8,816,074, as well as U.S. Patent Application Publications No. US 2011/0245484 A1 and US 2008/0286230 A1, all of which incorporated herein in their entireties by reference.
  • capsid inhibitor includes compounds that are capable of inhibiting the expression and/or function of a capsid protein either directly or indirectly.
  • a capsid inhibitor may include, but is not limited to, any compound that inhibits capsid assembly, induces formation of non-capsid polymers, promotes excess capsid assembly or misdirected capsid assembly, affects capsid stabilization, and/or inhibits encapsidation of RNA (pgRNA).
  • Capsid inhibitors also include any compound that inhibits capsid function in a downstream event(s) within the replication process (e.g., viral DNA synthesis, transport of relaxed circular DNA (rcDNA) into the nucleus, covalently closed circular DNA (cccDNA) formation, virus maturation, budding and/or release, and the like).
  • the inhibitor detectably inhibits the expression level or biological activity of the capsid protein as measured, e.g., using an assay described herein.
  • the inhibitor inhibits the level of rcDNA and downstream products of viral life cycle by at least 5%, at least 10%, at least 20%, at least 50%, at least 75%, or at least 90%.
  • Reported capsid inhibitors include, but are not limited to, compounds described in International Patent Applications Publication Nos WO 2013006394, WO 2014106019, and WO2014089296, all of which incorporated herein in their entireties by reference.
  • Reported capsid inhibitors also include, but are not limited to, the following compounds and pharmaceutically acceptable salts and/or solvates thereof: Bay-41-4109 (see Int'l Patent Application Publication No. WO 2013144129), AT-61 (see Int'l Patent Application Publication No. WO 1998033501; and King, et al., 1998, Antimicrob. Agents Chemother. 42(12):3179-3186), DVR-01 and DVR-23 (see Int'l Patent Application Publication No. WO 2013006394; and Campagna, et al., 2013, J. Virol. 87(12):6931, all of which incorporated herein in their entireties by reference.
  • capsid inhibitors include, but are not limited to, those generally and specifically described in U.S. Patent Application Publication Nos. US 2015/0225355, US 2015/0132258, US 2016/0083383, US 2016/0052921 and Int'l Patent Application Publication Nos.
  • cccDNA Covalently closed circular DNA
  • cccDNA formation inhibitor includes compounds that are capable of inhibiting the formation and/or stability of cccDNA either directly or indirectly.
  • a cccDNA formation inhibitor may include, but is not limited to, any compound that inhibits capsid disassembly, rcDNA entry into the nucleus, and/or the conversion of rcDNA into cccDNA.
  • the inhibitor detectably inhibits the formation and/or stability of the cccDNA as measured, e.g., using an assay described herein.
  • the inhibitor inhibits the formation and/or stability of cccDNA by at least 5%, at least 10%, at least 20%, at least 50%, at least 75%, or at least 90%.
  • Reported cccDNA formation inhibitors include, but are not limited to, compounds described in Int'l Patent Application Publication No. WO 2013130703, and are incorporated herein in their entirety by reference.
  • cccDNA formation inhibitors include, but are not limited to, those generally and specifically described in U.S. Patent Application Publication No. US 2015/0038515 A1, and are incorporated herein in their entirety by reference.
  • RNA destabilizer refers to a molecule, or a salt or solvate thereof, that reduces the total amount of HBV RNA in mammalian cell culture or in a live human subject.
  • an RNA destabilizer reduces the amount of the RNA transcript(s) encoding one or more of the following HBV proteins: surface antigen, core protein, RNA polymerase, and e antigen.
  • the RNA destabilizer reduces the total amount of HBV RNA in mammalian cell culture or in a live human subject by at least 5%, at least 10%, at least 20%, at least 50%, at least 75%, or at least 90%.
  • RNA destabilizers include compounds described in U.S. Pat. No. 8,921,381, as well as compounds described in U.S. Patent Application Publication Nos. US 2015/0087659 and US 2013/0303552, all of which are incorporated herein in their entireties by reference.
  • RNA destabilizers include, but are not limited to, those generally and specifically described in Int'l Patent Application Publication Nos. WO 2015113990, WO 2015173164, US 2016/0122344, WO 2016107832, WO 2016023877, WO 2016128335, WO 2016177655, WO 2016071215, WO 2017013046, WO 2017016921, WO 2017016960, WO 2017017042, WO 2017017043, WO 2017102648, WO 2017108630, WO 2017114812, WO 2017140821, WO 2018085619, and are incorporated herein in their entirety by reference.
  • Reported oligomeric nucleotides targeted against the HBV genome include, but are not limited to, Arrowhead-ARC-520 (see U.S. Pat. No. 8,809,293; and Wooddell et al., 2013, Molecular Therapy 21(5):973-985, all of which incorporated herein in their entireties by reference).
  • the oligomeric nucleotides can be designed to target one or more genes and/or transcripts of the HBV genome.
  • Oligomeric nucleotide targeted to the HBV genome also include, but are not limited to, isolated, double stranded, siRNA molecules, that each include a sense strand and an antisense strand that is hybridized to the sense strand.
  • the siRNA target one or more genes and/or transcripts of the HBV genome.
  • checkpoint inhibitor includes any compound that is capable of inhibiting immune checkpoint molecules that are regulators of the immune system (e.g., stimulate or inhibit immune system activity).
  • some checkpoint inhibitors block inhibitory checkpoint molecules, thereby stimulating immune system function, such as stimulation of T cell activity against cancer cells.
  • a non-limiting example of a checkpoint inhibitor is a PD-L1 inhibitor.
  • the term “PD-L1 inhibitor” includes any compound that is capable of inhibiting the expression and/or function of the protein Programmed Death-Ligand 1 (PD-L1) either directly or indirectly.
  • PD-L1 also known as cluster of differentiation 274 (CD274) or B7 homolog 1 (B7-H1), is a type 1 transmembrane protein that plays a major role in suppressing the adaptive arm of immune system during pregnancy, tissue allograft transplants, autoimmune disease, and hepatitis.
  • PD-L1 binds to its receptor, the inhibitory checkpoint molecule PD-1 (which is found on activated T cells, B cells, and myeloid cells) so as to modulate activation or inhibition of the adaptive arm of immune system.
  • the PD-L1 inhibitor inhibits the expression and/or function of PD-L1 by at least 5%, at least 10%, at least 20%, at least 50%, at least 75%, or at least 90%.
  • Reported PD-L1 Inhibitors include, but are not limited to, compounds recited in one of the following patent application publications: US 2018/0057455; US 2018/0057486; WO 2017/106634; WO 2018/026971; WO 2018/045142; WO 2018/118848; WO 2018/119221; WO 2018/119236; WO 2018/119266; WO 2018/119286; WO 2018/121560; WO 2019/076343; WO 2019/087214; and are incorporated herein in their entirety by reference.
  • GalNAc is the abbreviation for N-acetylgalactosamine
  • siRNA is the abbreviation for small interfering RNA.
  • An siRNA that targets an HBV gene transcript is covalently bonded to GalNAc in a GalNAc-siRNA conjugate useful in the practice of the present invention. While not wishing to be bound by theory, it is believed that GalNAc binds to asialoglycoprotein receptors on hepatocytes thereby facilitating the targeting of the siRNA to the hepatocytes that are infected with HBV. The siRNA enter the infected hepatocytes and stimulate destruction of HBV gene transcripts by the phenomenon of RNA interference.
  • GalNAc-siRNA conjugates useful in the practice of this aspect of the present invention are set forth in published international application PCT/CA2017/050447 (PCT Application Publication number WO/2017/177326, published on Oct. 19, 2017) which is hereby incorporated by reference in its entirety.
  • a synergistic effect may be calculated, for example, using suitable methods such as, for example, the Sigmoid-E max equation (Holford & Scheiner, 1981, Clin. Pharmacokinet. 6:429-453), the equation of Loewe additivity (Loewe & Muischnek, 1926, Arch. Exp. Pathol Pharmacol. 114: 313-326) and the median-effect equation (Chou & Talalay, 1984, Adv. Enzyme Regul. 22:27-55).
  • Each equation referred to elsewhere herein may be applied to experimental data to generate a corresponding graph to aid in assessing the effects of the drug combination.
  • the corresponding graphs associated with the equations referred to elsewhere herein are the concentration-effect curve, isobologram curve and combination index curve, respectively.
  • the present invention further provides methods of preparing compounds of the present invention.
  • Compounds of the present teachings can be prepared in accordance with the procedures outlined herein, from commercially available starting materials, compounds known in the literature, or readily prepared intermediates, by employing standard synthetic methods and procedures known to those skilled in the art. Standard synthetic methods and procedures for the preparation of organic molecules and functional group transformations and manipulations can be readily obtained from the relevant scientific literature or from standard textbooks in the field.
  • reaction temperatures i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, and so forth
  • Optimum reaction conditions can vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
  • Those skilled in the art of organic synthesis will recognize that the nature and order of the synthetic steps presented can be varied for the purpose of optimizing the formation of the compounds described herein.
  • product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g., 1 H or 13 C), infrared spectroscopy, spectrophotometry (e.g., UV-visible), mass spectrometry, or by chromatography such as high-performance liquid chromatograpy (HPLC), gas chromatography (GC), gel-permeation chromatography (GPC), or thin layer chromatography (TLC).
  • spectroscopic means such as nuclear magnetic resonance spectroscopy (e.g., 1 H or 13 C), infrared spectroscopy, spectrophotometry (e.g., UV-visible), mass spectrometry, or by chromatography such as high-performance liquid chromatograpy (HPLC), gas chromatography (GC), gel-permeation chromatography (GPC), or thin layer chromatography (TLC).
  • HPLC high-performance liquid chromatograpy
  • GC gas chromatography
  • GPC gel-permeation
  • Preparation of the compounds can involve protection and deprotection of various chemical groups.
  • the need for protection and deprotection and the selection of appropriate protecting groups can be readily determined by one skilled in the art.
  • the chemistry of protecting groups can be found, for example, in Greene, et al., Protective Groups in Organic Synthesis, 2d. Ed. (Wiley & Sons, 1991), the entire disclosure of which is incorporated by reference herein for all purposes.
  • Suitable solvents typically are substantially nonreactive with the reactants, intermediates, and/or products at the temperatures at which the reactions are carried out, i.e., temperatures that can range from the solvent's freezing temperature to the solvent's boiling temperature.
  • a given reaction can be carried out in one solvent or a mixture of more than one solvent.
  • suitable solvents for a particular reaction step can be selected.
  • a compound of formula (I) can be prepared, for example, according to the synthetic methods outlined in Scheme 1:
  • Conversion of a cyclic ⁇ , ⁇ -unsaturated ketone to bicyclic pyrrole derivative III can be achieved by reaction with tosylmethyl isocyanide (TosMIC) (exemplified in Tetrahedron Lett., 2012, 53, 819).
  • TosMIC tosylmethyl isocyanide
  • Bromination of III with N-bromosuccinimide to provide IV can be followed by N-functionalization to generate V.
  • Palladium (II) catalyzed carbonylation in the presence of carbon monoxide and ethanol provides ester VI, which can be hydrolyzed and converted to carboxamide VIII.
