US9760559B2 - Predictive text input - Google Patents

Predictive text input Download PDF

Info

Publication number
US9760559B2
US9760559B2 US14720655 US201514720655A US9760559B2 US 9760559 B2 US9760559 B2 US 9760559B2 US 14720655 US14720655 US 14720655 US 201514720655 A US201514720655 A US 201514720655A US 9760559 B2 US9760559 B2 US 9760559B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
context
text
input
gram
text input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14720655
Other versions
US20150347382A1 (en )
Inventor
Jannes DOLFING
Brent RAMERTH
Douglas Davidson
Jerome Bellegarda
Jennifer Moore
Andreas Eminidis
Joshua Shaffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/27Automatic analysis, e.g. parsing
    • G06F17/276Stenotyping, code gives word, guess-ahead for partial word input
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • G06F17/27Automatic analysis, e.g. parsing
    • G06F17/2765Recognition
    • G06F17/277Lexical analysis, e.g. tokenisation, collocates

Abstract

Systems and processes for predictive text input are provided. In one example process, a text input can be received. The text input can be associated with an input context. A frequency of occurrence of an m-gram with respect to a subset of a corpus can be determined using a language model. The subset can be associated with a context. A weighting factor can be determined based on a degree of similarity between the input context and the context. A weighted probability of a predicted text given the text input can be determined based on the frequency of occurrence of the m-gram and the weighting factor. The m-gram can include at least one word in the text input and at least one word in the predicted text.

Description

CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from U.S. Provisional Ser. No. 62/006,010, filed on May 30, 2014, entitled PREDICTIVE TEXT INPUT, which is hereby incorporated by reference in its entirety for all purposes.

This application also relates to the following provisional applications: U.S. patent application Ser. No. 62/005,837, “Device, Method, and Graphical User Interface for a Predictive Keyboard,” filed May 30, 2014, U.S. patent application Ser. No. 62/046,876, “Device, Method, and Graphical User Interface for a Predictive Keyboard,” filed Sep. 5, 2014, U.S. patent application Ser. No. 62/005,825, “Entropy-Guided Text Prediction Using Combined Word and Character N-gram Language Models,” filed May 30, 2014, U.S. patent application Ser. No. 62/005,942, “Text Prediction Using Combined Word N-gram and Unigram Language Models,” filed May 30, 2014, and U.S. patent application Ser. No. 62/005,958, “Canned Answers in Messages,” filed May 30, 2014, which are hereby incorporated by reference in their entirety for all purposes.

FIELD

This relates generally to text input in electronic devices and, more specifically, to predictive text input in electronic devices.

BACKGROUND

Text entry can be required to interact with electronic devices. However, many electronic devices do not include convenient means for inputting text. For example, many mobile devices can have smaller virtual keyboards that are slow and inaccurate for inputting text. In addition, a user can encounter difficulties typing characters not readily available on virtual keyboards.

Predictive text inputting solutions can help to increase the speed and accuracy of inputting text. Such solutions can provide predictions of future words based on previous words entered by the user, thereby reducing time and effort to input text. Currently, predictive text inputting solutions can utilize generalized language models or word libraries to provide text predictions. While these solutions can assist users with text input, the text predictions can often be inaccurate or in a context not intended by the user.

SUMMARY

Systems and processes for predictive text input are provided. In one example process, a text input can be received. The text input can be associated with an input context. A frequency of occurrence of an m-gram with respect to a subset of a corpus can be determined using a language model. The subset can be associated with a context. A weighting factor can be determined based on a degree of similarity between the input context and the context. A weighted probability of a predicted text given the text input can be determined based on the frequency of occurrence of the m-gram and the weighting factor. The m-gram can include at least one word in the text input and at least one word in the predicted text.

In another example process, a text input can be received. A physical context that is associated with the text input can be determined. A weighted probability of a predicted text given the text input can be determined using a language model and the physical context. The predicted text can be presented via a user interface of the electronic device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary language model having a hierarchical context tree structure according to various examples.

FIG. 2 illustrates an exemplary process for predictive text input according to various examples.

FIG. 3 illustrates an exemplary process for predictive text input according to various examples.

FIG. 4 illustrates an exemplary process for predictive text input according to various examples.

FIG. 5 illustrates an exemplary user device for carrying out aspects of predictive text input according to various examples.

FIG. 6 illustrates an exemplary system and environment for carrying out aspects of predictive text input according to various examples.

FIG. 7 illustrates a functional block diagram of an exemplary electronic device according to various examples.

FIG. 8 illustrates a functional block diagram of an exemplary electronic device according to various examples.

DETAILED DESCRIPTION

In the following description of examples, reference is made to the accompanying drawings in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the various examples.

The present disclosure relates to systems and processes for predictive text input. In various examples described herein, a language model can be used to generate predictive text given input text. In some examples, the language model can be a user language model having a hierarchical context tree structure. For example, the language model can be built from user text and thus can more closely model the intent of the user. This enables greater accuracy in generating predictive text for the user. In addition, the language model can include various sub-models associated with various specific contexts. The language model can thus be used to model various specific contexts, thereby improving accuracy in generating predictive text. The hierarchical context tree structure can enable information to be shared between the sub-models and can prevent redundancy among the sub-models. This allows the language model to be stored and implemented efficiently.

In one example process for predictive text input, a text input can be received. The text input can be associated with an input context. A frequency of occurrence of an m-gram with respect to a subset of a corpus can be determined using a language model. The m-gram can include at least one word in the text input. A weighting factor can be determined based on a degree of similarity between the input context and the context. A weighted probability of a predicted text given the text input can be determined based on the frequency of occurrence of the m-gram and the weighting factor. The m-gram can include at least one word in the predicted text. The predicted text can be presented via a user interface of an electronic device.

In some examples, physical context can be used to improve the accuracy of predictive text. Physical context can refer to a time period, a location, an environment, a situation, or a circumstance associated with the user at the time the text input is received. For example, physical context can include the situation of being on an airplane. The physical context can be determined using a sensor of an electronic device. In addition, the physical context can be determined using data obtained from an application of the electronic device. In one example, the physical context of being on an airplane can be determined based on audio detected by the microphone of the electronic device. In another example, the physical context of being on an airplane can be determined based on a user calendar entry obtained from the calendar application on the electronic device.

In one example process of predictive text using physical context, a text input can be received. A physical context that is associated with the text input can be determined. A weighted probability of a predicted text given the text input can be determined using a language model and the physical context. The predicted text can be presented via a user interface of an electronic device.

1. Language Model

A language model generally assigns to an n-gram a frequency of occurrence of that n-gram with respect to a corpus of natural language text. An n-gram refers to a sequence of n words, where n is any integer greater than zero. In some cases, the frequency of occurrence can be in the form of raw counts. For example, a particular 2-gram can occur 25 times within a corpus of natural language text. Accordingly, the frequency of occurrence of that 2-gram within the corpus can be 25 counts. In other cases, the frequency of occurrence can be a normalized value. For example, the frequency of occurrence can be in the form of a likelihood or probability (e.g., probability distribution). In one such example, a corpus of natural language text can include 25 counts of a particular 2-gram and 1000 counts of all 2-grams. Accordingly, the frequency of occurrence of that 2-gram within the corpus can be equal to 25/1000.

A language model can be built from a corpus. In some cases, the language model can be a general language model built from a corpus that includes a large volume of text associated with various contexts. In other cases, the language model can be a context-specific language model where the language model is built from a corpus that is associated with a specific context. The specific context can be, for example, a subject, an author, a source of text, an application for inputting text, a recipient of text, or the like. Context-specific language models can be desirable to improve accuracy in text predictions. However, because each context-specific language model can be associated with only one context, multiple context-specific language models can be required to cover a range of contexts. This can be an inefficient use of resources where significant memory and computational power can be required to store and implement a large number of context-specific language models. It should be recognized that that the term “context” described herein can refer to a scope or a domain.

FIG. 1 depicts language model 100 having a hierarchical context tree structure. The hierarchical context tree structure can be advantageous in enabling multiple contexts to be efficiently integrated within a single language model. Language model 100 can thus be used to efficiently model a variety of contexts.

As shown in FIG. 1, language model 100 can include multiple nodes that extend from root node 102 in a tree structure. The nodes can be arranged in multiple hierarchical levels where each hierarchical level can represent a different category of context. For example, hierarchical level 132 can represent application context while hierarchical level 134 can represent recipient context. Having only a single category of context for each hierarchical level can be advantageous in preventing redundancy between the nodes of language model 100. This reduces the memory required to store language model 100 and also enables greater efficiency in determining text predictions.

Each node of language model 100 can correspond to a sub-model of language model 100. Each sub-model within a hierarchical level can be associated with a specific context of the category of context of the hierarchical level. For example, hierarchical level 132 can include sub-models that are each associated with a specific application of the user device. Specifically, sub-models 104, 106, and 108 can be associated with the messaging application, the email application, and the word processor application, respectively. Similarly, hierarchical level 134 can include sub-models that are each associated with a specific recipient. Specifically, sub-models 110, 112, and 114 can be associated with the spouse of the user, a first friend of the user, and a second friend of the user, respectively. In addition, a child sub-model can be associated with the context of its parent sub-model. For example, children sub-models 110, 112, and 114 can extend from parent sub-model 104 and thus children sub-models 110, 112, and 114 can be associated with the messaging application of parent sub-model 104. Further, the sub-models can be independent of one another such that each sub-model is associated with a unique context. This prevents redundancy between the sub-models.

Language model 100 can be built from a corpus that includes multiple subsets where each subset can be associated with a specific context. In this example, language model 100 can be an n-gram statistical language model that includes a plurality of n-grams. Each n-gram can be associated with a frequency of occurrence. The frequency of occurrence of each n-gram can be with respect to a subset or a plurality of subsets of the corpus. Thus, each n-gram can be associated with a specific context of a subset or of a plurality of subsets.

Each sub-model of language model 100 can be built from a subset of the corpus and can be associated with the specific context of the subset. For example, sub-model 110 can be built from a first subset of the corpus. The first subset can include text that is associated with the messaging application of the user device and that is directed to the spouse of the user. Thus, sub-model 110 can be associated with a first context where the first context can include the messaging application and the spouse of the user. Further, the frequency of occurrence of an n-gram of sub-model 110 can be with respect to the first subset.

In some examples, a parent sub-model can be based on its children sub-models. For example, the frequency of occurrence of a specific n-gram with respect to parent sub-model 104 can be derived by combining the frequencies of occurrence of that n-gram with respect to children sub-models 110, 112, and 114. In some examples, the result from each child sub-model can be weighted by a weighting factor prior to being combined. For example, the frequency of occurrence of a particular 2-gram with respect to parent sub-model 104 can be equal to the sum of the weighted frequencies of occurrence of that 2-gram with respect to children sub-models 110, 112, and 114. This can be expressed as: C(w1 w2)messaging1C(w1 w2)messaging,spouse2C(w1 w2)messaging,friend13C(w1 w2)messaging,friend2, where C(w1 w2)messaging denotes the frequency of occurrence of the 2-gram with respect to sub-model 104, C(w1 w2)messaging,spouse denotes the frequency of occurrence of the 2-gram with respect to sub-model 110, C(w1 w2)messaging,friend1 denotes the frequency of occurrence of the 2-gram with respect to sub-model 112, C(w1 w2)messaging,friend2 denotes the frequency of occurrence of the 2-gram with respect to sub-model 114, and λ1, λ2, λ3 are different weighting factors.

Language model 100 can further include a plurality of hierarchical context tags to encode the context associated with each n-gram. Each context can thus be represented by one or more hierarchical context tags. For example, an n-gram of sub-model 104 can be represented by the hierarchical context tag “messaging” while an n-gram of sub-model 110 can be represented by the hierarchical context tags “messaging, spouse”. Identical n-grams from different sub-models can thus be differentiated by the hierarchical context tags associated with each n-gram.

In some examples, language model 100 can be a general language model. In other examples, language model 100 can be user language model that is built from a corpus of user text. User text or user text input can refer to text that is inputted by a user of the user device. The user can be an individual or a group of individuals. Further, language model 100 can be a static language model or dynamic language model.

It should be recognized that language model 100 can include any number of hierarchical levels representing a respective number of categories of context. The hierarchical levels can be arranged in any suitable order. For instance, in some examples, hierarchical level 134 can extend from root 102 while hierarchical level 132 can extend from hierarchical level 134. Each hierarchical level can include any number of sub-models associated with a respective number of specific contexts. For example, hierarchical level 132 can include additional sub-models that are associated with other applications of the user device. The applications can include, for example, web browser, social media, chat, calendar scheduler, spreadsheets, presentations, notes, media, virtual assistant, or the like. Similarly, hierarchical level 134 can include additional sub-models that are associated with other recipients. The recipients can include any specific individual, any group of individuals, or any category of people. For example, the recipients can include a family member, a friend, a colleague, a group of friends, children within a particular age range, or the like. Further, in some examples, language model 100 can include an additional hierarchical level representing physical context. The sub-models of the hierarchical level can be associated with a specific physical context. For example, physical context can include one or more of an environment, situation, circumstance, weather, time period, location, and the like.

2. Process for Predictive Text Input

FIG. 2 illustrates exemplary process 200 for predictive text input according to various examples. In some examples, process 200 can be implemented by a user device (e.g., user device 500, described below). In some examples, the user device can be part of a server-client system (e.g., system 600, described below) and process 200 can be implemented by the server-client system.

At block 202 of process 200, a text input can be received. In some examples, the text input can be received via an interface of the user device (e.g., touch screen 546 or other input/control devices 548 of user device 500, described below). The interface can be any suitable device for inputting text. For example, the interface can be a keyboard/keypad, a touch screen implementing a virtual keyboard or a handwriting recognition interface, a remote control (e.g., television remote control), a scroll wheel interface, an audio input interface implementing speech-to-text conversion, or the like. The received text input can be in any language and can include at least one word. In some examples, the text input can include a sequence of words. In some cases, a character (e.g., symbols and punctuation) can be considered a word.

The received text input can be associated with an input context. The input context can include any contextual information related to the received text input. The input context can include a single context or a combination of contexts. In some examples, the input context can include an application of the user device with which the received text input is associated. The application can be any application configured to receive text input, such as, for example, email, text messaging, web browser, calendar scheduler, word processing, spreadsheets, presentations, notes, media, virtual assistant, or the like. In addition, the input context can include the recipient to which the received text input is directed. The recipient can include, for example, a family member, a friend, a colleague, or the like. The recipient can also include a particular group of people or a category of people, such as, for example, best friends, professional acquaintances, children of a particular age group, or the like.

The recipient can be determined using a language model. In some examples, the language model can be the same language model used in block 204 for determining a first frequency of occurrence of an m-gram with respect to a first subset of a corpus. In other examples, the language model used to determine the recipient can be different from that used in block 204. The language model used to determine the recipient can include sub-models that are associated with various recipients (e.g., recipient A, B, C . . . Z). The most likely recipient to which the input text is directed can be determined from the input text using the language model. For example, the probability that the recipient is recipient A given the text input can be determined as follows: P(recipient A|text input)=P(text input|recipient A)*P(recipient A)/P(text input). The input context can thus include the most likely recipient determined based on the input text and using the language model.

In some examples, the input context can include a physical context. The physical context can refer to an environment, a situation, or a circumstance associated with the user at the time the text input is received. For example, the physical context can include a time, a location, a weather condition, a speed of travel, a noise level, or a brightness level. The physical context can also include traveling on a vehicle (e.g., car, bus, subway, airplane, boat, etc.), engaging in a particular activity (e.g., sports, hobby, shopping, etc.), or attending a particular event (e.g., dinner, conference, show, etc.).

In some examples, the input context can be determined using a sensor of the user device. The sensor can include, for example, a microphone, a motion sensor, a GPS receiver, a light/brightness sensor, an image sensor, a moisture sensor, a temperature sensor, or the like. In a specific example, the user can be inputting text to the user device while traveling on an airplane. In such an example, the microphone of the user device can receive audio that is characteristic of an airplane and a sound classifier can be used to determine that the received audio is associated with an airplane. Further, the motion sensor and GPS sensor (e.g., GPS receiver) of the user device can be used to determine that the speed, altitude, and location of the user are consistent with being on an airplane. The input context of traveling on an airplane can thus be determined using information obtained from the microphone, motion sensor, and GPS sensor.

In another example, the user can be inputting text to the user device while jogging. In such an example, the motion sensor can detect oscillations and vibration associated with jogging while the microphone can receive audio that is consistent with a person jogging. The input context of jogging can thus be determined based on the information from the microphone and motion sensor.

In yet another example, the user can be inputting text to the user device while in a dark environment. In such an example, the image sensor or the brightness sensor can be used to detect that the user is in a dark environment. The physical context of being in a dark environment can thus be determined based on the information from the image or brightness sensor. Further, in some cases, other physical context can be determined based on determining that the user is in a dark environment. For example, the user device can determine the physical context of watching a movie in a movie theater based on determining the location of the user using the GPS sensor and determining that the user is in a dark environment.

In some examples, the input context can be represented by one or more hierarchical context tags. For example, the received text input can be associated with the email application and spouse of the user as the recipient. In such an example, the input context can be represented by the hierarchical context tags “email, spouse”.

At block 204 of process 200, a first frequency of occurrence of an m-gram with respect to a first subset of a corpus can be determined using a first language model. In some examples, the first language model can be an n-gram statistical language model having a hierarchical context tree structure. Specifically, the first language model can be similar or identical to language model 100 described above with reference to FIG. 1.

The first language model can be built from a corpus having a plurality of subsets where each subset is associated with a context. Thus, the first subset can be associated with a first context. In one example, with reference to FIG. 1, sub-model 110 can be built from the first subset of the corpus. In this example, the first subset can include a collection of text that is associated with the messaging application and directed to the spouse of the user. Accordingly, in this example, the first context can include the messaging application and the spouse as the recipient.

The m-gram can be a sequence of m words where m is a specific positive integer. The m-gram can include at least one word in the text input received at block 202. In one example, the text input can include the word “apple” and the m-gram can be the 2-gram “apple cider”. In one example, the first frequency of occurrence of the 2-gram “apple cider” can be determined from sub-model 110 of language model 100.

