US10706841B2 - Task flow identification based on user intent - Google Patents

Task flow identification based on user intent Download PDF

Info

Publication number
US10706841B2
US10706841B2 US15/394,162 US201615394162A US10706841B2 US 10706841 B2 US10706841 B2 US 10706841B2 US 201615394162 A US201615394162 A US 201615394162A US 10706841 B2 US10706841 B2 US 10706841B2
Authority
US
United States
Prior art keywords
services
plurality
user
subset
example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/394,162
Other versions
US20170178626A1 (en
Inventor
Thomas Robert Gruber
Adam John Cheyer
Dag Kittlaus
Didier Rene Guzzoni
Christopher Dean Brigham
Richard Donald Giuli
Marcello Bastea-Forte
Harry Joseph Saddler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Filing date
Publication date
Priority to US29577410P priority Critical
Priority to US12/987,982 priority patent/US9318108B2/en
Priority to US13/492,809 priority patent/US9548050B2/en
Application filed by Apple Inc filed Critical Apple Inc
Priority to US15/394,162 priority patent/US10706841B2/en
Publication of US20170178626A1 publication Critical patent/US20170178626A1/en
Application granted granted Critical
Publication of US10706841B2 publication Critical patent/US10706841B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • G10L15/1815Semantic context, e.g. disambiguation of the recognition hypotheses based on word meaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/332Query formulation
    • G06F16/3329Natural language query formulation or dialogue systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/3331Query processing
    • G06F16/334Query execution
    • G06F16/3344Query execution using natural language analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9537Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/167Audio in a user interface, e.g. using voice commands for navigating, audio feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/40Processing or translation of natural language
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • G10L13/02Methods for producing synthetic speech; Speech synthesisers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • G10L13/08Text analysis or generation of parameters for speech synthesis out of text, e.g. grapheme to phoneme translation, prosody generation or stress or intonation determination
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • G10L15/183Speech classification or search using natural language modelling using context dependencies, e.g. language models
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/26Speech to text systems
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/26Speech to text systems
    • G10L15/265Speech recognisers specially adapted for particular applications
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/06Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/60Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges including speech amplifiers
    • H04M1/6033Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges including speech amplifiers for providing handsfree use or a loudspeaker mode in telephone sets
    • H04M1/6041Portable telephones adapted for handsfree use
    • H04M1/6075Portable telephones adapted for handsfree use adapted for handsfree use in a vehicle
    • H04M1/6083Portable telephones adapted for handsfree use adapted for handsfree use in a vehicle by interfacing with the vehicle audio system
    • H04M1/6091Portable telephones adapted for handsfree use adapted for handsfree use in a vehicle by interfacing with the vehicle audio system including a wireless interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/72Substation extension arrangements; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selecting
    • H04M1/725Cordless telephones
    • H04M1/72519Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status
    • H04M1/72522With means for supporting locally a plurality of applications to increase the functionality
    • H04M1/72547With means for supporting locally a plurality of applications to increase the functionality with interactive input/output means for internally managing multimedia messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/72Substation extension arrangements; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selecting
    • H04M1/725Cordless telephones
    • H04M1/72519Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status
    • H04M1/72563Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status with means for adapting by the user the functionality or the communication capability of the terminal under specific circumstances
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers; Analogous equipment at exchanges
    • H04M1/72Substation extension arrangements; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selecting
    • H04M1/725Cordless telephones
    • H04M1/72519Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status
    • H04M1/72597Portable communication terminals with improved user interface to control a main telephone operation mode or to indicate the communication status wherein handling of applications is triggered by incoming communication events
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • G10L15/1822Parsing for meaning understanding

Abstract

The intelligent automated assistant system engages with the user in an integrated, conversational manner using natural language dialog, and invokes external services when appropriate to obtain information or perform various actions. The system can be implemented using any of a number of different platforms, such as the web, email, smartphone, and the like, or any combination thereof. In one embodiment, the system is based on sets of interrelated domains and tasks, and employs additional functionally powered by external services with which the system can interact.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/492,809, for “Intelligent Automated Assistant,” filed Jun. 9, 2012 and now granted as U.S. Pat. No. 9,548,050, which is a continuation of U.S. application Ser. No. 12/987,982 for “Intelligent Automated Assistant,” filed Jan. 10, 2011 and now granted as U.S. Pat. No. 9,318,108, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/295,774, for “Intelligent Automated Assistant,” filed Jan. 18, 2010, all of which are incorporated herein by reference in their entirety.

This application is further related to U.S. patent application Ser. No. 11/518,292 for “Method and Apparatus for Building an Intelligent Automated Assistant”, filed Sep. 8, 2006, which is incorporated herein by reference.

This application is further related to U.S. Provisional Patent Application Ser. No. 61/186,414 for “System and Method for Semantic Auto-Completion”, filed Jun. 12, 2009, which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to intelligent systems, and more specifically for classes of applications for intelligent automated assistants.