  • Reductive amination either by chiral or racemic methods, utilizing ketone VIII can be performed to provide IX, which can be further functionalized to provide X.
  • the invention provides a method of treating or preventing hepatitis virus infection in a subject.
  • the infection comprises hepatitis B virus (HBV) infection.
  • the infection comprises hepatitis D virus (HDV) infection.
  • the infection comprises HBV-HDV infection.
  • the method comprises administering to the subject in need thereof a therapeutically effective amount of at least one compound of the invention.
  • the at least one compound of the invention is the only antiviral agent administered to the subject.
  • the at least one compound is administered to the subject in a pharmaceutically acceptable composition.
  • the subject is further administered at least one additional agent useful for treating the hepatitis infection.
  • the at least one additional agent comprises at least one selected from the group consisting of reverse transcriptase inhibitor, capsid inhibitor, cccDNA formation inhibitor, RNA destabilizer, oligomeric nucleotide targeted against the HBV genome, immunostimulator, and GalNAc-siRNA conjugate targeted against an HBV gene transcript.
  • the subject is co-administered the at least one compound and the at least one additional agent.
  • the at least one compound and the at least one additional agent are coformulated.
  • the invention further provides a method of inhibiting expression and/or function of a viral capsid protein either directly or indirectly in a subject.
  • the method comprises administering to the subject in need thereof a therapeutically effective amount of at least one compound of the invention.
  • the at least one compound is administered to the subject in a pharmaceutically acceptable composition.
  • the at least one compound of the invention is the only antiviral agent administered to the subject.
  • the subject is further administered at least one additional agent useful for treating HBV and/or HDV infection.
  • the at least one additional agent comprises at least one selected from the group consisting of reverse transcriptase inhibitor, capsid inhibitor, cccDNA formation inhibitor, RNA destabilizer, oligomeric nucleotide targeted against the HBV genome, immunostimulator, and GalNAc-siRNA conjugate targeted against an HBV gene transcript.
  • the subject is co-administered the at least one compound and the at least one additional agent.
  • the at least one compound and the at least one additional agent are coformulated.
  • the subject is a mammal. In yet other embodiments, the mammal is a human.
  • the invention further provides methods of preparing compounds of the invention, using for examples synthetic transformations illustrated in Schemes 1-4, or any experimental examples recited herein.
  • the invention provides pharmaceutical compositions comprising at least one compound of the invention or a salt or solvate thereof, which are useful to practice methods of the invention.
  • a pharmaceutical composition may consist of at least one compound of the invention or a salt or solvate thereof, in a form suitable for administration to a subject, or the pharmaceutical composition may comprise at least one compound of the invention or a salt or solvate thereof, and one or more pharmaceutically acceptable carriers, one or more additional ingredients, or any combinations of these.
  • At least one compound of the invention may be present in the pharmaceutical composition in the form of a physiologically acceptable salt, such as in combination with a physiologically acceptable cation or anion, as is well known in the art.
  • the pharmaceutical compositions useful for practicing the method of the invention may be administered to deliver a dose of between 1 ng/kg/day and 100 mg/kg/day. In other embodiments, the pharmaceutical compositions useful for practicing the invention may be administered to deliver a dose of between 1 ng/kg/day and 1,000 mg/kg/day.
  • compositions of the invention will vary, depending upon the identity, size, and condition of the subject treated and further depending upon the route by which the composition is to be administered.
  • the composition may comprise between 0.1% and 100% (w/w) active ingredient.
  • compositions that are useful in the methods of the invention may be suitably developed for nasal, inhalational, oral, rectal, vaginal, pleural, peritoneal, parenteral, topical, transdermal, pulmonary, intranasal, buccal, ophthalmic, epidural, intrathecal, intravenous, or another route of administration.
  • a composition useful within the methods of the invention may be directly administered to the brain, the brainstem, or any other part of the central nervous system of a mammal or bird.
  • Other contemplated formulations include projected nanoparticles, microspheres, liposomal preparations, coated particles, polymer conjugates, resealed erythrocytes containing the active ingredient, and immunologically-based formulations.
  • compositions of the invention are part of a pharmaceutical matrix, which allows for manipulation of insoluble materials and improvement of the bioavailability thereof, development of controlled or sustained release products, and generation of homogeneous compositions.
  • a pharmaceutical matrix may be prepared using hot melt extrusion, solid solutions, solid dispersions, size reduction technologies, molecular complexes (e.g., cyclodextrins, and others), microparticulate, and particle and formulation coating processes. Amorphous or crystalline phases may be used in such processes.
  • the route(s) of administration will be readily apparent to the skilled artisan and will depend upon any number of factors including the type and severity of the disease being treated, the type and age of the veterinary or human patient being treated, and the like.
  • compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology and pharmaceutics.
  • preparatory methods include the step of bringing the active ingredient into association with a carrier or one or more other accessory ingredients, and then, if necessary or desirable, shaping or packaging the product into a desired single-dose or multi-dose unit.
  • a “unit dose” is a discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient.
  • the amount of the active ingredient is generally equal to the dosage of the active ingredient that would be administered to a subject or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
  • the unit dosage form may be for a single daily dose or one of multiple daily doses (e.g., about 1 to 4 or more times per day). When multiple daily doses are used, the unit dosage form may be the same or different for each dose.
  • compositions suitable for ethical administration to humans are principally directed to pharmaceutical compositions suitable for ethical administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions of the invention is contemplated include, but are not limited to, humans and other primates, mammals including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, and dogs.
  • compositions of the invention are formulated using one or more pharmaceutically acceptable excipients or carriers.
  • the pharmaceutical compositions of the invention comprise a therapeutically effective amount of at least one compound of the invention and a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers include, but are not limited to, glycerol, water, saline, ethanol, recombinant human albumin (e.g., RECOMBUMIN®), solubilized gelatins (e.g., GELOFUSINE®), and other pharmaceutically acceptable salt solutions such as phosphates and salts of organic acids. Examples of these and other pharmaceutically acceptable carriers are described in Remington's Pharmaceutical Sciences (1991, Mack Publication Co., New Jersey).
  • the carrier may be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), recombinant human albumin, solubilized gelatins, suitable mixtures thereof, and vegetable oils.
  • the proper fluidity may be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Prevention of the action of microorganisms may be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
  • isotonic agents for example, sugars, sodium chloride, or polyalcohols such as mannitol and sorbitol, are included in the composition.
  • Prolonged absorption of the injectable compositions may be brought about by including in the composition an agent that delays absorption, for example, aluminum monostearate or gelatin.
  • Formulations may be employed in admixtures with conventional excipients, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for oral, parenteral, nasal, inhalational, intravenous, subcutaneous, transdermal enteral, or any other suitable mode of administration, known to the art.
  • the pharmaceutical preparations may be sterilized and if desired mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure buffers, coloring, flavoring, and/or fragrance-conferring substances and the like.
  • additional ingredients include, but are not limited to, one or more ingredients that may be used as a pharmaceutical carrier.
  • the composition of the invention may comprise a preservative from about 0.005% to 2.0% by total weight of the composition.
  • the preservative is used to prevent spoilage in the case of exposure to contaminants in the environment.
  • Examples of preservatives useful in accordance with the invention include but are not limited to those selected from the group consisting of benzyl alcohol, sorbic acid, parabens, imidurea and any combinations thereof.
  • One such preservative is a combination of about 0.5% to 2.0% benzyl alcohol and 0.05-0.5% sorbic acid.
  • the composition may include an antioxidant and a chelating agent that inhibit the degradation of the compound.
  • Antioxidants for some compounds are BHT, BHA, alpha-tocopherol and ascorbic acid in the exemplary range of about 0.01% to 0.3%, or BHT in the range of 0.03% to 0.1% by weight by total weight of the composition.
  • the chelating agent may be present in an amount of from 0.01% to 0.5% by weight by total weight of the composition.
  • Exemplary chelating agents include edetate salts (e.g. disodium edetate) and citric acid in the weight range of about 0.01% to 0.20%, or in the range of 0.02% to 0.10% by weight by total weight of the composition.
  • the chelating agent is useful for chelating metal ions in the composition that may be detrimental to the shelf life of the formulation. While BHT and disodium edetate are exemplary antioxidant and chelating agent, respectively, for some compounds, other suitable and equivalent antioxidants and chelating agents may be substituted therefore as would be known to those skilled in the art.
  • Liquid suspensions may be prepared using conventional methods to achieve suspension of the active ingredient in an aqueous or oily vehicle.
  • Aqueous vehicles include, for example, water, and isotonic saline.
  • Oily vehicles include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin.
  • Liquid suspensions may further comprise one or more additional ingredients including, but not limited to, suspending agents, dispersing or wetting agents, emulsifying agents, demulcents, preservatives, buffers, salts, flavorings, coloring agents, and sweetening agents.
  • Oily suspensions may further comprise a thickening agent.
  • suspending agents include, but are not limited to, sorbitol syrup, hydrogenated edible fats, sodium alginate, polyvinylpyrrolidone, gum tragacanth, gum acacia, and cellulose derivatives such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethyl cellulose.
  • Known dispersing or wetting agents include, but are not limited to, naturally-occurring phosphatides such as lecithin, condensation products of an alkylene oxide with a fatty acid, with a long chain aliphatic alcohol, with a partial ester derived from a fatty acid and a hexitol, or with a partial ester derived from a fatty acid and a hexitol anhydride (e.
  • emulsifying agents include, but are not limited to, lecithin, acacia, and ionic or non-ionic surfactants.