It should be recognized that in other examples, the first frequency of occurrence of the m-gram with respect to the first subset can be determined from any sub-model of language model 100 and the first subset can be associated with the context of the respective sub-model. For instance, in one example, a sub-model of language model 100 can be built from a first subset that includes a collection of text associated with a specific physical context (e.g., environment, situation, circumstance, time period, location, etc.). In this example, the sub-model can be a physical context sub-model that is associated with the specific physical context. The first frequency of occurrence of the m-gram with respect to the first subset can be determined from the physical context sub-model where the first context includes the specific physical context.

In some examples, the first language model can be a general language model. In other examples, the first language model can be a user language model built using a corpus that includes a collection of user input text received prior to receiving the text input. In some examples, the first language model can be a static language model that is not modified or updated using the input text. In other examples, the first language model can be a dynamic language model. For example, learning based on received input text can be performed to update the dynamic language model. Specifically, the first language model can be updated using the input text received at block 202. Further, the first language model can be pruned (e.g., unlearned) using methods known in the art to enable the efficient use of the language model and to limit the memory required to store the language model.

At block 206 of process 200, a first weighting factor to apply to the first frequency of occurrence of the m-gram can be determined based on a degree of similarity between the input context and the first context. For example, a higher first weighting factor can be determined based on a higher degree of similarity between the input context and the first context. Conversely, a lower first weighting factor can be determined based on a lower degree of similarity between the input context and the first context.

In some example, the input context and the first context can be represented by hierarchical context tags and the degree of similarity can be determined based on the number of matching hierarchical context tags between the input context and the first context. For example, the input context can be represented by the hierarchical context tags “messaging, spouse” and the first context can be represented by the hierarchical context tags “messaging, spouse”. In this example, the degree of similarity can be high based on the matching of both the application context tags and the recipient context tags. Therefore, in this example, the first weighting factor can be determined to have a high value. In another example, the input context can be represented by the hierarchical context tags “messaging, spouse” and first context can be represented by the hierarchical context tags “email, colleague1”. In this example, the degree of similarity can be low due to neither the application context tags nor the recipient context tags matching. Therefore, in this example, the first weighting factor can be determined to have a low value.

In some examples, the first weighting factor can be determined using a look-up table. The look-up table can have predetermined values of the first weighting factor based on various combinations of input context and first context. In other examples, the first weighting factor can be determined by performing calculations based on predetermined logic.

At block 208 of process 200, a first weighted probability of a first predicted text given the text input can be determined based on the first frequency of occurrence of the m-gram and the first weighting factor. The m-gram at block 204 can include at least one word in the first predicted text. In one example, the text input can be the word “apple”, the first predicted text can be the word “cider”, and the m-gram can be the 2-gram “apple cider”. In this example, the first weighted probability of the word “cider” given the word “apple” can be determined as follows:

P w 1 ( cider | apple ) = λ 1 C 1 ( apple cider ) message , spouse C 1 ( apple ) message , spouse
where C1(apple cider)message,spouse denotes the first frequency of occurrence of the 2-gram “apple cider” with respect to the first subset determined using sub-model 110 of language model 100, C1(apple)message,spouse denotes the frequency of occurrence of the 1-gram “apple” with respect to the first subset determined using sub-model 110 of language model 100, and λ1 denotes the first weighting factor.

At block 210 of process 200, the first predicted text can be presented via a user interface of the user device. The first predicted text can be presented in a variety of ways. For example, the first predicted text can be displayed via a user interface displayed on the touchscreen of the user device. The manner in which the first predicted text is displayed can be based at least in part on the first probability of the first predicted text given the text input. For example, a list of predicted text can be presented and the position of the first predicted text on the list can be based at least in part on the first probability. A higher first probability can result in the first predicted text being positioned closer to the front or top of the list.

Although process 200 is described above with reference to blocks 202 through 210, it should be appreciated that in some cases, one or more blocks of process 200 can be optional and additional blocks can also be performed.

Further, it should be recognized that the first weighted probability of the first predicted text given the text input at block 208 can be determined based on any number of frequencies of occurrence of the m-gram and a respective number of the weighting factors. This enables information from other sub-models to be leveraged in determining the first weighted probability. For instance, in some examples, the first weighted probability of the first predicted text given the text input can be determined based on a first frequency of occurrence of the m-gram with respect to a first subset of the corpus, a first weighting factor, a second frequency of occurrence of the m-gram with respect to a second subset of the corpus, and a second weighting factor. In these examples, process 200 can further include determining, using the first language model, the second frequency of occurrence of the m-gram with respect to a second subset of the corpus. The second subset can be different from the first subset and the second subset can be associated with a second context that is different from the first context. For example, as described above with reference to block 204, the first frequency of occurrence of the m-gram with respect to the first subset can be determined using sub-model 110 of language model 100. Sub-model 110 can be built using the first subset of the corpus and the first context of the first subset can be associated with the messaging application and the spouse of the user. In addition, the second frequency of occurrence of the m-gram with respect to the second subset can be determining using sub-model 112 of language model 100. Sub-model 112 can be built using the second subset of the corpus and the second context of the second subset can be associated with the messaging application and the first friend of the user.

Further, process 200 can include determining the second weighting factor to apply to the second frequency of occurrence of the m-gram based on a degree of similarity between the input context and the second context. For example, the input context can be represented by “messaging, spouse”, the first context can be represented by “messaging, spouse”, and the second context can be represented by “messaging, friend1”. In this example, the degree of similarity between the input context and the first context can be greater than the degree of similarity between the input context and the second context. Accordingly, in this example, the first weighting factor can be greater than the second weighting factor. It should be appreciated that in other examples, the degree of similarity between the input context and the first context can be less than the degree of similarity between the input context and the second context and thus the first weighting factor can be less than the second weighting factor.

As described above, the first weighted probability of the first predicted text given the text input can be determined based on the first frequency of occurrence of the m-gram, the first weighting factor, the second frequency of occurrence of the m-gram, and the second weighting factor. In an example where the text input is “apple” and the predicted text is “cider”, the first weighted probability of the word “cider” given the word “apple” can be determined as follows:

P w 1 ( cider | apple ) = λ 1 C 1 ( apple cider ) message , spouse C 1 ( apple ) message , spouse + λ 2 C 2 ( apple cider ) message , friend 1 C 2 ( apple ) message , friend 1
where C1(apple cider)message,spouse denotes the first frequency of occurrence of the 2-gram “apple cider” with respect to the first subset determined using sub-model 110, C1(apple)message,spouse denotes the first frequency of occurrence of the 1-gram “apple” with respect to the first subset determined using sub-model 110, λ1 denotes the first weighting factor, C2(apple cider)message,friend1 denotes the second frequency of occurrence of the 2-gram “apple cider” with respect to the second subset determined using sub-model 112, C2(apple)message,friend1 denotes the second frequency of occurrence of the 1-gram “apple” with respect to the second subset determined using sub-model 112, and λ2 denotes the second weighting factor. In this example, the probability of each sub-model is calculated and each probability is weighted separately before being combined.

In another example, the first weighted probability of the word “cider” given the word “apple” can be determined as follows:

P w 1 ( cider | apple ) = λ 1 C 1 ( apple cider ) message , spouse + λ 2 C 2 ( apple cider ) message , friend 1 λ 1 C 1 ( apple ) message , spouse + λ 2 C 2 ( apple ) message , friend 1
In this example, the frequencies of occurrence are combined separately in the numerator and the denominator to derive the first weighting probability.

Further, in this example, the first weighted probability of the word “cider” given the word “apple” (e.g., Pw1(cider|apple)) can be based on the first weighted probability of the 1-gram “apple” with respect to the first subset (e.g., λ1C1(apple)message,spouse). Therefore, in this example, process 200 can include determining, using the first language model, a first frequency of occurrence of an (m−1)-gram with respect to the first subset (e.g., C1(apple)message,spouse). The m-gram (e.g., “apple cider”) can include one or more words in the (m−1)-gram (e.g., “apple”). The first weighting factor (e.g., λ1) can be applied to the first frequency of occurrence of the (m−1)-gram (e.g., C1(apple)message,spouse) to obtain the weighted frequency of occurrence of the (m−1)-gram (e.g., λ1C1(apple)message,spouse). The first weighted probability of the first predicted text given the text input (e.g., Pw1(cider|apple)) can thus be determined based on the first weighted frequency of occurrence of the (m−1)-gram (e.g., λ1C1(apple)message,spouse).

In some examples, the weighted probability of a second predicted text given the text input and the first predicted text can be determined in response to the first weighted probability of the first predicted text given the text input being greater than a predetermined threshold. In these examples, process 200 can further include determining, using the language model, a frequency of occurrence of an (m+1)-gram with respect to the first subset of the corpus. The (m+1)-gram can include one or more words in the m-gram and at least one word in the second predicted text. The weighted probability of the second predicted text given the text input and the first predicted text can be determined based on the frequency of occurrence of the (m+1)-gram and the first weighting factor. In one example, the m-gram can be the 2-gram “apple cider” and the (m+1)-gram can be the 3-gram “apple cider vinegar”. In response to the first weighted probability of the word “cider” given the word “apple” (e.g., Pw1(cider|apple)) being greater than a predetermined threshold, the frequency of occurrence of the 3-gram “apple cider vinegar” (e.g., C(apple cider vinegar)message,spouse) with respect to the first subset of the corpus can be determined using sub-model 110 of language model 100. A weighted probability of the word “vinegar” given the words “apple cider” can be determined based on the frequency of occurrence of the 3-gram “apple cider vinegar” and the first weighting factor λ1. In particular:

P w 1 ( vinegar | apple cider ) = λ 1 C ( apple cider vinegar ) message , spouse C ( apple cider ) message , spouse
It should be recognized that weighted probabilities can be determined for any number of additional predicted texts in response to the weighted probability of the previous predicted text being greater than a predetermined threshold. In some examples, weighted probabilities of predicted text can be determined for up to five words using process 200. This can be desirable for enabling the generation of predictive text that includes a sequence of up to five words.

In some examples, additional language models can be used to determine a weighted probability of the first predicted text given the text input. Additional language models enable the use of additional statistical or contextual information for determining weighted probability of the first predicted text given the text input. This can be desirable for achieving greater accuracy and robustness in text prediction. For example, process 200 can include determining a second weighted probability of the first predicted text given the text input (e.g., Pw2(cider|apple)) based on the first weighted probability of the first predicted text given the text input (e.g., Pw1(cider|apple)) and a probability of the first predicted text given the text input (e.g., P(cider|apple)). In this example, the probability of the first predicted text given the text input (e.g., P(cider|apple)) can be determined using a second language model. The second language model can be any suitable language model. In one example, the second language model can be a general language model. In another example, the second language model can be a static language model. In a specific example, the first language model can be a dynamic user language model while the second language model can be a static general language model. Determining the second weighted probability of the first predicted text given the text input (e.g., Pw2(cider|apple)) can include applying a third weighting factor (e.g., λ3) to the first weighted probability of the first predicted text given the text input (e.g., Pw1(cider|apple)) and applying a fourth weighting factor (e.g., λ4) to the probability of the first predicted text given the text input (e.g., P(cider|apple)). In particular, the second weighted probability of the first predicted text given the text input can be determined as follows: Pw2(cider|apple)=λ3Pw1(cider|apple)+λ4P(cider|apple).

In examples where the language model is a dynamic language model, process 200 can further include updating the language model using the text input of block 202. In some examples, process 200 can include updating the language model using the text input of block 202 and the predicted text of block 208. Further, the input context can be used to update the language model. In an example where the input context is associated with “messaging, spouse”, the text input and predicted text of “apple cider” can be used to update the sub-model 110 of language model 100. Further, in some examples, only certain text is used to update the model. For example, only text that is accepted by the user can be used to update the model. In one example, text that is transmitted, sent, published, or posted via an application of the user device (e.g., email, messenger, chat, social media, etc.) can be considered to be accepted by the user.

Although in the above examples the language model can be an n-gram statistical language model having a hierarchical context tree structure (e.g., language model 100), it should be recognized that various other language models can be suitable for implementing process 200. For example, the language model can be a neural network based language model that is trained using a corpus. The corpus can include multiple subsets where each subset is associated with a specific context. The neural network based language model can be configured to receive an input that includes the m-gram and the input context and output a frequency of occurrence of the m-gram with respect to a first subset of the corpus and a first weighting factor to apply to the frequency of occurrence of the m-gram.

FIG. 3 illustrates another exemplary process 300 for predictive text input according to various examples. In some examples, process 300 can be implemented by a user device (e.g., user device 500, described below). In some examples, the user device can be part of a server-client system (e.g., system 600, described below) and process 300 can be implemented by the server-client system.

At block 302 of process 300, a first text input can be received. The first text input can be associated with a first input context. Block 302 can be similar or identical to block 202 described above.

At block 304 of process 300, a first weighted probability of a predicted text given the first text input can be determined using a language model and based on the first input context. The first weighted probability can be determined in a similar or identical manner as described above with respect to blocks 204 through 208.

At block 306 of process 300, a second text input can be received. In some examples, the second text input can be received after the first text input is received. The second text input can be associated with a second input context. The first text input can be identical to the second text input. However, the first input context can be different from the second input context. Block 306 can be similar or identical to block 202 described above.

At block 308 of process 300, a second weighted probability of the predicted text given the second text input can be determined using the language model and based on the second input context. The second weighted probability can be determined in a similar or identical manner as described above with respect to blocks 204 through 208.

The language model can take into account the differences in the first input context and the second input context in determining the first weighted probability and the second weighted probability, respectively. For example, different weighting factors can be determined at block 206 due to differences in the first input context and the second input context. Further, in some examples, different sub-models of the language model can be used to determine the second weighted probability at block 308 compared to the first weighted probability at block 304. Therefore, although the first input text and the second input text are identical, the first weighted probability can be different from the second weighted probability due to different sub-models being used to determine the frequency of occurrence of an m-gram or different weighting factors being determined.

3. Predictive Text Input Using Physical Context

FIG. 4 illustrates exemplary process 400 for predictive text input using physical context according to various examples. In process 400, physical context information can be used to improve the accuracy of a predicted text given a text input such that the predicted text is more likely to include the user's intent. In some examples, process 400 can be implemented by a user device (e.g., user device 500, described below). In some examples, the user device can be part of a server-client system (e.g., system 600, described below) and process 400 can be implemented by the server-client system.

At block 402 of process 400, a text input can be received. Block 402 can be similar or identical to block 202 of process 200 described above.

At block 404 of process 400, a physical context associated with the text input can be determined. As described above, the physical context can refer to an environment, a situation, or a circumstance associated with the user at the time the text input is received. In some examples, the physical context can include a time, a location, a weather condition, a speed of travel, a noise level, a brightness level, or the like. The physical context can also include a situation or circumstance such as, traveling on a vehicle (e.g., car, bus, subway, airplane, boat, etc.), engaging in a particular activity (e.g., sports, hobby, shopping, etc.), or attending a particular event (e.g., dinner, conference, show, etc.).

In some examples, the physical context can be determined using a sensor of the user device. For example, the physical context can be determine in a similar or identical manner as determining the input context using a sensor of the user device at block 202 of process 200, described above.

In other examples, the physical context can be determined using data obtained from an application of the user device. The data can be obtained from any suitable application of the user device. For example, the physical context can be determined using the entries of the calendar application and the time of the clock application. In a specific example, it can be determined using the clock application and the calendar application that the text input is received while the user is attending a work meeting. According, the physical context associated with the text input can be determined to be the situation of attending a work meeting.

In other examples, the physical context can be determined to be a particular time period. The time period can be determined from data obtained from a clock application, a calendar application, or a weather application. In one example, the physical context can include a convenient time period for the user to schedule an outdoor activity. In this example, the convenient time period can be determined using the current time from the clock application, the user's schedule from the calendar application, and the weather forecast using the weather application.

At block 406 of process 400, a first weighted probability of a predicted text given the text input can be determined using a first language model and the physical context. The first language model can be any suitable language model for determining a probability of a predicted text given the text input. The first language model can be a general language model or a user language model. In an example where the first language model is a user language model, the first language model can be built from a corpus that includes a collection of user input text received prior to receiving the text input at block 302. In some examples, the first language model can be a static language model or a dynamic language model. In an example where the first language model is a dynamic language model, the first language model can be updating using the received text input.

In some examples, the first weighted probability of the predicted text given the text input can be determined based on a first probability of the predicted text given the text input and a first weighting factor. Block 406 can include determining, using the first language model, the first probability of the predicted text given the text input. Further, block 406 can include determining the first weighting factor based on the physical context. For example, if the physical context includes the situation of traveling in Paris and the text input includes the phrase, “I'm having fun at the”, the first weighting factor can be determined to be higher for a predicted text that is associated with Paris (e.g., Eiffel tower, Louvre, or Notre Dame) and lower for a predicted text associated with San Francisco (e.g., Union Square, Pier 39, or Alcatraz). The first weighting factor can be apply to the first probability of the predicted text given the text input to obtained the first weighted probability of a predicted text given the text input.

In some examples, the first language model can be a class-based language model that includes a class and a first sub-model. The first sub-model can be associated with the physical context. Block 406 can include determining, using the first language model, a probability of a class given the input text (e.g., P(class|text input)). Block 406 can further include determining, using the first sub-model, a first probability of the predicted text given the class (e.g., P1(predicted text|class)). The first weighted probability of the predicted text given the text input (e.g., Pw1(predicted text|text input) can be determined based on the probability of the class given the input text (e.g., P(class|text input)) and the first probability of the predicted text given the class (e.g., P1(predicted text|class)). For example, the first weighted probability of the predicted text given the text input can be determined as follows:
P w1(predicted text|text input)=P(class|text input)P 1(predicted text|class)

In some example, the first language model can include a second sub-model. The second sub-model can be associated with a context that is different from that of the first sub-model. For example, the second sub-model can be associated with a general context. The second sub-model can be built from a corpus that is different from that of the first sub-model. Block 406 can further include determining, using the second sub-model, a second probability of the predicted text given the class (e.g., P2(predicted text|class)). The first weighted probability of the predicted text given the text input can be determined based on the second probability of the predicted text given the class. In one example, the first weighted probability of the predicted text given the text input can be based on a linear combination of the first probability of the predicted text given the class and second probability of the predicted text given the class. In particular:
P w1(predicted text|text input) =P(class|text input){λ1 P 1(predicted text|class) +λ2 P 2(predicted text|class)}
where λ1 and λ2 are weighting factors.