BACKGROUND OF THE INVENTION

Today's electronic devices are able to access a large, growing, and diverse quantity of functions, services, and information, both via the Internet and from other sources. Functionality for such devices is increasing rapidly, as many consumer devices, smartphones, tablet computers, and the like, are able to run software applications to perform various tasks and provide different types of information. Often, each application, function, website, or feature has its own user interface and its own operational paradigms, many of which can be burdensome to learn or overwhelming for users. In addition, many users may have difficulty even discovering what functionality and/or information is available on their electronic devices or on various websites; thus, such users may become frustrated or overwhelmed, or may simply be unable to use the resources available to them in an effective manner.

In particular, novice users, or individuals who are impaired or disabled in some manner, and/or are elderly, busy, distracted, and/or operating a vehicle may have difficulty interfacing with their electronic devices effectively, and/or engaging online services effectively. Such users are particularly likely to have difficulty with the large number of diverse and inconsistent functions, applications, and websites that may be available for their use.

Accordingly, existing systems are often difficult to use and to navigate, and often present users with inconsistent and overwhelming interfaces that often prevent the users from making effective use of the technology.

SUMMARY

According to various embodiments of the present invention, an intelligent automated assistant is implemented on an electronic device, to facilitate user interaction with a device, and to help the user more effectively engage with local and/or remote services. In various embodiments, the intelligent automated assistant engages with the user in an integrated, conversational manner using natural language dialog, and invokes external services when appropriate to obtain information or perform various actions.

According to various embodiments of the present invention, the intelligent automated assistant integrates a variety of capabilities provided by different software components (e.g., for supporting natural language recognition and dialog, multimodal input, personal information management, task flow management, orchestrating distributed services, and the like). Furthermore, to offer intelligent interfaces and useful functionality to users, the intelligent automated assistant of the present invention may, in at least some embodiments, coordinate these components and services. The conversation interface, and the ability to obtain information and perform follow-on task, are implemented, in at least some embodiments, by coordinating various components such as language components, dialog components, task management components, information management components and/or a plurality of external services.

According to various embodiments of the present invention, intelligent automated assistant systems may be configured, designed, and/or operable to provide various different types of operations, functionalities, and/or features, and/or to combine a plurality of features, operations, and applications of an electronic device on which it is installed. In some embodiments, the intelligent automated assistant systems of the present invention can perform any or all of: actively eliciting input from a user, interpreting user intent, disambiguating among competing interpretations, requesting and receiving clarifying information as needed, and performing (or initiating) actions based on the discerned intent. Actions can be performed, for example, by activating and/or interfacing with any applications or services that may be available on an electronic device, as well as services that are available over an electronic network such as the Internet. In various embodiments, such activation of external services can be performed via APIs or by any other suitable mechanism. In this manner, the intelligent automated assistant systems of various embodiments of the present invention can unify, simplify, and improve the user's experience with respect to many different applications and functions of an electronic device, and with respect to services that may be available over the Internet. The user can thereby be relieved of the burden of learning what functionality may be available on the device and on web-connected services, how to interface with such services to get what he or she wants, and how to interpret the output received from such services, rather, the assistant of the present invention can act as a go-between between the user and such diverse services.

In addition, in various embodiments, the assistant of the present invention provides a conversational interface that the user may find more intuitive and less burdensome than conventional graphical user interfaces. The user can engage in a form of conversational dialog with the assistant using any of a number of available input and output mechanisms, such as for example speech, graphical user interfaces (buttons and links), text entry, and the like. The system can be implemented using any of a number of different platforms, such as device APIs, the web, email, and the like, or any combination thereof. Requests for additional input can be presented to the user in the context of such a conversation. Short and long term memory can be engaged so that user input can be interpreted in proper context given previous events and communications within a given session, as well as historical and profile information about the user.

In addition, in various embodiments, context information derived from user interaction with a feature, operation, or application on a device can be used to streamline the operation of other features, operations, or applications on the device or on other devices. For example, the intelligent automated assistant can use the context of a phone call (such as the person called) to streamline the initiation of a text message (for example to determine that the text message should be sent to the same person, without the user having to explicitly specify the recipient of the text message). The intelligent automated assistant of the present invention can thereby interpret instructions such as “send him a text message”, wherein the “him” is interpreted according to context information derived from a current phone call, and/or from any feature, operation, or application on the device. In various embodiments, the intelligent automated assistant takes into account various types of available context data to determine which address book contact to use, which contact data to use, which telephone number to use for the contact, and the like, so that the user need not re-specify such information manually.

In various embodiments, the assistant can also take into account external events and respond accordingly, for example, to initiate action, initiate communication with the user, provide alerts, and/or modify previously initiated action in view of the external events. If input is required from the user, a conversational interface can again be used.

In one embodiment, the system is based on sets of interrelated domains and tasks, and employs additional functionally powered by external services with which the system can interact. In various embodiments, these external services include web-enabled services, as well as functionality related to the hardware device itself. For example, in an embodiment where the intelligent automated assistant is implemented on a smartphone, personal digital assistant, tablet computer, or other device, the assistant can control many operations and functions of the device, such as to dial a telephone number, send a text message, set reminders, add events to a calendar, and the like.