  • preservatives include, but are not limited to, methyl, ethyl, or n-propyl para-hydroxybenzoates, ascorbic acid, and sorbic acid.
  • Known sweetening agents include, for example, glycerol, propylene glycol, sorbitol, sucrose, and saccharin.
  • Liquid solutions of the active ingredient in aqueous or oily solvents may be prepared in substantially the same manner as liquid suspensions, the primary difference being that the active ingredient is dissolved, rather than suspended in the solvent.
  • an “oily” liquid is one which comprises a carbon-containing liquid molecule and which exhibits a less polar character than water.
  • Liquid solutions of the pharmaceutical composition of the invention may comprise each of the components described with regard to liquid suspensions, it being understood that suspending agents will not necessarily aid dissolution of the active ingredient in the solvent.
  • Aqueous solvents include, for example, water, and isotonic saline.
  • Oily solvents include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin.
  • Powdered and granular formulations of a pharmaceutical preparation of the invention may be prepared using known methods. Such formulations may be administered directly to a subject, used, for example, to form tablets, to fill capsules, or to prepare an aqueous or oily suspension or solution by addition of an aqueous or oily vehicle thereto. Each of these formulations may further comprise one or more of dispersing or wetting agent, a suspending agent, ionic and non-ionic surfactants, and a preservative. Additional excipients, such as fillers and sweetening, flavoring, or coloring agents, may also be included in these formulations.
  • a pharmaceutical composition of the invention may also be prepared, packaged, or sold in the form of oil-in-water emulsion or a water-in-oil emulsion.
  • the oily phase may be a vegetable oil such as olive or arachis oil, a mineral oil such as liquid paraffin, or a combination of these.
  • compositions may further comprise one or more emulsifying agents such as naturally occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soybean or lecithin phosphatide, esters or partial esters derived from combinations of fatty acids and hexitol anhydrides such as sorbitan monooleate, and condensation products of such partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate.
  • emulsions may also contain additional ingredients including, for example, sweetening or flavoring agents.
  • Methods for impregnating or coating a material with a chemical composition include, but are not limited to methods of depositing or binding a chemical composition onto a surface, methods of incorporating a chemical composition into the structure of a material during the synthesis of the material (i.e., such as with a physiologically degradable material), and methods of absorbing an aqueous or oily solution or suspension into an absorbent material, with or without subsequent drying.
  • Methods for mixing components include physical milling, the use of pellets in solid and suspension formulations and mixing in a transdermal patch, as known to those skilled in the art.
  • the regimen of administration may affect what constitutes an effective amount.
  • the therapeutic formulations may be administered to the patient either prior to or after the onset of a disease or disorder. Further, several divided dosages, as well as staggered dosages may be administered daily or sequentially, or the dose may be continuously infused, or may be a bolus injection. Further, the dosages of the therapeutic formulations may be proportionally increased or decreased as indicated by the exigencies of the therapeutic or prophylactic situation.
  • compositions of the present invention may be carried out using known procedures, at dosages and for periods of time effective to treat a disease or disorder contemplated herein.
  • An effective amount of the therapeutic compound necessary to achieve a therapeutic effect may vary according to factors such as the activity of the particular compound employed; the time of administration; the rate of excretion of the compound; the duration of the treatment; other drugs, compounds or materials used in combination with the compound; the state of the disease or disorder, age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well-known in the medical arts. Dosage regimens may be adjusted to provide the optimum therapeutic response.
  • an effective dose range for a therapeutic compound of the invention is from about 0.01 mg/kg to 100 mg/kg of body weight/per day.
  • One of ordinary skill in the art would be able to study the relevant factors and make the determination regarding the effective amount of the therapeutic compound without undue experimentation.
  • the compound may be administered to an animal as frequently as several times daily, or it may be administered less frequently, such as once a day, once a week, once every two weeks, once a month, or even less frequently, such as once every several months or even once a year or less.
  • the amount of compound dosed per day may be administered, in non-limiting examples, every day, every other day, every 2 days, every 3 days, every 4 days, or every 5 days.
  • a 5 mg per day dose may be initiated on Monday with a first subsequent 5 mg per day dose administered on Wednesday, a second subsequent 5 mg per day dose administered on Friday, and so on.
  • the frequency of the dose is readily apparent to the skilled artisan and depends upon a number of factors, such as, but not limited to, type and severity of the disease being treated, and type and age of the animal.
  • Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount of the active ingredient that is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
  • a medical doctor e.g., physician or veterinarian, having ordinary skill in the art may readily determine and prescribe the effective amount of the pharmaceutical composition required.
  • physician or veterinarian could start doses of the compounds of the invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the patients to be treated; each unit containing a predetermined quantity of therapeutic compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical vehicle.
  • the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the therapeutic compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding/formulating such a therapeutic compound for the treatment of a disease or disorder in a patient.
  • compositions of the invention are administered to the patient in dosages that range from one to five times per day or more.
  • the compositions of the invention are administered to the patient in range of dosages that include, but are not limited to, once every day, every two days, every three days to once a week, and once every two weeks.
  • the frequency of administration of the various combination compositions of the invention will vary from subject to subject depending on many factors including, but not limited to, age, disease or disorder to be treated, gender, overall health, and other factors.
  • the invention should not be construed to be limited to any particular dosage regime and the precise dosage and composition to be administered to any patient will be determined by the attending physician taking all other factors about the patient into account.
  • Compounds of the invention for administration may be in the range of from about 1 ⁇ g to about 7,500 mg, about 20 ⁇ g to about 7,000 mg, about 40 ⁇ g to about 6,500 mg, about 80 ⁇ g to about 6,000 mg, about 100 ⁇ g to about 5,500 mg, about 200 ⁇ g to about 5,000 mg, about 400 ⁇ g to about 4,000 mg, about 800 ⁇ g to about 3,000 mg, about 1 mg to about 2,500 mg, about 2 mg to about 2,000 mg, about 5 mg to about 1,000 mg, about 10 mg to about 750 mg, about 20 mg to about 600 mg, about 30 mg to about 500 mg, about 40 mg to about 400 mg, about 50 mg to about 300 mg, about 60 mg to about 250 mg, about 70 mg to about 200 mg, about 80 mg to about 150 mg, and any and all whole or partial increments there-in-between.
  • the dose of a compound of the invention is from about 0.5 ⁇ g and about 5,000 mg. In some embodiments, a dose of a compound of the invention used in compositions described herein is less than about 5,000 mg, or less than about 4,000 mg, or less than about 3,000 mg, or less than about 2,000 mg, or less than about 1,000 mg, or less than about 800 mg, or less than about 600 mg, or less than about 500 mg, or less than about 200 mg, or less than about 50 mg.
  • a dose of a second compound as described herein is less than about 1,000 mg, or less than about 800 mg, or less than about 600 mg, or less than about 500 mg, or less than about 400 mg, or less than about 300 mg, or less than about 200 mg, or less than about 100 mg, or less than about 50 mg, or less than about 40 mg, or less than about 30 mg, or less than about 25 mg, or less than about 20 mg, or less than about 15 mg, or less than about 10 mg, or less than about 5 mg, or less than about 2 mg, or less than about 1 mg, or less than about 0.5 mg, and any and all whole or partial increments thereof.
  • the present invention is directed to a packaged pharmaceutical composition
  • a packaged pharmaceutical composition comprising a container holding a therapeutically effective amount of a compound of the invention, alone or in combination with a second pharmaceutical agent; and instructions for using the compound to treat, prevent, or reduce one or more symptoms of a disease or disorder in a patient.
  • the term “container” includes any receptacle for holding the pharmaceutical composition or for managing stability or water uptake.
  • the container is the packaging that contains the pharmaceutical composition, such as liquid (solution and suspension), semisolid, lyophilized solid, solution and powder or lyophilized formulation present in dual chambers.
  • the container is not the packaging that contains the pharmaceutical composition, i.e., the container is a receptacle, such as a box or vial that contains the packaged pharmaceutical composition or unpackaged pharmaceutical composition and the instructions for use of the pharmaceutical composition.
  • packaging techniques are well known in the art.
  • the instructions for use of the pharmaceutical composition may be contained on the packaging containing the pharmaceutical composition, and as such the instructions form an increased functional relationship to the packaged product.
  • the instructions may contain information pertaining to the compound's ability to perform its intended function, e.g., treating, preventing, or reducing a disease or disorder in a patient.
  • Routes of administration of any of the compositions of the invention include inhalational, oral, nasal, rectal, parenteral, sublingual, transdermal, transmucosal (e.g., sublingual, lingual, (trans)buccal, (trans)urethral, vaginal (e.g., trans- and perivaginally), (intra)nasal, and (trans)rectal), intravesical, intrapulmonary, intraduodenal, intragastrical, intrathecal, epidural, intrapleural, intraperitoneal, subcutaneous, intramuscular, intradermal, intra-arterial, intravenous, intrabronchial, inhalation, and topical administration.
  • inhalational e.g., sublingual, lingual, (trans)buccal, (trans)urethral, vaginal (e.g., trans- and perivaginally), intravesical, intrapulmonary, intraduodenal, intragastrical, intrathecal, epidural, intrapleural, intraperitone
  • compositions and dosage forms include, for example, tablets, capsules, caplets, pills, gel caps, troches, emulsions, dispersions, suspensions, solutions, syrups, granules, beads, transdermal patches, gels, powders, pellets, magmas, lozenges, creams, pastes, plasters, lotions, discs, suppositories, liquid sprays for nasal or oral administration, dry powder or aerosolized formulations for inhalation, compositions and formulations for intravesical administration and the like. It should be understood that the formulations and compositions that would be useful in the present invention are not limited to the particular formulations and compositions that are described herein.