It should be recognized that the first language model can include any number of sub-models. For instance, in some examples, the first language model can include n sub-models, where n is a positive integer. In these examples, the first weighted probability of the predicted text given the text input can be determined as follows:

P w 1 ( predicted text | text input ) = P ( class | text input ) i = 1 n λ i P i ( predicted text | class )

Further, it should be recognized that, in some example, the first language model can include multiple classes. In these examples, the first weighted probability of the predicted text given the text input can be determined based on the combined probabilities across the multiple classes. For example:

P w 1 ( predicted text | text input ) = class L [ P ( class | text input ) i = 1 n λ i P i ( predicted text | class ) ]
where L denotes the first language model and
P(class|text input)P1(predicted text|class) is summed over all classes in the first language model, L.

In some examples, the first language model can be an n-gram statistical language model. In particular, the first language model can be an n-gram statistical language model having a hierarchical context tree structure (e.g., language model 100, described above). In these examples, the first language model can be built from a corpus that includes a plurality of subsets where each subset is associated with a context. Further, the first language model can include a hierarchical level representing physical context where the sub-models in the hierarchical level can each be associated with a specific physical context. In these examples, the first weighted probability of the predicted text given the text input can be determined using similar or identical methods described above with respect to blocks 204 through 208 of process 200. For example, block 406 can include determining, using the first language model, a first frequency of occurrence of an m-gram with respect to a first subset of the plurality of subsets. The first subset can be associated with a first context and the m-gram can include at least one word in the text input and at least one word in the predicted text. In addition, block 406 can include determining, based on a degree of matching between the physical context and the first context, a first weighting factor to apply to the first frequency of occurrence of the m-gram. The first weighting factor can be determined to be higher if the first context is more similar to the physical context. Conversely, the first weighting factor can be determined to be lower if the first context is less similar to the physical context. The first weighted probability of the predicted text given the text input can be based on the first frequency of occurrence of the m-gram and the first weighting factor.

It should be recognized that the first weighted probability of the predicted text given the text input can be based on any number of frequencies of occurrence of the m-gram and a respective number of weighting factors. For example, the first weighted probability of the predicted text given the text input can also be based on a second frequency of occurrence of the m-gram and a third weighting factor. In such an example, block 406 can further include determining, using the first language model, a second frequency of occurrence of the m-gram with respect to a second subset of the plurality of subsets. The second subset can be associated with a second context. Block 406 can further include determining a third weighting factor to apply to the second frequency of occurrence of the m-gram based on a degree of matching between the input context and the second context.

In yet other examples, the first language model can be a context-specific language model that is associated with the physical context. In these examples, the physical context can be used to select the first language model among a plurality of context-specific language models. The selected first language model can thus be used to determine the first weighted probability of the predicted text given the text input. In some cases, no weighting is performed in determining the first weighted probability of the predicted text given the text input. For example, the probability of the predicted text given the text input can be determined from the first language model and first weighted probability of the predicted text given the text input can equal the determined probability of the predicted text given the text input.

At block 408 of process 400, the predicted text can be presented via a user interface of the electronic device. Block 408 can be similar or identical to block 210 of process 200 described above.

Although process 400 is described above with reference to blocks 402 through 408, it should be appreciated that in some cases, one or more blocks of process 400 can be optional and additional blocks can also be performed. For instance, in examples where the first language model is a dynamic language model, process 400 can include updating the first language model using the received text input at block 402.

Further, in some examples, additional language models can be used to determine a second weighted probability of the predicted text given the text input. Using additional language models can be desirable for achieving greater accuracy in predicting text. In these examples, process 400 can include determining, using a second language model, a third probability of the predicted text given the text input. In addition, a second weighted probability of the predicted text given the text input can be determined based on the first weighted probability and the third probability. In some examples, determining the second weighted probability can include applying a third weighting factor to the first weighted probability and applying a fourth weighting factor to the third probability. For example, Pw2(predicted text|text input)=λ3Pw1(predicted text|text input)+λ4P3(predicted text|text input), where Pw2(predicted text|text input) denotes the second weighted probability of the predicted text given the text input, Pw1(predicted text|text input) denotes the first weighted probability of the predicted text given the text input, P3(predicted text|text input) denotes the third probability of the predicted text given the text input, λ3 denotes the third weighting factor, and λ4 denotes the fourth weighting factor.

3. User Device for Predictive Text Input

FIG. 5 is a block diagram of user device 500 for carrying out various aspects of predictive text input according to various examples. User device 500 can be any electronic device that is configured to receive a text input. For example, user device 500 can include a cellular telephone (e.g., smartphone), tablet computer, laptop computer, desktop computer, portable media player, wearable digital device (e.g., digital glasses, wristband, wristwatch, brooch, armbands, etc.), television, set top box (e.g., cable box, video player, video streaming device, etc.), gaming system, or the like. As shown in FIG. 5, user device 500 can include a memory interface 502, one or more processors 504, and a peripherals interface 506. The various components in user device 500 can be together coupled by one or more communication buses or signal lines. User device 500 can further include various sensors, subsystems, and peripheral devices that are coupled to peripherals interface 506. The sensors, subsystems, and peripheral devices gather information and/or facilitate various functionalities of user device 500.

In some examples, user device 500 can include a motion sensor 510, a light sensor 512 (e.g., a brightness sensor), and a proximity sensor 514 coupled to peripherals interface 506 to facilitate orientation, light, and proximity sensing functions. One or more other sensors 516, such as a positioning system (e.g., a GPS receiver), a temperature sensor, a biometric sensor, a gyroscope, a compass, an accelerometer (e.g., a motion sensor), and the like, are also connected to peripherals interface 506 to facilitate related functionalities. Further, the various sensors of user device 500 described above can be used to determine an input context at block 202 of process 200 or a physical context at block 404 of process 400.

In some examples, a camera subsystem 520 and an optical sensor 522 (e.g., an image sensor or brightness sensor) can be utilized to facilitate camera functions, such as taking photographs and recording video clips. Communication functions can be facilitated through one or more wired and/or wireless communication subsystems 524, which can include various communication ports, radio frequency receivers and transmitters, and/or optical (e.g., infrared) receivers and transmitters. An audio subsystem 526 can be coupled to speakers 528 and a microphone 530 to facilitate audio-enabled functions, such as voice recognition, music recognition, voice replication, digital recording, telephony functions, and speech-to-text conversion. In one example, the text input at block 202, 302, and 402 described above can be received by means of speech-to-text conversion facilitated by microphone 530. Optical sensor 522 and microphone 530 can be used to determine an input context at block 202 of process 200 or a physical context at block 404 of process 400.

In some examples, user device 500 can further include an I/O subsystem 540 coupled to peripherals interface 506. I/O subsystem 540 can include a touch screen controller 542 and/or other input controller(s) 544. Touch-screen controller 542 can be coupled to a touch screen 546. Touch screen 546 and the touch screen controller 542 can, for example, detect contact and movement or a break thereof using any of a plurality of touch sensitivity technologies, such as capacitive, resistive, infrared, surface acoustic wave technologies, proximity sensor arrays, and the like. Other input controller(s) 544 can be coupled to other input/control devices 548, such as one or more buttons, rocker switches, a thumb-wheel, an infrared port, a USB port, and/or a pointer device such as a stylus. In some examples, a signal to begin receiving an audio input can be received by user device 500 via input to touch screen 546 (e.g., a virtual button) or other input/control devices 548. The text input at blocks 202, 302, and 402 can be received via touch screen 546 and/or other input/control devices 548.

In some examples, user device 500 can further include a memory interface 502 coupled to memory 550. Memory 550 can include any electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, a portable computer diskette (magnetic), a random access memory (RAM) (magnetic), a read-only memory (ROM) (magnetic), an erasable programmable read-only memory (EPROM) (magnetic), a portable optical disc such as CD, CD-R, CD-RW, DVD, DVD-R, or DVD-RW, or flash memory such as compact flash cards, secured digital cards, USB memory devices, memory sticks, and the like. In some examples, a non-transitory computer-readable storage medium of memory 550 can be used to store instructions (e.g., for performing processes 200, 300, or 400, described above) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing processes 200, 300, or 400, described above) can be stored on a non-transitory computer-readable storage medium of server system 610 described below, or can be divided between the non-transitory computer-readable storage medium of memory 550 and the non-transitory computer-readable storage medium of server system 610.

In some examples, memory 550 can store an operating system 552, a communication module 554, a graphical user interface module 556, a sensor processing module 558, a phone module 560, and applications 562. Operating system 552 can include instructions for handling basic system services and for performing hardware dependent tasks. Communication module 554 can facilitate communicating with one or more additional devices, one or more computers, and/or one or more servers. Graphical user interface module 556 can facilitate graphic user interface processing. Sensor processing module 558 can facilitate sensor related processing and functions. Phone module 560 can facilitate phone-related processes and functions. Applications module 562 can facilitate various functionalities of user applications, such as electronic-messaging, web browsing, media processing, navigation, imaging, virtual assistant functions, and/or other processes and functions.

As described herein, memory 550 can also store predictive text input module 564 and various user data and models 566 to provide the client-side functionalities of the virtual assistant. The predictive text input module 564 can include modules, instructions, and programs for performing various aspects of processes 200, 300, or 400 described above. User data and models 566 can include various language models described above with respect to processes 200, 300, or 400 that are used for predictive text input. For example, user data and models 566 can include user language models built using a corpus that includes a collection of user text.

In various examples, memory 550 can include additional instructions or fewer instructions. Furthermore, various functions of user device 500 can be implemented in hardware and/or in firmware, including in one or more signal processing and/or application specific integrated circuits. Further, processes for predictive text input described above can be implemented as a stand-alone application installed on user device 500. Alternatively, processes for predictive text input can be implemented according to a client-server model as described below with reference to FIG. 6.

5. System for Predictive Text Input

FIG. 6 illustrates exemplary client-server system 600 for carrying out various aspects of predictive text input according to various examples. System 600 can include a client-side portion executed on user device 500 and a server-side portion executed on server system 610. User device 500 can communicate with server system 610 through one or more networks 608, which can include the Internet, an intranet, or any other wired or wireless public or private network. The client-side portion executed on user device 500 can provide client-side functionalities, such as user-facing input and output processing and communications with server system 610. Server system 610 can provide server-side functionalities for any number of clients residing on a respective user device 500.

As shown in FIG. 6, server system 610 can include memory 628, one or more processors 626, client-facing I/O interface 622, and I/O interface to external services 616. The various components of server system 610 can be coupled together by one or more communication buses or signal lines. Memory 628, or the computer-readable storage media of memory 628, can include one or more processing modules 618 and user data and model storage 620. The one or more processing modules 618 can include various programs and instructions. The one or more processors 626 can execute the programs and instructions of the one or more processing modules 618 and read/write to/from user data and model storage 620. In the context of this document, a “non-transitory computer-readable storage medium” can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device.

In some examples, the one or more processing modules 618 can include various programs and instructions for performing various aspects of processes 200, 300, or 400 described above. In particular, the one or more processing modules 618 can include a predictive text input module for performing various aspects of processes 200, 300, or 400 described above. User data and models 620 can include various user data and models that can be accessed or referenced when performing various aspects of predictive text input. For example, user data and models 620 can include various language models used for predictive text input described above with reference to processes 200, 300, or 400. Further user data can include various user application data that can be used to determine an input context or a physical context associated with a received text input.

In some examples, system server 610 can communicate with external services 624, such as telephony services, calendar services, information services, messaging services, navigation services, and the like, through network(s) 608. In some examples, external services can provide relevant application data for determining input context or physical context associated with a received text input. Further, in some examples, system server 610 can access one or more language models stored on external services 624 for performing predictive text input. The I/O interface to external services 616 can facilitate communications between system server 610 and external services 624.

Server system 610 can be implemented on one or more stand-alone data processing devices or a distributed network of computers. In some examples, server system 610 can employ various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 610.

The division of functionalities between the client and server portions of the virtual assistant can vary in different examples. For instance, in some examples, one or more processing modules 618 and user data and models 620 can be stored in the memory of user device 500 to enable the user device to perform a greater proportion or all of the functionalities associated with predictive text input. In other examples, the client executed on user device 500 can be a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of predictive text input to a back-end server.

6. Electronic Device

FIG. 7 shows a functional block diagram of an electronic device 700 configured in accordance with the principles of the various described examples. The functional blocks of the device can be, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 7 can be, optionally, combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination, separation, or further definition of the functional blocks described herein.

As shown in FIG. 7, electronic device 700 can include touch screen display unit 702 configured to display a user interface for receiving text input and to receive touch input, and text receiving unit 704 configured to receive text input. In some examples, electronic device 700 can include sensor unit 706 that is configured to sense a physical context. Sensor unit 706 can include any sensor for sensing a physical context, such as, for example, a microphone, an image sensor, a brightness sensor, a motion sensor, a GPS sensor, and the like. Electronic device 700 can further include processing unit 710 coupled to touch screen display unit 702 and text receiving unit 704 (and, optionally, coupled to sensor unit 706). In some examples, processing unit 710 can include receiving unit 712, frequency of occurrence determining unit 714, weighting factor determining unit 716, weighted probability determining unit 718, probability determining unit 720, language model updating unit 722, and presenting unit 724.

Processing unit 710 can be configured to receive a text input (e.g., from text receiving unit 704 and using receiving unit 712). The text input can be associated with an input context. Processing unit 710 can be configured to determine, using a first language model, a first frequency of occurrence of an m-gram with respect to a first subset of a corpus (e.g., using frequency of occurrence determining unit 714). The first subset can be associated with a first context and the m-gram can include at least one word in the text input. Processing unit 710 can be configured to determining (e.g., using weighting factor determining unit 716), based on a degree of similarity between the input context and the first context, a first weighting factor to apply to the first frequency of occurrence of the m-gram. Processing unit 710 can be configured to determining (e.g., using weighted probability determining unit 718), based on the first frequency of occurrence of the m-gram and the first weighting factor, a first weighted probability of a first predicted text given the text input. The m-gram can include at least one word in the first predicted text.

In some examples, processing unit 710 can be configured to determine, using the first language model, a second frequency of occurrence of the m-gram with respect to a second subset of the corpus (e.g., using frequency of occurrence determining unit 714). The second subset can be associated with a second context. Processing unit 710 can be configured to determine (e.g., using weighting factor determining unit 716), based on a degree of similarity between the input context and the second context, a second weighting factor to apply to the second frequency of occurrence of the m-gram. Processing unit 710 can be configured to determine the first weighted probability of the first predicted text given the text input (e.g., using weighted probability determining unit 718) based on the second frequency of occurrence of the m-gram and the second weighting factor.

In some examples, the first context and the second context can be different, and the first weighting factor and the second weighting factor can be different.

In some examples, processing unit 710 can be configured to determine, using the first language model, a first frequency of occurrence of an (m−1)-gram with respect to the first subset of the corpus (e.g., using frequency of occurrence determining unit 714). The m-gram can include one or more words in the (m−1)-gram. Processing unit 710 can be configured to determine the first weighted probability of the first predicted text given the text input (e.g., using weighted probability determining unit 718) based on a first weighted frequency of occurrence of the (m−1)-gram. The first weighting factor can be applied to the first frequency of occurrence of the (m−1)-gram to obtain the first weighted frequency of occurrence of the (m−1)-gram.

In some examples, the first language model can be a user language model that is built from the corpus and the corpus can include a collection of user input text received prior to receiving the text input.

In some examples, processing unit 710 can be configured to update (e.g., using language model updating unit 722) the first language model using the text input.

In some examples, processing unit 710 can be configured to determine, using a second language model, a probability of the first predicted text given the text input (e.g., using probability determining unit 720). Processing unit 710 can be configured to determine (e.g., using weighted probability determining unit 718) a second weighted probability of the first predicted text given the text input based on the first weighted probability of the first predicted text given the text input and the probability of the first predicted text given the text input.

In some examples, processing unit 710 can be configured to apply a third weighting factor to the first weighted probability of the first predicted text given the text input and apply a fourth weighting factor to the probability of the first predicted text given the text input (e.g., using weighted probability determining unit 718) to determine the second weighted probability of the first predicted text given the text input.

In some examples, the first language model can be built from the corpus. The corpus can include a plurality of subsets where each subset can be associated with a context of a plurality of contexts. Each context of the plurality of contexts can be represented by one or more hierarchical context tags of the first language model.

In some examples, the first language model can include a plurality of n-grams including the m-gram where each n-gram of the plurality of n-grams can be associated with one or more hierarchical context tags and a frequency of occurrence of the n-gram with respect to a subset of the corpus.

In some examples, the first language model can include a plurality of sub-models arranged in a hierarchical context tree where each sub-model can be associated with a specific context.

In some examples, the first weighted probability of the first predicted text given the text input can be greater than a predetermined threshold. Processing unit 710 can be configured to determine, using the first language model, a frequency of occurrence of an (m+1)-gram with respect to the first subset of the corpus (e.g., using frequency of occurrence determining unit 714 ). The (m+1)-gram can include one or more words in the m-gram. Processing unit 710 can be configured to determine (e.g., using weighted probability determining unit 718), based on the frequency of occurrence of the (m+1)-gram and the first weighting factor, a weighted probability of a second predicted text given the text input and the first predicted text. The (m+1)-gram can include at least one word in the second predicted text.

In some examples, the first context can include a first application of the electronic device and the first subset can include a collection of user text that is associated with the first application.

In some examples, the first context can include a first recipient and the first subset can include a collection of user text that is directed to the first recipient. In some examples, the first context can include a physical context determined using a sensor of the electronic device (e.g., sensor unit 706). The first subset can include a collection of user text that is associated with the physical context.

In some examples, the first context can include a time period or a location and the first subset can include a collection of user text that is associated with the time period or the location.

In some examples, the first context can include an environment, a situation, or a circumstance and the first subset can include a collection of user text that is associated with the environment, the situation, or the circumstance.

In some examples, the text input can be associated with a second application of the electronic device and the input context can include the second application. In some examples, the text input can be directed to a second recipient, and wherein the input context includes the second recipient. In some examples, the second recipient can be determined based on the text input and using the first language model. In some examples, the input context can be determined using a sensor of the electronic device (e.g., sensor unit 706). In some examples, the input context can be determined from data obtained from one or more applications of the electronic device.

In some examples, processing unit 710 can be configured to presenting (e.g., using presenting unit 724) the first predicted text via a user interface of the electronic device.

In some examples, processing unit 710 can be configured to receive (e.g., from text receiving unit 704 and using receiving unit 712) a first text input where the first text input can be associated with a first input context. Processing unit 710 can be configured to determine, using a language model and based on the first input context, a first weighted probability of a predicted text given the first text input (e.g., using one or more of frequency of occurrence determining unit 714, weighting factor determining unit 716, weighted probability determining unit 718, and probability determining unit 720). Processing unit 710 can be configured to receive (e.g., from text receiving unit 704 and using receiving unit 712) a second text input where the second text input can be associated with a second input context. The first text input can be identical to the second text input and the first input context can be different from the second input context. Processing unit 710 can be configured to determine, using the language model and based on the second input context, a second weighted probability of the predicted text given the second text input (e.g., using one or more of frequency of occurrence determining unit 714, weighting factor determining unit 716, weighted probability determining unit 718, and probability determining unit 720). The first weighted probability can be different from the second weighted probability. In some examples, the language model can be similar or identical to the first language model described above.

In some examples, the first text input can be associated with a first application of the electronic device and the first input context can include the first application. The second text input can be associated with a second application of the electronic device and the second input context can include the second application. The first application can be different from the second application.

In some examples, the first text input can be directed to a first recipient and the first input context can include the first recipient. The second text input can be directed to a second recipient and the second input context can include the second recipient. The first recipient can be different from the second recipient.

In some examples, the first recipient can be determined based on the first text input and using a second language model. In some examples, the first input context can be determined using a sensor of the electronic device (e.g., sensor unit 706). In some examples, the first input context can be determined using data obtained from one or more applications of the electronic device.

FIG. 8 shows a functional block diagram of an electronic device 800 configured in accordance with the principles of the various described examples. The functional blocks of the device can be, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 8 can be, optionally, combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination, separation, or further definition of the functional blocks described herein.

As shown in FIG. 8, electronic device 800 can include touch screen display unit 802 configured to display a user interface for receiving text input and to receive touch input, and text receiving unit 804 configured to receive text input. In some examples, electronic device 800 can include sensor unit 806 that is configured to sense a physical context. Sensor unit 806 can include any sensor for sensing a physical context, such as, for example, a microphone, an image sensor, a brightness sensor, a motion sensor, a GPS sensor, and the like. Electronic device 800 can further include processing unit 810 coupled to touch screen display unit 802 and text receiving unit 804 (and, optionally, coupled to sensor unit 806). In some examples, processing unit 810 can include receiving unit 812, physical context determining unit 814, frequency of occurrence determining unit 816, weighting factor determining unit 818, weighted probability determining unit 820, probability determining unit 822, language model updating unit 824, and presenting unit 826.

Processing unit 810 can be configured to receive a text input (e.g., from text receiving unit 804 and using receiving unit 812). Processing unit 810 can be configured to determine (e.g., using physical context determining unit 814) a physical context associated with the text input. Processing unit 810 can be configured to determine, using a first language model and the physical context, a first weighted probability of a predicted text given the text input (e.g., using one or more of frequency of occurrence determining unit 816, weighting factor determining unit 818, weighted probability determining unit 820, and probability determining unit 822). Processing unit 810 can be configured to present (e.g., using presenting unit 826) the predicted text via a user interface of the electronic device.

In some examples, the physical context can be determined using a sensor of the electronic device (e.g., sensor unit 806). In some examples, the physical context can be determined using data obtained from an application of the electronic device.

In some examples, processing unit 810 can be configured to determine, using the first language model, a first probability of the predicted text given the text input (e.g., using probability determining unit 822). Processing unit 810 can be configured to determine (e.g., using weighting factor determining unit 818), based on the physical context, a first weighting factor to apply to the first probability of the predicted text given the text input. Processing unit 810 can be configured to determine (e.g., using weighted probability determining unit 820) the first weighted probability of the predicted text given the text input based on the first probability of the predicted text given the text input and the first weighting factor.

In some examples, the first language model can be a class-based language model that includes a first sub-model. The first sub-model can be associated with the physical context. Processing unit 810 can be configured to determine, using the first language model, a probability of a class given the input text (e.g., using probability determining unit 822). Processing unit 810 can be configured to determine, using the first sub-model, a first probability of the predicted text given the class (e.g., using probability determining unit 822). The first weighted probability of the predicted text given the text input can be determined based on the probability of the class given the input text and the first probability of the predicted text given the class. In some examples, the first language model can include a second sub-model. The second sub-model can be associated with a general context. Processing unit 810 can be configured to determine, using the second sub-model, a second probability of the predicted text given the class (e.g., using probability determining unit 822). The first weighted probability of the predicted text given the text input can be determined based on the first probability of the predicted text given the class.

In some examples, the first language model can be a general language model. In some examples, the first language model can be a user language model that is built from a corpus where the corpus can include a collection of user input text received prior to receiving the text input. In some examples, processing unit 810 can be configured to update (e.g., using language model updating unit 824) the first language model using the text input and the predicted text.

In some examples, the physical context can include a time period. In some examples, the time period can be determined from data obtained from an application of the electronic device. The application can be one of a clock application, a scheduler application, and a weather application.

In some examples, the physical context can include an environment, a situation, or a circumstance experienced by a user of the electronic device when the text input is received. In some examples, the environment, the situation, or the circumstance can be determined using a microphone of the electronic device (e.g., sensor unit 806). In some examples, the environment, the situation, or the circumstance can be determined using a light sensor or an image sensor of the electronic device (e.g., sensor unit 806). In some examples, the environment, the situation, or the circumstance can be determined using a motion sensor of the electronic device (e.g., sensor unit 806).

In some examples, the first language model can be built from a corpus that includes a plurality of subsets, where each subset can be associated with a context. Processing unit 810 can be configured to determine, using the first language model, a first frequency of occurrence of an m-gram with respect to a first subset of the plurality of subsets (e.g., using frequency of occurrence determining unit 816). The first subset can be associated with a first context and the m-gram can include at least one word in the text input and at least one word in the predicted text. Processing unit 810 can be configured to determine (e.g., using weighting factor determining unit 818), based on a degree of similarity between the physical context and the first context, a first weighting factor to apply to the first frequency of occurrence of the m-gram. The first weighted probability can be based on the first frequency of occurrence of the m-gram and the first weighting factor.

In some examples, processing unit 810 can be configured to determine, using the first language model, a second frequency of occurrence of the m-gram with respect to a second subset of the plurality of subsets (e.g., using frequency of occurrence determining unit 816). The second subset can be associated with a second context. Processing unit 810 can be configured to determine, based on a degree of similarity between the input context and the second context, a third weighting factor to apply to the second frequency of occurrence of the m-gram (e.g., using frequency of occurrence determining unit 816). The first weighted probability of the predicted text given the text input can be determined based on the second frequency of occurrence of the m-gram and the third weighting factor.

In some examples, processing unit 810 can be configured to determine, using a second language model, a third probability of the predicted text given the text input (e.g., using probability determining unit 822). Processing unit 810 can be configured to determine (e.g., using weighted probability determining unit 820) a second weighted probability of the predicted text given the text input based on the first weighted probability and the third probability. In some examples, processing unit 810 can be configured to apply a third weighting factor to the first weighted probability and apply a fourth weighting factor to the third probability (e.g., using weighted probability determining unit 820) to determine the second weighted probability. In some examples, the first language model can be a user language model and the second language model can be a general language model.

Although examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the various examples as defined by the appended claims.

In some cases, the systems, processes, and devices described above can include the gathering and use of data available from various sources to improve the delivery to users of invitational content or any other content that may be of interest to them. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, home addresses, or any other identifying information.

The present disclosure recognizes that the use of such personal information data in connection with the systems, processes, and devices described above, can be used to the benefit of users. For example, the personal information data can be used to deliver targeted content that is of greater interest to the user. Accordingly, use of such personal information data enables calculated control of the delivered content. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure.

The present disclosure further contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. For example, personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection should occur only after receiving the informed consent of the users. Additionally, such entities would take any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices.

Despite the foregoing, the present disclosure also contemplates examples in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of advertisement delivery services, the systems and devices described above can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services. In another example, users can select not to provide location information for targeted content delivery services. In yet another example, users can select to not provide precise location information, but permit the transfer of location zone information.

Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed examples, the present disclosure also contemplates that the various examples can also be implemented without the need for accessing such personal information data. That is, the various examples disclosed herein are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, content can be selected and delivered to users by inferring preferences based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the content delivery services, or publicly available information.

Claims (43)

What is claimed is:
1. A method for text prediction comprising:
at an electronic device:
receiving a text input, the text input associated with an input context;
determining, using a first language model, a first frequency of occurrence of an m-gram with respect to a first subset of a corpus, wherein the first subset is associated with a first context, and wherein the m-gram includes at least one word in the text input;
determining, based on a degree of similarity between the input context and the first context, a first weighting factor, wherein a weighted first frequency of occurrence of the m-gram is obtained by applying the first weighting factor to the first frequency of occurrence of the m-gram;
determining, using the first language model, a second frequency of occurrence of the m-gram with respect to a second subset of the corpus, wherein the second subset is associated with a second context;
determining, based on a degree of similarity between the input context and the second context, a second weighting factor, wherein a weighted second frequency of occurrence of the m-gram is obtained by applying the second weighting factor to the second frequency of occurrence of the m-gram; and
determining, based on the weighted first frequency of occurrence of the m-gram and the weighted second frequency of occurrence of the m-gram, a first weighted probability of a first predicted text given the text input, wherein the m-gram includes at least one word in the first predicted text.
2. The method of claim 1, further comprising:
determining, using the first language model, a first frequency of occurrence of an (m−1)-gram with respect to the first subset of the corpus, wherein:
the m-gram includes one or more words in the (m−1)-gram;
the first weighted probability of the first predicted text given the text input is determined based on a first weighted frequency of occurrence of the (m−1)-gram; and
the first weighting factor is applied to the first frequency of occurrence of the (m−1)-gram to obtain the first weighted frequency of occurrence of the (m−1)-gram.
3. The method of claim 1, wherein the first language model is a user language model that is built from the corpus, and wherein the corpus includes a collection of user input text received prior to receiving the text input.
4. The method of claim 1, further comprising updating the first language model using the text input.
5. The method of claim 1, further comprising:
determining, using a second language model, a probability of the first predicted text given the text input;
determining a second weighted probability of the first predicted text given the text input based on the first weighted probability of the first predicted text given the text input and the probability of the first predicted text given the text input.
6. The method of claim 5, wherein determining the second weighted probability of the first predicted text given the text input includes:
applying a third weighting factor to the first weighted probability of the first predicted text given the text input; and
applying a fourth weighting factor to the probability of the first predicted text given the text input.
7. The method of claim 1, wherein:
the first language model is built from the corpus;
the corpus includes a plurality of subsets;
each subset is associated with a context of a plurality of contexts; and
each context of the plurality of contexts is represented by one or more hierarchical context tags of the first language model.
8. The method of claim 1, wherein the first language model comprises a plurality of n-grams including the m-gram, and wherein each n-gram of the plurality of n-grams is associated with one or more hierarchical context tags and a frequency of occurrence of the n-gram with respect to a subset of the corpus.
9. The method of claim 1, wherein the first language model includes a plurality of sub-models arranged in a hierarchical context tree, and wherein each sub-model is associated with a specific context.
10. The method of claim 1, wherein the first weighted probability of the first predicted text given the text input is greater than a predetermined threshold, and further comprising:
determining, using the first language model, a frequency of occurrence of an (m+1)-gram with respect to the first subset of the corpus, wherein the (m+1)-gram includes one or more words in the m-gram; and
determining, based on the frequency of occurrence of the (m+1)-gram and the first weighting factor, a weighted probability of a second predicted text given the text input and the first predicted text, wherein the (m+1)-gram includes at least one word in the second predicted text.
11. The method of claim 1, wherein the first context includes a first application of the electronic device, and wherein the first subset includes a collection of user text that is associated with the first application.
12. The method of claim 1, wherein the first context includes a first recipient, and wherein the first subset includes a collection of user text that is directed to the first recipient.
13. The method of claim 1, wherein the first context includes a physical context determined using a sensor of the electronic device, and wherein the first subset includes a collection of user text that is associated with the physical context.
14. The method of claim 1, wherein the first context includes a time period or a location, and wherein the first subset includes a collection of user text that is associated with the time period or the location.
15. The method of claim 1, wherein the text input is associated with a second application of the electronic device, and wherein the input context includes the second application.
16. The method of claim 1, wherein the text input is directed to a second recipient, and wherein the input context includes the second recipient.
17. The method of claim 16, wherein the second recipient is determined based on the text input and using the first language model.
18. The method of claim 1, wherein the input context is determined using a sensor of the electronic device.
19. The method of claim 1, wherein the input context is determined from data obtained from one or more applications of the electronic device.
20. The method of claim 1, further comprising:
presenting, based on the first weighted probability of the first predicted text given the text input, the first predicted text via a user interface of the electronic device.
21. The method of claim 1, wherein the first language model comprises a plurality of sub-models, each sub-model corresponding to a respective subset of a plurality of subsets of the corpus, and each subset of the plurality of subsets of the corpus corresponding to a respective context of a plurality of contexts, wherein a first sub-model of the plurality of sub-models corresponds to the first subset, and wherein the plurality of subsets includes the first subset.
22. A method for text prediction comprising:
at an electronic device:
receiving a first text input, the first text input associated with a first input context;
determining, using a language model and based on the first input context, a first weighted probability of a predicted text given the first text input;
receiving a second text input, the second text input associated with a second input context, wherein the second text input is received after the first text input is received, wherein the first text input is identical to the second text input, and wherein the first input context is different from the second input context; and
determining, using the language model and based on the second input context, a second weighted probability of the predicted text given the second text input, wherein the first weighted probability is different from the second weighted probability.
23. The method of claim 22, wherein:
the language model is built from a corpus;
the corpus includes a plurality of subsets;
each subset is associated with a context of a plurality of contexts; and
each context of the plurality of contexts is represented by one or more hierarchical tags of the language model.
24. The method of claim 22, wherein:
the first text input is associated with a first application of the electronic device and the first input context includes the first application;
the second text input is associated with a second application of the electronic device and the second input context includes the second application; and
the first application is different from the second application.
25. The method of claim 22, wherein:
the first text input is directed to a first recipient and the first input context includes the first recipient;
the second text input is directed to a second recipient and the second input context includes the second recipient; and
the first recipient is different from the second recipient.
26. The method of claim 22, further comprising:
presenting, at a first instance and via a user interface of the electronic device, the predicted text based on the first weighted probability of the predicted text given the first text input; and
presenting, at a second instance and via the user interface, the predicted text based on the second weighted probability of the predicted text given the second text input.
27. A non-transitory computer-readable storage medium comprising instructions for causing one or more processors of an electronic device to:
receive a text input, the text input associated with an input context;
determine, using a first language model, a first frequency of occurrence of an m-gram with respect to a first subset of a corpus, wherein the first subset is associated with a first context, and wherein the m-gram includes at least one word in the text input;
determine, based on a degree of similarity between the input context and the first context, a first weighting factor, wherein a weighted first frequency of occurrence of the m-gram is obtained by applying the first weighting factor to the first frequency of occurrence of the m-gram;
determine, using the first language model, a second frequency of occurrence of the m-gram with respect to a second subset of the corpus, wherein the second subset is associated with a second context;
determine, based on a degree of similarity between the input context and the second context, a second weighting factor, wherein a weighted second frequency of occurrence of the m-gram is obtained by applying the second weighting factor to the second frequency of occurrence of the m-gram; and
determine, based on the weighted first frequency of occurrence of the m-gram and the weighted second frequency of occurrence of the m-gram, a first weighted probability of a first predicted text given the text input, wherein the m-gram includes at least one word in the first predicted text.
28. The computer-readable storage medium of claim 27, wherein:
the first language model is built from the corpus;
the corpus includes a plurality of subsets;
each subset is associated with a context of a plurality of contexts; and
each context of the plurality of contexts is represented by one or more hierarchical context tags of the first language model.
29. The computer-readable storage medium of claim 27, wherein the first language model comprises a plurality of n-grams including the m-gram, and wherein each n-gram of the plurality of n-grams is associated with one or more hierarchical context tags and a frequency of occurrence of the n-gram with respect to a subset of the corpus.
30. The computer-readable storage medium of claim 27, wherein the first language model includes a plurality of sub-models arranged in a hierarchical context tree, and wherein each sub-model is associated with a specific context.
31. The computer-readable storage medium of claim 27, wherein the first context includes a first application of the electronic device, and wherein the first subset includes a collection of user text that is associated with the first application.
32. The computer-readable storage medium of claim 27, wherein the first context includes a first recipient, and wherein the first subset includes a collection of user text that is directed to the first recipient.
33. The computer-readable storage medium of claim 27, further comprising instructions for causing the one or more processors to:
present, via a user interface of the electronic device, the first predicted text based on the first weighted probability of the first predicted text given the text input.
34. A system comprising:
one or more processors;
memory;
one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for:
receiving a text input, the text input associated with an input context;
determining, using a first language model, a first frequency of occurrence of an m-gram with respect to a first subset of a corpus, wherein the first subset is associated with a first context, and wherein the m-gram includes at least one word in the text input;
determining, based on a degree of similarity between the input context and the first context, a first weighting factor, wherein a weighted first frequency of occurrence of the m-gram is obtained by applying the first weighting factor to the first frequency of occurrence of the m-gram;
determining, using the first language model, a second frequency of occurrence of the m-gram with respect to a second subset of the corpus, wherein the second subset is associated with a second context; and
determining, based on a degree of similarity between the input context and the second context, a second weighting factor, wherein a weighted second frequency of occurrence of the m-gram is obtained by applying the second weighting factor to the second frequency of occurrence of the m-gram;
determining, based on the weighted first frequency of occurrence of the m-gram and the weighted second frequency of occurrence of the m-gram, a first weighted probability of a first predicted text given the text input, wherein the m-gram includes at least one word in the first predicted text.
35. The system of claim 34, wherein:
the first language model is built from the corpus;
the corpus includes a plurality of subsets;
each subset is associated with a context of a plurality of contexts; and
each context of the plurality of contexts is represented by one or more hierarchical context tags of the first language model.
36. The system of claim 34, wherein the first language model comprises a plurality of n-grams including the m-gram, and wherein each n-gram of the plurality of n-grams is associated with one or more hierarchical context tags and a frequency of occurrence of the n-gram with respect to a subset of the corpus.
37. The system of claim 34, wherein the first language model includes a plurality of sub-models arranged in a hierarchical context tree, and wherein each sub-model is associated with a specific context.
38. The system of claim 34, wherein the one or more programs further include instructions for:
presenting, via a user interface of the system, the first predicted text based on the first weighted probability of the first predicted text given the text input.
39. A non-transitory computer-readable storage medium comprising instructions for causing one or more processors of an electronic device to:
receive a first text input, the first text input associated with a first input context;
determine, using a language model and based on the first input context, a first weighted probability of a predicted text given the first text input;
receive a second text input, the second text input associated with a second input context, wherein the second text input is received after the first text input is received, wherein the first text input is identical to the second text input, and wherein the first input context is different from the second input context; and
determine, using the language model and based on the second input context, a second weighted probability of the predicted text given the second text input, wherein the first weighted probability is different from the second weighted probability.
40. The computer-readable storage medium of claim 39, wherein:
the language model is built from a corpus;
the corpus includes a plurality of subsets;
each subset is associated with a context of a plurality of contexts; and
each context of the plurality of contexts is represented by one or more hierarchical tags of the language model.
41. The computer-readable storage medium of claim 39, wherein:
the first text input is associated with a first application of the electronic device and the first input context includes the first application;
the second text input is associated with a second application of the electronic device and the second input context includes the second application; and
the first application is different from the second application.
42. The computer-readable storage medium of claim 39, wherein:
the first text input is directed to a first recipient and the first input context includes the first recipient;
the second text input is directed to a second recipient and the second input context includes the second recipient; and
the first recipient is different from the second recipient.
43. The computer-readable storage medium of claim 39, further comprising instructions for causing the one or more processors to:
present, at a first instance and via a user interface of the electronic device, the predicted text based on the first weighted probability of the predicted text given the first text input; and
present, at a second instance and via the user interface, the predicted text based on the second weighted probability of the predicted text given the second text input.
US14720655 2014-05-30 2015-05-22 Predictive text input Active US9760559B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201462006010 true 2014-05-30 2014-05-30
US14720655 US9760559B2 (en) 2014-05-30 2015-05-22 Predictive text input

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14720655 US9760559B2 (en) 2014-05-30 2015-05-22 Predictive text input
PCT/US2015/032470 WO2015183826A1 (en) 2014-05-30 2015-05-26 Context based text prediction
TW104117239A TWI579714B (en) 2014-05-30 2015-05-28 Method, system, and computer readable storage medium for predictive text input
US14839830 US9842101B2 (en) 2014-05-30 2015-08-28 Predictive conversion of language input

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14839830 Continuation-In-Part US9842101B2 (en) 2014-05-30 2015-08-28 Predictive conversion of language input

Publications (2)

Publication Number Publication Date
US20150347382A1 true US20150347382A1 (en) 2015-12-03
US9760559B2 true US9760559B2 (en) 2017-09-12

Family

ID=53284641

Family Applications (1)

Application Number Title Priority Date Filing Date
US14720655 Active US9760559B2 (en) 2014-05-30 2015-05-22 Predictive text input

Country Status (2)

Country Link
US (1) US9760559B2 (en)
WO (1) WO2015183826A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10095684B2 (en) * 2016-11-22 2018-10-09 Microsoft Technology Licensing, Llc Trained data input system
US10152473B2 (en) * 2014-09-17 2018-12-11 Beijing Sogou Technology Development Co., Ltd. English input method and input device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8996376B2 (en) 2008-04-05 2015-03-31 Apple Inc. Intelligent text-to-speech conversion
US20100030549A1 (en) 2008-07-31 2010-02-04 Lee Michael M Mobile device having human language translation capability with positional feedback
US8682667B2 (en) 2010-02-25 2014-03-25 Apple Inc. User profiling for selecting user specific voice input processing information
US9721563B2 (en) 2012-06-08 2017-08-01 Apple Inc. Name recognition system
US9547647B2 (en) 2012-09-19 2017-01-17 Apple Inc. Voice-based media searching
WO2014197334A3 (en) 2013-06-07 2015-01-29 Apple Inc. System and method for user-specified pronunciation of words for speech synthesis and recognition
US9842101B2 (en) 2014-05-30 2017-12-12 Apple Inc. Predictive conversion of language input
US9633004B2 (en) 2014-05-30 2017-04-25 Apple Inc. Better resolution when referencing to concepts
US9338493B2 (en) 2014-06-30 2016-05-10 Apple Inc. Intelligent automated assistant for TV user interactions
US9668121B2 (en) 2014-09-30 2017-05-30 Apple Inc. Social reminders
US10049668B2 (en) 2015-12-02 2018-08-14 Apple Inc. Applying neural network language models to weighted finite state transducers for automatic speech recognition
US9934775B2 (en) 2016-05-26 2018-04-03 Apple Inc. Unit-selection text-to-speech synthesis based on predicted concatenation parameters
US9972304B2 (en) 2016-06-03 2018-05-15 Apple Inc. Privacy preserving distributed evaluation framework for embedded personalized systems
US10049663B2 (en) 2016-06-08 2018-08-14 Apple, Inc. Intelligent automated assistant for media exploration
US10067938B2 (en) 2016-06-10 2018-09-04 Apple Inc. Multilingual word prediction
DK179415B1 (en) 2016-06-11 2018-06-14 Apple Inc Intelligent device arbitration and control
WO2018057544A1 (en) * 2016-09-20 2018-03-29 Twiin, Inc. Systems and methods of generating consciousness affects using one or more non-biological inputs
US10043516B2 (en) 2016-09-23 2018-08-07 Apple Inc. Intelligent automated assistant
US10089297B2 (en) * 2016-12-15 2018-10-02 Microsoft Technology Licensing, Llc Word order suggestion processing

Citations (3220)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1559320A (en) 1924-11-17 1925-10-27 Albert A Hirsh Tooth cleaner
US2180522A (en) 1938-11-01 1939-11-21 Henne Isabelle Dental floss throw-away unit and method of making same
US3704345A (en) 1971-03-19 1972-11-28 Bell Telephone Labor Inc Conversion of printed text into synthetic speech
US3710321A (en) 1971-01-18 1973-01-09 Ibm Machine recognition of lexical symbols
US3828132A (en) 1970-10-30 1974-08-06 Bell Telephone Labor Inc Speech synthesis by concatenation of formant encoded words
US3979557A (en) 1974-07-03 1976-09-07 International Telephone And Telegraph Corporation Speech processor system for pitch period extraction using prediction filters
US4013085A (en) 1974-07-17 1977-03-22 Wright Charles E Dental cleaning means and method of manufacture therefor
US4081631A (en) 1976-12-08 1978-03-28 Motorola, Inc. Dual purpose, weather resistant data terminal keyboard assembly including audio porting
US4090216A (en) 1976-05-26 1978-05-16 Gte Sylvania Incorporated Ambient light contrast and color control circuit
US4107784A (en) 1975-12-22 1978-08-15 Bemmelen Henri M Van Management control terminal method and apparatus
US4108211A (en) 1975-04-28 1978-08-22 Fuji Photo Optical Co., Ltd. Articulated, four-way bendable tube structure
US4159536A (en) 1977-04-08 1979-06-26 Willard E. Kehoe Portable electronic language translation device
US4181821A (en) 1978-10-31 1980-01-01 Bell Telephone Laboratories, Incorporated Multiple template speech recognition system
US4204089A (en) 1977-12-16 1980-05-20 International Business Machines Corporation Keyboard method and apparatus for accented characters
US4241286A (en) 1979-01-04 1980-12-23 Mack Gordon Welding helmet lens assembly
US4253477A (en) 1979-08-02 1981-03-03 Eichman John J Dental floss holder
EP0030390A1 (en) 1979-12-10 1981-06-17 Nec Corporation Sound synthesizer
US4278838A (en) 1976-09-08 1981-07-14 Edinen Centar Po Physika Method of and device for synthesis of speech from printed text
US4282405A (en) 1978-11-24 1981-08-04 Nippon Electric Co., Ltd. Speech analyzer comprising circuits for calculating autocorrelation coefficients forwardly and backwardly
US4310721A (en) 1980-01-23 1982-01-12 The United States Of America As Represented By The Secretary Of The Army Half duplex integral vocoder modem system
JPS5741731A (en) 1980-08-25 1982-03-09 Fujitsu Ltd Coordinate input device
US4332464A (en) 1980-09-22 1982-06-01 Xerox Corporation Interactive user-machine interface method and apparatus for copier/duplicator
EP0057514A1 (en) 1981-01-30 1982-08-11 Mobil Oil Corporation Process for alkylating aromatic compounds
US4348553A (en) 1980-07-02 1982-09-07 International Business Machines Corporation Parallel pattern verifier with dynamic time warping
US4384169A (en) 1977-01-21 1983-05-17 Forrest S. Mozer Method and apparatus for speech synthesizing
US4386345A (en) 1981-09-22 1983-05-31 Sperry Corporation Color and brightness tracking in a cathode ray tube display system
US4433377A (en) 1981-06-29 1984-02-21 Eustis Mary S Data processing with format varying
JPS5957336A (en) 1982-09-27 1984-04-02 Toshiba Corp Picture display device
US4451849A (en) 1982-06-23 1984-05-29 Rca Corporation Plural operating mode ambient light responsive television picture control
US4485439A (en) 1982-07-27 1984-11-27 S.A. Analis Standard hardware-software interface for connecting any instrument which provides a digital output stream with any digital host computer
US4495644A (en) 1981-04-27 1985-01-22 Quest Automation Public Limited Company Apparatus for signature verification
US4513435A (en) 1981-04-27 1985-04-23 Nippon Electric Co., Ltd. System operable as an automaton for recognizing continuously spoken words with reference to demi-word pair reference patterns
US4513379A (en) 1982-09-07 1985-04-23 General Electric Company Customization window for a computer numerical control system
EP0138061A1 (en) 1983-09-29 1985-04-24 Siemens Aktiengesellschaft Method of determining speech spectra with an application to automatic speech recognition and speech coding
US4555775A (en) 1982-10-07 1985-11-26 At&T Bell Laboratories Dynamic generation and overlaying of graphic windows for multiple active program storage areas
US4586158A (en) 1983-02-22 1986-04-29 International Business Machines Corp. Screen management system
US4587670A (en) 1982-10-15 1986-05-06 At&T Bell Laboratories Hidden Markov model speech recognition arrangement
US4589022A (en) 1983-11-28 1986-05-13 General Electric Company Brightness control system for CRT video display
US4611346A (en) 1983-09-29 1986-09-09 International Business Machines Corporation Method and apparatus for character recognition accommodating diacritical marks
US4615081A (en) 1983-06-02 1986-10-07 Ab Fixfabriken Attachment device
US4618984A (en) 1983-06-08 1986-10-21 International Business Machines Corporation Adaptive automatic discrete utterance recognition
US4642790A (en) 1983-03-31 1987-02-10 International Business Machines Corporation Presentation space management and viewporting on a multifunction virtual terminal
US4653021A (en) 1983-06-21 1987-03-24 Kabushiki Kaisha Toshiba Data management apparatus
US4654875A (en) 1983-05-23 1987-03-31 The Research Foundation Of State University Of New York System to achieve automatic recognition of linguistic strings
US4655233A (en) 1985-11-04 1987-04-07 Laughlin Patrick E Dental flossing tool
US4658425A (en) 1985-04-19 1987-04-14 Shure Brothers, Inc. Microphone actuation control system suitable for teleconference systems
EP0218859A2 (en) 1985-10-11 1987-04-22 International Business Machines Corporation Signal processor communication interface
US4670848A (en) 1985-04-10 1987-06-02 Standard Systems Corporation Artificial intelligence system
US4677570A (en) 1983-11-29 1987-06-30 Kabushiki Kaisha (NKB Corportion) Information presenting system
US4680805A (en) 1983-11-17 1987-07-14 Texas Instruments Incorporated Method and apparatus for recognition of discontinuous text
US4680429A (en) 1986-01-15 1987-07-14 Tektronix, Inc. Touch panel
US4686522A (en) 1985-02-19 1987-08-11 International Business Machines Corporation Method of editing graphic objects in an interactive draw graphic system using implicit editing actions
US4688195A (en) 1983-01-28 1987-08-18 Texas Instruments Incorporated Natural-language interface generating system
US4692941A (en) 1984-04-10 1987-09-08 First Byte Real-time text-to-speech conversion system
US4698625A (en) 1985-05-30 1987-10-06 International Business Machines Corp. Graphic highlight adjacent a pointing cursor
US4709390A (en) 1984-05-04 1987-11-24 American Telephone And Telegraph Company, At&T Bell Laboratories Speech message code modifying arrangement
US4713775A (en) 1985-08-21 1987-12-15 Teknowledge, Incorporated Intelligent assistant for using and operating computer system capabilities to solve problems
US4718094A (en) 1984-11-19 1988-01-05 International Business Machines Corp. Speech recognition system
US4724542A (en) 1986-01-22 1988-02-09 International Business Machines Corporation Automatic reference adaptation during dynamic signature verification
US4726065A (en) 1984-01-26 1988-02-16 Horst Froessl Image manipulation by speech signals
US4727354A (en) 1987-01-07 1988-02-23 Unisys Corporation System for selecting best fit vector code in vector quantization encoding
USRE32632E (en) 1982-07-19 1988-03-29 Apple Computer, Inc. Display system
US4736296A (en) 1983-12-26 1988-04-05 Hitachi, Ltd. Method and apparatus of intelligent guidance in natural language
EP0262938A1 (en) 1986-10-03 1988-04-06 BRITISH TELECOMMUNICATIONS public limited company Language translation system
US4750122A (en) 1984-07-31 1988-06-07 Hitachi, Ltd. Method for segmenting a text into words
US4754489A (en) 1985-10-15 1988-06-28 The Palantir Corporation Means for resolving ambiguities in text based upon character context
US4755811A (en) 1987-03-24 1988-07-05 Tektronix, Inc. Touch controlled zoom of waveform displays
US4776016A (en) 1985-11-21 1988-10-04 Position Orientation Systems, Inc. Voice control system
US4783807A (en) 1984-08-27 1988-11-08 John Marley System and method for sound recognition with feature selection synchronized to voice pitch
US4783804A (en) 1985-03-21 1988-11-08 American Telephone And Telegraph Company, At&T Bell Laboratories Hidden Markov model speech recognition arrangement
US4785413A (en) 1984-07-30 1988-11-15 Casio Computer Co., Ltd. Character input device in document processing apparatus
EP0293259A2 (en) 1987-05-29 1988-11-30 Kabushiki Kaisha Toshiba Voice recognition system used in telephone apparatus
US4790028A (en) 1986-09-12 1988-12-06 Westinghouse Electric Corp. Method and apparatus for generating variably scaled displays
US4797930A (en) 1983-11-03 1989-01-10 Texas Instruments Incorporated constructed syllable pitch patterns from phonological linguistic unit string data
EP0299572A2 (en) 1987-07-11 1989-01-18 Philips Patentverwaltung GmbH Method for connected word recognition
US4802223A (en) 1983-11-03 1989-01-31 Texas Instruments Incorporated Low data rate speech encoding employing syllable pitch patterns
US4803729A (en) 1987-04-03 1989-02-07 Dragon Systems, Inc. Speech recognition method
US4807752A (en) 1986-01-21 1989-02-28 Placontrol Corporation Dental floss holders and package assembly of same
US4811243A (en) 1984-04-06 1989-03-07 Racine Marsh V Computer aided coordinate digitizing system
US4813074A (en) 1985-11-29 1989-03-14 U.S. Philips Corp. Method of and device for segmenting an electric signal derived from an acoustic signal
US4819271A (en) 1985-05-29 1989-04-04 International Business Machines Corporation Constructing Markov model word baseforms from multiple utterances by concatenating model sequences for word segments
US4827520A (en) 1987-01-16 1989-05-02 Prince Corporation Voice actuated control system for use in a vehicle
US4827518A (en) 1987-08-06 1989-05-02 Bell Communications Research, Inc. Speaker verification system using integrated circuit cards
EP0313975A2 (en) 1987-10-29 1989-05-03 International Business Machines Corporation Design and construction of a binary-tree system for language modelling
US4829576A (en) 1986-10-21 1989-05-09 Dragon Systems, Inc. Voice recognition system
US4829583A (en) 1985-06-03 1989-05-09 Sino Business Machines, Inc. Method and apparatus for processing ideographic characters
EP0314908A2 (en) 1987-10-30 1989-05-10 International Business Machines Corporation Automatic determination of labels and markov word models in a speech recognition system
US4831551A (en) 1983-01-28 1989-05-16 Texas Instruments Incorporated Speaker-dependent connected speech word recognizer
US4833718A (en) 1986-11-18 1989-05-23 First Byte Compression of stored waveforms for artificial speech
US4833712A (en) 1985-05-29 1989-05-23 International Business Machines Corporation Automatic generation of simple Markov model stunted baseforms for words in a vocabulary
US4837831A (en) 1986-10-15 1989-06-06 Dragon Systems, Inc. Method for creating and using multiple-word sound models in speech recognition
US4837798A (en) 1986-06-02 1989-06-06 American Telephone And Telegraph Company Communication system having unified messaging
US4839853A (en) 1988-09-15 1989-06-13 Bell Communications Research, Inc. Computer information retrieval using latent semantic structure
US4852168A (en) 1986-11-18 1989-07-25 Sprague Richard P Compression of stored waveforms for artificial speech
EP0327408A2 (en) 1988-02-05 1989-08-09 ADVANCED PRODUCTS & TECHNOLOGIES, INC. Voice language translator
US4862504A (en) 1986-01-09 1989-08-29 Kabushiki Kaisha Toshiba Speech synthesis system of rule-synthesis type
US4875187A (en) 1986-07-31 1989-10-17 British Telecommunications, Plc Processing apparatus for generating flow charts
US4878230A (en) 1986-10-16 1989-10-31 Mitsubishi Denki Kabushiki Kaisha Amplitude-adaptive vector quantization system
US4887212A (en) 1986-10-29 1989-12-12 International Business Machines Corporation Parser for natural language text
US4896359A (en) 1987-05-18 1990-01-23 Kokusai Denshin Denwa, Co., Ltd. Speech synthesis system by rule using phonemes as systhesis units
US4903305A (en) 1986-05-12 1990-02-20 Dragon Systems, Inc. Method for representing word models for use in speech recognition
US4905163A (en) 1988-10-03 1990-02-27 Minnesota Mining & Manufacturing Company Intelligent optical navigator dynamic information presentation and navigation system
US4908867A (en) 1987-11-19 1990-03-13 British Telecommunications Public Limited Company Speech synthesis
JPH0286397A (en) 1988-09-22 1990-03-27 Nippon Telegr & Teleph Corp <Ntt> Microphone array
US4914590A (en) 1988-05-18 1990-04-03 Emhart Industries, Inc. Natural language understanding system
US4914586A (en) 1987-11-06 1990-04-03 Xerox Corporation Garbage collector for hypermedia systems
US4918723A (en) 1988-10-07 1990-04-17 Jerry R. Iggulden Keyboard to facsimile machine transmission system
DE3837590A1 (en) 1988-11-05 1990-05-10 Ant Nachrichtentech A method for reducing the data rate of digital image data
US4926491A (en) 1984-09-17 1990-05-15 Kabushiki Kaisha Toshiba Pattern recognition device
US4928307A (en) 1989-03-02 1990-05-22 Acs Communications Time dependent, variable amplitude threshold output circuit for frequency variant and frequency invariant signal discrimination
US4931783A (en) 1988-07-26 1990-06-05 Apple Computer, Inc. Method and apparatus for removable menu window
JPH02153415A (en) 1988-12-06 1990-06-13 Hitachi Ltd Keyboard device
US4935954A (en) 1988-12-28 1990-06-19 At&T Company Automated message retrieval system
US4939639A (en) 1987-06-11 1990-07-03 Northern Telecom Limited Method of facilitating computer sorting
US4941488A (en) 1987-04-17 1990-07-17 Rochus Marxer Tensile thread holder for tooth care
US4944013A (en) 1985-04-03 1990-07-24 British Telecommunications Public Limited Company Multi-pulse speech coder
US4945504A (en) 1986-04-30 1990-07-31 Casio Computer Co., Ltd. Instruction input system for electronic processor
US4953106A (en) 1989-05-23 1990-08-28 At&T Bell Laboratories Technique for drawing directed graphs
US4955047A (en) 1984-03-26 1990-09-04 Dytel Corporation Automated attendant with direct inward system access
EP0389271A2 (en) 1989-03-24 1990-09-26 International Business Machines Corporation Matching sequences of labels representing input data and stored data utilising dynamic programming
US4965763A (en) 1987-03-03 1990-10-23 International Business Machines Corporation Computer method for automatic extraction of commonly specified information from business correspondence
US4972462A (en) 1987-09-29 1990-11-20 Hitachi, Ltd. Multimedia mail system
US4974191A (en) 1987-07-31 1990-11-27 Syntellect Software Inc. Adaptive natural language computer interface system
US4975975A (en) 1988-05-26 1990-12-04 Gtx Corporation Hierarchical parametric apparatus and method for recognizing drawn characters
US4977598A (en) 1989-04-13 1990-12-11 Texas Instruments Incorporated Efficient pruning algorithm for hidden markov model speech recognition
US4980916A (en) 1989-10-26 1990-12-25 General Electric Company Method for improving speech quality in code excited linear predictive speech coding
US4985924A (en) 1987-12-24 1991-01-15 Kabushiki Kaisha Toshiba Speech recognition apparatus
EP0411675A2 (en) 1982-06-11 1991-02-06 Mitsubishi Denki Kabushiki Kaisha Interframe coding apparatus
US4992972A (en) 1987-11-18 1991-02-12 International Business Machines Corporation Flexible context searchable on-line information system with help files and modules for on-line computer system documentation
US4994966A (en) 1988-03-31 1991-02-19 Emerson & Stern Associates, Inc. System and method for natural language parsing by initiating processing prior to entry of complete sentences
US4994983A (en) 1989-05-02 1991-02-19 Itt Corporation Automatic speech recognition system using seed templates
US5001774A (en) 1988-08-23 1991-03-19 Samsung Electronics Co., Ltd. Stereo headphone remote control circuit
US5003577A (en) 1989-04-05 1991-03-26 At&T Bell Laboratories Voice and data interface to a voice-mail service system
US5007098A (en) 1988-12-30 1991-04-09 Ezel, Inc. Vectorizing method
US5007095A (en) 1987-03-18 1991-04-09 Fujitsu Limited System for synthesizing speech having fluctuation
US5010574A (en) 1989-06-13 1991-04-23 At&T Bell Laboratories Vector quantizer search arrangement
JPH03113578A (en) 1989-09-27 1991-05-14 Fujitsu Ltd Graphic output processing system
US5016002A (en) 1988-04-15 1991-05-14 Nokia-Mobira Oy Matrix display
US5020112A (en) 1989-10-31 1991-05-28 At&T Bell Laboratories Image recognition method using two-dimensional stochastic grammars
US5021971A (en) 1989-12-07 1991-06-04 Unisys Corporation Reflective binary encoder for vector quantization
US5022081A (en) 1987-10-01 1991-06-04 Sharp Kabushiki Kaisha Information recognition system
US5027408A (en) 1987-04-09 1991-06-25 Kroeker John P Speech-recognition circuitry employing phoneme estimation
US5027406A (en) 1988-12-06 1991-06-25 Dragon Systems, Inc. Method for interactive speech recognition and training
US5027110A (en) 1988-12-05 1991-06-25 At&T Bell Laboratories Arrangement for simultaneously displaying on one or more display terminals a series of images
US5029211A (en) 1988-05-30 1991-07-02 Nec Corporation Speech analysis and synthesis system
US5031217A (en) 1988-09-30 1991-07-09 International Business Machines Corporation Speech recognition system using Markov models having independent label output sets
US5033087A (en) 1989-03-14 1991-07-16 International Business Machines Corp. Method and apparatus for the automatic determination of phonological rules as for a continuous speech recognition system
US5032989A (en) 1986-03-19 1991-07-16 Realpro, Ltd. Real estate search and location system and method
US5040218A (en) 1988-11-23 1991-08-13 Digital Equipment Corporation Name pronounciation by synthesizer
EP0441089A2 (en) 1990-02-08 1991-08-14 International Business Machines Corporation Using command similarity in an intelligent help system
US5046099A (en) 1989-03-13 1991-09-03 International Business Machines Corporation Adaptation of acoustic prototype vectors in a speech recognition system
US5047614A (en) 1989-01-23 1991-09-10 Bianco James S Method and apparatus for computer-aided shopping
US5047617A (en) 1982-01-25 1991-09-10 Symbol Technologies, Inc. Narrow-bodied, single- and twin-windowed portable laser scanning head for reading bar code symbols
US5050215A (en) 1987-10-12 1991-09-17 International Business Machines Corporation Speech recognition method
US5054084A (en) 1986-04-05 1991-10-01 Sharp Kabushiki Kaisha Syllable recognition system
US5054074A (en) * 1989-03-02 1991-10-01 International Business Machines Corporation Optimized speech recognition system and method
US5053758A (en) 1988-02-01 1991-10-01 Sperry Marine Inc. Touchscreen control panel with sliding touch control
US5057915A (en) 1986-03-10 1991-10-15 Kohorn H Von System and method for attracting shoppers to sales outlets
US5067158A (en) 1985-06-11 1991-11-19 Texas Instruments Incorporated Linear predictive residual representation via non-iterative spectral reconstruction
US5067503A (en) 1990-03-21 1991-11-26 Stile Thomas W Dental apparatus for flossing teeth
US5072452A (en) 1987-10-30 1991-12-10 International Business Machines Corporation Automatic determination of labels and Markov word models in a speech recognition system
US5075896A (en) 1989-10-25 1991-12-24 Xerox Corporation Character and phoneme recognition based on probability clustering
US5079723A (en) 1988-03-04 1992-01-07 Xerox Corporation Touch dialogue user interface for reproduction machines
EP0464712A2 (en) 1990-06-28 1992-01-08 Kabushiki Kaisha Toshiba Display/input control system for software keyboard in information processing apparatus having integral display/input device
US5083268A (en) 1986-10-15 1992-01-21 Texas Instruments Incorporated System and method for parsing natural language by unifying lexical features of words
US5083119A (en) 1988-02-11 1992-01-21 Du Pont Pixel Systems Limited State machine controlled video processor
US5086792A (en) 1989-02-16 1992-02-11 Placontrol Corp. Dental floss loop devices, and methods of manufacture and packaging same
US5090012A (en) 1989-05-22 1992-02-18 Mazda Motor Corporation Multiplex transmission system for use in a vehicle
DE4126902A1 (en) 1990-08-15 1992-02-20 Ricoh Kk Speech interval establishment unit for speech recognition system - operates in two stages on filtered, multiplexed and digitised signals from speech and background noise microphones
US5091945A (en) 1989-09-28 1992-02-25 At&T Bell Laboratories Source dependent channel coding with error protection
US5091790A (en) 1989-12-29 1992-02-25 Morton Silverberg Multipurpose computer accessory for facilitating facsimile communication
EP0476972A2 (en) 1990-09-17 1992-03-25 Xerox Corporation Touch screen user interface with expanding touch locations for a reprographic machine
US5103498A (en) 1990-08-02 1992-04-07 Tandy Corporation Intelligent help system
US5109509A (en) 1984-10-29 1992-04-28 Hitachi, Ltd. System for processing natural language including identifying grammatical rule and semantic concept of an undefined word
US5111423A (en) 1988-07-21 1992-05-05 Altera Corporation Programmable interface for computer system peripheral circuit card
US5122951A (en) 1989-07-14 1992-06-16 Sharp Kabushiki Kaisha Subject and word associating devices
US5123103A (en) 1986-10-17 1992-06-16 Hitachi, Ltd. Method and system of retrieving program specification and linking the specification by concept to retrieval request for reusing program parts
US5125022A (en) 1990-05-15 1992-06-23 Vcs Industries, Inc. Method for recognizing alphanumeric strings spoken over a telephone network
US5125030A (en) 1987-04-13 1992-06-23 Kokusai Denshin Denwa Co., Ltd. Speech signal coding/decoding system based on the type of speech signal
US5127053A (en) 1990-12-24 1992-06-30 General Electric Company Low-complexity method for improving the performance of autocorrelation-based pitch detectors
US5127055A (en) 1988-12-30 1992-06-30 Kurzweil Applied Intelligence, Inc. Speech recognition apparatus & method having dynamic reference pattern adaptation
US5127043A (en) 1990-05-15 1992-06-30 Vcs Industries, Inc. Simultaneous speaker-independent voice recognition and verification over a telephone network
US5128672A (en) 1990-10-30 1992-07-07 Apple Computer, Inc. Dynamic predictive keyboard
US5133011A (en) 1990-12-26 1992-07-21 International Business Machines Corporation Method and apparatus for linear vocal control of cursor position
US5133023A (en) 1985-10-15 1992-07-21 The Palantir Corporation Means for resolving ambiguities in text based upon character context
JPH04236624A (en) 1991-01-18 1992-08-25 Sony Corp Control system
US5142584A (en) 1989-07-20 1992-08-25 Nec Corporation Speech coding/decoding method having an excitation signal
US5144875A (en) 1981-11-14 1992-09-08 Yamaha Corporation Music sheet
US5148541A (en) 1987-09-28 1992-09-15 Northern Telecom Limited Multilingual database system including sorting data using a master universal sort order for all languages
US5153913A (en) 1987-10-09 1992-10-06 Sound Entertainment, Inc. Generating speech from digitally stored coarticulated speech segments
US5157610A (en) 1989-02-15 1992-10-20 Hitachi, Ltd. System and method of load sharing control for automobile
US5157779A (en) 1990-06-07 1992-10-20 Sun Microsystems, Inc. User extensible testing system
US5161102A (en) 1988-09-09 1992-11-03 Compaq Computer Corporation Computer interface for the configuration of computer system and circuit boards
US5165007A (en) 1985-02-01 1992-11-17 International Business Machines Corporation Feneme-based Markov models for words
US5164900A (en) 1983-11-14 1992-11-17 Colman Bernath Method and device for phonetically encoding Chinese textual data for data processing entry
US5164982A (en) 1990-09-27 1992-11-17 Radish Communications Systems, Inc. Telecommunication display system
US5167004A (en) 1991-02-28 1992-11-24 Texas Instruments Incorporated Temporal decorrelation method for robust speaker verification
US5175803A (en) 1985-06-14 1992-12-29 Yeh Victor C Method and apparatus for data processing and word processing in Chinese using a phonetic Chinese language
US5175814A (en) 1990-01-30 1992-12-29 Digital Equipment Corporation Direct manipulation interface for boolean information retrieval
US5175536A (en) 1990-08-01 1992-12-29 Westinghouse Electric Corp. Apparatus and method for adapting cards designed for a VME bus for use in a VXI bus system
US5179652A (en) 1989-12-13 1993-01-12 Anthony I. Rozmanith Method and apparatus for storing, transmitting and retrieving graphical and tabular data
US5179627A (en) 1987-02-10 1993-01-12 Dictaphone Corporation Digital dictation system
US5194950A (en) 1988-02-29 1993-03-16 Mitsubishi Denki Kabushiki Kaisha Vector quantizer
US5195167A (en) 1990-01-23 1993-03-16 International Business Machines Corporation Apparatus and method of grouping utterances of a phoneme into context-dependent categories based on sound-similarity for automatic speech recognition
US5195034A (en) 1989-12-27 1993-03-16 International Business Machines Corporation Method for quasi-key search within a National Language Support (NLS) data processing system
US5197005A (en) 1989-05-01 1993-03-23 Intelligent Business Systems Database retrieval system having a natural language interface
US5199077A (en) 1991-09-19 1993-03-30 Xerox Corporation Wordspotting for voice editing and indexing
JPH0579951A (en) 1991-09-18 1993-03-30 Hitachi Ltd Monitoring system
US5201034A (en) 1988-09-30 1993-04-06 Hitachi Ltd. Interactive intelligent interface
US5202952A (en) 1990-06-22 1993-04-13 Dragon Systems, Inc. Large-vocabulary continuous speech prefiltering and processing system
CH681573A5
US5208862A (en) 1990-02-22 1993-05-04 Nec Corporation Speech coder
US5210689A (en) 1990-12-28 1993-05-11 Semantic Compaction Systems System and method for automatically selecting among a plurality of input modes
US5212638A (en) 1983-11-14 1993-05-18 Colman Bernath Alphabetic keyboard arrangement for typing Mandarin Chinese phonetic data
US5212821A (en) 1991-03-29 1993-05-18 At&T Bell Laboratories Machine-based learning system
US5216747A (en) 1990-09-20 1993-06-01 Digital Voice Systems, Inc. Voiced/unvoiced estimation of an acoustic signal
US5218700A (en) 1990-01-30 1993-06-08 Allen Beechick Apparatus and method for sorting a list of items
US5220657A (en) 1987-12-02 1993-06-15 Xerox Corporation Updating local copy of shared data in a collaborative system
US5220629A (en) 1989-11-06 1993-06-15 Canon Kabushiki Kaisha Speech synthesis apparatus and method
US5220639A (en) 1989-12-01 1993-06-15 National Science Council Mandarin speech input method for Chinese computers and a mandarin speech recognition machine
US5222146A (en) 1991-10-23 1993-06-22 International Business Machines Corporation Speech recognition apparatus having a speech coder outputting acoustic prototype ranks
JPH05165459A (en) 1991-12-19 1993-07-02 Toshiba Corp Enlarging display system
US5230036A (en) 1989-10-17 1993-07-20 Kabushiki Kaisha Toshiba Speech coding system utilizing a recursive computation technique for improvement in processing speed
US5231670A (en) 1987-06-01 1993-07-27 Kurzweil Applied Intelligence, Inc. Voice controlled system and method for generating text from a voice controlled input
US5235680A (en) 1987-07-31 1993-08-10 Moore Business Forms, Inc. Apparatus and method for communicating textual and image information between a host computer and a remote display terminal
US5237502A (en) 1990-09-04 1993-08-17 International Business Machines Corporation Method and apparatus for paraphrasing information contained in logical forms
US5241619A (en) 1991-06-25 1993-08-31 Bolt Beranek And Newman Inc. Word dependent N-best search method
EP0558312A1 (en) 1992-02-27 1993-09-01 Central Institute For The Deaf Adaptive noise reduction circuit for a sound reproduction system
EP0559349A1 (en) 1992-03-02 1993-09-08 AT&amp;T Corp. Training method and apparatus for speech recognition
US5253325A (en) 1988-12-09 1993-10-12 British Telecommunications Public Limited Company Data compression with dynamically compiled dictionary
US5252951A (en) 1989-04-28 1993-10-12 International Business Machines Corporation Graphical user interface with gesture recognition in a multiapplication environment
WO1993020640A1 (en) 1992-03-31 1993-10-14 Klausner Patent Technologies Telephone answering device linking displayed data with recorded audio message
US5257387A (en) 1988-09-09 1993-10-26 Compaq Computer Corporation Computer implemented method and apparatus for dynamic and automatic configuration of a computer system and circuit boards including computer resource allocation conflict resolution
US5260697A (en) 1990-11-13 1993-11-09 Wang Laboratories, Inc. Computer with separate display plane and user interface processor
JPH05293126A (en) 1992-04-15 1993-11-09 Matsushita Electric Works Ltd Dental floss
EP0570660A1 (en) 1992-05-21 1993-11-24 International Business Machines Corporation Speech recognition system for natural language translation
US5267345A (en) 1992-02-10 1993-11-30 International Business Machines Corporation Speech recognition apparatus which predicts word classes from context and words from word classes
US5266931A (en) 1991-05-09 1993-11-30 Sony Corporation Apparatus and method for inputting data
US5266949A (en) 1990-03-29 1993-11-30 Nokia Mobile Phones Ltd. Lighted electronic keyboard
US5268990A (en) 1991-01-31 1993-12-07 Sri International Method for recognizing speech using linguistically-motivated hidden Markov models
EP0575146A2 (en) 1992-06-16 1993-12-22 Honeywell Inc. A method for utilizing a low resolution touch screen system in a high resolution graphics environment
US5274771A (en) 1991-04-30 1993-12-28 Hewlett-Packard Company System for configuring an input/output board in a computer
US5274818A (en) 1992-02-03 1993-12-28 Thinking Machines Corporation System and method for compiling a fine-grained array based source program onto a course-grained hardware
US5276794A (en) 1990-09-25 1994-01-04 Grid Systems Corporation Pop-up keyboard system for entering handwritten data into computer generated forms
US5276616A (en) 1989-10-16 1994-01-04 Sharp Kabushiki Kaisha Apparatus for automatically generating index
US5278980A (en) 1991-08-16 1994-01-11 Xerox Corporation Iterative technique for phrase query formation and an information retrieval system employing same
EP0578604A1 (en) 1992-07-07 1994-01-12 Gn Netcom A/S Audio frequency signal compressing system
US5282265A (en) 1988-10-04 1994-01-25 Canon Kabushiki Kaisha Knowledge information processing system
JPH0619965A (en) 1992-07-01 1994-01-28 Canon Inc Natural language processor
US5283818A (en) 1992-03-31 1994-02-01 Klausner Patent Technologies Telephone answering device linking displayed data with recorded audio message
US5287448A (en) 1989-05-04 1994-02-15 Apple Computer, Inc. Method and apparatus for providing help information to users of computers
US5289562A (en) 1990-09-13 1994-02-22 Mitsubishi Denki Kabushiki Kaisha Pattern representation model training apparatus
US5293254A (en) 1991-12-06 1994-03-08 Xerox Corporation Method for maintaining bit density while converting images in scale or resolution
US5293452A (en) 1991-07-01 1994-03-08 Texas Instruments Incorporated Voice log-in using spoken name input
US5293448A (en) 1989-10-02 1994-03-08 Nippon Telegraph And Telephone Corporation Speech analysis-synthesis method and apparatus therefor
JPH0669954A (en) 1992-08-18 1994-03-11 Fujitsu Commun Syst Ltd Message supersession notice system
EP0586996A2 (en) 1992-09-04 1994-03-16 Daimler-Benz Aktiengesellschaft Speech recognition method with adaptation of the speech characteristics
US5297170A (en) 1990-08-21 1994-03-22 Codex Corporation Lattice and trellis-coded quantization
US5296642A (en) 1991-10-15 1994-03-22 Kabushiki Kaisha Kawai Gakki Seisakusho Auto-play musical instrument with a chain-play mode for a plurality of demonstration tones
US5299284A (en) 1990-04-09 1994-03-29 Arizona Board Of Regents, Acting On Behalf Of Arizona State University Pattern classification using linear programming
US5299125A (en) 1990-08-09 1994-03-29 Semantic Compaction Systems Natural language processing system and method for parsing a plurality of input symbol sequences into syntactically or pragmatically correct word messages
US5301109A (en) 1990-06-11 1994-04-05 Bell Communications Research, Inc. Computerized cross-language document retrieval using latent semantic indexing
US5303406A (en) 1991-04-29 1994-04-12 Motorola, Inc. Noise squelch circuit with adaptive noise shaping
US5305205A (en) 1990-10-23 1994-04-19 Weber Maria L Computer-assisted transcription apparatus
DE4334773A1 (en) 1992-10-14 1994-04-21 Sharp Kk Information reproduction appts., esp. for audio data - picks up data stored on e.g. magneto-optical disc and stores data in ROM
US5305768A (en) 1992-08-24 1994-04-26 Product Development (Zgs) Ltd. Dental flosser units and method of making same
US5309359A (en) 1990-08-16 1994-05-03 Boris Katz Method and apparatus for generating and utlizing annotations to facilitate computer text retrieval
US5315689A (en) 1988-05-27 1994-05-24 Kabushiki Kaisha Toshiba Speech recognition system having word-based and phoneme-based recognition means
US5317507A (en) 1990-11-07 1994-05-31 Gallant Stephen I Method for document retrieval and for word sense disambiguation using neural networks
US5317647A (en) 1992-04-07 1994-05-31 Apple Computer, Inc. Constrained attribute grammars for syntactic pattern recognition
US5325462A (en) 1992-08-03 1994-06-28 International Business Machines Corporation System and method for speech synthesis employing improved formant composition
US5325297A (en) 1992-06-25 1994-06-28 System Of Multiple-Colored Images For Internationally Listed Estates, Inc. Computer implemented method and system for storing and retrieving textual data and compressed image data
US5325298A (en) 1990-11-07 1994-06-28 Hnc, Inc. Methods for generating or revising context vectors for a plurality of word stems
US5327342A (en) 1991-03-31 1994-07-05 Roy Prannoy L Method and apparatus for generating personalized handwriting
US5327498A (en) 1988-09-02 1994-07-05 Ministry Of Posts, Tele-French State Communications & Space Processing device for speech synthesis by addition overlapping of wave forms
US5326270A (en) 1991-08-29 1994-07-05 Introspect Technologies, Inc. System and method for assessing an individual's task-processing style
US5329608A (en) 1992-04-02 1994-07-12 At&T Bell Laboratories Automatic speech recognizer
WO1994016434A1 (en) 1992-12-31 1994-07-21 Apple Computer, Inc. Recursive finite state grammar
US5333266A (en) 1992-03-27 1994-07-26 International Business Machines Corporation Method and apparatus for message handling in computer systems
US5333275A (en) 1992-06-23 1994-07-26 Wheatley Barbara J System and method for time aligning speech
US5333236A (en) 1992-09-10 1994-07-26 International Business Machines Corporation Speech recognizer having a speech coder for an acoustic match based on context-dependent speech-transition acoustic models
US5335011A (en) 1993-01-12 1994-08-02 Bell Communications Research, Inc. Sound localization system for teleconferencing using self-steering microphone arrays
US5335276A (en) 1992-12-16 1994-08-02 Texas Instruments Incorporated Communication system and methods for enhanced information transfer
EP0609030A1 (en) 1993-01-26 1994-08-03 Sun Microsystems, Inc. Method and apparatus for browsing information in a computer database
US5341466A (en) 1991-05-09 1994-08-23 New York University Fractal computer user centerface with zooming capability
US5341293A (en) 1991-05-15 1994-08-23 Apple Computer, Inc. User interface system having programmable user interface elements
US5345536A (en) 1990-12-21 1994-09-06 Matsushita Electric Industrial Co., Ltd. Method of speech recognition
US5349645A (en) 1991-12-31 1994-09-20 Matsushita Electric Industrial Co., Ltd. Word hypothesizer for continuous speech decoding using stressed-vowel centered bidirectional tree searches
JPH06274586A (en) 1993-03-22 1994-09-30 Mitsubishi Electric Corp Displaying system
US5353408A (en) 1992-01-07 1994-10-04 Sony Corporation Noise suppressor
US5353432A (en) 1988-09-09 1994-10-04 Compaq Computer Corporation Interactive method for configuration of computer system and circuit boards with user specification of system resources and computer resolution of resource conflicts
US5353376A (en) 1992-03-20 1994-10-04 Texas Instruments Incorporated System and method for improved speech acquisition for hands-free voice telecommunication in a noisy environment
US5353374A (en) 1992-10-19 1994-10-04 Loral Aerospace Corporation Low bit rate voice transmission for use in a noisy environment
US5353377A (en) 1991-10-01 1994-10-04 International Business Machines Corporation Speech recognition system having an interface to a host computer bus for direct access to the host memory
US5357431A (en) 1992-01-27 1994-10-18 Fujitsu Limited Character string retrieval system using index and unit for making the index
US5367640A (en) 1991-04-30 1994-11-22 Hewlett-Packard Company System for configuring an input/output board in a computer
US5369575A (en) 1992-05-15 1994-11-29 International Business Machines Corporation Constrained natural language interface for a computer system
US5369577A (en) 1991-02-01 1994-11-29 Wang Laboratories, Inc. Text searching system
JPH06332617A (en) 1993-05-25 1994-12-02 Pfu Ltd Display method in touch panel input device
US5371853A (en) 1991-10-28 1994-12-06 University Of Maryland At College Park Method and system for CELP speech coding and codebook for use therewith
US5371901A (en) 1991-07-08 1994-12-06 Motorola, Inc. Remote voice control system
US5373566A (en) 1992-12-24 1994-12-13 Motorola, Inc. Neural network-based diacritical marker recognition system and method
WO1994029788A1 (en) 1993-06-15 1994-12-22 Honeywell Inc. A method for utilizing a low resolution touch screen system in a high resolution graphics environment
US5377303A (en) 1989-06-23 1994-12-27 Articulate Systems, Inc. Controlled computer interface
US5377301A (en) 1986-03-28 1994-12-27 At&T Corp. Technique for modifying reference vector quantized speech feature signals
US5377103A (en) 1992-05-15 1994-12-27 International Business Machines Corporation Constrained natural language interface for a computer that employs a browse function
WO1995002221A1 (en) 1993-07-07 1995-01-19 Inference Corporation Case-based organizing and querying of a database
US5384892A (en) 1992-12-31 1995-01-24 Apple Computer, Inc. Dynamic language model for speech recognition
US5384671A (en) 1993-12-23 1995-01-24 Quantum Corporation PRML sampled data channel synchronous servo detector
US5384893A (en) 1992-09-23 1995-01-24 Emerson & Stern Associates, Inc. Method and apparatus for speech synthesis based on prosodic analysis
US5386556A (en) 1989-03-06 1995-01-31 International Business Machines Corporation Natural language analyzing apparatus and method
US5386494A (en) 1991-12-06 1995-01-31 Apple Computer, Inc. Method and apparatus for controlling a speech recognition function using a cursor control device
US5390281A (en) 1992-05-27 1995-02-14 Apple Computer, Inc. Method and apparatus for deducing user intent and providing computer implemented services
US5390279A (en) 1992-12-31 1995-02-14 Apple Computer, Inc. Partitioning speech rules by context for speech recognition
US5392419A (en) 1992-01-24 1995-02-21 Hewlett-Packard Company Language identification system and method for a peripheral unit
US5396625A (en) 1990-08-10 1995-03-07 British Aerospace Public Ltd., Co. System for binary tree searched vector quantization data compression processing each tree node containing one vector and one scalar to compare with an input vector
US5400434A (en) 1990-09-04 1995-03-21 Matsushita Electric Industrial Co., Ltd. Voice source for synthetic speech system
US5404295A (en) 1990-08-16 1995-04-04 Katz; Boris Method and apparatus for utilizing annotations to facilitate computer retrieval of database material
US5406305A (en) 1993-01-19 1995-04-11 Matsushita Electric Industrial Co., Ltd. Display device
US5408060A (en) 1991-01-29 1995-04-18 Nokia Mobile Phones Ltd. Illuminated pushbutton keyboard
US5412806A (en) 1992-08-20 1995-05-02 Hewlett-Packard Company Calibration of logical cost formulae for queries in a heterogeneous DBMS using synthetic database
US5412756A (en) 1992-12-22 1995-05-02 Mitsubishi Denki Kabushiki Kaisha Artificial intelligence software shell for plant operation simulation
US5412804A (en) 1992-04-30 1995-05-02 Oracle Corporation Extending the semantics of the outer join operator for un-nesting queries to a data base
EP0651543A2 (en) 1993-11-01 1995-05-03 International Business Machines Corporation Personal communicator having improved zoom and pan functions
US5418951A (en) 1992-08-20 1995-05-23 The United States Of America As Represented By The Director Of National Security Agency Method of retrieving documents that concern the same topic
US5422656A (en) 1993-11-01 1995-06-06 International Business Machines Corp. Personal communicator having improved contrast control for a liquid crystal, touch sensitive display
US5425108A (en) 1992-09-04 1995-06-13 Industrial Technology Research Institute Mobile type of automatic identification system for a car plate
US5424947A (en) 1990-06-15 1995-06-13 International Business Machines Corporation Natural language analyzing apparatus and method, and construction of a knowledge base for natural language analysis
WO1995016950A1 (en) 1993-12-14 1995-06-22 Apple Computer, Inc. Method and apparatus for transferring data between a computer and a peripheral storage device
US5428731A (en) 1993-05-10 1995-06-27 Apple Computer, Inc. Interactive multimedia delivery engine
WO1995017746A1 (en) 1993-12-22 1995-06-29 Qualcomm Incorporated Distributed voice recognition system
US5434777A (en) 1992-05-27 1995-07-18 Apple Computer, Inc. Method and apparatus for processing natural language
JPH07199379A (en) 1993-10-18 1995-08-04 Internatl Business Mach Corp <Ibm> Sound recording and index device and its method
US5440615A (en) 1992-03-31 1995-08-08 At&T Corp. Language selection for voice messaging system
US5442780A (en) 1991-07-11 1995-08-15 Mitsubishi Denki Kabushiki Kaisha Natural language database retrieval system using virtual tables to convert parsed input phrases into retrieval keys
US5444823A (en) 1993-04-16 1995-08-22 Compaq Computer Corporation Intelligent search engine for associated on-line documentation having questionless case-based knowledge base
US5450523A (en) 1990-11-15 1995-09-12 Matsushita Electric Industrial Co., Ltd. Training module for estimating mixture Gaussian densities for speech unit models in speech recognition systems
US5449368A (en) 1993-02-18 1995-09-12 Kuzmak; Lubomyr I. Laparoscopic adjustable gastric banding device and method for implantation and removal thereof
US5455888A (en) 1992-12-04 1995-10-03 Northern Telecom Limited Speech bandwidth extension method and apparatus
US5457768A (en) 1991-08-13 1995-10-10 Kabushiki Kaisha Toshiba Speech recognition apparatus using syntactic and semantic analysis
US5459488A (en) 1990-07-21 1995-10-17 Robert Bosch Gmbh Graphical user interface with fisheye adaptation principle
EP0679005A1 (en) 1994-04-22 1995-10-25 Hewlett-Packard Company Device for managing voice data
US5463725A (en) 1992-12-31 1995-10-31 International Business Machines Corp. Data processing system graphical user interface which emulates printed material
US5463696A (en) 1992-05-27 1995-10-31 Apple Computer, Inc. Recognition system and method for user inputs to a computer system
US5465401A (en) 1992-12-15 1995-11-07 Texas Instruments Incorporated Communication system and methods for enhanced information transfer
US5469529A (en) 1992-09-24 1995-11-21 France Telecom Establissement Autonome De Droit Public Process for measuring the resemblance between sound samples and apparatus for performing this process
US5471611A (en) 1991-03-13 1995-11-28 University Of Strathclyde Computerised information-retrieval database systems
US5473728A (en) 1993-02-24 1995-12-05 The United States Of America As Represented By The Secretary Of The Navy Training of homoscedastic hidden Markov models for automatic speech recognition
JPH07320051A (en) 1994-05-20 1995-12-08 Nippon Telegr & Teleph Corp <Ntt> Method and device for enlargement and reduction display in optional area of graphic
JPH07320079A (en) 1994-05-20 1995-12-08 Nippon Telegr & Teleph Corp <Ntt> Method and device for partial enlargement display of figure
US5475587A (en) 1991-06-28 1995-12-12 Digital Equipment Corporation Method and apparatus for efficient morphological text analysis using a high-level language for compact specification of inflectional paradigms
US5475796A (en) 1991-12-20 1995-12-12 Nec Corporation Pitch pattern generation apparatus
US5477447A (en) 1992-05-27 1995-12-19 Apple Computer, Incorporated Method and apparatus for providing computer-implemented assistance
US5477448A (en) 1994-06-01 1995-12-19 Mitsubishi Electric Research Laboratories, Inc. System for correcting improper determiners
US5477451A (en) 1991-07-25 1995-12-19 International Business Machines Corp. Method and system for natural language translation
US5479488A (en) 1993-03-15 1995-12-26 Bell Canada Method and apparatus for automation of directory assistance using speech recognition
US5481739A (en) 1993-06-23 1996-01-02 Apple Computer, Inc. Vector quantization using thresholds
US5483261A (en) 1992-02-14 1996-01-09 Itu Research, Inc. Graphical input controller and method with rear screen image detection
US5485543A (en) 1989-03-13 1996-01-16 Canon Kabushiki Kaisha Method and apparatus for speech analysis and synthesis by sampling a power spectrum of input speech
US5485372A (en) 1994-06-01 1996-01-16 Mitsubishi Electric Research Laboratories, Inc. System for underlying spelling recovery
US5488727A (en) 1991-09-30 1996-01-30 International Business Machines Corporation Methods to support multimethod function overloading with compile-time type checking
US5488204A (en) 1992-06-08 1996-01-30 Synaptics, Incorporated Paintbrush stylus for capacitive touch sensor pad
US5490234A (en) 1993-01-21 1996-02-06 Apple Computer, Inc. Waveform blending technique for text-to-speech system
US5491758A (en) 1993-01-27 1996-02-13 International Business Machines Corporation Automatic handwriting recognition using both static and dynamic parameters
US5491772A (en) 1990-12-05 1996-02-13 Digital Voice Systems, Inc. Methods for speech transmission
US5493677A (en) 1994-06-08 1996-02-20 Systems Research & Applications Corporation Generation, archiving, and retrieval of digital images with evoked suggestion-set captions and natural language interface
US5495604A (en) 1993-08-25 1996-02-27 Asymetrix Corporation Method and apparatus for the modeling and query of database structures using natural language-like constructs
US5497319A (en) 1990-12-31 1996-03-05 Trans-Link International Corp. Machine translation and telecommunications system
JPH0863330A (en) 1994-08-17 1996-03-08 Fujitsu Ltd Voice input device
US5500905A (en) 1991-06-12 1996-03-19 Microelectronics And Computer Technology Corporation Pattern recognition neural network with saccade-like operation
US5500903A (en) 1992-12-30 1996-03-19 Sextant Avionique Method for vectorial noise-reduction in speech, and implementation device
US5500937A (en) 1993-09-08 1996-03-19 Apple Computer, Inc. Method and apparatus for editing an inked object while simultaneously displaying its recognized object
US5502790A (en) 1991-12-24 1996-03-26 Oki Electric Industry Co., Ltd. Speech recognition method and system using triphones, diphones, and phonemes
US5502791A (en) 1992-09-29 1996-03-26 International Business Machines Corporation Speech recognition by concatenating fenonic allophone hidden Markov models in parallel among subwords
US5502774A (en) 1992-06-09 1996-03-26 International Business Machines Corporation Automatic recognition of a consistent message using multiple complimentary sources of information
GB2293667A (en) 1994-09-30 1996-04-03 Intermation Limited Database management system
US5515475A (en) 1993-06-24 1996-05-07 Northern Telecom Limited Speech recognition method using a two-pass search
US5521816A (en) 1994-06-01 1996-05-28 Mitsubishi Electric Research Laboratories, Inc. Word inflection correction system
DE4445023A1 (en) 1994-12-16 1996-06-20 Thomson Brandt Gmbh Vibration-resistant playback with reduced power consumption
US5533182A (en) 1992-12-22 1996-07-02 International Business Machines Corporation Aural position indicating mechanism for viewable objects
US5535121A (en) 1994-06-01 1996-07-09 Mitsubishi Electric Research Laboratories, Inc. System for correcting auxiliary verb sequences
JPH08185265A (en) 1994-12-28 1996-07-16 Fujitsu Ltd Touch panel controller
US5537317A (en) 1994-06-01 1996-07-16 Mitsubishi Electric Research Laboratories Inc. System for correcting grammer based parts on speech probability
US5537647A (en) 1991-08-19 1996-07-16 U S West Advanced Technologies, Inc. Noise resistant auditory model for parametrization of speech
US5537618A (en) 1993-12-23 1996-07-16 Diacom Technologies, Inc. Method and apparatus for implementing user feedback
US5536902A (en) 1993-04-14 1996-07-16 Yamaha Corporation Method of and apparatus for analyzing and synthesizing a sound by extracting and controlling a sound parameter
US5543897A (en) 1995-03-07 1996-08-06 Eastman Kodak Company Reproduction apparatus having touch screen operator interface and auxiliary keyboard
US5543588A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Touch pad driven handheld computing device
US5548507A (en) 1994-03-14 1996-08-20 International Business Machines Corporation Language identification process using coded language words
JPH08223281A (en) 1995-02-10 1996-08-30 Kokusai Electric Co Ltd Portable telephone set
JPH08227341A (en) 1995-02-22 1996-09-03 Mitsubishi Electric Corp User interface
US5555343A (en) 1992-11-18 1996-09-10 Canon Information Systems, Inc. Text parser for use with a text-to-speech converter
US5555344A (en) 1991-09-20 1996-09-10 Siemens Aktiengesellschaft Method for recognizing patterns in time-variant measurement signals
US5559301A (en) 1994-09-15 1996-09-24 Korg, Inc. Touchscreen interface having pop-up variable adjustment displays for controllers and audio processing systems
US5559945A (en) 1993-05-04 1996-09-24 International Business Machines Corporation Dynamic hierarchical selection menu
US5565888A (en) 1995-02-17 1996-10-15 International Business Machines Corporation Method and apparatus for improving visibility and selectability of icons
US5564446A (en) 1995-03-27 1996-10-15 Wiltshire; Curtis B. Dental floss device and applicator assembly
US5568536A (en) 1994-07-25 1996-10-22 International Business Machines Corporation Selective reconfiguration method and apparatus in a multiple application personal communications device
US5568540A (en) 1993-09-13 1996-10-22 Active Voice Corporation Method and apparatus for selecting and playing a voice mail message
US5570324A (en) 1995-09-06 1996-10-29 Northrop Grumman Corporation Underwater sound localization system
US5574824A (en) 1994-04-11 1996-11-12 The United States Of America As Represented By The Secretary Of The Air Force Analysis/synthesis-based microphone array speech enhancer with variable signal distortion
US5574823A (en) 1993-06-23 1996-11-12 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Communications Frequency selective harmonic coding
US5577164A (en) 1994-01-28 1996-11-19 Canon Kabushiki Kaisha Incorrect voice command recognition prevention and recovery processing method and apparatus
US5577241A (en) 1994-12-07 1996-11-19 Excite, Inc. Information retrieval system and method with implementation extensible query architecture
US5577135A (en) 1994-03-01 1996-11-19 Apple Computer, Inc. Handwriting signal processing front-end for handwriting recognizers
US5579037A (en) 1993-06-29 1996-11-26 International Business Machines Corporation Method and system for selecting objects on a tablet display using a pen-like interface
US5578808A (en) 1993-12-22 1996-11-26 Datamark Services, Inc. Data card that can be used for transactions involving separate card issuers
US5581652A (en) 1992-10-05 1996-12-03 Nippon Telegraph And Telephone Corporation Reconstruction of wideband speech from narrowband speech using codebooks
US5581484A (en) 1994-06-27 1996-12-03 Prince; Kevin R. Finger mounted computer input device
US5583993A (en) 1994-01-31 1996-12-10 Apple Computer, Inc. Method and apparatus for synchronously sharing data among computer
US5584024A (en) 1994-03-24 1996-12-10 Software Ag Interactive database query system and method for prohibiting the selection of semantically incorrect query parameters
US5594641A (en) 1992-07-20 1997-01-14 Xerox Corporation Finite-state transduction of related word forms for text indexing and retrieval
JPH0918585A (en) 1995-07-03 1997-01-17 Matsushita Electric Ind Co Ltd Voice mail system
US5596676A (en) 1992-06-01 1997-01-21 Hughes Electronics Mode-specific method and apparatus for encoding signals containing speech
US5596260A (en) 1994-05-13 1997-01-21 Apple Computer, Inc. Apparatus and method for determining a charge of a battery
US5596994A (en) 1993-08-30 1997-01-28 Bro; William L. Automated and interactive behavioral and medical guidance system
JPH0955792A (en) 1995-08-11 1997-02-25 Ricoh Co Ltd Voice mail system
US5608841A (en) 1992-06-03 1997-03-04 Matsushita Electric Industrial Co., Ltd. Method and apparatus for pattern recognition employing the hidden Markov model
US5608698A (en) 1994-11-11 1997-03-04 Pioneer Electronic Corporation Disk player which avoids sound failure resulted from retry of data reading
US5610812A (en) 1994-06-24 1997-03-11 Mitsubishi Electric Information Technology Center America, Inc. Contextual tagger utilizing deterministic finite state transducer
US5613122A (en) 1994-11-14 1997-03-18 Object Technology Licensing Corp. Object-oriented operating system
US5613036A (en) 1992-12-31 1997-03-18 Apple Computer, Inc. Dynamic categories for a speech recognition system
WO1997010586A1 (en) 1995-09-14 1997-03-20 Ericsson Inc. System for adaptively filtering audio signals to enhance speech intelligibility in noisy environmental conditions
US5615378A (en) 1993-07-19 1997-03-25 Fujitsu Limited Dictionary retrieval device
US5617386A (en) 1995-07-31 1997-04-01 Samsung Electronics Co., Ltd. CD player for reproducing signals from CD-OK and video CD
US5616876A (en) 1995-04-19 1997-04-01 Microsoft Corporation System and methods for selecting music on the basis of subjective content
US5617507A (en) 1991-11-06 1997-04-01 Korea Telecommunication Authority Speech segment coding and pitch control methods for speech synthesis systems
US5617539A (en) 1993-10-01 1997-04-01 Vicor, Inc. Multimedia collaboration system with separate data network and A/V network controlled by information transmitting on the data network
US5619583A (en) 1992-02-14 1997-04-08 Texas Instruments Incorporated Apparatus and methods for determining the relative displacement of an object
US5619694A (en) 1993-08-26 1997-04-08 Nec Corporation Case database storage/retrieval system
US5621859A (en) 1994-01-19 1997-04-15 Bbn Corporation Single tree method for grammar directed, very large vocabulary speech recognizer
US5627939A (en) 1993-09-03 1997-05-06 Microsoft Corporation Speech recognition system and method employing data compression
US5634084A (en) 1995-01-20 1997-05-27 Centigram Communications Corporation Abbreviation and acronym/initialism expansion procedures for a text to speech reader
US5636325A (en) 1992-11-13 1997-06-03 International Business Machines Corporation Speech synthesis and analysis of dialects
US5638425A (en) 1992-12-17 1997-06-10 Bell Atlantic Network Services, Inc. Automated directory assistance system using word recognition and phoneme processing method
US5640487A (en) 1993-02-26 1997-06-17 International Business Machines Corporation Building scalable n-gram language models using maximum likelihood maximum entropy n-gram models
US5642464A (en) 1995-05-03 1997-06-24 Northern Telecom Limited Methods and apparatus for noise conditioning in digital speech compression systems using linear predictive coding
US5642519A (en) 1994-04-29 1997-06-24 Sun Microsystems, Inc. Speech interpreter with a unified grammer compiler
US5642466A (en) 1993-01-21 1997-06-24 Apple Computer, Inc. Intonation adjustment in text-to-speech systems
US5644656A (en) 1994-06-07 1997-07-01 Massachusetts Institute Of Technology Method and apparatus for automated text recognition
US5644727A (en) 1987-04-15 1997-07-01 Proprietary Financial Products, Inc. System for the operation and management of one or more financial accounts through the use of a digital communication and computation system for exchange, investment and borrowing
WO1997026612A1 (en) 1996-01-17 1997-07-24 Personal Agents, Inc. Intelligent agents for electronic commerce
US5652884A (en) 1994-11-14 1997-07-29 Object Technology Licensing Corp. Method and apparatus for dynamic update of an existing object in an object editor
US5652828A (en) 1993-03-19 1997-07-29 Nynex Science & Technology, Inc. Automated voice synthesis employing enhanced prosodic treatment of text, spelling of text and rate of annunciation
US5652897A (en) 1993-05-24 1997-07-29 Unisys Corporation Robust language processor for segmenting and parsing-language containing multiple instructions
WO1997029614A1 (en) 1996-02-07 1997-08-14 Advanced Micro Devices, Inc. Directional microphone utilizing spaced-apart omni-directional microphones
US5661787A (en) 1994-10-27 1997-08-26 Pocock; Michael H. System for on-demand remote access to a self-generating audio recording, storage, indexing and transaction system
GB2310559A (en) 1996-02-23 1997-08-27 Nokia Mobile Phones Ltd Loudspeaker housing arrangements
US5664055A (en) 1995-06-07 1997-09-02 Lucent Technologies Inc. CS-ACELP speech compression system with adaptive pitch prediction filter gain based on a measure of periodicity
EP0795811A1 (en) 1996-03-12 1997-09-17 Ncr International Inc. Display system and method of moving a cursor of the display screen
US5670985A (en) 1994-05-09 1997-09-23 Apple Computer, Inc. System and method for adjusting the output of an output device to compensate for ambient illumination
JPH09259063A (en) 1996-03-22 1997-10-03 Fujitsu Ltd Data transmitter-receiver, data transmitter and data receiver
US5675819A (en) 1994-06-16 1997-10-07 Xerox Corporation Document information retrieval using global word co-occurrence patterns
JPH09265457A (en) 1996-03-29 1997-10-07 Hitachi Ltd On-line conversation system
WO1997038488A1 (en) 1996-04-04 1997-10-16 Ericsson Inc. Method for automatically adjusting audio response for improved intelligibility
US5682539A (en) 1994-09-29 1997-10-28 Conrad; Donovan Anticipated meaning natural language interface
US5682475A (en) 1994-12-30 1997-10-28 International Business Machines Corporation Method and system for variable password access
US5684513A (en) 1995-07-17 1997-11-04 Decker; Mark Randall Electronic luminescence keyboard system for a portable device
US5687077A (en) 1991-07-31 1997-11-11 Universal Dynamics Limited Method and apparatus for adaptive control
US5689618A (en) 1991-02-19 1997-11-18 Bright Star Technology, Inc. Advanced tools for speech synchronized animation
US5689287A (en) 1993-10-27 1997-11-18 Xerox Corporation Context-preserving display system using a perspective sheet
US5692205A (en) 1993-12-16 1997-11-25 International Business Machines Corporation Method and system for integration of multimedia presentations within an object oriented user interface
US5696962A (en) 1993-06-24 1997-12-09 Xerox Corporation Method for computerized information retrieval using shallow linguistic analysis
US5699082A (en) 1993-12-30 1997-12-16 International Business Machines Corporation Enhanced program access in a graphical user interface
US5701400A (en) 1995-03-08 1997-12-23 Amado; Carlos Armando Method and apparatus for applying if-then-else rules to data sets in a relational data base and generating from the results of application of said rules a database of diagnostics linked to said data sets to aid executive analysis of financial data
WO1997049044A1 (en) 1996-06-17 1997-12-24 British Telecommunications Public Limited Company Network based access system
US5706442A (en) 1995-12-20 1998-01-06 Block Financial Corporation System for on-line financial services using distributed objects
US5708659A (en) 1993-10-20 1998-01-13 Lsi Logic Corporation Method for hashing in a packet network switching system
US5708822A (en) 1995-05-31 1998-01-13 Oracle Corporation Methods and apparatus for thematic parsing of discourse
US5710886A (en) 1995-06-16 1998-01-20 Sellectsoft, L.C. Electric couponing method and apparatus
US5710922A (en) 1993-06-02 1998-01-20 Apple Computer, Inc. Method for synchronizing and archiving information between computer systems
US5712957A (en) 1995-09-08 1998-01-27 Carnegie Mellon University Locating and correcting erroneously recognized portions of utterances by rescoring based on two n-best lists
US5712949A (en) 1991-01-29 1998-01-27 Sony Corporation Disc reproduction system with sequential reproduction of audio and image data
US5715468A (en) 1994-09-30 1998-02-03 Budzinski; Robert Lucius Memory system for storing and retrieving experience and knowledge with natural language
JPH1031497A (en) 1996-07-18 1998-02-03 Hitachi Ltd Voice conversation control method and voice conversation system
US5717877A (en) 1992-12-23 1998-02-10 Object Licensing Licensing Corporation Object-oriented data access framework system
US5721827A (en) 1996-10-02 1998-02-24 James Logan System for electrically distributing personalized information
US5724406A (en) 1994-03-22 1998-03-03 Ericsson Messaging Systems, Inc. Call processing system and method for providing a variety of messaging services
WO1998009270A1 (en) 1996-08-28 1998-03-05 Via, Inc. Touch screen systems and methods
US5726672A (en) 1994-09-20 1998-03-10 Apple Computer, Inc. System to determine the color of ambient light for adjusting the illumination characteristics of a display
US5724985A (en) 1995-08-02 1998-03-10 Pacesetter, Inc. User interface for an implantable medical device using an integrated digitizer display screen
US5727950A (en) 1996-05-22 1998-03-17 Netsage Corporation Agent based instruction system and method
US5729704A (en) 1993-07-21 1998-03-17 Xerox Corporation User-directed method for operating on an object-based model data structure through a second contextual image
US5729694A (en) 1996-02-06 1998-03-17 The Regents Of The University Of California Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
US5732216A (en) 1996-10-02 1998-03-24 Internet Angles, Inc. Audio message exchange system
US5732390A (en) 1993-06-29 1998-03-24 Sony Corp Speech signal transmitting and receiving apparatus with noise sensitive volume control
US5734791A (en) 1992-12-31 1998-03-31 Apple Computer, Inc. Rapid tree-based method for vector quantization
US5734750A (en) 1991-10-16 1998-03-31 Canon Kabushiki Kaisha Character recognition method and apparatus
US5737734A (en) 1995-09-15 1998-04-07 Infonautics Corporation Query word relevance adjustment in a search of an information retrieval system
US5737487A (en) 1996-02-13 1998-04-07 Apple Computer, Inc. Speaker adaptation based on lateral tying for large-vocabulary continuous speech recognition
US5740143A (en) 1993-06-18 1998-04-14 Sony Corporation Disc reproducing apparatus
US5739451A (en) 1996-12-27 1998-04-14 Franklin Electronic Publishers, Incorporated Hand held electronic music encyclopedia with text and note structure search
US5742705A (en) 1995-06-05 1998-04-21 Parthasarathy; Kannan Method and apparatus for character recognition of handwritten input
JPH10105324A (en) 1996-09-09 1998-04-24 Motorola Inc Intuitive gestuer system graphical user interface
US5745873A (en) 1992-05-01 1998-04-28 Massachusetts Institute Of Technology Speech recognition using final decision based on tentative decisions
US5748974A (en) 1994-12-13 1998-05-05 International Business Machines Corporation Multimodal natural language interface for cross-application tasks
US5748512A (en) 1995-02-28 1998-05-05 Microsoft Corporation Adjusting keyboard
US5749081A (en)