In various embodiments, the system of the present invention can be implemented to provide assistance in any of a number of different domains. Examples include:

    • Local Services (including location- and time-specific services such as restaurants, movies, automated teller machines (ATMs), events, and places to meet);
    • Personal and Social Memory Services (including action items, notes, calendar events, shared links, and the like);
    • E-commerce (including online purchases of items such as books, DVDs, music, and the like);
    • Travel Services Aiding flights, hotels, attractions, and the like).

One skilled in the art will recognize that the above list of domains is merely exemplary. In addition, the system of the present invention can be implemented in any combination of domains.

In various embodiments, the intelligent automated assistant systems disclosed herein may be configured or designed to include functionality for automating the application of data and services available over the Internet to discover, find, choose among, purchase, reserve, or order products and services. In addition to automating the process of using these data and services, at least one intelligent automated assistant system embodiment disclosed herein may also enable the combined use of several sources of data and services at once. For example, it may combine information about products from several review sites, check prices and availability from multiple distributors, and check their locations and time constraints, and help a user find a personalized solution to their problem. Additionally, at least one intelligent automated assistant system embodiment disclosed herein may be configured or designed to include functionality for automating the use of data and services available over the Internet to discover, investigate, select among, reserve, and otherwise learn about things to do (including but not limited to movies, events, performances, exhibits, shows and attractions); places to go (including but not limited to travel destinations, hotels and other places to stay, landmarks and other sites of interest, etc.); places to eat or drink (such as restaurants and bars), times and places to meet others, and any other source of entertainment or social interaction which may be found on the Internet. Additionally, at least one intelligent automated assistant system embodiment disclosed herein may be configured or designed to include functionality for enabling the operation of applications and services via natural language dialog that may be otherwise provided by dedicated applications with graphical user interfaces including search (including location-based search); navigation (maps and directions); database lookup (such as finding businesses or people by name or other properties); getting weather conditions and forecasts, checking the price of market items or status of financial transactions; monitoring traffic or the status of flights; accessing and updating calendars and schedules; managing reminders, alerts, tasks and projects; communicating over email or other messaging platforms; and operating devices locally or remotely (e.g., dialing telephones, controlling light and temperature, controlling home security devices, playing music or video, etc.). Further, at least one intelligent automated assistant system embodiment disclosed herein may be configured or designed to include functionality for identifying, generating, and/or providing personalized recommendations for activities, products, services, source of entertainment, time management, or any other kind of recommendation service that benefits from an interactive dialog in natural language and automated access to data and services.

In various embodiments, the intelligent automated assistant of the present invention can control many features and operations of an electronic device. For example, the intelligent automated assistant can call services that interface with functionality and applications on a device via APIs or by other means, to perform functions and operations that might otherwise be initiated using a conventional user interface on the device. Such functions and operations may include, for example, setting an alarm, making a telephone call, sending a text message or email message, adding a calendar event, and the like. Such functions and operations may be performed as add-on functions in the context of a conversational dialog between a user and the assistant. Such functions and operations can be specified by the user in the context of such a dialog, or they may be automatically performed based on the context of the dialog. One skilled in the art will recognize that the assistant can thereby be used as a control mechanism for initiating and controlling various operations on the electronic device, which may be used as an alternative to conventional mechanisms such as buttons or graphical user interfaces.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate several embodiments of the invention and, together with the description, serve to explain the principles of the invention according to the embodiments. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit the scope of the present invention.

FIG. 1 is a block diagram depicting an example of one embodiment of an intelligent automated assistant system.

FIG. 2 illustrates an example of an interaction between a user and an intelligent automated assistant according to at least one embodiment.

FIG. 3 is a block diagram depicting a computing device suitable for implementing at least a portion of an intelligent automated assistant according to at least one embodiment.

FIG. 4 is a block diagram depicting an architecture for implementing at least a portion of an intelligent automated assistant on a standalone computing system, according to at least one embodiment.

FIG. 5 is a block diagram depicting an architecture for implementing at least a portion of an intelligent automated assistant on a distributed computing network, according to at least one embodiment.

FIG. 6 is a block diagram depicting a system architecture illustrating several different types of clients and modes of operation.

FIG. 7 is a block diagram depicting a client and a server, which communicate with each other to implement the present invention according to one embodiment.

FIG. 8 is a block diagram depicting a fragment of an active ontology according to one embodiment.

FIG. 9 is a block diagram depicting an example of an alternative embodiment of an intelligent automated assistant system.

FIG. 10 is a flow diagram depicting a method of operation for active input elicitation component(s) according to one embodiment.

FIG. 11 is a flow diagram depicting a method for active typed-input elicitation according to one embodiment.

FIGS. 12 to 21 are screen shots illustrating some portions of some of the procedures for active typed-input elicitation according to one embodiment.

FIG. 22 is a flow diagram depicting a method for active input elicitation for voice or speech input according to one embodiment.

FIG. 23 is a flow diagram depicting a method for active input elicitation for GUI-based input according to one embodiment.

FIG. 24 is a flow diagram depicting a method for active input elicitation at the level of a dialog flow according to one embodiment.

FIG. 25 is a flow diagram depicting a method for active monitoring for relevant events according to one embodiment.

FIG. 26 is a flow diagram depicting a method for multimodal active input elicitation according to one embodiment.