  • compositions intended for oral use may be prepared according to any method known in the art and such compositions may contain one or more agents selected from the group consisting of inert, non-toxic, generally recognized as safe (GRAS) pharmaceutically excipients which are suitable for the manufacture of tablets.
  • GRAS inert, non-toxic, generally recognized as safe
  • excipients include, for example an inert diluent such as lactose; granulating and disintegrating agents such as cornstarch; binding agents such as starch; and lubricating agents such as magnesium stearate.
  • Tablets may be non-coated or they may be coated using known methods to achieve delayed disintegration in the gastrointestinal tract of a subject, thereby providing sustained release and absorption of the active ingredient.
  • a material such as glyceryl monostearate or glyceryl distearate may be used to coat tablets.
  • tablets may be coated using methods described in U.S. Pat. Nos. 4,256,108; 4,160,452; and 4,265,874 to form osmotically controlled release tablets.
  • Tablets may further comprise a sweetening agent, a flavoring agent, a coloring agent, a preservative, or some combination of these in order to provide for pharmaceutically elegant and palatable preparation.
  • Hard capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin.
  • the capsules comprise the active ingredient, and may further comprise additional ingredients including, for example, an inert solid diluent such as calcium carbonate, calcium phosphate, or kaolin.
  • Hard capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin. Such hard capsules comprise the active ingredient, and may further comprise additional ingredients including, for example, an inert solid diluent such as calcium carbonate, calcium phosphate, or kaolin.
  • an inert solid diluent such as calcium carbonate, calcium phosphate, or kaolin.
  • Soft gelatin capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin from animal-derived collagen or from a hypromellose, a modified form of cellulose, and manufactured using optional mixtures of gelatin, water and plasticizers such as sorbitol or glycerol.
  • a physiologically degradable composition such as gelatin from animal-derived collagen or from a hypromellose, a modified form of cellulose, and manufactured using optional mixtures of gelatin, water and plasticizers such as sorbitol or glycerol.
  • Such soft capsules comprise the active ingredient, which may be mixed with water or an oil medium such as peanut oil, liquid paraffin, or olive oil.
  • the compounds of the invention may be in the form of tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents; fillers; lubricants; disintegrates; or wetting agents.
  • the tablets may be coated using suitable methods and coating materials such as OPADRY® film coating systems available from Colorcon, West Point, Pa. (e.g., OPADRY® OY Type, OYC Type, Organic Enteric OY-P Type, Aqueous Enteric OY-A Type, OY-PM Type and OPADRY® White, 32K18400). It is understood that similar type of film coating or polymeric products from other companies may be used.
  • a tablet comprising the active ingredient may, for example, be made by compressing or molding the active ingredient, optionally with one or more additional ingredients.
  • Compressed tablets may be prepared by compressing, in a suitable device, the active ingredient in a free-flowing form such as a powder or granular preparation, optionally mixed with one or more of a binder, a lubricant, an excipient, a surface-active agent, and a dispersing agent.
  • Molded tablets may be made by molding, in a suitable device, a mixture of the active ingredient, a pharmaceutically acceptable carrier, and at least sufficient liquid to moisten the mixture.
  • compositions used in the manufacture of tablets include, but are not limited to, inert diluents, granulating and disintegrating agents, binding agents, and lubricating agents.
  • Known dispersing agents include, but are not limited to, potato starch and sodium starch glycolate.
  • Known surface-active agents include, but are not limited to, sodium lauryl sulphate.
  • Known diluents include, but are not limited to, calcium carbonate, sodium carbonate, lactose, microcrystalline cellulose, calcium phosphate, calcium hydrogen phosphate, and sodium phosphate.
  • Known granulating and disintegrating agents include, but are not limited to, corn starch and alginic acid.
  • binding agents include, but are not limited to, gelatin, acacia, pre-gelatinized maize starch, polyvinylpyrrolidone, and hydroxypropyl methylcellulose.
  • Known lubricating agents include, but are not limited to, magnesium stearate, stearic acid, silica, and talc.
  • Granulating techniques are well known in the pharmaceutical art for modifying starting powders or other particulate materials of an active ingredient.
  • the powders are typically mixed with a binder material into larger permanent free-flowing agglomerates or granules referred to as a “granulation.”
  • solvent-using “wet” granulation processes are generally characterized in that the powders are combined with a binder material and moistened with water or an organic solvent under conditions resulting in the formation of a wet granulated mass from which the solvent must then be evaporated.
  • Melt granulation generally consists in the use of materials that are solid or semi-solid at room temperature (i.e., having a relatively low softening or melting point range) to promote granulation of powdered or other materials, essentially in the absence of added water or other liquid solvents.
  • the low melting solids when heated to a temperature in the melting point range, liquefy to act as a binder or granulating medium.
  • the liquefied solid spreads itself over the surface of powdered materials with which it is contacted, and on cooling, forms a solid granulated mass in which the initial materials are bound together.
  • the resulting melt granulation may then be provided to a tablet press or be encapsulated for preparing the oral dosage form.
  • Melt granulation improves the dissolution rate and bioavailability of an active (i.e., drug) by forming a solid dispersion or solid solution.
  • U.S. Pat. No. 5,169,645 discloses directly compressible wax-containing granules having improved flow properties.
  • the granules are obtained when waxes are admixed in the melt with certain flow improving additives, followed by cooling and granulation of the admixture.
  • certain flow improving additives such as sodium bicarbonate
  • the present invention also includes a multi-layer tablet comprising a layer providing for the delayed release of one or more compounds useful within the methods of the invention, and a further layer providing for the immediate release of one or more compounds useful within the methods of the invention.
  • a gastric insoluble composition may be obtained in which the active ingredient is entrapped, ensuring its delayed release.
  • Liquid preparation for oral administration may be in the form of solutions, syrups or suspensions.
  • the liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, methyl cellulose or hydrogenated edible fats); emulsifying agent (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters or ethyl alcohol); and preservatives (e.g., methyl or propyl para-hydroxy benzoates or sorbic acid).
  • suspending agents e.g., sorbitol syrup, methyl cellulose or hydrogenated edible fats
  • emulsifying agent e.g., lecithin or acacia
  • non-aqueous vehicles e.g., almond oil, oily esters or ethyl alcohol
  • preservatives e.g., methyl or propyl para-hydroxy benzoates or sorbic acid
  • parenteral administration of a pharmaceutical composition includes any route of administration characterized by physical breaching of a tissue of a subject and administration of the pharmaceutical composition through the breach in the tissue.
  • Parenteral administration thus includes, but is not limited to, administration of a pharmaceutical composition by injection of the composition, by application of the composition through a surgical incision, by application of the composition through a tissue-penetrating non-surgical wound, and the like.
  • parenteral administration is contemplated to include, but is not limited to, subcutaneous, intravenous, intraperitoneal, intramuscular, intrasternal injection, and kidney dialytic infusion techniques.
  • Formulations of a pharmaceutical composition suitable for parenteral administration comprise the active ingredient combined with a pharmaceutically acceptable carrier, such as sterile water or sterile isotonic saline.
  • a pharmaceutically acceptable carrier such as sterile water or sterile isotonic saline.
  • Such formulations may be prepared, packaged, or sold in a form suitable for bolus administration or for continuous administration.
  • Injectable formulations may be prepared, packaged, or sold in unit dosage form, such as in ampules or in multidose containers containing a preservative. Injectable formulations may also be prepared, packaged, or sold in devices such as patient-controlled analgesia (PCA) devices.
  • PCA patient-controlled analgesia
  • Formulations for parenteral administration include, but are not limited to, suspensions, solutions, emulsions in oily or aqueous vehicles, pastes, and implantable sustained-release or biodegradable formulations. Such formulations may further comprise one or more additional ingredients including, but not limited to, suspending, stabilizing, or dispersing agents.
  • the active ingredient is provided in dry (i.e., powder or granular) form for reconstitution with a suitable vehicle (e.g., sterile pyrogen-free water) prior to parenteral administration of the reconstituted composition.
  • compositions may be prepared, packaged, or sold in the form of a sterile injectable aqueous or oily suspension or solution.
  • This suspension or solution may be formulated according to the known art, and may comprise, in addition to the active ingredient, additional ingredients such as the dispersing agents, wetting agents, or suspending agents described herein.
  • Such sterile injectable formulations may be prepared using a non-toxic parenterally acceptable diluent or solvent, such as water or 1,3-butanediol, for example.
  • a non-toxic parenterally acceptable diluent or solvent such as water or 1,3-butanediol, for example.
  • Other acceptable diluents and solvents include, but are not limited to, Ringer's solution, isotonic sodium chloride solution, and fixed oils such as synthetic mono- or di-glycerides.
  • compositions for sustained release or implantation may comprise pharmaceutically acceptable polymeric or hydrophobic materials such as an emulsion, an ion exchange resin, a sparingly soluble polymer, or a sparingly soluble salt.
  • stratum corneum layer of the epidermis An obstacle for topical administration of pharmaceuticals is the stratum corneum layer of the epidermis.
  • the stratum corneum is a highly resistant layer comprised of protein, cholesterol, sphingolipids, free fatty acids and various other lipids, and includes cornified and living cells.
  • One of the factors that limit the penetration rate (flux) of a compound through the stratum corneum is the amount of the active substance that can be loaded or applied onto the skin surface. The greater the amount of active substance which is applied per unit of area of the skin, the greater the concentration gradient between the skin surface and the lower layers of the skin, and in turn the greater the diffusion force of the active substance through the skin. Therefore, a formulation containing a greater concentration of the active substance is more likely to result in penetration of the active substance through the skin, and more of it, and at a more consistent rate, than a formulation having a lesser concentration, all other things being equal.
  • Formulations suitable for topical administration include, but are not limited to, liquid or semi-liquid preparations such as liniments, lotions, oil-in-water or water-in-oil emulsions such as creams, ointments or pastes, and solutions or suspensions.