FIG. 27 is a set of screen shots illustrating an example of various types of functions, operations, actions, and/or other features which may be provided by domain models component(s) and services orchestration according to one embodiment.

FIG. 28 is a flow diagram depicting an example of a method for natural language processing according to one embodiment.

FIG. 29 is a screen shot illustrating natural language processing according to one embodiment.

FIGS. 30 and 31 are screen shots illustrating an example of various types of functions, operations, actions, and/or other features which may be provided by dialog flow processor component(s) according to one embodiment.

FIG. 32 is a flow diagram depicting method of operation for dialog flow processor component(s) according to one embodiment.

FIG. 33 is a flow diagram depicting an automatic call and response procedure, according to one embodiment.

FIG. 34 is a flow diagram depicting an example of task flow for a constrained selection task according to one embodiment.

FIGS. 35 and 36 are screen shots illustrating an example of the operation of constrained selection task according to one embodiment.

FIG. 37 is a flow diagram depicting an example of a procedure for executing a service orchestration procedure according to one embodiment.

FIG. 38 is a flow diagram depicting an example of a service invocation procedure according to one embodiment.

FIG. 39 is a flow diagram depicting an example of a multiphase output procedure according to one embodiment.

FIGS. 40 and 41 are screen shots depicting examples of output processing according to one embodiment.

FIG. 42 is a flow diagram depicting an example of multimodal output processing according to one embodiment.

FIGS. 43A and 43B are screen shots depicting an example of the use of short term personal memory component(s) to maintain dialog context while changing location, according to one embodiment.

FIGS. 44A through 44C are screen shots depicting an example of the use of long term personal memory component(s), according to one embodiment.

FIG. 45 depicts an example of an abstract model for a constrained selection task.

FIG. 46 depicts an example of a dialog flow model to help guide the user through a search process.

FIG. 47 is a flow diagram depicting a method of constrained selection according to one embodiment.

DETAILED DESCRIPTION OF THE EMBODIMENTS

Various techniques will now be described in detail with reference to a few example embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects and/or features described or reference herein. It will be apparent, however, to one skilled in the art, that one or more aspects and/or features described or reference herein may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not obscure some of the aspects and/or features described or reference herein.

One or more different inventions may be described in the present application. Further, for one or more of the invention(s) described herein, numerous embodiments may be described in this patent application, and are presented for illustrative purposes only. The described embodiments are not intended to be limiting in any sense. One or more of the invention(s) may be widely applicable to numerous embodiments, as is readily apparent from the disclosure. These embodiments are described in sufficient detail to enable those skilled in the art to practice one or more of the invention(s), and it is to be understood that other embodiments may be utilized and that structural, logical, software, electrical and other changes may be made without departing from the scope of the one or more of the invention(s). Accordingly, those skilled in the art will recognize that the one or more of the invention(s) may be practiced with various modifications and alterations. Particular features of one or more of the invention(s) may be described with reference to one or more particular embodiments or figures that form a part of the present disclosure, and in which are shown, by way of illustration, specific embodiments of one or more of the invention(s). It should be understood, however, that such features are not limited to usage in the one or more particular embodiments or figures with reference to which they are described. The present disclosure is neither a literal description of all embodiments of one or more of the invention(s) nor a listing of features of one or more of the invention(s) that must be present in all embodiments.

Headings of sections provided in this patent application and the title of this patent application are for convenience only, and are not to be taken as limiting the disclosure in any way.

Devices that are in communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. In addition, devices that are in communication with each other may communicate directly or indirectly through one or more intermediaries.

A description of an embodiment with several components in communication with each other does not imply that all such components are required. To the contrary, a variety of optional components are described to illustrate the wide variety of possible embodiments of one or more of the invention(s).

Further, although process steps, method steps, algorithms or the like may be described in a sequential order, such processes, methods and algorithms may be configured to work in alternate orders. In other words, any sequence or order of steps that may be described in this patent application does not, in and of itself, indicate a requirement that the steps be performed in that order. The steps of described processes may be performed in any order practical. Further, some steps may be performed simultaneously despite being described or implied as occurring non-simultaneously (e.g., because one step is described after the other step). Moreover, the illustration of a process by its depiction in a drawing does not imply that the illustrated process is exclusive of other variations and modifications thereto, does not imply that the illustrated process or any of its steps are necessary to one or more of the invention(s), and does not imply that the illustrated process is preferred.

When a single device or article is described, it will be readily apparent that more than one device/article (whether or not they cooperate) may be used in place of a single device/article. Similarly, where more than one device or article is described (whether or not they cooperate), it will be readily apparent that a single device/article may be used in place of the more than one device or article.

The functionality and/or the features of a device may be alternatively embodied by one or more other devices that are not explicitly described as having such functionality/features. Thus, other embodiments of one or more of the invention(s) need not include the device itself.

Techniques and mechanisms described or reference herein will sometimes be described in singular form for clarity. However, it should be noted that particular embodiments include multiple iterations of a technique or multiple instantiations of a mechanism unless noted otherwise.

Although described within the context of intelligent automated assistant technology, it may be understood that the various aspects and techniques described herein (such as those associated with active ontologies, for example) may also be deployed and/or applied in other fields of technology involving human and/or computerized interaction with software.