  • Topically administrable formulations may, for example, comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of the active ingredient may be as high as the solubility limit of the active ingredient in the solvent.
  • Formulations for topical administration may further comprise one or more of the additional ingredients described herein.
  • Enhancers of permeation may be used. These materials increase the rate of penetration of drugs across the skin. Typical enhancers in the art include ethanol, glycerol monolaurate, PGML (polyethylene glycol monolaurate), dimethylsulfoxide, and the like. Other enhancers include oleic acid, oleyl alcohol, ethoxydiglycol, laurocapram, alkanecarboxylic acids, dimethylsulfoxide, polar lipids, or N-methyl-2-pyrrolidone.
  • compositions of the invention may contain liposomes.
  • the composition of the liposomes and their use are known in the art (i.e., U.S. Pat. No. 6,323,219).
  • the topically active pharmaceutical composition may be optionally combined with other ingredients such as adjuvants, anti-oxidants, chelating agents, surfactants, foaming agents, wetting agents, emulsifying agents, viscosifiers, buffering agents, preservatives, and the like.
  • a permeation or penetration enhancer is included in the composition and is effective in improving the percutaneous penetration of the active ingredient into and through the stratum corneum with respect to a composition lacking the permeation enhancer.
  • compositions may further comprise a hydrotropic agent, which functions to increase disorder in the structure of the stratum corneum, and thus allows increased transport across the stratum corneum.
  • hydrotropic agents such as isopropyl alcohol, propylene glycol, or sodium xylene sulfonate, are known to those of skill in the art.
  • the topically active pharmaceutical composition should be applied in an amount effective to affect desired changes.
  • amount effective shall mean an amount sufficient to cover the region of skin surface where a change is desired.
  • An active compound should be present in the amount of from about 0.0001% to about 15% by weight volume of the composition. For example, it should be present in an amount from about 0.0005% to about 5% of the composition; for example, it should be present in an amount of from about 0.001% to about 1% of the composition.
  • Such compounds may be synthetically- or naturally derived.
  • a pharmaceutical composition of the invention may be prepared, packaged, or sold in a formulation suitable for buccal administration.
  • a formulation suitable for buccal administration may, for example, be in the form of tablets or lozenges made using conventional methods, and may contain, for example, 0.1 to 20% (w/w) of the active ingredient, the balance comprising an orally dissolvable or degradable composition and, optionally, one or more of the additional ingredients described herein.
  • formulations suitable for buccal administration may comprise a powder or an aerosolized or atomized solution or suspension comprising the active ingredient.
  • Such powdered, aerosolized, or aerosolized formulations when dispersed, may have an average particle or droplet size in the range from about 0.1 to about 200 nanometers, and may further comprise one or more of the additional ingredients described herein.
  • the examples of formulations described herein are not exhaustive and it is understood that the invention includes additional modifications of these and other formulations not described herein, but which are known to those of skill in the art.
  • a pharmaceutical composition of the invention may be prepared, packaged, or sold in a formulation suitable for rectal administration.
  • a composition may be in the form of, for example, a suppository, a retention enema preparation, and a solution for rectal or colonic irrigation.
  • Suppository formulations may be made by combining the active ingredient with a non-irritating pharmaceutically acceptable excipient which is solid at ordinary room temperature (i.e., about 20° C.) and which is liquid at the rectal temperature of the subject (i.e., about 37° C. in a healthy human).
  • Suitable pharmaceutically acceptable excipients include, but are not limited to, cocoa butter, polyethylene glycols, and various glycerides.
  • Suppository formulations may further comprise various additional ingredients including, but not limited to, antioxidants, and preservatives.
  • Retention enema preparations or solutions for rectal or colonic irrigation may be made by combining the active ingredient with a pharmaceutically acceptable liquid carrier.
  • enema preparations may be administered using, and may be packaged within, a delivery device adapted to the rectal anatomy of the subject.
  • Enema preparations may further comprise various additional ingredients including, but not limited to, antioxidants, and preservatives.
  • Additional dosage forms of this invention include dosage forms as described in U.S. Pat. Nos. 6,340,475, 6,488,962, 6,451,808, 5,972,389, 5,582,837, and 5,007,790. Additional dosage forms of this invention also include dosage forms as described in U.S. Patent Applications Nos. 20030147952, 20030104062, 20030104053, 20030044466, 20030039688, and 20020051820. Additional dosage forms of this invention also include dosage forms as described in PCT Applications Nos.
  • compositions and/or formulations of the present invention may be, but are not limited to, short-term, rapid-offset, as well as controlled, for example, sustained release, delayed release and pulsatile release formulations.
  • sustained release is used in its conventional sense to refer to a drug formulation that provides for gradual release of a drug over an extended period of time, and that may, although not necessarily, result in substantially constant blood levels of a drug over an extended time period.
  • the period of time may be as long as a month or more and should be a release which is longer that the same amount of agent administered in bolus form.
  • the compounds may be formulated with a suitable polymer or hydrophobic material which provides sustained release properties to the compounds.
  • the compounds for use the method of the invention may be administered in the form of microparticles, for example, by injection or in the form of wafers or discs by implantation.
  • the compounds useful within the invention are administered to a subject, alone or in combination with another pharmaceutical agent, using a sustained release formulation.
  • delayed release is used herein in its conventional sense to refer to a drug formulation that provides for an initial release of the drug after some delay following drug administration and that may, although not necessarily, include a delay of from about 10 minutes up to about 12 hours.
  • pulsatile release is used herein in its conventional sense to refer to a drug formulation that provides release of the drug in such a way as to produce pulsed plasma profiles of the drug after drug administration.
  • immediate release is used in its conventional sense to refer to a drug formulation that provides for release of the drug immediately after drug administration.
  • short-term refers to any period of time up to and including about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 40 minutes, about 20 minutes, or about 10 minutes and any or all whole or partial increments thereof after drug administration after drug administration.
  • rapid-offset refers to any period of time up to and including about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 40 minutes, about 20 minutes, or about 10 minutes, and any and all whole or partial increments thereof after drug administration.
  • reaction conditions including but not limited to reaction times, reaction size/volume, and experimental reagents, such as solvents, catalysts, pressures, atmospheric conditions, e.g., nitrogen atmosphere, and reducing/oxidizing agents, with art-recognized alternatives and using no more than routine experimentation, are within the scope of the present application.
  • range such as from 1 to 6 should be considered to have specifically disclosed sub-ranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, and 6. This applies regardless of the breadth of the range.
  • HepDE19 cell culture system is a HepG2 (human hepatocarcinoma) derived cell line that supports HBV DNA replication and cccDNA formation in a tetracycline (Tet)-regulated manner and produces HBV rcDNA and a detectable reporter molecule dependent on the production and maintenance of cccDNA (Guo, et al., 2007, J. Virol. 81:12472-12484).
  • HepDE19 (50,000 cells/well) were plated in 96-well collagen-coated tissue-culture treated microtiter plates in DMEM/F12 medium supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin and 1 ⁇ g/mL tetracycline and incubated in a humidified incubator at 37° C. and 5% CO 2 overnight. Next day, the cells were switched to fresh medium without tetracycline and incubated for 4 hours at 37° C. and 5% CO 2 . The cells were treated with fresh Tet-free medium with compounds at concentrations starting at 25 ⁇ M and a serial, 1 ⁇ 2 log, 8-point, titration series in duplicate. The final DMSO concentration in the assay was 0.5%.
  • the plates were incubated for 7 days in a humidified incubator at 37° C. and 5% CO 2 . Following a 7 day-incubation, the level of rcDNA present in the inhibitor-treated wells was measured using a Quantigene 2.0 bDNA assay kit (Affymetrix, Santa Clara, Calif.) with HBV specific custom probe set and manufacturers instructions. Concurrently, the effect of compounds on cell viability was assessed using replicate plates, plated at a density of 5,000 cells/well and incubated for 4 days, to determine the ATP content as a measure of cell viability using the cell-titer glo reagent (CTG; Promega Corporation, Madison, Wis.) as per manufacturer's instructions.
  • CCG Cell-titer glo reagent
  • the plates were read using a Victor luminescence plate reader (PerkinElmer Model 1420 Multilabel counter) and the relative luminescence units (RLU) data generated from each well was calculated as % inhibition of the untreated control wells and analyzed using XL-Fit module in Microsoft Excel to determine EC 50 and EC 90 (bDNA) and CC 50 (CTG) values using a 4-parameter curve fitting algorithm.
  • RLU relative luminescence units
  • HPLC Method B Waters 2695/2998 system employing a Xbridge C18, 5 ⁇ , 150 ⁇ 4.6 mm column with an aqueous component of 0.05% trifluoroacetic acid in water and an organic component of 0.05% trifluoroacetic acid in acetonitrile.
  • Enantiomer I or “Diastereomer I” refers to the first enantiomer or diastereomer eluded from the chiral column under the specific chiral analytical conditions detailed for examples provided elsewhere herein; and “Enantiomer II” or “Diastereomer II” refers to the second enantiomer or diastereomer eluded from the chiral column under the specific chiral analytical conditions detailed for examples provided elsewhere herein.
  • Such nomenclature does not imply or impart any particular relative and/or absolute configuration for these compounds.
  • reaction mixture was stirred at room temperature for 16 h and then quenched by the addition of 100 mL of sat. ammonium chloride solution.
  • the mixture was extracted with 3 ⁇ 100 mL of ethyl acetate and the combined organic extracts were washed with 100 mL of water, 100 mL of brine, dried (Na 2 SO 4 ) and the solvent was removed in vacuo.
  • the residue was purified by flash chromatography (SiO 2 , eluting with a linear gradient of 30-50% ethyl acetate/petroleum ether) to provide 2.5 g (20.6 mmol, 34%) of 5,6-dihydrocyclopenta[c]pyrrol-4(2H)-one (IIIa).
  • the mixture was then stirred at 100° C. under 200 psi of carbon monoxide gas for 16 h.
  • the mixture was allowed to cool to room temperature, filtered through CELITE® and the pad was washed with 20 mL of ethanol.
  • the solvent was removed in vacuo and the residue was resuspended in 100 mL of water.
  • the mixture was extracted with 3 ⁇ 80 mL of ethyl acetate and the combined organic extracts were washed with 50 mL of water, 50 mL of brine, dried (Na 2 SO 4 ), filtered and the solvent was removed in vacuo.