Other aspects relating to intelligent automated assistant technology (e.g., which may be utilized by, provided by, and/or implemented at one or more intelligent automated assistant system embodiments described herein) are disclosed in one or more of the following references:

    • U.S. Provisional Patent Application Ser. No. 61/295,774 for “Intelligent Automated Assistant”, filed Jan. 18, 2010, the disclosure of which is incorporated herein by reference;
    • U.S. patent application Ser. No. 11/518,292 for “Method And Apparatus for Building an Intelligent Automated Assistant”, filed Sep. 8, 2006, the disclosure of which is incorporated herein by reference; and
    • U.S. Provisional Patent Application Ser. No. 61/186,414 for “System and Method for Semantic Auto-Completion”, filed Jun. 12, 2009, the disclosure of which is incorporated herein by reference.
      Hardware Architecture

Generally, the intelligent automated assistant techniques disclosed herein may be implemented on hardware or a combination of software and hardware. For example, they may be implemented in an operating system kernel, in a separate user process, in a library package bound into network applications, on a specially constructed machine, or on a network interface card. In a specific embodiment, the techniques disclosed herein may be implemented in software such as an operating system or in an application running on an operating system.

Software/hardware hybrid implementation(s) of at least some of the intelligent automated assistant embodiment(s) disclosed herein may be implemented on a programmable machine selectively activated or reconfigured by a computer program stored in memory. Such network devices may have multiple network interfaces which may be configured or designed to utilize different types of network communication protocols. A general architecture for some of these machines may appear from the descriptions disclosed herein. According to specific embodiments, at least some of the features and/or functionalities of the various intelligent automated assistant embodiments disclosed herein may be implemented on one or more general-purpose network host machines such as an end-user computer system, computer, network server or server system, mobile computing device (e.g., personal digital assistant, mobile phone, smartphone, laptop, tablet computer, or the like), consumer electronic device, music player, or any other suitable electronic device, router, switch, or the like, or any combination thereof. In at least some embodiments, at least some of the features and/or functionalities of the various intelligent automated assistant embodiments disclosed herein may be implemented in one or more virtualized computing environments (e.g., network computing clouds, or the like).

Referring now to FIG. 3, there is shown a block diagram depicting a computing device 60 suitable for implementing at least a portion of the intelligent automated assistant features and/or functionalities disclosed herein. Computing device 60 may be, for example, an end-user computer system, network server or server system, mobile computing device (e.g., personal digital assistant, mobile phone, smartphone, laptop, tablet computer, or the like), consumer electronic device, music player, or any other suitable electronic device, or any combination or portion thereof. Computing device 60 may be adapted to communicate with other computing devices, such as clients and/or servers, over a communications network such as the Internet, using known protocols for such communication, whether wireless or wired.

In one embodiment, computing device 60 includes central processing unit (CPU) 62, interfaces 68, and a bus 67 (such as a peripheral component inter-connect (PCI) bus). When acting under the control of appropriate software or firmware, CPU 62 may be responsible for implementing specific functions associated with the functions of a specifically configured computing device or machine. For example, in at least one embodiment, a user's personal digital assistant (PDA) may be configured or designed to function as an intelligent automated assistant system utilizing CPU 62, memory 61, 65, and interface(s) 68. In at least one embodiment, the CPU 62 may be caused to perform one or more of the different types of intelligent automated assistant functions and/or operations under the control of software modules/components, which for example, may include an operating system and any appropriate applications software, drivers, and the like.

CPU 62 may include one or more processor(s) 63 such as, for example, a processor from the Motorola or Intel family of microprocessors or the MIPS family of microprocessors. In some embodiments, processor(s) 63 may include specially designed hardware (e.g., application-specific integrated circuits (ASICs), electrically erasable programmable read-only memories (EEPROMs), field-programmable gate arrays (FPGAs), and the like) for controlling the operations of computing device 60. In a specific embodiment, a memory 61 (such as non-volatile random access memory (RAM) and/or read-only memory (ROM)) also forms part of CPU 62. However, there are many different ways in which memory may be coupled to the system. Memory block 61 may be used for a variety of purposes such as, for example, caching and/or storing data, programming instructions, and the like.

As used herein, the term “processor” is not limited merely to those integrated circuits referred to in the art as a processor, but broadly refers to a microcontroller, a microcomputer, a programmable logic controller, an application-specific integrated circuit, and any other programmable circuit.

In one embodiment, interfaces 68 are provided as interface cards sometimes referred to as “line cards”). Generally, they control the sending and receiving of data packets over a computing network and sometimes support other peripherals used with computing device 60. Among the interfaces that may be provided are Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, and the like. In addition, various types of interfaces may be provided such as, for example, universal serial bus (USB), Serial, Ethernet, Firewire, PCI, parallel, radio frequency (RF), Bluetooth™, near-field communications (e.g., using near-field magnetics), 802.11 (WiFi), frame relay, TCP/IP, ISDN, fast Ethernet interfaces, Gigabit Ethernet interfaces, asynchronous transfer mode (ATM) interfaces, high-speed serial interface (HSSI) interfaces, Point of Sale (POS) interfaces, fiber data distributed interfaces (FDDIs), and the like. Generally, such interfaces 68 may include ports appropriate for communication with the appropriate media. In some cases, they may also include an independent processor and, in some instances, volatile and/or nonvolatile memory (e.g., RAM).