  • Example 2 Methyl 1-(3-chloro-4-fluorophenylcarbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-ylcarbamate (1, 4, 5)
  • Example 8 (1-Methyl-1H-1,2,3-triazol-4-yl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (116, 117)
  • Oxazol-2-ylmethyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydro cyclopenta[c]pyrrol-4-yl)carbamate was synthesized in a similar manner as described above from 4-amino-N-(3-chloro-4-fluorophenyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta [c]pyrrole-1-carboxamide (IXa) and oxazol-2-ylmethyl 1H-imidazole-1-carboxylate (XIIIe). The enantiomers were subsequently separated by SFC (Waters SFC investigator). Method isocratic, Mobile phase MeOH:CO 2 —40:60. Column: Chiralpak IA (30 ⁇ 250 mm), 5 ⁇ m, flow rate: 90 g/min.
  • Oxazol-5-ylmethyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydro cyclopenta[c]pyrrol-4-yl)carbamate was synthesized in a similar manner as described above from 4-amino-N-(3-chloro-4-fluorophenyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrole-1-carboxamide (IXa) and oxazol-5-ylmethyl 1H-imidazole-1-carboxylate (XIIIf). The enantiomers were subsequently separated by SFC (Waters SFC investigator. Method isocratic, Mobile phase MeOH:CO 2 —50:50. Column: Chiralpak ID-H (30 ⁇ 250 mm), 5 ⁇ m, flow rate: 90 g/min.
  • But-2-yn-1-yl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate was synthesized in a similar manner as described above from 4-amino-N-(3-chloro-4-fluorophenyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrole-1-carboxamide (IXa) and but-2-yn-1-yl 1H-imidazole-1-carboxylate (XIIIi). The enantiomers were subsequently separated by SFC (Waters SFC investigator). Method isocratic, Mobile phase MeOH:CO 2 —30:70. Column: Chiralcel OJ-H (30 ⁇ 250 mm), 5 ⁇ m, flow rate: 90 g/min.
  • Pent-2-yn-1-yl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate was synthesized in a similar manner as described above from 4-amino-N-(3-chloro-4-fluorophenyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta [c]pyrrole-1-carboxamide (IXa) and pent-2-yn-1-yl 1H-imidazole-1-carboxylate (XIIIj). The enantiomers were subsequently separated by SFC (Waters SFC investigator). Method isocratic, Mobile phase MeOH:CO 2 —30:70. Column: Chiralcel OJ-H (30 ⁇ 250 mm, 5 ⁇ m), flow rate: 70 g/min.
  • Example 15 3-Cyclopropylprop-2-yn-1-yl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (114, 115)
  • Example 16 Isopropyl 1-((((1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta [c]pyrrol-4-yl)carbamoyl)oxy)methyl)-3,3-difluorocyclobutane-1-carboxylate (46)
  • Example 17 1-((((1-((3-Chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta [c]pyrrol-4-yl)carbamoyl)oxy)methyl)-3,3-difluorocyclobutane-1-carboxylic acid (53)
  • Example 18 (1-Carbamoyl-3,3-difluorocyclobutyl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (55, 56)
  • the resulting solution was extracted with 3 ⁇ 40 mL of ethyl acetate and the combined organic extracts were washed with 40 mL of water, 40 mL of brine, dried (Na 2 SO 4 ), filtered and the solvent was removed in vacuo.
  • the residue comprising a mixture of regioisomers was purified by MPLC (REVELERIS® silica column, eluting with a linear gradient of 4-10% ethyl acetate in petroleum ether) to provide 350 mg of ethyl 2-methyl-2H-1,2,3-triazole-4-carboxylate (A) along with 540 mg of an isomeric mixture (41% & 55% of A and B respectively).
  • the mixture was then heated at 90° C. for 16 h.
  • the mixture was allowed to cool to room temperature, diluted with 100 mL of ice-cold water and extracted with 3 ⁇ 50 mL of ethyl acetate.
  • the combined organic extracts were washed with 50 mL of brine, dried (Na 2 SO 4 ) and the solvent was removed in vacuo.
  • Example 27 (1-Methyl-1H-1,2,4-triazol-3-yl)methyl (1-((3,4-difluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (64)
  • Example 28 (1-Methyl-1H-1,2,4-triazol-3-yl)methyl (1-((4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (65)
  • Example 31 (1-Methyl-1H-1,2,4-triazol-3-yl)methyl (1-((3-(difluoromethyl)-4-fluoro phenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (70)
  • Example 33 (1-Methyl-1H-1,2,4-triazol-3-yl)methyl (2-methyl-1-((2-(trifluoromethyl) pyridin-4-yl)carbamoyl)-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (73)
  • Example 36 (5-Methyl-2H-1,2,3-triazol-4-yl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta [c]pyrrol-4-yl)carbamate (138, 139)
  • a sealed tube containing 1.6 g (14.28 mmol, 1.0 eq.) of ethyl but-2-ynoate and 5.8 g (35.74 mmol, 7.0 eq.) of azidotrimethylsilane in 16 mL of THF was heated to 100° C. for 30 h. The mixture was allowed to cool to room temperature and the solvent was removed in vacuo. The residue suspended in 40 mL of water and extracted with 3 ⁇ 40 mL of ethyl acetate. The combined organic extracts were washed with 30 mL of water, 40 mL of brine, dried (Na 2 SO 4 ) and the solvent was removed in vacuo.
  • reaction was quenched by the addition of 40 mL of ice-cold water and extracted with 3 ⁇ 75 mL of ethyl acetate.
  • the combined organic extracts were washed with 80 mL of brine, dried (Na 2 SO 4 ), filtered and the solvent was removed in vacuo.
  • the residue was purified by MPLC (REVELERIS® Silica column, eluting with a linear gradient of 10-40% ethyl acetate/petroleum ether) to provide 0.4 g (1.13 mmol, 41%) of (5-methyl-2-trityl-2H-1,2,3-triazol-4-yl)methanol (XIIr).
  • Example 38 (5-Cyclopropyl-2H-1,2,3-triazol-4-yl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (146, 147)
  • Racemic (2H-tetrazol-5-yl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (148) was synthesized in a similar manner as described above from 4-amino-N-(3-chloro-4-fluorophenyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrole-1-carboxamide (IXa) and (2-trityl-2H-tetrazol-5-yl)methyl 1H-imidazole-1-carboxylate (XIIIu) followed by acid mediated detritylation. The enantiomers were subsequently separated by SFC. Method: isocratic, Mobile phase MeOH:CO 2 —15:85. Column: Chiralpak IG (30 ⁇ 250 mm), 5 ⁇ m, flow rate: 60 g/min.
  • Example 40 (1-Methyl-1H-tetrazol-5-yl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (144, 145)
  • Ethyl 1-methyl-1H-tetrazole-5-carboxylate (B): LCMS: m/z found 157.03 [M+H] + , RT 1.46 min; 1 H NMR (400 MHz, CDCl 3 ): ⁇ 4.54 (q, 2H), 4.38 (s, 3H), 1.48 (t, 3H).
  • the mixture was diluted with 70 mL of water and extracted with 3 ⁇ 50 mL of ethyl acetate.
  • the combined organic extracts were washed with 50 mL of water, 50 mL of brine, dried (Na 2 SO 4 ), filtered and the solvent was removed in vacuo.
  • Ester hydrolysis of XIV to generate XV followed by carboxylic acid functionalization provides XVI (or alternatively, XIV can be converted directly to XVI through direct amination of the ester) followed by reductive amination to provide XVIII allows for N-functionalization to provide XIX.
  • reaction was quenched with 50 mL of saturated ammonium chloride solution and extracted with 3 ⁇ 50 mL of ethyl acetate. The combined organic extracts were washed with 100 mL of brine, dried (Na 2 SO 4 ), filtered and the solvent was removed in vacuo.
  • the mixture was cooled to 0° C. and 0.27 g (7.10 mmol, 4.0 eq.) of sodium borohydride was added. The mixture was then stirred at 0° C. for 4 h. The mixture was diluted with 100 mL of ice-cold water and extracted with 3 ⁇ 100 mL of ethyl acetate. The combined organic extracts were washed with 100 mL of brine, dried (Na 2 SO 4 ), filtered and the solvent was removed in vacuo.
  • Example 45 (1H-1,2,4-Triazol-3-yl)methyl (3-chloro-1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (103, 104, 105)
  • the mixture was then allowed to cool to room temperature, diluted with 15 mL of water and the resulting solids collected by filtration and dried under high vacuum. The solids were then triturated with 80 mL of 10% methanol in methylene chloride and filtered.
  • Example 48 (1H-1,2,4-Triazol-3-yl)methyl (3-bromo-1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (124, 125)
  • Example 49 (1-Methyl-1H-1,2,4-triazol-3-yl)methyl (1-((3-chloro-4-fluorophenyl) carbamoyl)-2,3-dimethyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (61, 82, 83)
  • Example 50 (1-Methyl-1H-1,2,4-triazol-3-yl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-3-phenyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (108, 109)
  • the mixture was purged with argon for 5 min and 0.46 g (1.42 mmol, 3.0 eq.) of cesium carbonate was added followed by 0.5 mL of water.
  • the mixture was purged with argon for an additional 5 min and 16 mg (0.023 mmol, 5 mol %) of palladium acetate was added followed by 16 mg (0.047 mmol, 10 mol %) of Cataxium-A.
  • the mixture was then heated to 80° C. for 3 h. On cooling to room temperature, the mixture was filtered through CELITE®, washed with 20 mL of ethyl acetate and the filtrate was concentrated in vacuo.
  • Example 51 (1H-1,2,3-Triazol-4-yl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2,3-dimethyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (130, 131)
  • Example 52 (1-Methyl-1H-1,2,4-triazol-3-yl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-3-cyclopropyl-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (90, 91)
  • Example 54 (1-Methyl-1H-1,2,4-triazol-3-yl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-3-cyclobutyl-2-methyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (96, 97)
  • Example 55 1-Methyl-1H-1,2,4-triazol-3-yl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-3-(trifluoromethyl)-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (122, 123)
  • the mixture was then allowed to cool to room temperature and quenched with 50 mL ice-cold water and diluted with 100 mL of ethyl acetate. The resulting solution was filtered, and the filtrate was washed with 50 mL of water. The aqueous phase was extracted with 2 ⁇ 50 mL of ethyl acetate and the combined organic extracts were dried (Na 2 SO 4 ), filtered and the solvent was removed in vacuo.
  • Example 56 (1H-1,2,4-Triazol-3-yl)methyl (1-((3-chloro-4-fluorophenyl)carbamoyl)-2-methyl-3-(trifluoromethyl)-2,4,5,6-tetrahydrocyclopenta[c]pyrrol-4-yl)carbamate (126, 127)
  • N-(3-Chloro-4-fluorophenyl)-4-(cyclopropanesulfonamido)-2-ethyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrole-1-carboxamide (12) was synthesized in a similar manner as described above from 4-amino-N-(3-chloro-4-fluorophenyl)-2-ethyl-2,4,5,6-tetrahydrocyclopenta [c]pyrrole-1-carboxamide (IXm) and cyclopropane sulfonyl chloride. The enantiomers were subsequently separated by SFC (Waters SFC investigator. Method isocratic, Mobile phase MeOH:CO 2 —30:70. Column: Chiralcel OJ-H (30 ⁇ 250 mm), 5 ⁇ m, flow rate: 90 g/min.
  • N-(3-Chloro-4-fluorophenyl)-4-(cyclopropanecarboxamido)-2-ethyl-2,4,5,6-tetrahydrocyclopenta[c]pyrrole-1-carboxamide was synthesized in a similar manner as described above from 4-amino-N-(3-chloro-4-fluorophenyl)-2-ethyl-2,4,5,6-tetrahydrocyclopenta [c]pyrrole-1-carboxamide (IXm) and cyclopropane carboxylic acid.
  • the enantiomers were subsequently separated by SFC (Waters SFC investigator. Method isocratic, Mobile phase MeOH:CO 2 —15:85. Column: Chiralcel OJ-H (30 ⁇ 250 mm), 5 ⁇ m, flow rate: 90 g/min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
US17/259,751 2018-07-27 2019-07-25 Substituted tetrahydrocyclopenta[C]pyrroles, substituted dihydropyrrolizines, analogues thereof, and methods using same Active 2039-08-02 US11566002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/259,751 US11566002B2 (en) 2018-07-27 2019-07-25 Substituted tetrahydrocyclopenta[C]pyrroles, substituted dihydropyrrolizines, analogues thereof, and methods using same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862711303P 2018-07-27 2018-07-27
PCT/US2019/043373 WO2020023710A1 (fr) 2018-07-27 2019-07-25 Tétrahydrocyclopenta[c]pyrroles substituées, dihydropyrrolizines substituées, analogues de celles-ci, et procédés les utilisant
US17/259,751 US11566002B2 (en) 2018-07-27 2019-07-25 Substituted tetrahydrocyclopenta[C]pyrroles, substituted dihydropyrrolizines, analogues thereof, and methods using same