Although the system shown in FIG. 3 illustrates one specific architecture for a computing device 60 for implementing the techniques of the invention described herein, it is by no means the only device architecture on which at least a portion of the features and techniques described herein may be implemented. For example, architectures having one or any number of processors 63 can be used, and such processors 63 can be present in a single device or distributed among any number of devices. In one embodiment, a single processor 63 handles communications as well as routing computations. In various embodiments, different types of intelligent automated assistant features and/or functionalities may be implemented in an intelligent automated assistant system which includes a client device (such as a personal digital assistant or smartphone running client software) and server system(s) (such as a server system described in more detail below).

Regardless of network device configuration, the system of the present invention may employ one or more memories or memory modules (such as, for example, memory block 65) configured to store data, program instructions for the general-purpose network operations and/or other information relating to the functionality of the intelligent automated assistant techniques described herein. The program instructions may control the operation of an operating system and/or one or more applications, for example. The memory or memories may also be configured to store data structures, keyword taxonomy information, advertisement information, user click and impression information, and/or other specific non-program information described herein.

Because such information and program instructions may be employed to implement the systems/methods described herein, at least some network device embodiments may include nontransitory machine-readable storage media, which, for example, may be configured or designed to store program instructions, state information, and the like for performing various operations described herein. Examples of such nontransitory machine-readable storage media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media such as floptical disks, and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM), flash memory, memristor memory, random access memory (RAM), and the like. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter.

In one embodiment, the system of the present invention is implemented on a standalone computing system. Referring now to FIG. 4, there is shown a block diagram depicting an architecture for implementing at least a portion of an intelligent automated assistant on a standalone computing system, according to at least one embodiment. Computing device 60 includes processor(s) 63 which run software for implementing intelligent automated assistant 1002. Input device 1206 can be of any type suitable for receiving user input, including for example a keyboard, touch screen, microphone (for example, for voice input), mouse, touchpad, trackball, five-way switch, joystick, and/or any combination thereof. Output device 1207 can be a screen, speaker, printer, and/or any combination thereof. Memory 1210 can be random-access memory having a structure and architecture as are known in the art, for use by processor(s) 63 in the course of running software. Storage device 1208 can be any magnetic, optical, and/or electrical storage device for storage of data in digital form; examples include flash memory, magnetic hard drive, CD-ROM, and/or the like.

In another embodiment, the system of the present invention is implemented on a distributed computing network, such as one having any number of clients and/or servers. Referring now to FIG. 5, there is shown a block diagram depicting an architecture for implementing at least a portion of an intelligent automated assistant on a distributed computing network, according to at least one embodiment.

In the arrangement shown in FIG. 5, any number of clients 1304 are provided; each client 1304 may run software for implementing client-side portions of the present invention. In addition, any number of servers 1340 can provided for handling requests received from clients 1304. Clients 1304 and servers 1340 can communicate with one another via electronic network 1361, such as the Internet. Network 1361 may be implemented using any known network protocols, including for example wired and/or wireless protocols.

In addition, in one embodiment, servers 1340 can call external services 1360 when needed to obtain additional information or refer to store data concerning previous interactions with particular users. Communications with external services 1360 can take place, for example, via network 1361. In various embodiments, external services 1360 include web-enabled services and/or functionality related to or installed on the hardware device itself. For example, in an embodiment where assistant 1002 is implemented on a smartphone or other electronic device, assistant 1002 can obtain information stored in a calendar application (“app”), contacts, and/or other sources.

In various embodiments, assistant 1002 can control many features and operations of an electronic device on which it is installed. For example, assistant 1002 can call external services 1360 that interface with functionality and applications on a device via APIs or by other means, to perform functions and operations that might otherwise be initiated using a conventional user interface on the device. Such functions and operations may include, for example, setting an alarm, making a telephone call, sending a text message or email message, adding a calendar event, and the like. Such functions and operations may be performed as add-on functions in the context of a conversational dialog between a user and assistant 1002. Such functions and operation's can be specified by the user in the context of such a dialog, or they may be automatically performed based on the context of the dialog. One skilled in the art will recognize that assistant 1002 can thereby be used as a control mechanism for initiating and controlling various operations on the electronic device, which may be used as an alternative to conventional mechanisms such as buttons or graphical user interfaces.

For example, the user may provide input to assistant 1002 such as “I need to wake tomorrow at 8 am.” Once assistant 1002 has determined the user's intent, using the techniques described herein, assistant 1002 can call external services 1340 to interface with an alarm clock function or application on the device. Assistant 1002 sets the alarm on behalf of the user. In this manner, the user can use assistant 1002 as a replacement for conventional mechanisms for setting the alarm or performing other functions on the device. If the user's requests are ambiguous or need further clarification, assistant 1002 can use the various techniques described herein, including active elicitation, paraphrasing, suggestions, and the like, to obtain the needed information so that the correct services 1340 are called and the intended action taken. In one embodiment, assistant 1002 may prompt the user for confirmation before calling a service 1340 to perform a function. In one embodiment, a user can selectively disable assistant's 1002 ability to call particular services 1340, or can disable all such service-calling if desired.