Publications (2)

Publication Number Publication Date
US20210179557A1 US20210179557A1 (en) 2021-06-17
US11566002B2 true US11566002B2 (en) 2023-01-31

Family

ID=69182381

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/259,751 Active 2039-08-02 US11566002B2 (en) 2018-07-27 2019-07-25 Substituted tetrahydrocyclopenta[C]pyrroles, substituted dihydropyrrolizines, analogues thereof, and methods using same

Country Status (9)

Country Link
US (1) US11566002B2 (fr)
EP (1) EP3829570A4 (fr)
JP (2) JP7416757B2 (fr)
KR (1) KR20210039417A (fr)
CN (1) CN112638376B (fr)
AU (1) AU2019309852A1 (fr)
CA (1) CA3107072A1 (fr)
TW (2) TWI826492B (fr)
WO (1) WO2020023710A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220055989A1 (en) * 2018-12-21 2022-02-24 Albert Ludwing Universität Freiburg Condensed pyrroles as novel bromodomain inhibitors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202214585A (zh) * 2020-06-08 2022-04-16 加拿大商愛彼特生物製藥公司 經取代之異喹啉基甲基醯胺類、其類似物及使用其之方法
KR102559870B1 (ko) * 2021-04-27 2023-07-26 주식회사 켐얼라이언스 카르밤산염 화합물의 제조방법
CN115490644B (zh) * 2022-03-02 2024-09-24 海南师范大学 一种1,2,3-三氮唑-4-酰肼希夫碱类荧光探针及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140275033A1 (en) 2013-03-13 2014-09-18 Boston Biomedical, Inc. Inhibitors of kinases and cancer stem cells, and methods of preparation and use thereof
WO2018039531A1 (fr) 2016-08-26 2018-03-01 Gilead Sciences, Inc. Composés de pyrrolizine substitués et leurs utilisations

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160452A (en) 1977-04-07 1979-07-10 Alza Corporation Osmotic system having laminated wall comprising semipermeable lamina and microporous lamina
US4256108A (en) 1977-04-07 1981-03-17 Alza Corporation Microporous-semipermeable laminated osmotic system
US4265874A (en) 1980-04-25 1981-05-05 Alza Corporation Method of delivering drug with aid of effervescent activity generated in environment of use
US5007790A (en) 1989-04-11 1991-04-16 Depomed Systems, Inc. Sustained-release oral drug dosage form
US5169645A (en) 1989-10-31 1992-12-08 Duquesne University Of The Holy Ghost Directly compressible granules having improved flow properties
US5582837A (en) 1992-03-25 1996-12-10 Depomed, Inc. Alkyl-substituted cellulose-based sustained-release oral drug dosage forms
ATE173159T1 (de) 1992-03-25 1998-11-15 Depomed Systems Inc Auf hydroxyethylzellulose basierende oralen arzneidosisformen mit verzoegerter wirkstoffabgabe
WO1997047285A1 (fr) 1996-06-10 1997-12-18 Depomed, Inc. Systeme a caracteristiques de retention renforcees pour l'administration controlee par voie orale de medicaments a retention gastrique
US5972389A (en) 1996-09-19 1999-10-26 Depomed, Inc. Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter
AU5923998A (en) 1997-01-31 1998-08-25 Avid Therapeutics Inc. 2-benzoylamino-3-phenylpropenamide derivatives and methods of using the same
CA2290624C (fr) 1997-06-06 2006-12-05 John W. Shell Formes de dosage de medicaments administres par voie orale a retention gastrique pour liberation lente de medicaments hautement solubles
US6635280B2 (en) 1997-06-06 2003-10-21 Depomed, Inc. Extending the duration of drug release within the stomach during the fed mode
US6323219B1 (en) 1998-04-02 2001-11-27 Ortho-Mcneil Pharmaceutical, Inc. Methods for treating immunomediated inflammatory disorders
EP1242057A2 (fr) 1999-11-02 2002-09-25 DepoMed, Inc. Declenchement pharmacologique du mode par ingestion pour une administration amelioree de medicaments dans l'estomac
AU1928501A (en) * 1999-11-24 2001-06-04 Sugen, Inc. Formulations for pharmaceutical agents ionizable as free acids or free bases
CA2396782A1 (fr) 2000-02-04 2001-08-09 Depomed, Inc. Forme posologique enveloppe et noyau approchant la liberation d'ordre zero du medicament
US6488962B1 (en) 2000-06-20 2002-12-03 Depomed, Inc. Tablet shapes to enhance gastric retention of swellable controlled-release oral dosage forms
US6451808B1 (en) 2000-10-17 2002-09-17 Depomed, Inc. Inhibition of emetic effect of metformin with 5-HT3 receptor antagonists
JP2004532259A (ja) 2001-05-29 2004-10-21 デポメッド ディベロップメント リミティド 胃食道逆流症及び夜間に胃酸分泌が回復する現象の治療方法
TWI312285B (en) 2001-10-25 2009-07-21 Depomed Inc Methods of treatment using a gastric retained gabapentin dosage
US20030091630A1 (en) 2001-10-25 2003-05-15 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral dosage form using in vitro disintegration test data
US6723340B2 (en) 2001-10-25 2004-04-20 Depomed, Inc. Optimal polymer mixtures for gastric retentive tablets
CA2409552A1 (fr) 2001-10-25 2003-04-25 Depomed, Inc. Forme posologique orale pouvant etre retenue dans l'estomac dont la liberation est limitee a la partie inferieure du tube digestif
EP1438027A1 (fr) 2001-10-25 2004-07-21 DepoMed, Inc. Traitement utilisant une dose posologique de losartan a retention gastrique
US6682759B2 (en) 2002-02-01 2004-01-27 Depomed, Inc. Manufacture of oral dosage forms delivering both immediate-release and sustained-release drugs
US20080261913A1 (en) 2006-12-28 2008-10-23 Idenix Pharmaceuticals, Inc. Compounds and pharmaceutical compositions for the treatment of liver disorders
US8816074B2 (en) 2009-11-16 2014-08-26 University of Georgia Foundation, Inc. 2′-fluoro-6′-methylene carbocyclic nucleosides and methods of treating viral infections
KR101715981B1 (ko) 2010-03-31 2017-03-13 길리애드 파마셋 엘엘씨 뉴클레오사이드 포스포르아미데이트
US8921381B2 (en) 2010-10-04 2014-12-30 Baruch S. Blumberg Institute Inhibitors of secretion of hepatitis B virus antigens
TWI695066B (zh) 2011-06-30 2020-06-01 美商艾羅海德製藥公司 用於抑制b型肝炎病毒基因表現之組合物及方法
US9399619B2 (en) 2011-07-01 2016-07-26 Baruch S. Blumberg Institute Sulfamoylbenzamide derivatives as antiviral agents against HBV infection
KR101699822B1 (ko) 2011-12-21 2017-01-25 노비라 테라퓨틱스, 인코포레이티드 B형 간염의 항바이러스성 제제
NZ631419A (en) 2012-02-29 2017-03-31 Baruch S Blumberg Inst Inhibitors of hepatitis b virus covalently closed circular dna formation and their method of use
CN104144924B (zh) 2012-03-31 2016-02-24 弗·哈夫曼-拉罗切有限公司 用于治疗和预防乙型肝炎病毒感染的4-甲基-二氢嘧啶类
US20130267517A1 (en) 2012-03-31 2013-10-10 Hoffmann-La Roche Inc. Novel 4-methyl-dihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
ES2610758T3 (es) 2012-08-28 2017-05-03 Janssen Sciences Ireland Uc Derivados de sulfamoílo bicíclicos condensados y su uso como medicamentos en el tratamiento de la hepatitis B
AR092270A1 (es) 2012-08-28 2015-04-08 Janssen R&D Ireland Sulfamoilarilamidas y su uso como medicamentos para el tratamiento de la hepatitis b
EP2928459A4 (fr) 2012-12-06 2016-10-26 Baruch S Blumberg Inst Dérivés fonctionnalisés de benzamide en tant qu'agents antiviraux contre une infection à vhb
JP6409001B2 (ja) 2012-12-27 2018-10-17 ドレクセル ユニバーシティ Hbv感染に対する新規抗ウイルス剤
PT2961732T (pt) 2013-02-28 2017-06-26 Janssen Sciences Ireland Uc Sulfamoil-arilamidas e utilização das mesmas como medicamentos para o tratamento de hepatite b
WO2014165128A2 (fr) 2013-03-12 2014-10-09 Novira Therapeutics, Inc. Agents antiviraux contre l'hépatite b
EA027068B1 (ru) 2013-04-03 2017-06-30 Янссен Сайенсиз Айрлэнд Юси Производные n-фенилкарбоксамида и их применение в качестве лекарственных препаратов для лечения гепатита b
JP6441315B2 (ja) 2013-05-17 2018-12-19 ヤンセン・サイエンシズ・アイルランド・ユーシー スルファモイルチオフェンアミド誘導体およびb型肝炎を治療するための医薬品としてのその使用
JO3603B1 (ar) 2013-05-17 2020-07-05 Janssen Sciences Ireland Uc مشتقات سلفامويل بيرولاميد واستخدامها كادوية لمعالجة التهاب الكبد نوع بي
ES2680550T3 (es) 2013-07-09 2018-09-10 Bristol-Myers Squibb Company Combinaciones de inhibidores del virus de la hepatitis C
US10450270B2 (en) 2013-07-25 2019-10-22 Janssen Sciences Ireland Uc Glyoxamide substituted pyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis B
MX368158B (es) 2013-10-23 2019-09-20 Janssen Sciences Ireland Uc Derivados de carboxamida y su uso como medicamentos para el tratamiento de la hepatitis b.
EP3068774B1 (fr) 2013-11-14 2019-12-25 Novira Therapeutics Inc. Dérivés d'azépane et procédés de traitement d'infections par le virus de l'hépatite b
US9169212B2 (en) 2014-01-16 2015-10-27 Novira Therapeutics, Inc. Azepane derivatives and methods of treating hepatitis B infections
EP3099685B1 (fr) 2014-01-30 2018-04-18 F.Hoffmann-La Roche Ag Nouvelles dihydroquinolizinones pour le traitement et la prophylaxie d'une infection par le virus de l'hépatite b
EA035848B1 (ru) 2014-02-06 2020-08-20 Янссен Сайенсиз Айрлэнд Юси Производные сульфамоилпирроламида и их применение в качестве медикаментов для лечения гепатита b
CA2935811C (fr) 2014-03-07 2018-09-18 F. Hoffmann-La Roche Ag Nouvelles heteroaryldihydropyrimidines condensees en position 6 pour le traitement et la prophylaxie d'une infection a virus de l'hepatite b
ES2748029T3 (es) 2014-03-13 2020-03-12 Univ Indiana Res & Tech Corp Moduladores alostéricos de proteína núcleo de hepatitis B
EP3143020B1 (fr) 2014-05-13 2019-08-21 F. Hoffmann-La Roche AG Dihydroquinolizinones pour le traitement et la prophylaxie d'une infection par le virus de l'hépatite b
KR102428878B1 (ko) 2014-05-30 2022-08-04 치루 파머수티컬 컴퍼니 리미티드 Hbv억제제인 디히드로피리미도 축합환 유도체
CN105367550A (zh) * 2014-08-11 2016-03-02 江苏柯菲平医药股份有限公司 四氢环戊二烯并[c]吡咯类衍生物、其制备方法及其在医药上的应用
JP6506836B2 (ja) 2014-08-14 2019-04-24 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft B型肝炎ウイルス感染症の処置および予防のための新規ピリダゾンおよびトリアジノン
US9637485B2 (en) 2014-11-03 2017-05-02 Hoffmann-La Roche Inc. 6,7-dihydrobenzo[a]quinolizin-2-one derivatives for the treatment and prophylaxis of hepatitis B virus infection
CA2969557A1 (fr) 2014-12-02 2016-06-09 Novira Therapeutics, Inc. Composes de sulfonamide inverse a base de sulfure, alkyle et pyridyle pour le traitement du vhb
EP3240537B1 (fr) 2014-12-30 2020-09-09 F. Hoffmann-La Roche AG Nouvelles tétrahydropyridopyrimidines et tétrahydropyridopyridines pour le traitement et la prévention d'une infection par le virus de l'hépatite b
JP6435054B2 (ja) 2015-02-11 2018-12-05 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft B型肝炎ウイルス感染の治療及び予防のための新規2−オキソ−6,7−ジヒドロベンゾ[a]キノリジン−3−カルボン酸誘導体
CN107624113B (zh) 2015-05-04 2020-10-23 豪夫迈·罗氏有限公司 作为HBsAg (HBV 表面抗原)和HBV DNA 生成的抑制剂用于治疗乙型肝炎病毒感染的四氢吡啶并嘧啶和四氢吡啶并吡啶类化合物
WO2016183266A1 (fr) 2015-05-13 2016-11-17 Enanta Pharmaceuticals, Inc. Agents antiviraux de l'hépatite b
US10875876B2 (en) 2015-07-02 2020-12-29 Janssen Sciences Ireland Uc Cyclized sulfamoylarylamide derivatives and the use thereof as medicaments for the treatment of hepatitis B
US10179131B2 (en) 2015-07-13 2019-01-15 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
CN107849037B (zh) 2015-07-21 2020-04-17 豪夫迈·罗氏有限公司 用于治疗和预防乙型肝炎病毒感染的三环4-吡啶酮-3-甲酸衍生物
WO2017015451A1 (fr) 2015-07-22 2017-01-26 Enanta Pharmaceuticals, Inc. Agents antiviraux de l'hépatite b
WO2017016921A1 (fr) 2015-07-24 2017-02-02 F. Hoffmann-La Roche Ag Nouvelles formes cristallines d'acide (6s)-10-méthoxy-6-isopropyl-9-(3-méthoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylique
WO2017016960A1 (fr) 2015-07-24 2017-02-02 F. Hoffmann-La Roche Ag Procédé de préparation d'analogues de l'acide (6s)-6-alkyl-10-alcoxy-9-(alcoxy substitué)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylique
EP3328855B1 (fr) 2015-07-27 2019-05-15 H. Hoffnabb-La Roche Ag Nouveaux dérivés d'acide carboxylique tétracyclique 4-oxo-pyridine-3 pour le traitement et la prophylaxie d'une infection par le virus de l'hépatite b
CN107835813B (zh) 2015-07-28 2020-04-24 豪夫迈·罗氏有限公司 用于治疗和预防乙型肝炎病毒感染的6,7-二氢吡啶并[2,1-a]酞嗪-2-酮类化合物
TWI730985B (zh) 2015-09-15 2021-06-21 美商艾森伯利生物科學公司 B型肝炎核心蛋白質調節劑
WO2017064156A1 (fr) 2015-10-16 2017-04-20 F. Hoffmann-La Roche Ag Nouvelles 2-hétéroaryldihydropyrimidines fusionnées en position 6 pour le traitement et la prophylaxie de l'infection par le virus de l'hépatite b
WO2017102648A1 (fr) 2015-12-15 2017-06-22 F. Hoffmann-La Roche Ag Traitement combiné avec un inhibiteur de hbsag et un analogue de nucléos(t)ide
WO2017106634A1 (fr) 2015-12-17 2017-06-22 Incyte Corporation Dérivés de n-phényl-pyridine-2-carboxamide et leur utilisation comme modulateurs d'interactions protéine/protéine pd-1/pd-l1
WO2017108630A1 (fr) 2015-12-21 2017-06-29 F. Hoffmann-La Roche Ag Polythérapie à inhibiteur hbsag et inhibiteur d'assemblage de capside du vhb
WO2017114812A1 (fr) 2015-12-29 2017-07-06 F. Hoffmann-La Roche Ag Traitement combiné avec un inhibiteur de hbsag et un interféron
UY37128A (es) 2016-02-19 2017-09-29 Novartis Ag Compuestos tetracíclicos de piridona como antivirales
MA45478A (fr) 2016-04-11 2019-02-20 Arbutus Biopharma Corp Compositions de conjugués d'acides nucléiques ciblés
EP3493804A1 (fr) 2016-08-03 2019-06-12 Arising International, Inc. Composés symétriques ou semi-symétriques utiles comme immunomodulateurs
EP3504198B1 (fr) 2016-08-29 2023-01-25 Incyte Corporation Composés hétérocycliques utilisés comme immunomodulateurs
US10144706B2 (en) 2016-09-01 2018-12-04 Bristol-Myers Squibb Company Compounds useful as immunomodulators
US20180065917A1 (en) 2016-09-02 2018-03-08 Polaris Pharmaceuticals, Inc. Immune checkpoint inhibitors, compositions and methods thereof
CN116751200A (zh) 2016-11-07 2023-09-15 爱彼特生物制药公司 含有取代的吡啶酮的三环化合物以及使用其的方法
EP3558970B1 (fr) 2016-12-20 2021-09-01 Bristol-Myers Squibb Company Composés utiles en tant qu'immunomodulateurs
US20180179179A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Heterocyclic compounds as immunomodulators
ES2874756T3 (es) 2016-12-22 2021-11-05 Incyte Corp Derivados de triazolo[1,5-A]piridina como inmunomoduladores
US20180179202A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Heterocyclic compounds as immunomodulators
MX2019007416A (es) 2016-12-22 2019-12-11 Incyte Corp Derivados de benzooxazol como inmunomoduladores.
EP3564237A4 (fr) 2016-12-29 2020-06-10 Shenzhen Chipscreen Biosciences Co., Ltd. Composé d'urée, son procédé de préparation et son application
CN108341817B (zh) 2017-01-23 2021-11-26 上海长森药业有限公司 硫脲类、脲类化合物及其用途
CN109678796B (zh) 2017-10-19 2023-01-10 上海长森药业有限公司 Pd-1/pd-l1小分子抑制剂及其制备方法和用途
BR112020008851A2 (pt) 2017-11-06 2020-10-20 Jubilant Prodel LLC composto da fórmula i, processo de preparação de compostos da fórmula i, composição farmacêutica, método para o tratamento e/ou prevenção de várias doenças, uso, método para o tratamento de câncer, método de tratamento de câncer e método para o tratamento e/ou prevenção de câncer e doenças infecciosas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140275033A1 (en) 2013-03-13 2014-09-18 Boston Biomedical, Inc. Inhibitors of kinases and cancer stem cells, and methods of preparation and use thereof
WO2018039531A1 (fr) 2016-08-26 2018-03-01 Gilead Sciences, Inc. Composés de pyrrolizine substitués et leurs utilisations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bezencon, et al., "Discovery and evaluation of Cav3.2-selective T-type calcium channel blockers", Bioorganic & Medicinal Chemistry Letters, vol. 27, 2017, pp. 5326-5331.
International Search Report & Written Opinion dated Nov. 15, 2019 for PCT International Application No. PCT/US2019/043373.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220055989A1 (en) * 2018-12-21 2022-02-24 Albert Ludwing Universität Freiburg Condensed pyrroles as novel bromodomain inhibitors