The system of the present invention can be implemented with many different types of clients 1304 and modes of operation. Referring now to FIG. 6, there is shown a block diagram depicting a system architecture illustrating several different types of clients 1304 and triodes of operation. One skilled in the art will recognize that the various types of clients 1304 and modes of operation shown in FIG. 6 are merely exemplary, and that the system of the present invention can be implemented using clients 1304 and/or modes of operation other than those depicted. Additionally, the system can include any or all of such clients 1304 and/or modes of operation, alone or in any combination. Depicted examples include:

    • Computer devices with input/output devices and/or sensors 1402. A client component may be deployed on any such computer device 1402. At least one embodiment may be implemented using a web browser 1304A or other software application for enabling communication with servers 1340 via network 1361. Input and output channels may of any type, including for example visual and/or auditory channels. For example, in one embodiment, the system of the invention can be implemented using voice-based communication methods, allowing for an embodiment of the assistant for the blind whose equivalent of a web browser is driven by speech and uses speech for output.
    • Mobile Devices with I/O and sensors 1406, for which the client may be implemented as an application on the mobile device 1304B. This includes, but is not limited to, mobile phones, smartphones, personal digital assistants, tablet devices, networked game consoles, and the like.
    • Consumer Appliances with I/O and sensors 1410, for which the client may be implemented as an embedded application on the appliance 1304C.
    • Automobiles and other vehicles with dashboard interfaces and sensors 1414, for which the client may be implemented as an embedded system application 1304D. This includes, but is not limited to, car navigation systems, voice control systems, in-car entertainment systems, and the like.
    • Networked computing devices such as routers 1418 or any other device that resides on or interfaces with a network, for which the client may be implemented as a device-resident application 1304E.
    • Email clients 1424, for which an embodiment of the assistant is connected via an Email Modality Server 1426. Email Modality server 1426 acts as a communication bridge, for example taking input from the user as email messages sent to the assistant and sending output from the assistant to the user as replies.
    • Instant messaging clients 1428, for which an embodiment of the assistant is connected via a Messaging Modality Server 1430. Messaging Modality server 1430 acts as a communication bridge, taking input from the user as messages sent to the assistant and sending output from the assistant to the user as messages in reply.
    • Voice telephones 1432, for which an embodiment of the assistant is connected via a Voice over Internet Protocol (VoIP) Modality Server 1430. VoIP Modality server 1430 acts as a communication bridge, taking input from the user as voice spoken to the assistant and sending output from the assistant to the user, for example as synthesized speech, in reply.

For messaging platforms including but not limited to email, instant messaging, discussion forums, group chat sessions, live help or customer support sessions and the like, assistant 1002 may act as a participant in the conversations. Assistant 1002 may monitor the conversation and reply to individuals or the group using one or more the techniques and methods described herein for one-to-one interactions.

In various embodiments, functionality for implementing the techniques of the present invention can be distributed among any number of client and/or server components. For example, various software modules can be implemented for performing various functions in connection with the present invention, and such modules can be variously implemented to run on server and/or client components. Referring now to FIG. 7, there is shown an example of a client 1304 and a server 1340, which communicate with each other to implement the present invention according to one embodiment. FIG. 7 depicts one possible arrangement by which software modules can be distributed among client 1304 and server 1340. One skilled in the art will recognize that the depicted arrangement is merely exemplary, and that such modules can be distributed in many different ways. In addition, any number of clients 1304 and/or servers 1340 can be provided, and the modules can be distributed among these clients 1304 and/or servers 1340 in any of a number of different ways.

In the example of FIG. 7, input elicitation functionality and output processing functionality are distributed among client 1304 and server 1340, with client part of input elicitation 1094 a and client part of output processing 1092 a located at client 1304, and server part of input elicitation 1094 b and server part of output processing 1092 b located at server 1340. The following components are located at server 1340:

    • complete vocabulary 1058 b;
    • complete library of language pattern recognizers 1060 b;
    • master version of short term personal memory 1052 b;
    • master version of long term personal memory 1054 b.

In one embodiment, client 1304 maintains subsets and/or portions of these components locally, to improve responsiveness and reduce dependence on network communications. Such subsets and/or portions can be maintained and updated according to well known cache management techniques. Such subsets and/or portions include, for example:

    • subset of vocabulary 1058 a;
    • subset of library of language pattern recognizers 1060 a;
    • cache of short term personal memory 1052 a;
    • cache of long term personal memory 1054 a.

Additional components may be implemented as part of server 1340, including for example:

    • language interpreter 1070;
    • dialog flow processor 1080;
    • output processor 1090;
    • domain entity databases 1072;
    • task flow models 1086;
    • services orchestration 1082;
    • service capability models 1088.

Each of these components will be described in more detail below. Server 1340 obtains additional information by interfacing with external services 1360 when needed.

Conceptual Architecture

Referring now to FIG. 1, there is shown a simplified block diagram of a specific example embodiment of an intelligent automated assistant 1002. As described in greater detail herein, different embodiments of intelligent automated assistant systems may be configured, designed, and/or operable to provide various different types of operations, functionalities, and/or features generally relating to intelligent automated assistant technology. Further, as described in greater detail herein, many of the various operations, functionalities, and/or features of the intelligent automated assistant system(s) disclosed herein may provide may enable or provide different types of advantages and/or benefits to different entities interacting with the intelligent automated assistant system(s). The embodiment shown in FIG. 1 may be implemented using any of the hardware architectures described above, or using a different type of hardware architecture.

For example, according to different embodiments, at least some intelligent automated assistant system(s) may be configured, designed, and/or operable to provide various different types of operations, functionalities, and/or features, such as, for example, one or more of the following (or combinations thereof):

    • automate the application of data and services available over the Internet to discover, find, choose among, purchase, reserve, or order products and services. In addition to automating the process of using these data and services, intelligent automated assistant 1002 may also enable the combined use of several sources of data and services at once. For example, it may combine information about products from several review sites, check prices and availability from multiple distributors, and check their locations and time constraints, and help a user find a personalized solution to their problem.
    • automate the use of data and services available over the Internet to discover, investigate, select among, reserve, and otherwise learn about things to do (including but not limited to movies, events, performances, exhibits, shows and attractions); places to go (including but not limited to travel destinations, hotels and other places to stay, landmarks and other sites of interest, and the like); places to eat or drink (such as restaurants and bars), times and places to meet others, and any other source of entertainment or social interaction which may be found on the Internet.
    • enable the operation of applications and services via natural language dialog that are otherwise provided by dedicated applications with graphical user interfaces including search (including location-based search); navigation (maps and directions); database lookup (such as finding businesses or people by name or other properties); getting weather conditions and forecasts, checking the price of market items or status of financial transactions; monitoring traffic or the status of flights; accessing and updating calendars and schedules; managing reminders, alerts, tasks and projects; communicating over email or other messaging platforms; and operating devices locally or remotely (e.g., dialing telephones, controlling light and temperature, controlling home security devices, playing music or video, and the like). In one embodiment, assistant 1002 can be used to initiate, operate, and control many functions and apps available on the device.
    • offer personal recommendations for activities, products, services, source of entertainment, time management, or any other kind of recommendation service that benefits from an interactive dialog in natural language and automated access to data and services.

According to different embodiments, at least a portion of the various types of functions, operations, actions, and/or other features provided by intelligent automated assistant 1002 may be implemented at one or more client systems(s), at one or more server systems(s), and/or combinations thereof.

According to different embodiments, at least a portion of the various types of functions, operations, actions, and/or other features provided by assistant 1002 may implement by at least one embodiment of an automated call and response procedure, such as that illustrated and described, for example, with respect to FIG. 33.

Additionally, various embodiments of assistant 1002 described herein may include or provide a number of different advantages and/or benefits over currently existing intelligent automated assistant technology such as, for example, one or more of the following (or combinations thereof).

    • The integration of speech-to-text and natural language understanding technology that is constrained by a set of explicit models of domains, tasks, services, and dialogs. Unlike assistant technology that attempts to implement a general-purpose artificial intelligence system, the embodiments described herein may apply the multiple sources of constraints to reduce the number of solutions to a more tractable size. This results in fewer ambiguous interpretations of language, fewer relevant domains or tasks, and fewer ways to operationalize the intent in services. The focus on specific domains, tasks, and dialogs also makes it feasible to achieve coverage over domains and tasks with human-managed vocabulary and mappings from intent to services parameters.
    • The ability to solve user problems by invoking services on their behalf over the Internet, using APIs. Unlike search engines which only return, links and content, some embodiments of automated assistants 1002 described herein may automate research and problem-solving activities. The ability to invoke multiple services for a given request also provides broader functionality to the user than is achieved by visiting a single site, for instance to produce a product or service or find something to do.
    • The application of personal information and personal interaction history in the interpretation and execution of user requests. Unlike conventional search engines or question answering services, the embodiments described herein use information from personal interaction history (e.g., dialog history, previous selections from results, and the like), personal physical context (e.g., user's location and time), and personal information gathered in the context of interaction (e.g., name, email addresses, physical addresses, phone numbers, account numbers, preferences, and the like). Using these sources of information enables, for example,
      • better interpretation of user input (e.g., using personal history and physical context when interpreting language);
      • more personalized results (e.g., that bias toward preferences or recent selections);
      • improved efficiency for the user (e.g., by automating steps involving the signing up to services or filling out forms).
    • The use of dialog history in interpreting the natural language of user inputs. Because the embodiments may keep personal history and apply natural language understanding on user inputs, they may also use dialog context such as current location, time, domain, task step, and task parameters to interpret the new inputs. Conventional search engines and command processors interpret at least one query independent of a dialog history. The ability to use dialog history may make a more natural interaction possible, one which resembles normal human conversation.
    • Active input elicitation, in which assistant 1002 actively guides and constrains the input from the user, based on the same models and information used to interpret their input. For example, assistant 1002 may apply dialog models to suggest next steps in a dialog with the user in which they are refining a request; offer com