Also Published As

Publication number Publication date
JP2021531320A (ja) 2021-11-18
EP3829570A1 (fr) 2021-06-09
CN112638376B (zh) 2024-08-02
TW202019406A (zh) 2020-06-01
EP3829570A4 (fr) 2022-07-13
WO2020023710A1 (fr) 2020-01-30
CA3107072A1 (fr) 2020-01-30
CN112638376A (zh) 2021-04-09
KR20210039417A (ko) 2021-04-09
JP2024041835A (ja) 2024-03-27
JP7416757B2 (ja) 2024-01-17
AU2019309852A1 (en) 2021-01-28
US20210179557A1 (en) 2021-06-17
TWI826492B (zh) 2023-12-21
TW202416959A (zh) 2024-05-01

Similar Documents

Publication Publication Date Title
US11566002B2 (en) Substituted tetrahydrocyclopenta[C]pyrroles, substituted dihydropyrrolizines, analogues thereof, and methods using same
US11001564B2 (en) Substituted chromane-8-carboxamide compounds and analogues thereof, and methods using same
EP3423443B1 (fr) Composés indole cyano-substitués et leur utilisation en tant qu'inhibiteurs de lsd1
US9975897B2 (en) Pyrazolopyrimidine derivatives useful as inhibitors of Bruton's tyrosine kinase
EP3560926B1 (fr) Composé de 6-amino-7,9-dihydro-8h-purin-8-one commme inhibiteurs de brk
AU2019397481B2 (en) Substituted arylmethylureas and heteroarylmethylureas, analogues thereof, and methods using same
US10358447B2 (en) Substituted 2-N-hydroxy-1,3-dioxo-1,2,3,4-tetrahydronaphthyridines, and methods of making and using same
US20230108906A1 (en) Substituted bicyclic and tricyclic ureas and amides, analogues thereof, and methods using same
US20230019280A1 (en) Substituted isoindolonyl 2,2'-bipyrimidinyl compounds, analogues thereof, and methods using same
CA3136351C (fr) Derives de benzimidazole et leurs utilisations
US10550084B2 (en) Substituted 1-hydroxy-pyridin-2(1H)-ones, and methods of making and using same
US20230312481A1 (en) Substituted (phthalazin-1-ylmethyl)ureas, substituted n-(phthalazin-1-ylmethyl)amides, and analogues thereof
WO2024018403A1 (fr) Composés d'imidazoamide substitués et leurs procédés d'utilisation
US20240327419A1 (en) Synthesis of substituted tricyclic amides and analogues thereof
US20230295115A1 (en) Substituted isoquinolinylmethyl amides, analogues thereof, and methods using same
WO2024069448A1 (fr) Composés de 1-arylaminocarbonyl-1'-hétéroaryle substitués, composés de 1-hétéroarylaminocarbonyl-1'-hétéroaryle substitués et procédés les utilisant
WO2020046941A1 (fr) Formes cristallines de composés de dihydroindène-4-carboxamide substitués et leurs procédés de préparation et d'utilisation

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

AS Assignment

Owner name: ARBUTUS BIOPHARMA CORPORATION, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARBUTUS BIOPHARMA, INC.;REEL/FRAME:061920/0733

Effective date: 20190822

Owner name: ARBUTUS BIOPHARMA, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COLE, ANDREW G.;KULTGEN, STEVEN;SIGNING DATES FROM 20190819 TO 20190821;REEL/FRAME:061920/0680

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE