US20160378747A1 - Virtual assistant for media playback - Google Patents
Virtual assistant for media playback Download PDFInfo
- Publication number
- US20160378747A1 US20160378747A1 US14/819,343 US201514819343A US2016378747A1 US 20160378747 A1 US20160378747 A1 US 20160378747A1 US 201514819343 A US201514819343 A US 201514819343A US 2016378747 A1 US2016378747 A1 US 2016378747A1
- Authority
- US
- United States
- Prior art keywords
- user
- media
- user input
- context
- media item
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000004044 response Effects 0.000 claims description 134
- 238000003860 storage Methods 0.000 claims description 68
- 230000001702 transmitter Effects 0.000 claims description 8
- 238000000034 method Methods 0.000 description 146
- 238000004891 communication Methods 0.000 description 66
- 238000003058 natural language processing Methods 0.000 description 54
- 230000000875 corresponding Effects 0.000 description 52
- 238000005111 flow chemistry technique Methods 0.000 description 46
- 230000003287 optical Effects 0.000 description 46
- 230000015572 biosynthetic process Effects 0.000 description 40
- 230000002093 peripheral Effects 0.000 description 40
- 238000003786 synthesis reaction Methods 0.000 description 40
- 230000002194 synthesizing Effects 0.000 description 40
- 238000010586 diagram Methods 0.000 description 32
- 239000000203 mixture Substances 0.000 description 32
- 238000001514 detection method Methods 0.000 description 24
- 230000000007 visual effect Effects 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 16
- 238000009499 grossing Methods 0.000 description 14
- 230000003993 interaction Effects 0.000 description 14
- 230000001413 cellular Effects 0.000 description 10
- 238000006073 displacement reaction Methods 0.000 description 10
- 230000001133 acceleration Effects 0.000 description 8
- 230000003213 activating Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000006011 modification reaction Methods 0.000 description 8
- 230000021317 sensory perception Effects 0.000 description 8
- 230000001960 triggered Effects 0.000 description 8
- 241000227653 Lycopersicon Species 0.000 description 6
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 6
- 239000008186 active pharmaceutical agent Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000001149 cognitive Effects 0.000 description 6
- 230000000295 complement Effects 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 6
- 229940046658 Breath-Away Drugs 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 230000001419 dependent Effects 0.000 description 4
- 230000000881 depressing Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000000977 initiatory Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920001690 polydopamine Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000035807 sensation Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 230000001755 vocal Effects 0.000 description 4
- 229920001746 Electroactive polymer Polymers 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 2
- 241001533590 Junonia Species 0.000 description 2
- 241001422033 Thestylus Species 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001808 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003111 delayed Effects 0.000 description 2
- 230000001809 detectable Effects 0.000 description 2
- 230000002708 enhancing Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000004424 eye movement Effects 0.000 description 2
- 235000013410 fast food Nutrition 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 2
- 230000001537 neural Effects 0.000 description 2
- 230000002085 persistent Effects 0.000 description 2
- 235000013550 pizza Nutrition 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003595 spectral Effects 0.000 description 2
- 230000000153 supplemental Effects 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
Images
Classifications
-
- G06F17/28—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/16—Sound input; Sound output
- G06F3/167—Audio in a user interface, e.g. using voice commands for navigating, audio feedback
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/40—Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
- G06F16/48—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
-
- G06F17/30684—
-
- G06F17/30864—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/10—Text processing
- G06F40/166—Editing, e.g. inserting or deleting
- G06F40/169—Annotation, e.g. comment data or footnotes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/279—Recognition of textual entities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/30—Semantic analysis
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/26—Speech to text systems
Abstract
An exemplary method for identifying media may include receiving user input associated with a request for media, where that user input includes unstructured natural language speech including one or more words; identifying at least one context associated with the user input; causing a search for the media based on the at least one context and the user input; determining, based on the at least one context and the user input, at least one media item that satisfies the request; and in accordance with a determination that the at least one media item satisfies the request, obtaining the at least one media item.
Description
- This application claims priority to U.S. Provisional Patent Application No. 62/186,182, entitled “Virtual Assistant for Media Playback,” filed Jun. 29, 2015, the content of which is hereby incorporated by reference in its entirety for all purposes.
- The present disclosure relates generally to media playback, and more specifically to a virtual assistant used to facilitate media playback.
- Intelligent automated assistants (or digital assistants) provide a beneficial interface between human users and electronic devices. Such assistants allow users to interact with devices or systems using natural language in spoken and/or text forms. For example, a user can access the services of an electronic device by providing a spoken user request to a digital assistant associated with the electronic device. The digital assistant can interpret the user's intent from the spoken user request and operationalize the user's intent into tasks. The tasks can then be performed by executing one or more services of the electronic device and a relevant output can be returned to the user in natural language form.
- When managing music or other media, a digital assistant can be helpful in playing back specific media, particularly in a hands-free environment. A digital assistant can respond effectively to a request to play a specific media item, such as an album or a song identified specifically by title or by artist. However, digital assistants have not been useful in discovering media based on nonspecific, unstructured natural language requests—for example, a request for a song from a popular movie.
- Some techniques for discovering media based on a nonspecific, unstructured natural language request, however, are generally cumbersome and inefficient. For example, existing techniques use a complex and time-consuming user interface, which may include multiple key presses or keystrokes. The user must perform his or her own research to determine which specific media he or she is seeking, then attempt to obtain that media. Both of those steps may be impractical or impossible in certain circumstances, such as when the user is operating a motor vehicle or has his or her hands full. Existing techniques require more time than necessary, wasting user time and device energy. This latter consideration is particularly important in battery-operated devices.
- Accordingly, there is a need for electronic devices with faster, more efficient methods and interfaces for discovering media based on a nonspecific, unstructured natural language request. Such methods and interfaces optionally complement or replace other methods for discovering media based on a nonspecific, unstructured natural language request. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated computing devices, such methods and interfaces conserve power and increase the time between battery charges.
- In some embodiments, a method for identifying media includes: at a device with one or more processors, memory, and a microphone: receiving user input associated with a request for media, the user input including unstructured natural language speech including one or more words; identifying at least one context associated with the user input; causing a search for the media based on the at least one context and the user input; determining, based on the at least one context and the user input, at least one media item that satisfies the request; and, in accordance with a determination that the at least one media item satisfies the request, obtaining the at least one media item.
- In some embodiments, an electronic device includes: a display; a memory; a microphone; a processor coupled to the display, the memory, and the microphone; the processor configured to: receive user input associated with a request for media, the user input including unstructured natural language speech including one or more words; identify at least one context associated with the user input; cause a search for the media based on the at least one context and the user input; determine, based on the at least one context and the user input, at least one media item that satisfies the request; and, in accordance with a determination that the at least one media item satisfies the request, obtain the at least one media item.
- In some embodiments, a non-transitory computer-readable storage medium stores one or more programs, the one or more programs including instructions, which when executed by an electronic device, cause the electronic device to: receive user input associated with a request for media, the user input including unstructured natural language speech including one or more words; identify at least one context associated with the user input; cause a search for the media based on the at least one context and the user input; determine, based on the at least one context and the user input, at least one media item that satisfies the request; and in accordance with a determination that the at least one media item satisfies the request, obtain the at least one media item.
- In some embodiments, a transitory computer-readable storage medium stores one or more programs, the one or more programs including instructions, which when executed by an electronic device, cause the electronic device to: receive user input associated with a request for media, the user input including unstructured natural language speech including one or more words; identify at least one context associated with the user input; cause a search for the media based on the at least one context and the user input; determine, based on the at least one context and the user input, at least one media item that satisfies the request; and, in accordance with a determination that the at least one media item satisfies the request, obtain the at least one media item.
- In some embodiments, a system utilizes an electronic device with a display, where the system includes: means for receiving user input associated with a request for media, the user input including unstructured natural language speech including one or more words; means for identifying at least one context associated with the user input; means for causing a search for the media based on the at least one context and the user input; means for determining, based on the at least one context and the user input, at least one media item that satisfies the request; and, in accordance with a determination that the at least one media item satisfies the request, means for obtaining the at least one media item.
- In some embodiments, an electronic device includes: a processing unit that includes a receiving unit, an identifying unit, a causing unit, a determining unit, and an obtaining unit, the processing unit configured to: receive, using the receiving unit, user input associated with a request for media, the user input including unstructured natural language speech including one or more words; identify, using the identifying unit, at least one context associated with the user input; cause, using the causing unit, a search for the media based on the at least one context and the user input; determine, using the determining unit, based on the at least one context and the user input, at least one media item that satisfies the request; and, in accordance with a determination that the at least one media item satisfies the request, obtain, using the obtaining unit, the at least one media item.
- Executable instructions for performing these functions are, optionally, included in a non-transitory computer-readable storage medium or other computer program product configured for execution by one or more processors. Executable instructions for performing these functions are, optionally, included in a transitory computer-readable storage medium or other computer program product configured for execution by one or more processors.
- Thus, devices are provided with faster, more efficient methods and interfaces for discovering media based on a nonspecific, unstructured natural language request, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace other methods for discovering media based on a nonspecific, unstructured natural language request.
- For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
-
FIG. 1 is a block diagram illustrating a system and environment for implementing a digital assistant according to various examples. -
FIG. 2A is a block diagram illustrating a portable multifunction device implementing the client-side portion of a digital assistant according to various examples. -
FIG. 2B is a block diagram illustrating exemplary components for event handling according to various examples. -
FIG. 3 illustrates a portable multifunction device implementing the client-side portion of a digital assistant according to various examples. -
FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface according to various examples. -
FIG. 5A illustrates an exemplary user interface for a menu of applications on a portable multifunction device according to various examples. -
FIG. 5B illustrates an exemplary user interface for a multifunction device with a touch-sensitive surface that is separate from the display according to various examples. -
FIG. 6A illustrates a personal electronic device according to various examples. -
FIG. 6B is a block diagram illustrating a personal electronic device according to various examples. -
FIG. 7A is a block diagram illustrating a digital assistant system or a server portion thereof according to various examples. -
FIG. 7B illustrates the functions of the digital assistant shown inFIG. 7A according to various examples. -
FIG. 7C illustrates a portion of an ontology according to various examples. -
FIGS. 8A-8Q illustrate exemplary user interfaces for a personal electronic device in accordance with some embodiments.FIG. 8I is intentionally omitted to avoid any confusion between the capital letter I and the numeral 1 (one), andFIG. 8O is intentionally omitted to avoid any confusion between the capital letter O and the numeral 0 (zero). -
FIGS. 9A-9C illustrate a process for operating a digital assistant for media playback, according to various examples. -
FIG. 10 illustrates a functional block diagram of an electronic device according to various examples. - The following description sets forth exemplary methods, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.
- There is a need for electronic devices that provide efficient methods and interfaces for discovering media based on a nonspecific, unstructured natural language request. As described above, media discovery techniques are not as effective as they might be, such as with users with slow or unusual speech patterns. A digital assistant can reduce the cognitive burden on a user who discovers media based on a nonspecific, unstructured natural language request, thereby enhancing productivity. Further, such techniques can reduce processor and battery power otherwise wasted on redundant user inputs.
- Below,
FIGS. 1, 2A-2B, 3, 4, 5A-5B and 6A-6B provide a description of exemplary devices for performing the techniques for discovering media based on a nonspecific, unstructured natural language request.FIG. 6A-6B illustrate exemplary user interfaces for discovering media based on a nonspecific, unstructured natural language request.FIGS. 7A-7C are block diagrams illustrating a digital assistant system or a server portion thereof, and a portion of an ontology associated with the digital assistant system.FIGS. 8A-8B are flow diagrams illustrating methods of discovering media based on a nonspecific, unstructured natural language request in accordance with some embodiments. - Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first touch could be termed a second touch, and, similarly, a second touch could be termed a first touch, without departing from the scope of the various described embodiments. The first touch and the second touch are both touches, but they are not the same touch.
- The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a”, “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
- The term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
- Embodiments of electronic devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, Calif. Other portable electronic devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch screen displays and/or touchpads), are, optionally, used. It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touchpad).
- In the discussion that follows, an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick.
- The device may support a variety of applications, such as one or more of the following: a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
- The various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface. One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.
-
FIG. 1 illustrates a block diagram ofsystem 100 according to various examples. In some examples,system 100 can implement a digital assistant. The terms “digital assistant,” “virtual assistant,” “intelligent automated assistant,” or “automatic digital assistant” can refer to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent. For example, to act on an inferred user intent, the system can perform one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., speech) and/or visual form. - Specifically, a digital assistant can be capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request can seek either an informational answer or performance of a task by the digital assistant. A satisfactory response to the user request can be a provision of the requested informational answer, a performance of the requested task, or a combination of the two. For example, a user can ask the digital assistant a question, such as “Where am I right now?” Based on the user's current location, the digital assistant can answer, “You are in Central Park near the west gate.” The user can also request the performance of a task, for example, “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant can acknowledge the request by saying “Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user's friends listed in the user's electronic address book. During performance of a requested task, the digital assistant can sometimes interact with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant can also provide responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.
- As shown in
FIG. 1 , in some examples, a digital assistant can be implemented according to a client-server model. The digital assistant can include client-side portion 102 (hereafter “DAclient 102”) executed onuser device 104 and server-side portion 106 (hereafter “DA server 106”) executed onserver system 108. DAclient 102 can communicate withDA server 106 through one ormore networks 110. DAclient 102 can provide client-side functionalities such as user-facing input and output processing and communication withDA server 106. DAserver 106 can provide server-side functionalities for any number of DAclients 102 each residing on arespective user device 104. - In some examples,
DA server 106 can include client-facing I/O interface 112, one ormore processing modules 114, data andmodels 116, and I/O interface toexternal services 118. The client-facing I/O interface 112 can facilitate the client-facing input and output processing forDA server 106. One ormore processing modules 114 can utilize data andmodels 116 to process speech input and determine the user's intent based on natural language input. Further, one ormore processing modules 114 perform task execution based on inferred user intent. In some examples,DA server 106 can communicate withexternal services 120 through network(s) 110 for task completion or information acquisition. I/O interface toexternal services 118 can facilitate such communications. -
User device 104 can be any suitable electronic device. For example, user devices can be a portable multifunctional device (e.g.,device 200, described below with reference toFIG. 2A ), a multifunctional device (e.g.,device 400, described below with reference toFIG. 4 ), or a personal electronic device (e.g.,device 600, described below with reference toFIG. 6A-B .) A portable multifunctional device can be, for example, a mobile telephone that also contains other functions, such as PDA and/or music player functions. Specific examples of portable multifunction devices can include the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, Calif. Other examples of portable multifunction devices can include, without limitation, laptop or tablet computers. Further, in some examples,user device 104 can be a non-portable multifunctional device. In particular,user device 104 can be a desktop computer, a game console, a television, or a television set-top box. In some examples,user device 104 can include a touch-sensitive surface (e.g., touch screen displays and/or touchpads). Further,user device 104 can optionally include one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick. Various examples of electronic devices, such as multifunctional devices, are described below in greater detail. - Examples of communication network(s) 110 can include local area networks (LAN) and wide area networks (WAN), e.g., the Internet. Communication network(s) 110 can be implemented using any known network protocol, including various wired or wireless protocols, such as, for example, Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any other suitable communication protocol.
-
Server system 108 can be implemented on one or more standalone data processing apparatus or a distributed network of computers. In some examples,server system 108 can also employ various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources ofserver system 108. - In some examples,
user device 104 can communicate withDA server 106 viasecond user device 122.Second user device 122 can be similar or identical touser device 104. For example,second user device 122 can be similar todevices FIGS. 2A, 4, and 6A -B. User device 104 can be configured to communicatively couple tosecond user device 122 via a direct communication connection, such as Bluetooth, NFC, BTLE, or the like, or via a wired or wireless network, such as a local Wi-Fi network. In some examples,second user device 122 can be configured to act as a proxy betweenuser device 104 andDA server 106. For example, DAclient 102 ofuser device 104 can be configured to transmit information (e.g., a user request received at user device 104) to DAserver 106 viasecond user device 122. DAserver 106 can process the information and return relevant data (e.g., data content responsive to the user request) touser device 104 viasecond user device 122. - In some examples,
user device 104 can be configured to communicate abbreviated requests for data tosecond user device 122 to reduce the amount of information transmitted fromuser device 104.Second user device 122 can be configured to determine supplemental information to add to the abbreviated request to generate a complete request to transmit to DAserver 106. This system architecture can advantageously allowuser device 104 having limited communication capabilities and/or limited battery power (e.g., a watch or a similar compact electronic device) to access services provided byDA server 106 by usingsecond user device 122, having greater communication capabilities and/or battery power (e.g., a mobile phone, laptop computer, tablet computer, or the like), as a proxy toDA server 106. While only twouser devices FIG. 1 , it should be appreciated thatsystem 100 can include any number and type of user devices configured in this proxy configuration to communicate withDA server system 106. - Although the digital assistant shown in
FIG. 1 can include both a client-side portion (e.g., DA client 102) and a server-side portion (e.g., DA server 106), in some examples, the functions of a digital assistant can be implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different implementations. For instance, in some examples, the DA client can be a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to a backend server. - Attention is now directed toward embodiments of electronic devices for implementing the client-side portion of a digital assistant.
FIG. 2A is a block diagram illustrating portablemultifunction device 200 with touch-sensitive display system 212 in accordance with some embodiments. Touch-sensitive display 212 is sometimes called a “touch screen” for convenience and is sometimes known as or called a “touch-sensitive display system.”Device 200 includes memory 202 (which optionally includes one or more computer-readable storage mediums),memory controller 222, one or more processing units (CPUs) 220, peripherals interface 218,RF circuitry 208,audio circuitry 210,speaker 211,microphone 213, input/output (I/O)subsystem 206, otherinput control devices 216, andexternal port 224.Device 200 optionally includes one or moreoptical sensors 264.Device 200 optionally includes one or morecontact intensity sensors 265 for detecting intensity of contacts on device 200 (e.g., a touch-sensitive surface such as touch-sensitive display system 212 of device 200).Device 200 optionally includes one or moretactile output generators 267 for generating tactile outputs on device 200 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 212 ofdevice 200 ortouchpad 455 of device 400). These components optionally communicate over one or more communication buses orsignal lines 203. - As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).
- As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
- It should be appreciated that
device 200 is only one example of a portable multifunction device, and thatdevice 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown inFIG. 2A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application-specific integrated circuits. -
Memory 202 may include one or more computer-readable storage mediums. The computer-readable storage mediums may be tangible and non-transitory.Memory 202 may include high-speed random access memory and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.Memory controller 222 may control access tomemory 202 by other components ofdevice 200. - In some examples, a non-transitory computer-readable storage medium of
memory 202 can be used to store instructions (e.g., for performing aspects ofprocess 900, described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing aspects ofprocess 900, described below) can be stored on a non-transitory computer-readable storage medium (not shown) of theserver system 108 or can be divided between the non-transitory computer-readable storage medium ofmemory 202 and the non-transitory computer-readable storage medium ofserver system 108. In the context of this document, a “non-transitory computer-readable storage medium” can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device. - Peripherals interface 218 can be used to couple input and output peripherals of the device to
CPU 220 andmemory 202. The one ormore processors 220 run or execute various software programs and/or sets of instructions stored inmemory 202 to perform various functions fordevice 200 and to process data. In some embodiments, peripherals interface 218,CPU 220, andmemory controller 222 may be implemented on a single chip, such aschip 204. In some other embodiments, they may be implemented on separate chips. - RF (radio frequency)
circuitry 208 receives and sends RF signals, also called electromagnetic signals.RF circuitry 208 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals.RF circuitry 208 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth.RF circuitry 208 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. TheRF circuitry 208 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document. -
Audio circuitry 210,speaker 211, andmicrophone 213 provide an audio interface between a user anddevice 200.Audio circuitry 210 receives audio data fromperipherals interface 218, converts the audio data to an electrical signal, and transmits the electrical signal tospeaker 211.Speaker 211 converts the electrical signal to human-audible sound waves.Audio circuitry 210 also receives electrical signals converted bymicrophone 213 from sound waves.Audio circuitry 210 converts the electrical signal to audio data and transmits the audio data to peripherals interface 218 for processing. Audio data may be retrieved from and/or transmitted tomemory 202 and/orRF circuitry 208 byperipherals interface 218. In some embodiments,audio circuitry 210 also includes a headset jack (e.g., 312,FIG. 3 ). The headset jack provides an interface betweenaudio circuitry 210 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone). - I/
O subsystem 206 couples input/output peripherals ondevice 200, such astouch screen 212 and otherinput control devices 216, toperipherals interface 218. I/O subsystem 206 optionally includesdisplay controller 256,optical sensor controller 258,intensity sensor controller 259,haptic feedback controller 261, and one ormore input controllers 260 for other input or control devices. The one ormore input controllers 260 receive/send electrical signals from/to otherinput control devices 216. The otherinput control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 260 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 308,FIG. 3 ) optionally include an up/down button for volume control ofspeaker 211 and/ormicrophone 213. The one or more buttons optionally include a push button (e.g., 306,FIG. 3 ). - A quick press of the push button may disengage a lock of
touch screen 212 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 306) may turn power todevice 200 on or off. The user may be able to customize a functionality of one or more of the buttons.Touch screen 212 is used to implement virtual or soft buttons and one or more soft keyboards. - Touch-
sensitive display 212 provides an input interface and an output interface between the device and a user.Display controller 256 receives and/or sends electrical signals from/totouch screen 212.Touch screen 212 displays visual output to the user. The visual output may include graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output may correspond to user-interface objects. -
Touch screen 212 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact.Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202) detect contact (and any movement or breaking of the contact) ontouch screen 212 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed ontouch screen 212. In an exemplary embodiment, a point of contact betweentouch screen 212 and the user corresponds to a finger of the user. -
Touch screen 212 may use LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies may be used in other embodiments.Touch screen 212 anddisplay controller 256 may detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact withtouch screen 212. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, Calif. - A touch-sensitive display in some embodiments of
touch screen 212 may be analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However,touch screen 212 displays visual output fromdevice 200, whereas touch-sensitive touchpads do not provide visual output. - A touch-sensitive display in some embodiments of
touch screen 212 may be as described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety. -
Touch screen 212 may have a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user may make contact withtouch screen 212 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user. - In some embodiments, in addition to the touch screen,
device 200 may include a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad may be a touch-sensitive surface that is separate fromtouch screen 212 or an extension of the touch-sensitive surface formed by the touch screen. -
Device 200 also includespower system 262 for powering the various components.Power system 262 may include a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices. -
Device 200 may also include one or moreoptical sensors 264.FIG. 2A shows an optical sensor coupled tooptical sensor controller 258 in I/O subsystem 206.Optical sensor 264 may include charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors.Optical sensor 264 receives light from the environment, projected through one or more lenses, and converts the light to data representing an image. In conjunction with imaging module 243 (also called a camera module),optical sensor 264 may capture still images or video. In some embodiments, an optical sensor is located on the back ofdevice 200, oppositetouch screen display 212 on the front of the device so that the touch screen display may be used as a viewfinder for still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device so that the user's image may be obtained for video conferencing while the user views the other video conference participants on the touch screen display. In some embodiments, the position ofoptical sensor 264 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a singleoptical sensor 264 may be used along with the touch screen display for both video conferencing and still and/or video image acquisition. -
Device 200 optionally also includes one or morecontact intensity sensors 265.FIG. 2A shows a contact intensity sensor coupled tointensity sensor controller 259 in I/O subsystem 206.Contact intensity sensor 265 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface).Contact intensity sensor 265 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment. In some embodiments, at least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212). In some embodiments, at least one contact intensity sensor is located on the back ofdevice 200, oppositetouch screen display 212, which is located on the front ofdevice 200. -
Device 200 may also include one ormore proximity sensors 266.FIG. 2A showsproximity sensor 266 coupled toperipherals interface 218. Alternately,proximity sensor 266 may be coupled toinput controller 260 in I/O subsystem 206.Proximity sensor 266 may perform as described in U.S. patent application Ser. No. 11/241,839, “Proximity Detector In Handheld Device”; Ser. No. 11/240,788, “Proximity Detector In Handheld Device”; Ser. No. 11/620,702, “Using Ambient Light Sensor To Augment Proximity Sensor Output”; Ser. No. 11/586,862, “Automated Response To And Sensing Of User Activity In Portable Devices”; and Ser. No. 11/638,251, “Methods And Systems For Automatic Configuration Of Peripherals,” which are hereby incorporated by reference in their entirety. In some embodiments, the proximity sensor turns off and disablestouch screen 212 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call). -
Device 200 optionally also includes one or moretactile output generators 267.FIG. 2A shows a tactile output generator coupled tohaptic feedback controller 261 in I/O subsystem 206.Tactile output generator 267 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device).Contact intensity sensor 265 receives tactile feedback generation instructions fromhaptic feedback module 233 and generates tactile outputs ondevice 200 that are capable of being sensed by a user ofdevice 200. In some embodiments, at least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 200) or laterally (e.g., back and forth in the same plane as a surface of device 200). In some embodiments, at least one tactile output generator sensor is located on the back ofdevice 200, oppositetouch screen display 212, which is located on the front ofdevice 200. -
Device 200 may also include one ormore accelerometers 268.FIG. 2A showsaccelerometer 268 coupled toperipherals interface 218. Alternately,accelerometer 268 may be coupled to aninput controller 260 in I/O subsystem 206.Accelerometer 268 may perform as described in U.S. Patent Publication No. 20050190059, “Acceleration-based Theft Detection System for Portable Electronic Devices,” and U.S. Patent Publication No. 20060017692, “Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer,” both of which are incorporated by reference herein in their entirety. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers.Device 200 optionally includes, in addition to accelerometer(s) 268, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) ofdevice 200. - In some embodiments, the software components stored in
memory 202 includeoperating system 226, communication module (or set of instructions) 228, contact/motion module (or set of instructions) 230, graphics module (or set of instructions) 232, text input module (or set of instructions) 234, Global Positioning System (GPS) module (or set of instructions) 235, DigitalAssistant Client Module 229, and applications (or sets of instructions) 236. Further,memory 202 can store data and models, such as user data andmodels 231. Furthermore, in some embodiments, memory 202 (FIG. 2A ) or 470 (FIG. 4 ) stores device/globalinternal state 257, as shown inFIGS. 2A and 4 . Device/globalinternal state 257 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions oftouch screen display 212; sensor state, including information obtained from the device's various sensors andinput control devices 216; and location information concerning the device's location and/or attitude. - Operating system 226 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
-
Communication module 228 facilitates communication with other devices over one or moreexternal ports 224 and also includes various software components for handling data received byRF circuitry 208 and/orexternal port 224. External port 224 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices. - Contact/
motion module 230 optionally detects contact with touch screen 212 (in conjunction with display controller 256) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 230 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 230 anddisplay controller 256 detect contact on a touchpad. - In some embodiments, contact/
motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 200). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter). - Contact/
motion module 230 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event. -
Graphics module 232 includes various known software components for rendering and displaying graphics ontouch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like. - In some embodiments,
graphics module 232 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code.Graphics module 232 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to displaycontroller 256. -
Haptic feedback module 233 includes various software components for generating instructions used by tactile output generator(s) 267 to produce tactile outputs at one or more locations ondevice 200 in response to user interactions withdevice 200. -
Text input module 234, which may be a component ofgraphics module 232, provides soft keyboards for entering text in various applications (e.g.,contacts 237,e mail 240,IM 241,browser 247, and any other application that needs text input). -
GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to telephone 238 for use in location-based dialing; tocamera 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets). - Digital
assistant client module 229 can include various client-side digital assistant instructions to provide the client-side functionalities of the digital assistant. For example, digitalassistant client module 229 can be capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g.,microphone 213, accelerometer(s) 268, touch-sensitive display system 212, optical sensor(s) 229, otherinput control devices 216, etc.) of portablemultifunction device 200. Digitalassistant client module 229 can also be capable of providing output in audio (e.g., speech output), visual, and/or tactile forms through various output interfaces (e.g.,speaker 211, touch-sensitive display system 212, tactile output generator(s) 267, etc.) of portablemultifunction device 200. For example, output can be provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, digitalassistant client module 229 can communicate withDA server 106 usingRF circuitry 208. - User data and
models 231 can include various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from the user's electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant. Further, user data andmodels 231 can includes various models (e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.) for processing user input and determining user intent. - In some examples, digital
assistant client module 229 can utilize the various sensors, subsystems, and peripheral devices of portablemultifunction device 200 to gather additional information from the surrounding environment of theportable multifunction device 200 to establish a context associated with a user, the current user interaction, and/or the current user input. In some examples, digitalassistant client module 229 can provide the contextual information or a subset thereof with the user input toDA server 106 to help infer the user's intent. In some examples, the digital assistant can also use the contextual information to determine how to prepare and deliver outputs to the user. Contextual information can be referred to as context data. - In some examples, the contextual information that accompanies the user input can include sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some examples, the contextual information can also include the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc. In some examples, information related to the software state of
DA server 106, e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., and of portablemultifunction device 200 can be provided toDA server 106 as contextual information associated with a user input. - In some examples, the digital
assistant client module 229 can selectively provide information (e.g., user data 231) stored on theportable multifunction device 200 in response to requests fromDA server 106. In some examples, digitalassistant client module 229 can also elicit additional input from the user via a natural language dialogue or other user interfaces upon request byDA server 106. Digitalassistant client module 229 can pass the additional input toDA server 106 to helpDA server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request. - A more detailed description of a digital assistant is described below with reference to
FIGS. 7A-C . It should be recognized that digitalassistant client module 229 can include any number of the sub-modules ofdigital assistant module 726 described below. -
Applications 236 may include the following modules (or sets of instructions), or a subset or superset thereof: -
- Contacts module 237 (sometimes called an address book or contact list);
-
Telephone module 238; -
Video conference module 239; -
E-mail client module 240; - Instant messaging (IM)
module 241; -
Workout support module 242; -
Camera module 243 for still and/or video images; -
Image management module 244; - Video player module;
- Music player module;
-
Browser module 247; -
Calendar module 248; -
Widget modules 249, which may include one or more of: weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, dictionary widget 249-5, and other widgets obtained by the user, as well as user-created widgets 249-6; -
Widget creator module 250 for making user-created widgets 249-6; -
Search module 251; - Video and
music player module 252, which merges video player module and music player module; -
Notes module 253; -
Map module 254; and/or -
Online video module 255.
- Examples of
other applications 236 that may be stored inmemory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication. - In conjunction with
touch screen 212,display controller 256, contact/motion module 230,graphics module 232, andtext input module 234,contacts module 237 may be used to manage an address book or contact list (e.g., stored in applicationinternal state 292 ofcontacts module 237 inmemory 202 or memory 470), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications bytelephone 238,video conference module 239,e-mail 240, orIM 241; and so forth. - In conjunction with
RF circuitry 208,audio circuitry 210,speaker 211,microphone 213,touch screen 212,display controller 256, contact/motion module 230,graphics module 232, andtext input module 234,telephone module 238 may be used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers incontacts module 237, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication may use any of a plurality of communications standards, protocols, and technologies. - In conjunction with
RF circuitry 208,audio circuitry 210,speaker 211,microphone 213,touch screen 212,display controller 256,optical sensor 264,optical sensor controller 258, contact/motion module 230,graphics module 232,text input module 234,contacts module 237, andtelephone module 238,video conference module 239 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions. - In conjunction with
RF circuitry 208,touch screen 212,display controller 256, contact/motion module 230,graphics module 232, andtext input module 234,e-mail client module 240 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction withimage management module 244,e-mail client module 240 makes it very easy to create and send e-mails with still or video images taken withcamera module 243. - In conjunction with
RF circuitry 208,touch screen 212,display controller 256, contact/motion module 230,graphics module 232, andtext input module 234, theinstant messaging module 241 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages may include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS). - In conjunction with
RF circuitry 208,touch screen 212,display controller 256, contact/motion module 230,graphics module 232,text input module 234,GPS module 235,map module 254, and music player module,workout support module 242 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data. - In conjunction with
touch screen 212,display controller 256, optical sensor(s) 264,optical sensor controller 258, contact/motion module 230,graphics module 232, andimage management module 244,camera module 243 includes executable instructions to capture still images or video (including a video stream) and store them intomemory 202, modify characteristics of a still image or video, or delete a still image or video frommemory 202. - In conjunction with
touch screen 212,display controller 256, contact/motion module 230,graphics module 232,text input module 234, andcamera module 243,image management module 244 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images. - In conjunction with
RF circuitry 208,touch screen 212,display controller 256, contact/motion module 230,graphics module 232, andtext input module 234,browser module 247 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages. - In conjunction with
RF circuitry 208,touch screen 212,display controller 256, contact/motion module 230,graphics module 232,text input module 234,e-mail client module 240, andbrowser module 247,calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions. - In conjunction with
RF circuitry 208,touch screen 212,display controller 256, contact/motion module 230,graphics module 232,text input module 234, andbrowser module 247,widget modules 249 are mini-applications that may be downloaded and used by a user (e.g., weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, and dictionary widget 249-5) or created by the user (e.g., user-created widget 249-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets). - In conjunction with
RF circuitry 208,touch screen 212,display controller 256, contact/motion module 230,graphics module 232,text input module 234, andbrowser module 247, thewidget creator module 250 may be used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget). - In conjunction with
touch screen 212,display controller 256, contact/motion module 230,graphics module 232, andtext input module 234,search module 251 includes executable instructions to search for text, music, sound, image, video, and/or other files inmemory 202 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions. - In conjunction with
touch screen 212,display controller 256, contact/motion module 230,graphics module 232,audio circuitry 210,speaker 211,RF circuitry 208, andbrowser module 247, video andmusic player module 252 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., ontouch screen 212 or on an external, connected display via external port 224). In some embodiments,device 200 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.). - In conjunction with
touch screen 212,display controller 256, contact/motion module 230,graphics module 232, andtext input module 234, notesmodule 253 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions. - In conjunction with
RF circuitry 208,touch screen 212,display controller 256, contact/motion module 230,graphics module 232,text input module 234,GPS module 235, andbrowser module 247,map module 254 may be used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions. - In conjunction with
touch screen 212,display controller 256, contact/motion module 230,graphics module 232,audio circuitry 210,speaker 211,RF circuitry 208,text input module 234,e-mail client module 240, andbrowser module 247,online video module 255 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 224), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments,instant messaging module 241, rather thane-mail client module 240, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety. - Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise rearranged in various embodiments. For example, video player module may be combined with music player module into a single module (e.g., video and
music player module 252,FIG. 2A ). In some embodiments,memory 202 may store a subset of the modules and data structures identified above. Furthermore,memory 202 may store additional modules and data structures not described above. - In some embodiments,
device 200 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation ofdevice 200, the number of physical input control devices (such as push buttons, dials, and the like) ondevice 200 may be reduced. - The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates
device 200 to a main, home, or root menu from any user interface that is displayed ondevice 200. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad. -
FIG. 2B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments. In some embodiments, memory 202 (FIG. 2A ) or 470 (FIG. 4 ) includes event sorter 270 (e.g., in operating system 226) and a respective application 236-1 (e.g., any of the aforementioned applications 237-251, 255, 480-490). -
Event sorter 270 receives event information and determines the application 236-1 andapplication view 291 of application 236-1 to which to deliver the event information.Event sorter 270 includes event monitor 271 andevent dispatcher module 274. In some embodiments, application 236-1 includes applicationinternal state 292, which indicates the current application view(s) displayed on touch-sensitive display 212 when the application is active or executing. In some embodiments, device/globalinternal state 257 is used byevent sorter 270 to determine which application(s) is (are) currently active, and applicationinternal state 292 is used byevent sorter 270 to determineapplication views 291 to which to deliver event information. - In some embodiments, application
internal state 292 includes additional information, such as one or more of: resume information to be used when application 236-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 236-1, a state queue for enabling the user to go back to a prior state or view of application 236-1, and a redo/undo queue of previous actions taken by the user. -
Event monitor 271 receives event information fromperipherals interface 218. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 212, as part of a multi-touch gesture). Peripherals interface 218 transmits information it receives from I/O subsystem 206 or a sensor, such asproximity sensor 266, accelerometer(s) 268, and/or microphone 213 (through audio circuitry 210). Information that peripherals interface 218 receives from I/O subsystem 206 includes information from touch-sensitive display 212 or a touch-sensitive surface. - In some embodiments, event monitor 271 sends requests to the peripherals interface 218 at predetermined intervals. In response, peripherals interface 218 transmits event information. In other embodiments, peripherals interface 218 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
- In some embodiments,
event sorter 270 also includes a hitview determination module 272 and/or an active eventrecognizer determination module 273. - Hit
view determination module 272 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 212 displays more than one view. Views are made up of controls and other elements that a user can see on the display. - Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected may correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected may be called the hit view, and the set of events that are recognized as proper inputs may be determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
- Hit
view determination module 272 receives information related to sub events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hitview determination module 272 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hitview determination module 272, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view. - Active event
recognizer determination module 273 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active eventrecognizer determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active eventrecognizer determination module 273 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views. -
Event dispatcher module 274 dispatches the event information to an event recognizer (e.g., event recognizer 280). In embodiments including active eventrecognizer determination module 273,event dispatcher module 274 delivers the event information to an event recognizer determined by active eventrecognizer determination module 273. In some embodiments,event dispatcher module 274 stores in an event queue the event information, which is retrieved by arespective event receiver 282. - In some embodiments,
operating system 226 includesevent sorter 270. Alternatively, application 236-1 includesevent sorter 270. In yet other embodiments,event sorter 270 is a stand-alone module, or a part of another module stored inmemory 202, such as contact/motion module 230. - In some embodiments, application 236-1 includes a plurality of
event handlers 290 and one or more application views 291, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Eachapplication view 291 of the application 236-1 includes one ormore event recognizers 280. Typically, arespective application view 291 includes a plurality ofevent recognizers 280. In other embodiments, one or more ofevent recognizers 280 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 236-1 inherits methods and other properties. In some embodiments, arespective event handler 290 includes one or more of:data updater 276,object updater 277,GUI updater 278, and/orevent data 279 received fromevent sorter 270.Event handler 290 may utilize or calldata updater 276,object updater 277, orGUI updater 278 to update the applicationinternal state 292. Alternatively, one or more of the application views 291 include one or morerespective event handlers 290. Also, in some embodiments, one or more ofdata updater 276,object updater 277, andGUI updater 278 are included in arespective application view 291. - A
respective event recognizer 280 receives event information (e.g., event data 279) fromevent sorter 270 and identifies an event from the event information.Event recognizer 280 includesevent receiver 282 andevent comparator 284. In some embodiments,event recognizer 280 also includes at least a subset of:metadata 283, and event delivery instructions 288 (which may include sub-event delivery instructions). -
Event receiver 282 receives event information fromevent sorter 270. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information may also include speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device. -
Event comparator 284 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub event, or determines or updates the state of an event or sub-event. In some embodiments,event comparator 284 includesevent definitions 286.Event definitions 286 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (287-1), event 2 (287-2), and others. In some embodiments, sub-events in an event (287) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (287-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (287-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 212, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associatedevent handlers 290. - In some embodiments, event definition 287 includes a definition of an event for a respective user-interface object. In some embodiments,
event comparator 284 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 212, when a touch is detected on touch-sensitive display 212,event comparator 284 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with arespective event handler 290, the event comparator uses the result of the hit test to determine whichevent handler 290 should be activated. For example,event comparator 284 selects an event handler associated with the sub-event and the object triggering the hit test. - In some embodiments, the definition for a respective event (287) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
- When a
respective event recognizer 280 determines that the series of sub-events do not match any of the events inevent definitions 286, therespective event recognizer 280 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture. - In some embodiments, a
respective event recognizer 280 includesmetadata 283 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments,metadata 283 includes configurable properties, flags, and/or lists that indicate how event recognizers may interact, or are enabled to interact, with one another. In some embodiments,metadata 283 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy. - In some embodiments, a
respective event recognizer 280 activatesevent handler 290 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, arespective event recognizer 280 delivers event information associated with the event toevent handler 290. Activating anevent handler 290 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments,event recognizer 280 throws a flag associated with the recognized event, andevent handler 290 associated with the flag catches the flag and performs a predefined process. - In some embodiments,
event delivery instructions 288 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process. - In some embodiments,
data updater 276 creates and updates data used in application 236-1. For example,data updater 276 updates the telephone number used incontacts module 237, or stores a video file used in video player module. In some embodiments, objectupdater 277 creates and updates objects used in application 236-1. For example, objectupdater 277 creates a new user-interface object or updates the position of a user-interface object.GUI updater 278 updates the GUI. For example,GUI updater 278 prepares display information and sends it tographics module 232 for display on a touch-sensitive display. - In some embodiments, event handler(s) 290 includes or has access to
data updater 276,object updater 277, andGUI updater 278. In some embodiments,data updater 276,object updater 277, andGUI updater 278 are included in a single module of a respective application 236-1 orapplication view 291. In other embodiments, they are included in two or more software modules. - It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate
multifunction devices 200 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized. -
FIG. 3 illustrates aportable multifunction device 200 having atouch screen 212 in accordance with some embodiments. The touch screen optionally displays one or more graphics within user interface (UI) 300. In this embodiment, as well as others described below, a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 302 (not drawn to scale in the figure) or one or more styluses 303 (not drawn to scale in the figure). In some embodiments, selection of one or more graphics occurs when the user breaks contact with the one or more graphics. In some embodiments, the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward), and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact withdevice 200. In some implementations or circumstances, inadvertent contact with a graphic does not select the graphic. For example, a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap. -
Device 200 may also include one or more physical buttons, such as “home” ormenu button 304. As described previously,menu button 304 may be used to navigate to anyapplication 236 in a set of applications that may be executed ondevice 200. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed ontouch screen 212. - In one embodiment,
device 200 includestouch screen 212,menu button 304,push button 306 for powering the device on/off and locking the device, volume adjustment button(s) 308, subscriber identity module (SIM)card slot 310,headset jack 312, and docking/chargingexternal port 224.Push button 306 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment,device 200 also accepts verbal input for activation or deactivation of some functions throughmicrophone 213.Device 200 also, optionally, includes one or morecontact intensity sensors 265 for detecting intensity of contacts ontouch screen 212 and/or one or moretactile output generators 267 for generating tactile outputs for a user ofdevice 200. -
FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments.Device 400 need not be portable. In some embodiments,device 400 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller).Device 400 typically includes one or more processing units (CPUs) 410, one or more network orother communications interfaces 460,memory 470, and one ormore communication buses 420 for interconnecting these components.Communication buses 420 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components.Device 400 includes input/output (I/O)interface 430 comprisingdisplay 440, which is typically a touch screen display. I/O interface 430 also optionally includes a keyboard and/or mouse (or other pointing device) 450 andtouchpad 455,tactile output generator 457 for generating tactile outputs on device 400 (e.g., similar to tactile output generator(s) 267 described above with reference toFIG. 2A ), sensors 459 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 265 described above with reference toFIG. 2A ).Memory 470 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices.Memory 470 optionally includes one or more storage devices remotely located from CPU(s) 410. In some embodiments,memory 470 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored inmemory 202 of portable multifunction device 200 (FIG. 2A ), or a subset thereof. Furthermore,memory 470 optionally stores additional programs, modules, and data structures not present inmemory 202 of portablemultifunction device 200. For example,memory 470 ofdevice 400 optionallystores drawing module 480,presentation module 482,word processing module 484,website creation module 486,disk authoring module 488, and/orspreadsheet module 490, whilememory 202 of portable multifunction device 200 (FIG. 2A ) optionally does not store these modules. - Each of the above-identified elements in
FIG. 4 may be stored in one or more of the previously mentioned memory devices. Each of the above-identified modules corresponds to a set of instructions for performing a function described above. The above-identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise rearranged in various embodiments. In some embodiments,memory 470 may store a subset of the modules and data structures identified above. Furthermore,memory 470 may store additional modules and data structures not described above. - Attention is now directed towards embodiments of user interfaces that may be implemented on, for example,
portable multifunction device 200. -
FIG. 5A illustrates an exemplary user interface for a menu of applications onportable multifunction device 200 in accordance with some embodiments. Similar user interfaces may be implemented ondevice 400. In some embodiments,user interface 500 includes the following elements, or a subset or superset thereof: - Signal strength indicator(s) 502 for wireless communication(s), such as cellular and Wi-Fi signals;
-
-
Time 504; -
Bluetooth indicator 505; -
Battery status indicator 506; -
Tray 508 with icons for frequently used applications, such as:-
Icon 516 fortelephone module 238, labeled “Phone,” which optionally includes anindicator 514 of the number of missed calls or voicemail messages; -
Icon 518 fore-mail client module 240, labeled “Mail,” which optionally includes anindicator 510 of the number of unread e-mails; -
Icon 520 forbrowser module 247, labeled “Browser;” and -
Icon 522 for video andmusic player module 252, also referred to as iPod (trademark of Apple Inc.)module 252, labeled “iPod;” and
-
- Icons for other applications, such as:
-
Icon 524 forIM module 241, labeled “Messages;” -
Icon 526 forcalendar module 248, labeled “Calendar;” -
Icon 528 forimage management module 244, labeled “Photos;” -
Icon 530 forcamera module 243, labeled “Camera;” -
Icon 532 foronline video module 255, labeled “Online Video;” -
Icon 534 for stocks widget 249-2, labeled “Stocks;” -
Icon 536 formap module 254, labeled “Maps;” -
Icon 538 for weather widget 249-1, labeled “Weather;” -
Icon 540 for alarm clock widget 249-4, labeled “Clock;” -
Icon 542 forworkout support module 242, labeled “Workout Support;” -
Icon 544 fornotes module 253, labeled “Notes;” and -
Icon 546 for a settings application or module, labeled “Settings,” which provides access to settings fordevice 200 and itsvarious applications 236.
-
-
- It should be noted that the icon labels illustrated in
FIG. 5A are merely exemplary. For example,icon 522 for video andmusic player module 252 may optionally be labeled “Music” or “Music Player.” Other labels are, optionally, used for various application icons. In some embodiments, a label for a respective application icon includes a name of an application corresponding to the respective application icon. In some embodiments, a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon. -
FIG. 5B illustrates an exemplary user interface on a device (e.g.,device 400,FIG. 4 ) with a touch-sensitive surface 551 (e.g., a tablet ortouchpad 455,FIG. 4 ) that is separate from the display 550 (e.g., touch screen display 212).Device 400 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 457) for detecting intensity of contacts on touch-sensitive surface 551 and/or one or moretactile output generators 459 for generating tactile outputs for a user ofdevice 400. - Although some of the examples which follow will be given with reference to inputs on touch screen display 212 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in
FIG. 5B . In some embodiments, the touch-sensitive surface (e.g., 551 inFIG. 5B ) has a primary axis (e.g., 552 inFIG. 5B ) that corresponds to a primary axis (e.g., 553 inFIG. 5B ) on the display (e.g., 550). In accordance with these embodiments, the device detects contacts (e.g., 560 and 562 inFIG. 5B ) with the touch-sensitive surface 551 at locations that correspond to respective locations on the display (e.g., inFIG. 5B, 560 corresponds to 568 and 562 corresponds to 570). In this way, user inputs (e.g.,contacts FIG. 5B ) are used by the device to manipulate the user interface on the display (e.g., 550 inFIG. 5B ) of the multifunction device when the touch-sensitive surface is separate from the display. It should be understood that similar methods are, optionally, used for other user interfaces described herein. - Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
-
FIG. 6A illustrates exemplary personalelectronic device 600.Device 600 includesbody 602. In some embodiments,device 600 can include some or all of the features described with respect todevices 200 and 400 (e.g.,FIGS. 2A-4B ). In some embodiments,device 600 has touch-sensitive display screen 604,hereafter touch screen 604. Alternatively, or in addition totouch screen 604,device 600 has a display and a touch-sensitive surface. As withdevices device 600 can respond to touches based on their intensity, meaning that touches of different intensities can invoke different user interface operations ondevice 600. - Techniques for detecting and processing touch intensity may be found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, each of which is hereby incorporated by reference in their entirety.
- In some embodiments,
device 600 has one ormore input mechanisms Input mechanisms device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment ofdevice 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms may permitdevice 600 to be worn by a user. -
FIG. 6B depicts exemplary personalelectronic device 600. In some embodiments,device 600 can include some or all of the components described with respect toFIGS. 2A, 2B , and 4.Device 600 hasbus 612 that operatively couples I/O section 614 with one ormore computer processors 616 andmemory 618. I/O section 614 can be connected to display 604, which can have touch-sensitive component 622 and, optionally, touch-intensitysensitive component 624. In addition, I/O section 614 can be connected withcommunication unit 630 for receiving application and operating system data, using Wi-Fi, Bluetooth, near field communication (NFC), cellular, and/or other wireless communication techniques.Device 600 can includeinput mechanisms 606 and/or 608.Input mechanism 606 may be a rotatable input device or a depressible and rotatable input device, for example.Input mechanism 608 may be a button, in some examples. -
Input mechanism 608 may be a microphone, in some examples. Personalelectronic device 600 can include various sensors, such asGPS sensor 632,accelerometer 634, directional sensor 640 (e.g., compass),gyroscope 636,motion sensor 638, and/or a combination thereof, all of which can be operatively connected to I/O section 614. -
Memory 618 of personalelectronic device 600 can be a non-transitory computer-readable storage medium, for storing computer-executable instructions, which, when executed by one ormore computer processors 616, for example, can cause the computer processors to perform the techniques described below, including process 900 (FIGS. 8A-D ). The computer-executable instructions can also be stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. For purposes of this document, a “non-transitory computer-readable storage medium” can be any medium that can tangibly contain or store computer-executable instructions for use by or in connection with the instruction execution system, apparatus, or device. The non-transitory computer-readable storage medium can include, but is not limited to, magnetic, optical, and/or semiconductor storages. Examples of such storage include magnetic disks, optical discs based on CD, DVD, or Blu-ray technologies, as well as persistent solid-state memory such as flash, solid-state drives, and the like. Personalelectronic device 600 is not limited to the components and configuration ofFIG. 6B , but can include other or additional components in multiple configurations. - As used here, the term “affordance” refers to a user-interactive graphical user interface object that may be displayed on the display screen of
devices FIGS. 2, 4, and 6 ). For example, an image (e.g., icon), a button, and text (e.g., hyperlink) may each constitute an affordance. - As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g.,
touchpad 455 inFIG. 4 or touch-sensitive surface 551 inFIG. 5B ) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations that include a touch screen display (e.g., touch-sensitive display system 212 inFIG. 2A ortouch screen 212 inFIG. 5A ) that enables direct interaction with user interface elements on the touch screen display, a detected contact on the touch screen acts as a “focus selector” so that when an input (e.g., a press input by the contact) is detected on the touch screen display at a location of a particular user interface element (e.g., a button, window, slider, or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations, focus is moved from one region of a user interface to another region of the user interface without corresponding movement of a cursor or movement of a contact on a touch screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface. Without regard to the specific form taken by the focus selector, the focus selector is generally the user interface element (or contact on a touch screen display) that is controlled by the user so as to communicate the user's intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact). For example, the location of a focus selector (e.g., a cursor, a contact, or a selection box) over a respective button while a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device). - As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds may include a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.
- In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface may receive a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location may be based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm may be applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
- The intensity of a contact on the touch-sensitive surface may be characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.
- An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.
- In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).
- In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
- For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
-
FIG. 7A illustrates a block diagram ofdigital assistant system 700 in accordance with various examples. In some examples,digital assistant system 700 can be implemented on a standalone computer system. In some examples,digital assistant system 700 can be distributed across multiple computers. In some examples, some of the modules and functions of the digital assistant can be divided into a server portion and a client portion, where the client portion resides on one or more user devices (e.g.,devices FIG. 1 . In some examples,digital assistant system 700 can be an implementation of server system 108 (and/or DA server 106) shown inFIG. 1 . It should be noted thatdigital assistant system 700 is only one example of a digital assistant system, and thatdigital assistant system 700 can have more or fewer components than shown, may combine two or more components, or may have a different configuration or arrangement of the components. The various components shown inFIG. 7A can be implemented in hardware, software instructions for execution by one or more processors, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination thereof. -
Digital assistant system 700 can includememory 702, one ormore processors 704, input/output (I/O)interface 706, andnetwork communications interface 708. These components can communicate with one another over one or more communication buses or signal lines 710. - In some examples,
memory 702 can include a non-transitory computer-readable medium, such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices). - In some examples, I/
O interface 706 can couple input/output devices 716 ofdigital assistant system 700, such as displays, keyboards, touch screens, and microphones, touser interface module 722. I/O interface 706, in conjunction withuser interface module 722, can receive user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and processes them accordingly. In some examples, e.g., when the digital assistant is implemented on a standalone user device,digital assistant system 700 can include any of the components and I/O communication interfaces described with respect todevices FIGS. 2A, 4, 6A -B, respectively. In some examples,digital assistant system 700 can represent the server portion of a digital assistant implementation, and can interact with the user through a client-side portion residing on a user device (e.g.,devices - In some examples, the
network communications interface 708 can include wired communication port(s) 712 and/or wireless transmission andreception circuitry 714. The wired communication port(s) can receive and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. Thewireless circuitry 714 can receive and send RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications can use any of a plurality of communications standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. Network communications interface 708 can enable communication between digitalassistant system 700 with networks, such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices. - In some examples,
memory 702, or the computer-readable storage media ofmemory 702, can store programs, modules, instructions, and data structures including all or a subset of: operatingsystem 718,communications module 720,user interface module 722, one ormore applications 724, anddigital assistant module 726. In particular,memory 702, or the computer-readable storage media ofmemory 702, can store instructions for performingprocess 900, described below. One ormore processors 704 can execute these programs, modules, and instructions, and reads/writes from/to the data structures. - Operating system 718 (e.g., Darwin, RTXC, LINUX, UNIX, iOS, OS X, WINDOWS, or an embedded operating system such as VxWorks) can include various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.
-
Communications module 720 can facilitate communications between digitalassistant system 700 with other devices overnetwork communications interface 708. For example,communications module 720 can communicate withRF circuitry 208 of electronic devices such asdevices FIG. 2A, 4, 6A -B, respectively.Communications module 720 can also include various components for handling data received bywireless circuitry 714 and/or wiredcommunications port 712. -
User interface module 722 can receive commands and/or inputs from a user via I/O interface 706 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generate user interface objects on a display.User interface module 722 can also prepare and deliver outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.) to the user via the I/O interface 706 (e.g., through displays, audio channels, speakers, touch-pads, etc.). -
Applications 724 can include programs and/or modules that are configured to be executed by one ormore processors 704. For example, if the digital assistant system is implemented on a standalone user device,applications 724 can include user applications, such as games, a calendar application, a navigation application, or an email application. Ifdigital assistant system 700 is implemented on a server,applications 724 can include resource management applications, diagnostic applications, or scheduling applications, for example. -
Memory 702 can also store digital assistant module 726 (or the server portion of a digital assistant). In some examples,digital assistant module 726 can include the following sub-modules, or a subset or superset thereof: input/output processing module 728, speech-to-text (STT)processing module 730, naturallanguage processing module 732, dialogueflow processing module 734, taskflow processing module 736,service processing module 738, andspeech synthesis module 740. Each of these modules can have access to one or more of the following systems or data and models of thedigital assistant module 726, or a subset or superset thereof:ontology 760,vocabulary index 744,user data 748,task flow models 754,service models 756, and ASR systems. - In some examples, using the processing modules, data, and models implemented in
digital assistant module 726, the digital assistant can perform at least some of the following: converting speech input into text; identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, games, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent. - In some examples, as shown in
FIG. 7B , I/O processing module 728 can interact with the user through I/O devices 716 inFIG. 7A or with a user device (e.g.,devices network communications interface 708 inFIG. 7A to obtain user input (e.g., a speech input) and to provide responses (e.g., as speech outputs) to the user input. I/O processing module 728 can optionally obtain contextual information associated with the user input from the user device, along with or shortly after the receipt of the user input. The contextual information can include user-specific data, vocabulary, and/or preferences relevant to the user input. In some examples, the contextual information also includes software and hardware states of the user device at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received. In some examples, I/O processing module 728 can also send follow-up questions to, and receive answers from, the user regarding the user request. When a user request is received by I/O processing module 728 and the user request can include speech input, I/O processing module 728 can forward the speech input to STT processing module 730 (or speech recognizer) for speech-to-text conversions. -
STT processing module 730 can include one or more ASR systems. The one or more ASR systems can process the speech input that is received through I/O processing module 728 to produce a recognition result. Each ASR system can include a front-end speech pre-processor. The front-end speech pre-processor can extract representative features from the speech input. For example, the front-end speech pre-processor can perform a Fourier transform on the speech input to extract spectral features that characterize the speech input as a sequence of representative multi-dimensional vectors. Further, each ASR system can include one or more speech recognition models (e.g., acoustic models and/or language models) and can implement one or more speech recognition engines. Examples of speech recognition models can include Hidden Markov Models, Gaussian-Mixture Models, Deep Neural Network Models, n-gram language models, and other statistical models. Examples of speech recognition engines can include the dynamic time warping based engines and weighted finite-state transducers (WFST) based engines. The one or more speech recognition models and the one or more speech recognition engines can be used to process the extracted representative features of the front-end speech pre-processor to produce intermediate recognitions results (e.g., phonemes, phonemic strings, and sub-words), and ultimately, text recognition results (e.g., words, word strings, or sequence of tokens). In some examples, the speech input can be processed at least partially by a third-party service or on the user's device (e.g.,device STT processing module 730 produces recognition results containing a text string (e.g., words, or sequence of words, or sequence of tokens), the recognition result can be passed to naturallanguage processing module 732 for intent deduction. - More details on the speech-to-text processing are described in U.S. Utility application Ser. No. 13/236,942 for “Consolidating Speech Recognition Results,” filed on Sep. 20, 2011, the entire disclosure of which is incorporated herein by reference.
- In some examples,
STT processing module 730 can include and/or access a vocabulary of recognizable words via phoneticalphabet conversion module 731. Each vocabulary word can be associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet. In particular, the vocabulary of recognizable words can include a word that is associated with a plurality of candidate pronunciations. For example, the vocabulary may include the word “tomato” that is associated with the candidate pronunciations of // and //. Further, vocabulary words can be associated with custom candidate pronunciations that are based on previous speech inputs from the user. Such custom candidate pronunciations can be stored inSTT processing module 730 and can be associated with a particular user via the user's profile on the device. In some examples, the candidate pronunciations for words can be determined based on the spelling of the word and one or more linguistic and/or phonetic rules. In some examples, the candidate pronunciations can be manually generated, e.g., based on known canonical pronunciations. - In some examples, the candidate pronunciations can be ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation // can be ranked higher than //, because the former is a more commonly used pronunciation (e.g., among all users, for users in a particular geographical region, or for any other appropriate subset of users). In some examples, candidate pronunciations can be ranked based on whether the candidate pronunciation is a custom candidate pronunciation associated with the user. For example, custom candidate pronunciations can be ranked higher than canonical candidate pronunciations. This can be useful for recognizing proper nouns having a unique pronunciation that deviates from canonical pronunciation. In some examples, candidate pronunciations can be associated with one or more speech characteristics, such as geographic origin, nationality, or ethnicity. For example, the candidate pronunciation // can be associated with the United States, whereas the candidate pronunciation // can be associated with Great Britain. Further, the rank of the candidate pronunciation can be based on one or more characteristics (e.g., geographic origin, nationality, ethnicity, etc.) of the user stored in the user's profile on the device. For example, it can be determined from the user's profile that the user is associated with the United States. Based on the user being associated with the United States, the candidate pronunciation // (associated with the United States) can be ranked higher than the candidate pronunciation // (associated with Great Britain). In some examples, one of the ranked candidate pronunciations can be selected as a predicted pronunciation (e.g., the most likely pronunciation).
- When a speech input is received,
STT processing module 730 can be used to determine the phonemes corresponding to the speech input (e.g., using an acoustic model), and then attempt to determine words that match the phonemes (e.g., using a language model). For example, ifSTT processing module 730 can first identify the sequence of phonemes // corresponding to a portion of the speech input, it can then determine, based onvocabulary index 744, that this sequence corresponds to the word “tomato.” - In some examples,
STT processing module 730 can use approximate matching techniques to determine words in an utterance. Thus, for example, theSTT processing module 730 can determine that the sequence of phonemes // corresponds to the word “tomato,” even if that particular sequence of phonemes is not one of the candidate sequence of phonemes for that word. - In some examples, natural
language processing module 732 can be configured to receive metadata associated with the speech input. The metadata can indicate whether to perform natural language processing on the speech input (or the sequence of words or tokens corresponding to the speech input). If the metadata indicates that natural language processing is to be performed, then the natural language processing module can receive the sequence of words or tokens from the STT processing module to perform natural language processing. However, if the metadata indicates that natural language process is not to be performed, then the natural language processing module can be disabled and the sequence of words or tokens (e.g., text string) from the STT processing module can be outputted from the digital assistant. In some examples, the metadata can further identify one or more domains corresponding to the user request. Based on the one or more domains, the natural language processor can disable domains inontology 760 other than the one or more domains. In this way, natural language processing is constrained to the one or more domains inontology 760. In particular, the structure query (described below) can be generated using the one or more domains and not the other domains in the ontology. - Natural language processing module 732 (“natural language processor”) of the digital assistant can take the sequence of words or tokens (“token sequence”) generated by
STT processing module 730, and attempt to associate the token sequence with one or more “actionable intents” recognized by the digital assistant. An “actionable intent” can represent a task that can be performed by the digital assistant, and can have an associated task flow implemented intask flow models 754. The associated task flow can be a series of programmed actions and steps that the digital assistant takes in order to perform the task. The scope of a digital assistant's capabilities can be dependent on the number and variety of task flows that have been implemented and stored intask flow models 754, or in other words, on the number and variety of “actionable intents” that the digital assistant recognizes. The effectiveness of the digital assistant, however, can also be dependent on the assistant's ability to infer the correct “actionable intent(s)” from the user request expressed in natural language. - In some examples, in addition to the sequence of words or tokens obtained from
STT processing module 730, naturallanguage processing module 732 can also receive contextual information associated with the user request, e.g., from I/O processing module 728. The naturallanguage processing module 732 can optionally use the contextual information to clarify, supplement, and/or further define the information contained in the token sequence received fromSTT processing module 730. The contextual information can include, for example, user preferences, hardware, and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like. As described herein, contextual information can be dynamic, and can change with time, location, content of the dialogue, and other factors. - In some examples, the natural language processing can be based on, e.g.,
ontology 760.Ontology 760 can be a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties.” As noted above, an “actionable intent” can represent a task that the digital assistant is capable of performing, i.e., it is “actionable” or can be acted on. A “property” can represent a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node inontology 760 can define how a parameter represented by the property node pertains to the task represented by the actionable intent node. - In some examples,
ontology 760 can be made up of actionable intent nodes and property nodes. Withinontology 760, each actionable intent node can be linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node can be linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, as shown inFIG. 7C ,ontology 760 can include a “restaurant reservation” node (i.e., an actionable intent node). Property nodes “restaurant,” “date/time” (for the reservation), and “party size” can each be directly linked to the actionable intent node (i.e., the “restaurant reservation” node). - In addition, property nodes “cuisine,” “price range,” “phone number,” and “location” can be sub-nodes of the property node “restaurant,” and can each be linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.” For another example, as shown in
FIG. 7C ,ontology 760 can also include a “set reminder” node (i.e., another actionable intent node). Property nodes “date/time” (for setting the reminder) and “subject” (for the reminder) can each be linked to the “set reminder” node. Since the property “date/time” can be relevant to both the task of making a restaurant reservation and the task of setting a reminder, the property node “date/time” can be linked to both the “restaurant reservation” node and the “set reminder” node inontology 760. - An actionable intent node, along with its linked concept nodes, can be described as a “domain.” In the present discussion, each domain can be associated with a respective actionable intent, and refers to the group of nodes (and the relationships there between) associated with the particular actionable intent. For example,
ontology 760 shown inFIG. 7C can include an example ofrestaurant reservation domain 762 and an example ofreminder domain 764 withinontology 760. The restaurant reservation domain includes the actionable intent node “restaurant reservation,” property nodes “restaurant,” “date/time,” and “party size,” and sub-property nodes “cuisine,” “price range,” “phone number,” and “location.”Reminder domain 764 can include the actionable intent node “set reminder,” and property nodes “subject” and “date/time.” In some examples,ontology 760 can be made up of many domains. Each domain can share one or more property nodes with one or more other domains. For example, the “date/time” property node can be associated with many different domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition torestaurant reservation domain 762 andreminder domain 764. - While
FIG. 7C illustrates two example domains withinontology 760, other domains can include, for example, “find a movie,” “initiate a phone call,” “find directions,” “schedule a meeting,” “send a message,” and “provide an answer to a question,” “read a list,” “providing navigation instructions,” “provide instructions for a task” and so on. A “send a message” domain can be associated with a “send a message” actionable intent node, and may further include property nodes such as “recipient(s),” “message type,” and “message body.” The property node “recipient” can be further defined, for example, by the sub-property nodes such as “recipient name” and “message address.” - In some examples,
ontology 760 can include all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some examples,ontology 760 can be modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within theontology 760. - In some examples, nodes associated with multiple related actionable intents can be clustered under a “super domain” in
ontology 760. For example, a “travel” super-domain can include a cluster of property nodes and actionable intent nodes related to travel. The actionable intent nodes related to travel can include “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on. The actionable intent nodes under the same super domain (e.g., the “travel” super domain) can have many property nodes in common. For example, the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” and “find points of interest” can share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.” - In some examples, each node in
ontology 760 can be associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node can be the so-called “vocabulary” associated with the node. The respective set of words and/or phrases associated with each node can be stored invocabulary index 744 in association with the property or actionable intent represented by the node. For example, returning toFIG. 7B , the vocabulary associated with the node for the property of “restaurant” can include words such as “food,” “drinks,” “cuisine,” “hungry,” “eat,” “pizza,” “fast food,” “meal,” and so on. For another example, the vocabulary associated with the node for the actionable intent of “initiate a phone call” can include words and phrases such as “call,” “phone,” “dial,” “ring,” “call this number,” “make a call to,” and so on. Thevocabulary index 744 can optionally include words and phrases in different languages. - Natural
language processing module 732 can receive the token sequence (e.g., a text string) fromSTT processing module 730, and determine what nodes are implicated by the words in the token sequence. In some examples, if a word or phrase in the token sequence is found to be associated with one or more nodes in ontology 760 (via vocabulary index 744), the word or phrase can “trigger” or “activate” those nodes. Based on the quantity and/or relative importance of the activated nodes, naturallanguage processing module 732 can select one of the actionable intents as the task that the user intended the digital assistant to perform. In some examples, the domain that has the most “triggered” nodes can be selected. In some examples, the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) can be selected. In some examples, the domain can be selected based on a combination of the number and the importance of the triggered nodes. In some examples, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user. -
User data 748 can include user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. In some examples, naturallanguage processing module 732 can use the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” naturallanguage processing module 732 can be able to accessuser data 748 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request. - Other details of searching an ontology based on a token string is described in U.S. Utility application Ser. No. 12/341,743 for “Method and Apparatus for Searching Using An Active Ontology,” filed Dec. 22, 2008, the entire disclosure of which is incorporated herein by reference.
- In some examples, once natural
language processing module 732 identifies an actionable intent (or domain) based on the user request, naturallanguage processing module 732 can generate a structured query to represent the identified actionable intent. In some examples, the structured query can include parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user may say “Make me a dinner reservation at a sushi place at 7.” In this case, naturallanguage processing module 732 can be able to correctly identify the actionable intent to be “restaurant reservation” based on the user input. According to the ontology, a structured query for a “restaurant reservation” domain may include parameters such as {Cuisine}, {Time}, {Date}, {Party Size}, and the like. In some examples, based on the speech input and the text derived from the speech input usingSTT processing module 730, naturallanguage processing module 732 can generate a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters {Cuisine=“Sushi”} and {Time=“7 pm”}. However, in this example, the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as {Party Size} and {Date} may not be specified in the structured query based on the information currently available. In some examples, naturallanguage processing module 732 can populate some parameters of the structured query with received contextual information. For example, in some examples, if the user requested a sushi restaurant “near me,” naturallanguage processing module 732 can populate a {location} parameter in the structured query with GPS coordinates from the user device. - In some examples, natural
language processing module 732 can pass the generated structured query (including any completed parameters) to task flow processing module 736 (“task flow processor”). Taskflow processing module 736 can be configured to receive the structured query from naturallanguage processing module 732, complete the structured query, if necessary, and perform the actions required to “complete” the user's ultimate request. In some examples, the various procedures necessary to complete these tasks can be provided intask flow models 754. In some examples,task flow models 754 can include procedures for obtaining additional information from the user and task flows for performing actions associated with the actionable intent. - As described above, in order to complete a structured query, task
flow processing module 736 may need to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances. When such interactions are necessary, taskflow processing module 736 can invoke dialogueflow processing module 734 to engage in a dialogue with the user. In some examples, dialogueflow processing module 734 can determine how (and/or when) to ask the user for the additional information and receives and processes the user responses. The questions can be provided to and answers can be received from the users through I/O processing module 728. In some examples, dialogueflow processing module 734 can present dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses. Continuing with the example above, when taskflow processing module 736 invokes dialogueflow processing module 734 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” dialogueflow processing module 734 can generate questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, dialogueflow processing module 734 can then populate the structured query with the missing information, or pass the information to taskflow processing module 736 to complete the missing information from the structured query. - Once task
flow processing module 736 has completed the structured query for an actionable intent, taskflow processing module 736 can proceed to perform the ultimate task associated with the actionable intent. Accordingly, taskflow processing module 736 can execute the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of “restaurant reservation” can include steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: {restaurant reservation, restaurant=ABC Café, date=3/12/2012, time=7 pm, party size=5}, taskflow processing module 736 can perform the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar. - In some examples, task
flow processing module 736 can employ the assistance of service processing module 738 (“service processing module”) to complete a task requested in the user input or to provide an informational answer requested in the user input. For example,service processing module 738 can act on behalf of taskflow processing module 736 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third-party services (e.g., a restaurant reservation portal, a social networking website, a banking portal, etc.). In some examples, the protocols and application programming interfaces (API) required by each service can be specified by a respective service model amongservice models 756.Service processing module 738 can access the appropriate service model for a service and generate requests for the service in accordance with the protocols and APIs required by the service according to the service model. - For example, if a restaurant has enabled an online reservation service, the restaurant can submit a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameter to the online reservation service. When requested by task
flow processing module 736,service processing module 738 can establish a network connection with the online reservation service using the web address stored in the service model, and send the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service. - In some examples, natural
language processing module 732, dialogueflow processing module 734, and taskflow processing module 736 can be used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent. The generated response can be a dialogue response to the speech input that at least partially fulfills the user's intent. Further, in some examples, the generated response can be output as a speech output. In these examples, the generated response can be sent to speech synthesis module 740 (e.g., speech synthesizer) where it can be processed to synthesize the dialogue response in speech form. In yet other examples, the generated response can be data content relevant to satisfying a user request in the speech input. -
Speech synthesis module 740 can be configured to synthesize speech outputs for presentation to the user.Speech synthesis module 740 synthesizes speech outputs based on text provided by the digital assistant. For example, the generated dialogue response can be in the form of a text string.Speech synthesis module 740 can convert the text string to an audible speech output.Speech synthesis module 740 can use any appropriate speech synthesis technique in order to generate speech outputs from text, including, but not limited, to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis. In some examples,speech synthesis module 740 can be configured to synthesize individual words based on phonemic strings corresponding to the words. For example, a phonemic string can be associated with a word in the generated dialogue response. The phonemic string can be stored in metadata associated with the word.Speech synthesis model 740 can be configured to directly process the phonemic string in the metadata to synthesize the word in speech form. - In some examples, instead of (or in addition to) using
speech synthesis module 740, speech synthesis can be performed on a remote device (e.g., the server system 108), and the synthesized speech can be sent to the user device for output to the user. For example, this can occur in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it can be possible to obtain higher quality speech outputs than would be practical with client-side synthesis. - Additional details on digital assistants can be found in the U.S. Utility application Ser. No. 12/987,982, entitled “Intelligent Automated Assistant,” filed Jan. 10, 2011, and U.S. Utility application Ser. No. 13/251,088, entitled “Generating and Processing Task Items That Represent Tasks to Perform,” filed Sep. 30, 2011, the entire disclosures of which are incorporated herein by reference.
-
FIGS. 8A-8Q illustrate exemplary user interfaces for discovering media based on a nonspecific, unstructured natural language request, in accordance with some embodiments. The user interfaces in these figures are used to illustrate the processes described below, including the exemplary processes inFIGS. 9A-9C . - Referring to
FIG. 8A , anelectronic device 200 includes adisplay 212 and amicrophone 213 in accordance with some embodiments. A digital assistant, as described above is, accessed by a user, who utters unstructured natural language user input that is acquired via themicrophone 213. The timing of the user request is under the control of the user. The user can request the delivery of media during the concurrent playback of other media by theelectronic device 200, or while theelectronic device 200 is not playing back media. The user input requests the delivery of particular media, in this case a song. The user input is converted from speech to text, and in accordance with some embodiments, thetextual user input 1000 is displayed on thedisplay 212. By displaying thetextual user input 1000, in accordance with some embodiments, the user can verify that the digital assistant has received correctly the request as made. In other embodiments, such as but not limited to embodiments in which the digital assistant is operable in a hands-free mode, thetextual user input 1000 is not displayed. As illustrated inFIG. 8A , the user has requested the digital assistant to play a specific track from an album entitled “Liszt: The Piano Concertos.” At least part of the album is stored in electronic form on theelectronic device 200, in some embodiments. In other embodiments, at least part of the album is stored remotely (in the “cloud”) on an external device accessible to theelectronic device 200. The remotely stored content is associated with theelectronic device 200 and/or a unique identifier associated with the user, in accordance with some embodiments. In other embodiments, at least part of the album is part of a streaming service, such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.), that is accessible to theelectronic device 200. - Upon receiving unstructured natural language user input requesting media, the digital assistant causes a search for that media to be performed, as described in greater detail with regard to
FIGS. 9A-9C . That search is performed utilizing the unstructured natural language user input, and the context of that input. In this example, the search finds the specific media requested by the user,track 2 of “Liszt: The Piano Concertos,” determining based on the user input and its context that the specific album satisfies the user request. In some embodiments, it is transparent to the user whether the media requested by the user is locally present on theelectronic device 200, stored remotely on a server, or streamed to the user by a streaming service such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). As illustrated inFIG. 8B , the digital assistant obtains the requested media. Theelectronic device 200 presents anidentifier 1002 associated with the media on thedisplay 212, in accordance with some embodiments, to allow the user to confirm which media is being played back. Theelectronic device 200 includes amedia playback interface 1004 which includes standard media controls, such as affordances for pausing, reversing, or advancing media, affordances for controlling volume, and an affordance that displays and/or controls progress in media playback, in accordance with some embodiments. Theelectronic device 200 plays back the selected media; here, track 2 (“Piano Concerto # 2 in A) from the album “Liszt: The Piano Concertos.” - As illustrated in
FIG. 8C , a user requests media in a less specific manner than described with regard toFIG. 8A . Nonspecific unstructured natural language user input does not identify a particular media item with particularity. For example, a user wishes to hear a song associated with a popular movie, but does not know or recall the name of the song.User input 1010 is received, which identifies the movie but not the song: “play that song from Top Gun.” The user request made inFIG. 8C may be made at any time: during, after, before, or instead of playback of the media obtained as shown inFIG. 8B . Theuser input 1010 is displayed on thedisplay 212, in accordance with some embodiments. - Upon receiving nonspecific unstructured natural language user input requesting media, the digital assistant causes a search for that media to be performed, as described in greater detail with regard to
FIGS. 9A-9C . That search is performed utilizing the unstructured natural language user input, and the context of that input. The context of the user input may include one or more of device context, user context, and social context. - Device context includes information associated with the
electronic device 200 itself. In some embodiments, the device context includes the location of theelectronic device 200. A GPS system or other system may be used to localize theelectronic device 200, and may be able to determine whether the user is moving, where the user is located (e.g., home, school, work, park, gym), and other information. In accordance with some embodiments, theelectronic device 200 is configured to receive signals from a wireless location transmitter other than GPS, such as a Bluetooth® wireless location transmitter, or an iBeacon of Apple, Inc., Cupertino, Calif. As one example, the digital assistant determines that theelectronic device 200, and thus the user, is moving at a rate of speed consistent with automobile travel. The digital assistant utilizes this information in conjunction with user context (described below) that is related to the media most often played back by the user in the car in order to obtain requested media, in accordance with some embodiments. As another example, the digital assistant determines that theelectronic device 200 is at a venue in which live music is performed, such as an arena or a bar. In response, the digital assistant may cause a search for a schedule of musical performances at the location where theelectronic device 200 is located, and utilize that information to satisfy the user request for media, in accordance with some embodiments. As another example, where theelectronic device 200 is located in the user's home, and the user has not moved a detectable amount over a predetermined amount of time, the digital assistant determines that the user is at home watching television. - In accordance with some embodiments, the device context includes audio input from the microphone other than user speech, such as sound in the vicinity of the
electronic device 200. The electronic device, according to some embodiments, generates an acoustic fingerprint from that sound. An acoustic fingerprint is a condensed digital summary, generated from that sound, that can be used to identify that sound by comparing that acoustic fingerprint to a database. The electronic device, in other embodiments, also or instead converts that sound to text, where that sound includes recognizable speech. As an example of the use of such context, where the digital assistant has determined that the user is at home watching television (as described in the previous paragraph) other than via the electronic device, the digital assistant determines based on the sound in the vicinity of theelectronic device 200 that the user is watching a particular television program, such as through the Apple TV® digital media extender of Apple, Inc., Cupertino, Calif. The digital assistant also utilizes a database of television programming schedule information to make such a determination, in accordance with some embodiments. Upon receiving a request from a user for media (e.g., “record episodes of this show”; “get this song from the show”), the digital assistant utilizes location and ambient sound information to determine which media satisfies a user request. In accordance with another embodiment, in another example, the user is walking through a mall or public space, or sitting in a restaurant, and hears a song over the local sound system. In response to a user request to “add this song to my library,” the digital assistant may listen to ambient sound via themicrophone 213 in order to determine what the user meant by “this song.” Upon identifying the song, using, for example, acoustic fingerprinting or speech-to-text search techniques as described above, the digital assistant may add that song to a user library. - In accordance with some embodiments, the device context includes the content of media concurrently played by the
electronic device 200 at the same time as the user request for media. Such media can be in any format, such as audio and/or video. The video andmusic player module 252 accesses information associated with the media concurrently played by theelectronic device 200, in some embodiments, such that thedigital assistant 200 has direct access to that information. Such information is useful in contexts where the user requests media that is related to the media concurrently played by the electronic device (e.g., “play more like this,” “I want to hear the live version of this song”). In accordance with some embodiments, the device context includes a timecode associated with the content of media concurrently played by theelectronic device 200 at the same time as the user request for media. The digital assistant utilizes this timecode, in accordance with some embodiments, to determine the location in the media that is concurrent with the user request for media. For example, if a user is watching a video on the electronic device, and requests “add this artist to my stream,” the digital assistant accesses the media stream played by the video andmusic player module 252 to determine which media is being played concurrently, then uses the timecode of that media stream to determine if a song is associated with that timecode in the media stream; if so, the digital assistant determines that song is associated with the user input of “this artist,” and determines the artist who performed that song. Similarly, in accordance with some embodiments, theelectronic device 200 receives streaming audio from a source such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). If a user is listening to streaming audio, and does not recognize a particular song being played, the user may request information about that song, such as by typing or speaking “what song is this?” In response to the request, the digital assistant determines which song is playing, such as by inspecting metadata associated with the streaming audio, by generating an acoustic fingerprint from the streaming audio and comparing that acoustic fingerprint to a database (as described above), or by querying the server from which the streaming audio is received. The digital assistant then presents the song title and artist to the user, using text and/or audio. - In accordance with some embodiments, the device context includes data associated with media stored on the
electronic device 200. For example, the digital assistant infers that media stored on theelectronic device 200 is media that is preferred by a user, and utilizes that information in determining the meaning of nonspecific user requests for media. The data associated with media stored on the electronic device includes, for example, but is not limited to the presence of that media, bibliographic information of that media (e.g., title, album, release date), information relating to the playback history of that media (e.g., number of times the media has been played back; date the media was last played back; date the media was added to the electronic device), and metadata relating to that media. - In accordance with some embodiments, the device context includes the application context. Application context is related to the application the user is utilizing for media playback. For example, the digital assistant determines whether concurrent media playback is being performed by the video and
music player module 252, by a native application running on theelectronic device 200, by a third-party application associated with the electronic device 200 (e.g., HuluPlus® of Hulu, LLC, Santa Monica, Calif.), or by another application. The application context also includes metadata, if any, associated with the application. - User context includes information associated with the user of the
electronic device 200. User context includes the content of natural language user input requesting media. In accordance with some embodiments, user context includes demographic information about the user, such as the user's age, gender, or the like. The digital assistant uses this information to compare the request for media to similar requests made by other users with similar demographic profiles, in some embodiments. For example, a digital assistant receives nonspecific unstructured natural language user input requesting media from a user who attends college in Boston. The digital assistant causes a search to be made relating to media sought by other college students in Boston, and uses the popularity of media among similarly-situated users in order to obtain media for the user. - In accordance with some embodiments, the user context includes media associated with the user, regardless of the storage location of the media. Such media may be stored in the cloud, or may be associated with a streaming music service accessible to the user, such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). In some embodiments, the digital assistant infers that media associated with the user is media that is preferred by a user, and utilizes that information in determining the meaning of nonspecific user requests for media. In some embodiments, user context further includes data associated with the media associated with the user, such as but not limited to the presence of that media, bibliographic information of that media (e.g., title, album, release date), information relating to the playback history of that media (e.g., number of times the media has been played back; date the media was last played back; date the media was added to the electronic device), and metadata relating to that media.
- In accordance with some embodiments, the user context includes information relating to the musical preferences of the user. For example, the user context includes the history of media played back by the user, and/or the number of times the user has played back certain items, regardless of the storage location of those items. Media that has been played more often by the user is inferred to be preferred by the user, such that media that has been played frequently by the user that matches nonspecific natural language user input requesting media is considered a better match when determining a media item that satisfies a user request. As another example, the user context includes the history of media acquisition by the user, regardless of the storage location of that media. As another example, the user context includes the history of the addition of music to a streaming music service accessible to the user, such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.).
- In accordance with some embodiments, the user context includes data associated with user content accessible by the
electronic device 200. For example, user context includes data associated with digital photographs taken by the user, whether stored on theelectronic device 200, or stored remotely to and accessible by theelectronic device 200. Digital photographs typically are stored along with metadata such as the date taken and the location taken. Upon receiving nonspecific natural language user input requesting media such as “play hits from my trip to Italy,” the digital assistant may cause a search to be performed for information relating to a trip to Italy. Upon finding photograph metadata that includes a location within Italy, the digital assistant determines the corresponding date information in that photograph metadata. The digital assistant then causes a search to be made of databases of historical music chart information (e.g., the database of Billboard of New York, N.Y.) based on the date information obtained from the photograph. As is clear from this example, the user content need not be related to the type of media sought by the user. - Social context includes information associated with other users than the user of the
electronic device 200. As one example, social context includes how many times a particular media item has been streamed or downloaded from a music service such as iTunes® music service of Apple, Inc. of Cupertino, Calif. Such a count of streams or downloads is performed across an artist's musical output, in one example. Such a count is performed within an album, in another example. By way of a further example, the digital assistant may receive nonspecific natural language user input requesting media such as “play that song from Frozen.” The digital assistant may cause a search to be performed on the iTunes® music service of Apple, Inc. of Cupertino, Calif., in order to find a soundtrack album for the movie Frozen, and then determine which track on that album has been downloaded the greatest number of times. The particular media item on the album with the greatest number of downloads is obtained by the digital assistant. As another example, social context includes how many times a particular media item has been streamed from a streaming music service accessible to the user, such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). - In accordance with some embodiments, social context includes the number of references to a media item in a social media database. As one example, the digital assistant may receive nonspecific natural language user input requesting media such as “I want to hear that big hit from Famous Band.” Famous Band may have released a popular album with several hits. In order to disambiguate the user's request, the digital assistant may cause a search to be performed of a social database, e.g., the database of Twitter, Inc. of San Francisco, Calif., in order to determine how many mentions of a particular media item have been made across a recent period of time, such as the previous 7 days or 14 days. The particular media item from Famous Band with the most references in that period of time is obtained by the digital assistant.
- Returning specifically to
FIG. 8C ,user input 1010 has been received, which identifies a movie but not the requested song from the movie: “play that song from Top Gun.” The digital assistant identifies at least one context of theuser input 1010, as described above. According to some embodiments, the context is at least one of device context, user context and social context. The digital assistant causes a search for the media, based on the context and on the user input. For example, the digital assistant may search theelectronic device 200 and/or media associated with the user for the soundtrack for the movie “Top Gun.” Upon discovering the soundtrack, the digital assistant may determine which song on the soundtrack has been played the most, and determine that song satisfies the media request, after which the digital assistant obtains the song for the user. As another example, the digital assistant may search a music service for the soundtrack for the movie “Top Gun.” Upon discovering the soundtrack, the digital assistant may determine which song on the soundtrack has been streamed or downloaded the most times, and determine that song satisfies the media request, after which the digital assistant obtains the song for the user. - Both of these example processes, in addition to other processes, may be performed simultaneously in order to obtain the requested media. By performing the processes in parallel, rather than in series, the time to locate the media item is reduced, particularly where only one of several processes delivers a result that satisfies the user request. Further, where the parallel processes each deliver a single media item, confidence that it is the media item requested by the user is enhanced. Still further, where the parallel processes deliver two or more separate media items, the digital assistant applies further heuristics to those items to determine which is the most likely to meet the user request. The digital assistant may score each media item on one or more criteria, and determine that the media item with the highest score satisfies the user request, after which the digital assistant obtains the song for the user. The scoring methodology is biased toward certain results, such as results associated with media stored on the
electronic device 200, according to some embodiments. In some embodiments, a user selects which criteria are more or less important with regard to scoring in order to obtain the requested media. - As illustrated in
FIG. 8D , the digital assistant obtains the requested media. Theelectronic device 200 presents anidentifier 1012 associated with the media on thedisplay 212, in accordance with some embodiments, to allow the user to confirm which media is being played back: here, the song “Danger Zone” from Kenny Loggins, on the Top Gun Original Motion Picture Soundtrack Album. Theelectronic device 200 optionally includes amedia playback interface 1004 as described above. Theelectronic device 200 plays back the selected media. - The user may have had a different song in mind than the one presented in
FIG. 8D , or the user may simply change his or her mind about which media he or she would like to play back. As illustrated inFIG. 8E , the digital assistant receivesuser input 1020 requesting alternate media. In the example ofFIGS. 8C-8D , the alternate media is a different song from the same movie (i.e., the same soundtrack album). Theuser input 1020 need not be phrased as a request; as shown inFIG. 8E , theuser input 1020 states “No, I meant the other one.” The digital assistant performs speech-to-text conversion on theuser input 1020, and determines from the context of the most recent request and most recent digital assistant action that the user wishes to receive a different media item than the one most recently obtained. In response to receiving thesecond user input 1020, the digital assistant causes a search for the requested media based on the context, the user input, and the second user input. For example, the digital assistant may cause another search based on the same criteria as the first search, but where media items that match the first result (here, the song “Danger Zone”) are discarded as potential matches. As another example, the results of the previous search are still loaded in memory accessible to the digital assistant, and the digital assistant selects the next-highest match out of a list of possible matching media items. This approach may require more storage capacity but delivers faster results to the user. The digital assistant determines at least one additional media item that satisfies the request. As another example, theelectronic device 200 plays streaming media, such as streaming audio from Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). If the user wants to skip ahead to the next song, the user may request “skip this song,” “next song,” or the like. The digital assistant need not perform a search based on that request for media. Instead, according to some embodiments, the digital assistant transmits a signal to the server from which the streaming audio is received requesting that the stream skip ahead to the next song. In response, the digital assistant receives another song, which is then played by theelectronic device 200. - As illustrated in
FIG. 8F , the digital assistant obtains the media that satisfies the request. Theelectronic device 200 presents anidentifier 1022 associated with the media on thedisplay 212, in accordance with some embodiments, to allow the user to confirm which media is being played back: here, the song “Take My Breath Away (Love Theme from Top Gun)” from Berlin, on the Top Gun Original Motion Picture Soundtrack Album. Theelectronic device 200 optionally includes amedia playback interface 1004 as described above. Theelectronic device 200 plays back the selected media. - As illustrated in
FIG. 8G , the digital assistant receivesuser input 1030 requesting alternate media. In the example ofFIGS. 8E-8F , the alternate media is a different version of the song. In this example, the different version is a live version rather than a studio version. In other examples, the different version is a different studio version by the same artist, a different live version by the same artist, or the same song recorded by a different artist. The digital assistant causes a search for alternate media and determines at least one alternate media item that satisfies the request, in the same manner as described above with regard toFIGS. 8E-8F . - As illustrated in
FIG. 8H , the digital assistant obtains the media that satisfies the request. Theelectronic device 200 presents anidentifier 1032 associated with the media on thedisplay 212, in accordance with some embodiments, to allow the user to confirm which media is being played back: here, the song “Take My Breath Away Live” from Berlin, on the album entitled “Live: Sacred and Profane.” Theelectronic device 200 optionally includes amedia playback interface 1004 as described above. Theelectronic device 200 plays back the selected media. - In accordance with some embodiments, the digital assistant receives user input requesting media associated with a specific date in the past. Upon receiving nonspecific natural language user input requesting media such as “play popular music from my birthday,” the digital assistant causes a search to be performed for user context information relating to the user's birthday. According to some embodiments, the user's birthday is stored on the
electronic device 200, or is stored in association with a user account that in turn is associated with theelectronic device 200 and/or a service or program that transmits media to the electronic device, such as the iTunes® application program, Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). Upon determining the date of the user's birthday, the digital assistant then causes a search to be made of one or more databases of historical music chart information (e.g., the database of Billboard of New York, N.Y.) based on the date of the user's birthday. The digital assistant receives historical music chart information from one or more databases, and in response obtains for the user (through the use of streaming audio or by downloading) and plays one or more of the songs identified by that historical music chart information. - As another example, the user requests “play the top ten hits from 1978.” The digital assistant causes a search to be made of one or more databases of historical music chart information (e.g., the database of Billboard of New York, N.Y.) based on the specified date of 1978. The digital assistant receives historical music chart information from the one or more databases, and in response obtains for the user (through the use of streaming audio or by downloading) and plays the top ten songs of 1978, as identified by that historical music chart information. The digital assistant causes the songs to be played in countdown order, from the #10 hit “Three Times a Lady” by the Commodores, to #1 hit “Shadow Dancing” by Andy Gibb. Alternately, the digital assistant causes the songs to be played from #1 to #10, or plays the top ten songs in random order.
- In accordance with some embodiments, the digital assistant receives nonspecific user input requesting media associated with a particular artist. For example, the user requests “play the latest album from Famous Band.” The digital assistant causes a search to be made of one or more databases of music information (such as the iTunes® music service, or Apple Music, of Apple, Inc. of Cupertino, Calif.) based on the specified artist Famous Band. The digital assistant receives discography information from the one or more databases, including the name of the most recent album of Famous Band, and in response obtains for the user (through the use of streaming audio or by downloading) and plays the latest album from Famous Band. According to some embodiments, when utilizing a streaming media service such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.), the digital assistant initially queries the streaming media service for the latest album by the specified artist Famous Band, and in response receives an audio stream of the latest album by Famous Band.
- According to some embodiments, during media playback, the digital assistant receives input from a user associated with user satisfaction with the media. As one example, the
electronic device 200 receives speech or text input corresponding to a user liking the media (i.e., a “like”). A “like” input from the user is user context information. Optionally, the “like” input may be utilized as part of the social context with regard to other users. For example, if a user “likes” a particular media item, it may be inferred that others of similar demographic characteristics, and/or in a similar location, will be more interested in that particular media item. According to some embodiments, the user's “like” of a particular media item is stored locally on theelectronic device 200, is stored on the cloud in association with the user, or is part of a streaming music service accessible to the user, such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). - As another example, the
electronic device 200 receives speech or text input corresponding to a user disliking the media (i.e., a “dislike”). A “dislike” input from the user is user context information. Optionally, the “dislike” input may be utilized as part of the social context with regard to other users. For example, if a user “dislikes” a particular media item, it may be inferred that others of similar demographic characteristics, and/or in a similar location, will be less interested in that particular media item. According to some embodiments, the user's “dislike” of a particular media item is stored locally on theelectronic device 200, is stored on the cloud in association with the user, or is part of a streaming music service accessible to the user, such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). In some embodiments, upon receiving a “dislike” input, the digital assistant Upon receiving a “dislike” input, the digital assistant interrupts concurrent playback of media already playing on theelectronic device 200, skips ahead to the next media in a playback queue or media stream, ceases playing media, and/or takes other action, according to some embodiments. In some embodiments, a user request to skip a particular media item counts as a partial or complete “dislike” of that media item. In other embodiments, a user request to skip a media item is not counted as a “dislike” of that media item. - In accordance with some embodiments, the digital assistant receives user input requesting new music. For example, the user requests “play new music.” The digital assistant identifies at least one context of the user input, as described above. According to some embodiments, the context is at least one of device context, user context and social context. In response, according to some embodiments, the digital assistant transmits a request for new music to a streaming music service accessible to the user, such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). In response, the digital assistant receives an audio stream from the streaming music service, including one or more new songs (e.g., songs released in the past 14 days). According to some embodiments, selection of the one or more new songs in the audio is based at least in part on previous “like” and “dislike” inputs received from the user relative to other media, and/or other user context, device context, and/or social context.
- As another example, the user requests “play new country songs.” In response, according to some embodiments, the digital assistant transmits a request for new music in the genre of country to a streaming music service accessible to the user, such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). In response, the digital assistant receives an audio stream from the streaming music service, including one or more new country songs. According to some embodiments, selection of the one or more new country songs in the audio is based at least in part on previous “like” and “dislike” inputs received from the user relative to other media, and/or other user context, device context, and/or social context.
- In accordance with some embodiments, the digital assistant receives a user request to play additional similar media. For example, the user requests “play more like this.” The digital assistant identifies at least one context of the user input, as described above. According to some embodiments, the context is at least one of device context, user context and social context. In response to the user request, the digital assistant determines which song is playing, such as by inspecting metadata associated with the currently-playing audio, by generating an acoustic fingerprint from the streaming audio and comparing that acoustic fingerprint to a database (as described above), by querying a server from which streaming audio is received, and/or any other suitable action or actions. The digital assistant causes a search for the media, based on the context and on the user input. For example, the digital assistant may search the
electronic device 200 and/or media associated with the user for similar media, such as based on genre, artist, and user context of media that the user has previously “liked” or “disliked.” The digital assistant then obtains (from theelectronic device 200, from a streaming music service, or other source) media for the user. As another example, the digital assistant may search a music service for similar music. The digital assistant causes a search to be made of one or more databases of music information (such as the iTunes® music service, or Apple Music, of Apple, Inc. of Cupertino, Calif.) based on user context of media that the user has previously “liked” or “disliked,” the social context of media that other similar users have “liked” or “disliked,” and/or other context. The digital assistant receives information associated with songs from the one or more databases and in response obtains for the user (through the use of streaming audio or by downloading) and plays similar music. According to some embodiments, when utilizing a streaming media service such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.), the digital assistant initially queries the streaming media service for similar media, and in response receives an audio stream of similar media responsive to the user request. - When the digital assistant obtains media, the digital assistant interrupts concurrent playback of media already playing on the
electronic device 200, places the media in an ordered queue for later playback, adds the media to a media library, and/or takes other action, according to some embodiments. Referring back toFIGS. 8E-8F , the digital assistant determines based on theuser input 1020 that the returned media item did not satisfy the user request, in accordance with some embodiments. As a result, when thealternate media 1022 is obtained, it interrupts the concurrent playback of the song “Danger Zone,” terminating the playback of “Danger Zone” and replacing it with the playback ofalternate media 1022, in accordance with some embodiments. In general, according to some embodiments, when the digital assistant determines that the user input is consistent with input requesting an interruption of concurrently-played media, the digital assistant causes theelectronic device 200 to cease playing that media and replace it with the playback of the most-recently requested media. The media may be different types of media. For example, while watching a movie on theelectronic device 200, a user may request playback of a song; the digital assistant will cause theelectronic device 200 to cease playing the movie and replace it with the playback of the most-recently requested media—in this example, the song. - In accordance with some embodiments, when the digital assistant obtains media, the digital assistant places the media in an ordered queue for later playback. As illustrated in
FIG. 8J , the digital assistant receivesuser input 1040 requesting to “play more from this band.” The digital assistant determines based on theuser input 1040 that the user is satisfied with the media item previously obtained, because the user wishes to obtain more media from the same artist. Other criteria may be used to determine whetheruser input 1040 is consistent with user satisfaction with the media being played concurrently with theuser input 1040. Based on thatuser input 1040, the digital assistant causes a search to be made based on the user input and the context of the user input, determines one or more additional media items satisfying the user request, and obtains those one or more media items. As illustrated inFIG. 8K , the media playing concurrent with theuser input 1040 continues to play. The digital assistant causes the one or more additional media items to be placed in an ordered queue for playback. When the media playing concurrent with theuser input 1040 has completed playback, the first item in the ordered queue is then played. According to some embodiments, the items in the queue may be from the local library on theelectronic device 200, may be located external to the electronic device in the cloud, or may be part of a streaming music service accessible to the user, such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). In general, according to some embodiments, when the digital assistant determines that the user input is consistent with input reflecting user satisfaction with concurrently-playing media, the digital assistant causes theelectronic device 200 to continue playing that media and place one or more additional media items in an ordered queue for playback. The media may be different types of media, as set forth above with regard to another embodiment. - In accordance with some embodiments, when the digital assistant obtains media, the digital assistant adds the media to a media library associated with the user. In some examples, the media library is locally stored on the
electronic device 200, is stored on the cloud in association with the user, or is part of a streaming music service accessible to the user, such as Apple Music or iTunes Radio™ (services of Apple, Inc. of Cupertino, Calif.). For example, as illustrated inFIG. 8L , the digital assistant receivesuser input 1050 requesting “what is that song from Frozen?” The digital assistant causes a search for the media based on the user input and at least one context of the user input, determines at least one media item that satisfies the request, and obtains the at least one media item. In some embodiments, the digital assistant automatically adds the obtained at least one media item to a media library associated with the user. In other embodiments, as illustrated inFIG. 8M , upon obtaining the at least one media item, but before adding the at least one media item to a library associated with the user, the digital assistant presents the user with an option to add the at least one media item to a library associated with the user. According to some embodiments, the user is presented with anidentifier 1052 of the at least one media item obtained, along with arequest 1054 on thedisplay 212, such as “Add to library?” The electronic device displays afirst affordance 1056 associated with adding the at least one media item to a library associated with the user, and asecond affordance 1058 associated with not adding the at least one media item to a library associated with the user, in accordance with some embodiments. In response to user selection of thefirst affordance 1056, the digital assistant adds the at least one media item to a library associated with the user. - In accordance with some embodiments, as illustrated in
FIGS. 8N-8P , the digital assistant may receive user input that annotates a media item. Referring toFIG. 8N , theelectronic device 200 is playing backmedia item 1060, which in this example istrack 14 of the album “1970s Greatest Hits.” Theaudio interface 1004 may be displayed on thedisplay 212 concurrently with playback ofmedia item 1060. The user may wish to annotate themedia item 1060. In some embodiments, the digital assistant receivesuser input 1062 of unstructured natural language speech including one or more words, such as “I like these lyrics” or “What does this mean?”. Theuser input 1062 is associated with the timecode within themedia item 1060 at which time theuser input 1062 was received, according to some embodiments. Theuser input 1062 is converted from speech to text, stored as voice data, or handled in any other suitable manner. Theuser input 1062, in some embodiments, is a note from the user to himself or herself, or is other information upon which the digital assistant does not act. - In accordance with some embodiments, as illustrated in
FIG. 8Q , the digital assistant causes a search to be performed based on theuser input 1062 based on the context of theuser input 1062, according to some embodiments. In other embodiments, the digital assistant does not cause a search to be performed until receiving an express request from the user. In response to the search, the digital assistant provides thesearch result 1064 to the user on thedisplay 212. In this example, theuser input 1062 related to the meaning of the lyrics of themedia item 1060 at a particular timecode, and the digital assistant determined the meaning of the lyrics such as by reference to a lyrics database. -
FIGS. 9A-9C illustrate aprocess 900 for operating a digital assistant according to various examples. More specifically,process 900 can be implemented to perform media discovery based on nonspecific natural language user input using a digital assistant. Theprocess 900 can be performed using one or more electronic devices implementing a digital assistant. In some examples, theprocess 900 can be performed using a client-server system (e.g., system 100) implementing a digital assistant. The individual blocks of theprocess 900 may be distributed in any appropriate manner among one or more computers, systems, or electronic devices. For instances, in some examples,process 900 can be performed entirely on an electronic device (e.g.,devices process 900 is not limited to use with a smartphone; theprocess 900 may be implemented on any other suitable electronic device, such as a tablet, a desktop computer, a laptop, or a smart watch. Electronic devices with greater computing power and greater battery life may perform more of the blocks of theprocess 900. The distribution of blocks of theprocess 900 need not be fixed, and may vary depending upon network connection bandwidth, network connection quality, server load, availability of computer power and battery power at the electronic device (e.g., 104, 200, 400, 600), and/or other factors. Further, while the following discussion describesprocess 900 as being performed by a digital assistant system (e.g.,system 100 and/or digital assistant system 700), it should be recognized that the process or any particular part of the process is not limited to performance by any particular device, combination of devices, or implementation. The description of the process is further illustrated and exemplified byFIGS. 8A-8Q , and the description above related to those figures. -
FIGS. 9A-9C are a flow diagram 900 illustrating a method for discovering media based on a nonspecific, unstructured natural language request using a digital assistant and an electronic device (104, 200, 400, or 600) in accordance with some embodiments. Some operations inprocess 900 may be combined, the order of some operations may be changed, and some operations may be omitted. In particular, optional operations indicated with dashed-line shapes inFIGS. 9A-9C may be performed in any suitable order, if at all, and need not be performed in the order set forth inFIGS. 9A-9C . - As described below,
method 900 provides an intuitive way for discovering media based on a nonspecific, unstructured natural language request using a digital assistant. The method reduces the cognitive burden on a user for discovering media based on a nonspecific, unstructured natural language request using a digital assistant, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to discovering media based on a nonspecific, unstructured natural language request using a digital assistant more accurately and more efficiently conserves power and increases the time between battery charges. - At the beginning of
process 900, the digital assistant receives (902) user input associated with a request for media, where the user input includes unstructured natural language speech including one or more words. Where the electronic device (e.g., 104, 200, 400, 600) includes or is associated with amicrophone 213, that user input may be received through themicrophone 213. The user input may also be referred to as an audio input or audio stream. In some embodiments, the stream of audio can be received as raw sound waves, as an audio file, or in the form of a representative audio signal (analog or digital). In other embodiments, the audio stream can be received at a remote system, such as a server component of a digital assistant. The audio stream can include user speech, such as a spoken user request. The user input may include a spoken user request by an authorized user. In one example, the user input may be received from a user who is closely associated with the electronic device (104, 200, 400, 600) (e.g., the owner or predominant user of the user device). In an alternate embodiment, the user input is received in textual form instead of as speech. In some embodiments, the audio stream is converted from speech to text by ASR processing prior to, or during, analysis by the digital assistant. Such conversion may be performed as described above, such as in paragraphs [0175] et seq. of this document. - The digital assistant identifies (904) at least one context associated with the user input. As set forth above with regard to
FIGS. 8A-8Q , in accordance with some embodiments the context includes one or more of device context, user context, and social context. Examples of each context and its use in media discovery are also set forth above. - After identifying at least one context associated with the user input, the digital assistant causes (906) a search for the requested media based on the at least one context and the user input. In some embodiments, the search is performed by the digital assistant itself. In other embodiments, the search is requested by the digital assistant from a separate entity that performs the search and returns the results to the digital assistant. In some embodiments, the search is both performed by the digital assistant itself and requested by the digital assistant from a separate entity. By performing both searches in parallel, response time to the user request of (902) is reduced.
- The search of
block 906 may be performed locally, on the electronic device (e.g., 104, 200, 400, 600), in accordance with some embodiments. In accordance with other embodiments, the search ofblock 906 may be performed remotely to the electronic device (e.g., 104, 200, 400, 600). A search performed remotely to the electronic device (e.g., 104, 200, 400, 600) may be performed at a server that includes or possesses access to information relative to the search, such as a server of Shazam Entertainment Limited of London, United Kingdom for audio fingerprint information, a server of Billboard Magazine of New York, N.Y. for historical music information, and/or a server of the iTunes® music service of Apple, Inc. of Cupertino, Calif. In some embodiments, the search is both performed locally and remotely to the electronic device (e.g., 104, 200, 400, 600). By performing multiple searches in parallel, response time to the user request of (902) is reduced. - The digital assistant determines (908), based on the at least one context and the user input, at least one media item that satisfies the request. The digital assistant makes this determination in any suitable manner. According to some embodiments, the digital assistant selects the first match that exceeds a predetermined threshold. The digital assistant determines (910) a probability, based on the at least one context and the user input, that at least one media item satisfies the request. Next, the digital assistant determines (912) whether the probability exceeds a threshold. In some embodiments, the threshold may be predetermined. In other embodiments, the threshold may be user-adjustable. In other embodiments, the threshold may be dynamically variable. If the media items exceed the threshold, the
process 900 proceeds to thenext block 918. According to some embodiments, the digital assistant selects the best match of several candidate matches. The digital assistant determines (914) a probability, based on the at least one context and the user input, that at least one media item satisfies the request. Next, the digital assistant selects the media item having the highest probability, and proceeds to thenext block 918. Examples of thedetermination 908, based on the at least one context and the user input, of at least one media item that satisfies the request ofblock 902, are also provided above relative toFIGS. 8A-8Q . - In accordance with a determination that the at least one media item satisfies the request, the digital assistant obtains (918) the at least one media item. In accordance with some embodiments, the digital assistant can obtain the at least one media item in several ways. As one example, the digital assistant automatically adds (920) the obtained at least one media item to a media library associated with the user, as described above with regard to
FIGS. 8A-8Q . As another example, the digital assistant presents (922) the user with an option to add the obtained media to a media library associated with the user, and in response to user selection of the option to add the obtained media to a media library associated with the user, adds (924) the obtained media to a media library associated with the user. This process is described above, with particular reference toFIGS. 8L-8M and the accompanying text in the specification. As another example, the digital assistant places (926) the obtained media in an ordered queue, and then plays (928) the media according to the queue. This process is described above, with particular reference toFIGS. 8J-8K and the accompanying text in the specification. In accordance with some embodiments, in the obtainingblock 918, the digital assistant may determine (930) whether a local library includes the at least one media item. The local library is located on the electronic device (e.g., 104, 200, 400, 600). By searching the local library first, or in parallel with causing an external search, the amount of time required to satisfy the user request is reduced when the requested item is located on the electronic device (e.g., 104, 200, 400, 600). If the digital assistant determines that the local library includes the at least one media item, the digital assistant presents (932) the at least one media item to the user. If the digital assistant determines that the local library does not include the at least one media item, the digital assistant obtains (934) the at least one media item from an external data source. - In conjunction with obtaining (918) the at least one media item, or after obtaining (918) the media item, in some embodiments the digital assistant plays (936) the media item. In some circumstances, where the digital assistant determines that the user wishes to interrupt the concurrent playback of other media, the digital assistant terminates (938) the concurrent playback of other media, as described above with regard to
FIGS. 8A-8Q . - In accordance with some embodiments, after obtaining the media item, the digital assistant receives (940) a second user input including unstructured natural language speech including one or more words. The digital assistant annotates (942) the media item with the one or more words. In some embodiments, the process stops here, if the user desires simply to make and retain a note in association with the media item. In other embodiments, the process continues, and the digital assistant causes (944) a search to be performed based on the annotation. Upon receipt of search results, the digital assistant presents (946) the search result to the user. This process is described above, with particular reference to
FIGS. 8N-8Q and the accompanying text in the specification. - In accordance with some embodiments, the digital assistant receives (948) a second user input requesting user material. As one example, this may occur when the digital assistant originally obtained a media item that did not match the user's request. This situation is described above, with particular reference to
FIGS. 8E-8F and the accompanying text in the specification. As another example, this may occur when the digital assistant originally obtained a media item that matched a user's request, but user wishes to hear different media. This situation is described above, with particular reference toFIGS. 8G-8H and the accompanying text in the specification. In response to receiving the second user input, the digital assistant causes (950) a search for the media based on the at least one context, the user input, and the second user input. As one example, the combination of the user input and the second user input provides additional search criteria that are useful in determining the media item. As another example, the combination of the user input and the second user input allows the digital assistant to exclude the original result when evaluating search results. The digital assistant determines (952), based on the at least one context, the user input and the second user input, at least one additional media item that satisfies the request. In accordance with a determination that the at least one additional media item satisfies the request, the digital assistant obtains (954) the at least one additional media item. Further, in accordance with some embodiments, the probability that a media item satisfies the request for media can be updated over time, based on, for example, the at least one context, the user input, and the second user input requesting user material. - In accordance with some embodiments,
FIG. 10 shows an exemplary functional block diagram of anelectronic device 1000 configured in accordance with the principles of the various described embodiments. In accordance with some embodiments, the functional blocks ofelectronic device 1000 are configured to perform the techniques described above. The functional blocks of thedevice 1000 are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described inFIG. 10 are, optionally, combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein. - As shown in
FIG. 10 , anelectronic device 1000 includes adisplay unit 1002 configured to display a graphic user interface, optionally, a touch-sensitive surface unit 1004 configured to receive contacts, amicrophone unit 1006 configured to receive audio signals, and aprocessing unit 1008 coupled to thedisplay unit 1002 and, optionally, the touch-sensitive surface unit 1004 andmicrophone unit 1006. In some embodiments, theprocessing unit 1008 includes areceiving unit 1010, an identifyingunit 1012, a causingunit 1014, a determiningunit 1016, an obtainingunit 1018, and aplaying unit 1020. - The processing unit is configured to receive (e.g., with receiving unit 1010) user input associated with a request for media, the user input comprising unstructured natural language speech including one or more words; identify (e.g., with identifying unit 1012) at least one context associated with the user input; cause (e.g., with causing unit 1014) a search for the media based on the at least one context and the user input; determine (e.g., with determining unit 1016) based on the at least one context and the user input, at least one media item that satisfies the request; and in accordance with a determination that the at least one media item satisfies the request, obtain (e.g., with obtaining unit 1018) the at least one media item.
- In some embodiments, the causing unit is further configured to cause (e.g., with causing unit 1014) searching to be performed locally on the device.
- In some embodiments, the causing unit is further configured to cause (e.g., with causing unit 1014) searching to be performed remotely to the device.
- In some embodiments, the processing unit is further configured to determine (e.g., with determining unit 1016) whether a local library includes the media item; and in accordance with a determination that the local library includes the media item, present (e.g., with playing unit 1020) the media item to the user; in accordance with a determination that the local library does not include the media item, obtain (e.g., with obtaining unit 1018) the media item from an external data source.
- In some embodiments, the processing unit is further configured to receive (e.g., with receiving unit 1010) second user input requesting alternate media; in response to receiving the second user input, cause (e.g., with causing unit 1014) a search for the media based on the at least one context, the user input and the second user input; determine (e.g., with determining unit 1016) based on the at least one context, the user input and the second user input, at least one additional media item that satisfies the request; and in accordance with a determination that the at least one additional media item satisfies the request, obtain (e.g., with obtaining unit 1018) the at least one additional media item.
- In some embodiments, the at least one context associated with the user input includes a device context.
- In some embodiments, the device context includes the location of the device.
- In some embodiments, the device context includes the proximity of the device to a wireless location transmitter.
- In some embodiments, the device context includes the content of media concurrently played by the device.
- In some embodiments, the device context includes a timecode associated with media concurrently played by the device.
- In some embodiments, the device context includes audio input from the microphone other than user speech.
- In some embodiments, the device context includes data associated with media stored on the device.
- In some embodiments, the device context includes application context.
- In some embodiments, the at least one context associated with the user input includes a user context.
- In some embodiments, the user context includes the content of the user input.
- In some embodiments, the user context includes media associated with the user.
- In some embodiments, the user context includes demographic information about the user.
- In some embodiments, the user context includes information relating to the musical preferences of the user.
- In some embodiments, the user context includes data associated with user content accessible by the device.
- In some embodiments, the at least one context associated with the user input includes a social context.
- In some embodiments, the social context includes the access frequency of a particular media item across a plurality of users.
- In some embodiments, the social context includes the number of references to a media item in a social media database.
- In some embodiments, the media item is a song.
- In some embodiments, the processing unit is further configured to, in response to obtaining the at least one media item, play (e.g., with playing unit 1020) at least one media item, and terminate (e.g., with playing unit 1020) concurrent playback of other media.
- In some embodiments, the processing unit is further configured to, in response to obtaining the media item, place (e.g., with playing unit 1020) the at least one obtained media item in an ordered queue; and play (e.g., with playing unit 1020) the at least one media item according to the queue.
- In some embodiments, the obtaining unit is further configured to add the at least one media item to a media library associated with the user.
- In some embodiments, the processing unit is further configured to present (e.g., with the display unit 1002) the user with an option to add the at least one media item to a media library associated with the user; and in response to user selection of the option to add the at least one media item to a media library associated with the user, add (e.g., with the obtaining unit 1018) the at least one media item to a media library associated with the user.
- In some embodiments, the processing unit is further configured to, after obtaining the media item, receive (e.g., with the receiving unit 1010) second user input comprising unstructured natural language speech including one or more words; and annotate (e.g. with the processing unit 1008) the media item with the one or more words.
- In some embodiments, the processing unit is further configured to cause (e.g., with the causing unit 1014) a search to be performed based on the annotation; and present (e.g., with the display unit 1002) the search result to the user.
- In some embodiments, the determining unit is further configured to determine (e.g., with the determining unit 1016) a probability, based on the at least one context and the user input, that at least one media item satisfies the request; and determine (e.g., with the determining unit 1016) whether the probability exceeds a threshold.
- In some embodiments, the determining unit is further configured to determine (e.g., with the determining unit 1016) a probability, based on the at least one context and the user input, that at least one media item satisfies the request; and selecting (e.g., with the determining unit 1016) the media item having the highest probability.
- In some embodiments, the receiving unit is further configured to receive streaming audio containing the at least one media item.
- The operations described above with reference to
FIGS. 9A-9C are, optionally, implemented by components depicted inFIGS. 1A-7C orFIG. 10 . It would be clear to a person having ordinary skill in the art how processes can be implemented based on the components depicted inFIGS. 1A-7C orFIG. 10 . - The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.
- Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.
- As described above, one aspect of the present technology is the gathering and use of data available from various sources to improve the delivery to users of content that may be of interest to them. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, home addresses, or any other identifying information.
- The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to deliver targeted content that is of greater interest to the user. Accordingly, use of such personal information data enables calculated control of the delivered content. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure.
- The present disclosure further contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. For example, personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection should occur only after receiving the informed consent of the users. Additionally, such entities would take any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices.
- Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of advertisement delivery services, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services. In another example, users can select not to provide location information for targeted content delivery services. In yet another example, users can select to not provide precise location information, but permit the transfer of location zone information.
- Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, content can be selected and delivered to users by inferring preferences based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the content delivery services, or publically available information.
Claims (30)
1. A method for identifying media, comprising:
at a device with one or more processors, memory and a microphone:
receiving user input associated with a request for media, the user input comprising unstructured natural language speech including one or more words;
identifying at least one context associated with the user input;
causing a search for the media based on the at least one context and the user input;
determining, based on the at least one context and the user input, at least one media item that satisfies the request;
in accordance with a determination that the at least one media item satisfies the request, obtaining the at least one media item;
receiving second user input requesting alternate media;
in response to receiving the second user input, causing a search for the media based on the at least one context, the user input and the second user input;
determining, based on the at least one context, the user input and the second user input, at least one additional media item that satisfies the request; and
in accordance with a determination that the at least one additional media item satisfies the request, obtaining the at least one additional media item.
2. The method of claim 1 , wherein the causing a search causes searching to be performed locally on the device.
3. The method of claim 1 , wherein the causing a search causes searching to be performed remotely to the device.
4. The method of claim 1 , wherein the obtaining the media item for the user comprises:
determining whether a local library includes the media item; and
in accordance with a determination that the local library includes the media item, presenting the media item to the user;
in accordance with a determination that the local library does not include the media item, obtaining the media item from an external data source.
5. (canceled)
6. The method of claim 1 , wherein the at least one context associated with the user input includes a device context.
7. The method of claim 6 , wherein the device context includes the location of the device.
8. The method of claim 6 , wherein the device context includes the proximity of the device to a wireless location transmitter.
9. The method of claim 6 , wherein the device context includes the content of media concurrently played by the device.
10. The method of claim 6 , wherein the device context includes a timecode associated with media concurrently played by the device.
11. The method of claim 6 , wherein the device context includes audio input from the microphone other than user speech.
12. The method of claim 6 , wherein the device context includes data associated with media stored on the device.
13. The method of claim 1 , wherein the at least one context associated with the user input includes a user context.
14. The method of claim 13 , wherein the user context includes the content of the user input.
15. The method of claim 13 , wherein the user context includes media associated with the user.
16. The method of claim 13 , wherein the user context includes demographic information associated with the user.
17. The method of claim 13 , wherein the user context includes information relating to a musical preference of the user.
18. The method of claim 13 , wherein the user context includes data associated with user content accessible by the device.
19. The method of claim 1 , wherein the at least one context associated with the user input includes a social context.
20. The method of claim 19 , wherein the social context includes the access frequency of a particular media item across a plurality of users.
21. The method of claim 19 , wherein the social context includes the number of references to a media item in a social media database.
22. The method of claim 1 , wherein the media item is a song.
23. The method of claim 1 , further comprising:
in response to obtaining the at least one media item, playing at least one media item, and terminating concurrent playback of other media.
24. The method of claim 1 , wherein obtaining the at least one media item comprises adding the at least one media item to a media library associated with the user.
25. The method of claim 1 , further comprising:
after obtaining the media item, receiving second user input comprising unstructured natural language speech including one or more words;
annotating the media item with the one or more words.
26. The method of claim 1 , wherein determining, based on the at least one context and the user input, at least one media item that satisfies the request comprises:
determining a probability, based on the at least one context and the user input, that at least one media item satisfies the request; and
determining whether the probability exceeds a threshold.
27. The method of claim 1 , wherein determining, based on the at least one context and the user input, at least one media item that satisfies the request comprises:
determining a probability, based on the at least one context and the user input, that at least one media item satisfies the request; and
selecting the media item having the highest probability.
28. The method of claim 1 , wherein obtaining the at least one media item comprises receiving streaming audio containing the at least one media item.
29. An electronic device, comprising:
a display;
a memory;
a microphone;
a processor coupled to the display, the memory and the microphone; the processor configured to:
receive user input associated with a request for media, the user input comprising unstructured natural language speech including one or more words;
identify at least one context associated with the user input;
cause a search for the media based on the at least one context and the user input;
determine, based on the at least one context and the user input, at least one media item that satisfies the request;
in accordance with a determination that the at least one media item satisfies the request, obtain the at least one media item;
receiving second user input requesting alternate media;
in response to receiving the second user input, causing a search for the media based on the at least one context, the user input and the second user input;
determining, based on the at least one context, the user input and the second user input, at least one additional media item that satisfies the request; and
in accordance with a determination that the at least one additional media item satisfies the request, obtaining the at least one additional media item.
30. A non-transitory computer-readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by an electronic device, cause the electronic device to:
receive user input associated with a request for media, the user input comprising unstructured natural language speech including one or more words;
identify at least one context associated with the user input;
cause a search for the media based on the at least one context and the user input;
determine, based on the at least one context and the user input, at least one media item that satisfies the request; and
in accordance with a determination that the at least one media item satisfies the request, obtain the at least one media item;
receiving second user input requesting alternate media;
in response to receiving the second user input, causing a search for the media based on the at least one context, the user input and the second user input;
determining, based on the at least one context, the user input and the second user input, at least one additional media item that satisfies the request; and
in accordance with a determination that the at least one additional media item satisfies the request, obtaining the at least one additional media item.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/819,343 US20160378747A1 (en) | 2015-06-29 | 2015-08-05 | Virtual assistant for media playback |
CN201680031457.6A CN107615276B (en) | 2015-06-29 | 2016-03-31 | Virtual assistant for media playback |
PCT/US2016/025404 WO2017003535A1 (en) | 2015-06-29 | 2016-03-31 | Virtual assistant for media playback |
EP19180842.7A EP3564831A1 (en) | 2015-06-29 | 2016-03-31 | Virtual assistant for media playback |
CN202110585353.2A CN113392239A (en) | 2015-06-29 | 2016-03-31 | Virtual assistant for media playback |
EP16818374.7A EP3289493A4 (en) | 2015-06-29 | 2016-03-31 | Virtual assistant for media playback |
US16/360,695 US11010127B2 (en) | 2015-06-29 | 2019-03-21 | Virtual assistant for media playback |
US17/226,988 US20210224032A1 (en) | 2015-06-29 | 2021-04-09 | Virtual assistant for media playback |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562186182P | 2015-06-29 | 2015-06-29 | |
US14/819,343 US20160378747A1 (en) | 2015-06-29 | 2015-08-05 | Virtual assistant for media playback |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/360,695 Continuation US11010127B2 (en) | 2015-06-29 | 2019-03-21 | Virtual assistant for media playback |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160378747A1 true US20160378747A1 (en) | 2016-12-29 |
Family
ID=57602373
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/819,343 Abandoned US20160378747A1 (en) | 2015-06-29 | 2015-08-05 | Virtual assistant for media playback |
US16/360,695 Active US11010127B2 (en) | 2015-06-29 | 2019-03-21 | Virtual assistant for media playback |
US17/226,988 Pending US20210224032A1 (en) | 2015-06-29 | 2021-04-09 | Virtual assistant for media playback |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/360,695 Active US11010127B2 (en) | 2015-06-29 | 2019-03-21 | Virtual assistant for media playback |
US17/226,988 Pending US20210224032A1 (en) | 2015-06-29 | 2021-04-09 | Virtual assistant for media playback |
Country Status (4)
Country | Link |
---|---|
US (3) | US20160378747A1 (en) |
EP (2) | EP3564831A1 (en) |
CN (2) | CN107615276B (en) |
WO (1) | WO2017003535A1 (en) |
Cited By (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9747083B1 (en) * | 2017-01-23 | 2017-08-29 | Essential Products, Inc. | Home device application programming interface |
US20170249519A1 (en) * | 2014-05-23 | 2017-08-31 | Samsung Electronics Co., Ltd. | Method and device for reproducing content |
CN107507615A (en) * | 2017-08-29 | 2017-12-22 | 百度在线网络技术(北京)有限公司 | Interface intelligent interaction control method, device, system and storage medium |
US9865248B2 (en) | 2008-04-05 | 2018-01-09 | Apple Inc. | Intelligent text-to-speech conversion |
US9934785B1 (en) * | 2016-11-30 | 2018-04-03 | Spotify Ab | Identification of taste attributes from an audio signal |
US9966060B2 (en) | 2013-06-07 | 2018-05-08 | Apple Inc. | System and method for user-specified pronunciation of words for speech synthesis and recognition |
US9986419B2 (en) | 2014-09-30 | 2018-05-29 | Apple Inc. | Social reminders |
US9990176B1 (en) * | 2016-06-28 | 2018-06-05 | Amazon Technologies, Inc. | Latency reduction for content playback |
US10043516B2 (en) | 2016-09-23 | 2018-08-07 | Apple Inc. | Intelligent automated assistant |
US10049675B2 (en) | 2010-02-25 | 2018-08-14 | Apple Inc. | User profiling for voice input processing |
US10079014B2 (en) | 2012-06-08 | 2018-09-18 | Apple Inc. | Name recognition system |
US10083690B2 (en) | 2014-05-30 | 2018-09-25 | Apple Inc. | Better resolution when referencing to concepts |
US20180277133A1 (en) * | 2015-11-20 | 2018-09-27 | Synaptics Incorporated | Input/output mode control for audio processing |
US10108612B2 (en) | 2008-07-31 | 2018-10-23 | Apple Inc. | Mobile device having human language translation capability with positional feedback |
US20180332432A1 (en) * | 2016-01-21 | 2018-11-15 | Google Llc | Sharing Navigation Data Among Co-Located Computing Devices |
WO2018212885A1 (en) * | 2017-05-16 | 2018-11-22 | Apple Inc. | Intelligent automated assistant for media exploration |
US10147426B1 (en) | 2017-08-01 | 2018-12-04 | Lenovo (Singapore) Pte. Ltd. | Method and device to select an audio output circuit based on priority attributes |
WO2019010138A1 (en) * | 2017-07-03 | 2019-01-10 | Google Llc | Obtaining responsive information from multiple corpora |
US20190019035A1 (en) * | 2015-09-07 | 2019-01-17 | Lg Electronics Inc. | Mobile terminal and method for operating the same |
US20190095444A1 (en) * | 2017-09-22 | 2019-03-28 | Amazon Technologies, Inc. | Voice driven analytics |
US20190114137A1 (en) * | 2017-10-12 | 2019-04-18 | Hyundai Motor Company | Apparatus and method for processing user input for vehicle |
US20190146994A1 (en) * | 2016-05-09 | 2019-05-16 | Audiocoup B.V. | System for determining user exposure to audio fragments |
US10297255B2 (en) | 2017-01-23 | 2019-05-21 | Bank Of America Corporation | Data processing system with machine learning engine to provide automated collaboration assistance functions |
US10311871B2 (en) | 2015-03-08 | 2019-06-04 | Apple Inc. | Competing devices responding to voice triggers |
US10311144B2 (en) | 2017-05-16 | 2019-06-04 | Apple Inc. | Emoji word sense disambiguation |
US10332518B2 (en) | 2017-05-09 | 2019-06-25 | Apple Inc. | User interface for correcting recognition errors |
US10354652B2 (en) | 2015-12-02 | 2019-07-16 | Apple Inc. | Applying neural network language models to weighted finite state transducers for automatic speech recognition |
US10356243B2 (en) | 2015-06-05 | 2019-07-16 | Apple Inc. | Virtual assistant aided communication with 3rd party service in a communication session |
US10365932B2 (en) | 2017-01-23 | 2019-07-30 | Essential Products, Inc. | Dynamic application customization for automated environments |
US10381016B2 (en) | 2008-01-03 | 2019-08-13 | Apple Inc. | Methods and apparatus for altering audio output signals |
US10395654B2 (en) | 2017-05-11 | 2019-08-27 | Apple Inc. | Text normalization based on a data-driven learning network |
US10403278B2 (en) | 2017-05-16 | 2019-09-03 | Apple Inc. | Methods and systems for phonetic matching in digital assistant services |
US10403283B1 (en) | 2018-06-01 | 2019-09-03 | Apple Inc. | Voice interaction at a primary device to access call functionality of a companion device |
US10410637B2 (en) | 2017-05-12 | 2019-09-10 | Apple Inc. | User-specific acoustic models |
US10417405B2 (en) | 2011-03-21 | 2019-09-17 | Apple Inc. | Device access using voice authentication |
US10417344B2 (en) | 2014-05-30 | 2019-09-17 | Apple Inc. | Exemplar-based natural language processing |
US10417266B2 (en) | 2017-05-09 | 2019-09-17 | Apple Inc. | Context-aware ranking of intelligent response suggestions |
US10431204B2 (en) | 2014-09-11 | 2019-10-01 | Apple Inc. | Method and apparatus for discovering trending terms in speech requests |
US10438595B2 (en) | 2014-09-30 | 2019-10-08 | Apple Inc. | Speaker identification and unsupervised speaker adaptation techniques |
US10445429B2 (en) | 2017-09-21 | 2019-10-15 | Apple Inc. | Natural language understanding using vocabularies with compressed serialized tries |
US10453443B2 (en) | 2014-09-30 | 2019-10-22 | Apple Inc. | Providing an indication of the suitability of speech recognition |
US10460734B2 (en) * | 2018-03-08 | 2019-10-29 | Frontive, Inc. | Methods and systems for speech signal processing |
EP3543999A3 (en) * | 2018-03-19 | 2019-11-06 | Samsung Electronics Co., Ltd. | System for processing sound data and method of controlling system |
US10474753B2 (en) | 2016-09-07 | 2019-11-12 | Apple Inc. | Language identification using recurrent neural networks |
US10482874B2 (en) | 2017-05-15 | 2019-11-19 | Apple Inc. | Hierarchical belief states for digital assistants |
US10497365B2 (en) | 2014-05-30 | 2019-12-03 | Apple Inc. | Multi-command single utterance input method |
US10496705B1 (en) | 2018-06-03 | 2019-12-03 | Apple Inc. | Accelerated task performance |
US10529332B2 (en) | 2015-03-08 | 2020-01-07 | Apple Inc. | Virtual assistant activation |
US10567477B2 (en) | 2015-03-08 | 2020-02-18 | Apple Inc. | Virtual assistant continuity |
US10580409B2 (en) | 2016-06-11 | 2020-03-03 | Apple Inc. | Application integration with a digital assistant |
US10593346B2 (en) | 2016-12-22 | 2020-03-17 | Apple Inc. | Rank-reduced token representation for automatic speech recognition |
US10592604B2 (en) | 2018-03-12 | 2020-03-17 | Apple Inc. | Inverse text normalization for automatic speech recognition |
US10600409B2 (en) | 2017-06-09 | 2020-03-24 | Google Llc | Balance modifications of audio-based computer program output including a chatbot selected based on semantic processing of audio |
US10614122B2 (en) | 2017-06-09 | 2020-04-07 | Google Llc | Balance modifications of audio-based computer program output using a placeholder field based on content |
US10636424B2 (en) | 2017-11-30 | 2020-04-28 | Apple Inc. | Multi-turn canned dialog |
US10643611B2 (en) | 2008-10-02 | 2020-05-05 | Apple Inc. | Electronic devices with voice command and contextual data processing capabilities |
US10652170B2 (en) * | 2017-06-09 | 2020-05-12 | Google Llc | Modification of audio-based computer program output |
US10657173B2 (en) | 2017-06-09 | 2020-05-19 | Google Llc | Validate modification of audio-based computer program output |
US10657328B2 (en) | 2017-06-02 | 2020-05-19 | Apple Inc. | Multi-task recurrent neural network architecture for efficient morphology handling in neural language modeling |
US10657961B2 (en) | 2013-06-08 | 2020-05-19 | Apple Inc. | Interpreting and acting upon commands that involve sharing information with remote devices |
CN111225261A (en) * | 2018-11-27 | 2020-06-02 | Lg电子株式会社 | Multimedia device for processing voice command and control method thereof |
US10684703B2 (en) | 2018-06-01 | 2020-06-16 | Apple Inc. | Attention aware virtual assistant dismissal |
US10685183B1 (en) * | 2018-01-04 | 2020-06-16 | Facebook, Inc. | Consumer insights analysis using word embeddings |
US10699717B2 (en) | 2014-05-30 | 2020-06-30 | Apple Inc. | Intelligent assistant for home automation |
US10714117B2 (en) | 2013-02-07 | 2020-07-14 | Apple Inc. | Voice trigger for a digital assistant |
US10726832B2 (en) | 2017-05-11 | 2020-07-28 | Apple Inc. | Maintaining privacy of personal information |
US10733993B2 (en) | 2016-06-10 | 2020-08-04 | Apple Inc. | Intelligent digital assistant in a multi-tasking environment |
US10733982B2 (en) | 2018-01-08 | 2020-08-04 | Apple Inc. | Multi-directional dialog |
US10733375B2 (en) | 2018-01-31 | 2020-08-04 | Apple Inc. | Knowledge-based framework for improving natural language understanding |
US10741185B2 (en) | 2010-01-18 | 2020-08-11 | Apple Inc. | Intelligent automated assistant |
US10748546B2 (en) | 2017-05-16 | 2020-08-18 | Apple Inc. | Digital assistant services based on device capabilities |
US10755051B2 (en) | 2017-09-29 | 2020-08-25 | Apple Inc. | Rule-based natural language processing |
US10755703B2 (en) | 2017-05-11 | 2020-08-25 | Apple Inc. | Offline personal assistant |
US10769385B2 (en) | 2013-06-09 | 2020-09-08 | Apple Inc. | System and method for inferring user intent from speech inputs |
US10777203B1 (en) | 2018-03-23 | 2020-09-15 | Amazon Technologies, Inc. | Speech interface device with caching component |
US10789945B2 (en) | 2017-05-12 | 2020-09-29 | Apple Inc. | Low-latency intelligent automated assistant |
US10789959B2 (en) | 2018-03-02 | 2020-09-29 | Apple Inc. | Training speaker recognition models for digital assistants |
US10791176B2 (en) | 2017-05-12 | 2020-09-29 | Apple Inc. | Synchronization and task delegation of a digital assistant |
US10810274B2 (en) | 2017-05-15 | 2020-10-20 | Apple Inc. | Optimizing dialogue policy decisions for digital assistants using implicit feedback |
US10818288B2 (en) | 2018-03-26 | 2020-10-27 | Apple Inc. | Natural assistant interaction |
US10839159B2 (en) | 2018-09-28 | 2020-11-17 | Apple Inc. | Named entity normalization in a spoken dialog system |
US10892996B2 (en) | 2018-06-01 | 2021-01-12 | Apple Inc. | Variable latency device coordination |
US10904611B2 (en) | 2014-06-30 | 2021-01-26 | Apple Inc. | Intelligent automated assistant for TV user interactions |
US10909331B2 (en) | 2018-03-30 | 2021-02-02 | Apple Inc. | Implicit identification of translation payload with neural machine translation |
US10928918B2 (en) | 2018-05-07 | 2021-02-23 | Apple Inc. | Raise to speak |
US10942703B2 (en) | 2015-12-23 | 2021-03-09 | Apple Inc. | Proactive assistance based on dialog communication between devices |
US10942702B2 (en) | 2016-06-11 | 2021-03-09 | Apple Inc. | Intelligent device arbitration and control |
US10956666B2 (en) | 2015-11-09 | 2021-03-23 | Apple Inc. | Unconventional virtual assistant interactions |
US10972297B2 (en) | 2017-01-23 | 2021-04-06 | Bank Of America Corporation | Data processing system with machine learning engine to provide automated collaboration assistance functions |
US20210104220A1 (en) * | 2019-10-08 | 2021-04-08 | Sarah MENNICKEN | Voice assistant with contextually-adjusted audio output |
US10984799B2 (en) | 2018-03-23 | 2021-04-20 | Amazon Technologies, Inc. | Hybrid speech interface device |
US10984780B2 (en) | 2018-05-21 | 2021-04-20 | Apple Inc. | Global semantic word embeddings using bi-directional recurrent neural networks |
US11010127B2 (en) | 2015-06-29 | 2021-05-18 | Apple Inc. | Virtual assistant for media playback |
US11010561B2 (en) | 2018-09-27 | 2021-05-18 | Apple Inc. | Sentiment prediction from textual data |
US11025565B2 (en) | 2015-06-07 | 2021-06-01 | Apple Inc. | Personalized prediction of responses for instant messaging |
US11023513B2 (en) | 2007-12-20 | 2021-06-01 | Apple Inc. | Method and apparatus for searching using an active ontology |
US11048473B2 (en) | 2013-06-09 | 2021-06-29 | Apple Inc. | Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant |
US11070949B2 (en) | 2015-05-27 | 2021-07-20 | Apple Inc. | Systems and methods for proactively identifying and surfacing relevant content on an electronic device with a touch-sensitive display |
US11069347B2 (en) | 2016-06-08 | 2021-07-20 | Apple Inc. | Intelligent automated assistant for media exploration |
US11069336B2 (en) | 2012-03-02 | 2021-07-20 | Apple Inc. | Systems and methods for name pronunciation |
US11120372B2 (en) | 2011-06-03 | 2021-09-14 | Apple Inc. | Performing actions associated with task items that represent tasks to perform |
US11126400B2 (en) | 2015-09-08 | 2021-09-21 | Apple Inc. | Zero latency digital assistant |
US11127397B2 (en) | 2015-05-27 | 2021-09-21 | Apple Inc. | Device voice control |
US11133008B2 (en) | 2014-05-30 | 2021-09-28 | Apple Inc. | Reducing the need for manual start/end-pointing and trigger phrases |
US11140099B2 (en) | 2019-05-21 | 2021-10-05 | Apple Inc. | Providing message response suggestions |
US11145294B2 (en) | 2018-05-07 | 2021-10-12 | Apple Inc. | Intelligent automated assistant for delivering content from user experiences |
US20210334306A1 (en) * | 2018-05-03 | 2021-10-28 | Google Llc | Coordination of overlapping processing of audio queries |
US11170166B2 (en) | 2018-09-28 | 2021-11-09 | Apple Inc. | Neural typographical error modeling via generative adversarial networks |
EP3910495A1 (en) * | 2020-05-12 | 2021-11-17 | Apple Inc. | Reducing description length based on confidence |
US20210357172A1 (en) * | 2020-05-12 | 2021-11-18 | Apple Inc. | Reducing description length based on confidence |
WO2021231197A1 (en) * | 2020-05-12 | 2021-11-18 | Apple Inc. | Reducing description length based on confidence |
US11204787B2 (en) | 2017-01-09 | 2021-12-21 | Apple Inc. | Application integration with a digital assistant |
US11217251B2 (en) | 2019-05-06 | 2022-01-04 | Apple Inc. | Spoken notifications |
US11227589B2 (en) | 2016-06-06 | 2022-01-18 | Apple Inc. | Intelligent list reading |
US11231904B2 (en) | 2015-03-06 | 2022-01-25 | Apple Inc. | Reducing response latency of intelligent automated assistants |
US11237797B2 (en) | 2019-05-31 | 2022-02-01 | Apple Inc. | User activity shortcut suggestions |
US11244267B2 (en) * | 2019-04-26 | 2022-02-08 | Dell Products L.P. | Digital fulfillment product onboarding system |
US11269678B2 (en) | 2012-05-15 | 2022-03-08 | Apple Inc. | Systems and methods for integrating third party services with a digital assistant |
US11281993B2 (en) | 2016-12-05 | 2022-03-22 | Apple Inc. | Model and ensemble compression for metric learning |
US20220093101A1 (en) * | 2020-09-21 | 2022-03-24 | Amazon Technologies, Inc. | Dialog management for multiple users |
US11289073B2 (en) | 2019-05-31 | 2022-03-29 | Apple Inc. | Device text to speech |
US11301477B2 (en) | 2017-05-12 | 2022-04-12 | Apple Inc. | Feedback analysis of a digital assistant |
US11307752B2 (en) | 2019-05-06 | 2022-04-19 | Apple Inc. | User configurable task triggers |
US11314370B2 (en) | 2013-12-06 | 2022-04-26 | Apple Inc. | Method for extracting salient dialog usage from live data |
US11348573B2 (en) | 2019-03-18 | 2022-05-31 | Apple Inc. | Multimodality in digital assistant systems |
US11350253B2 (en) | 2011-06-03 | 2022-05-31 | Apple Inc. | Active transport based notifications |
US11360641B2 (en) | 2019-06-01 | 2022-06-14 | Apple Inc. | Increasing the relevance of new available information |
US11388291B2 (en) | 2013-03-14 | 2022-07-12 | Apple Inc. | System and method for processing voicemail |
US11386266B2 (en) | 2018-06-01 | 2022-07-12 | Apple Inc. | Text correction |
US11423908B2 (en) | 2019-05-06 | 2022-08-23 | Apple Inc. | Interpreting spoken requests |
US11423886B2 (en) | 2010-01-18 | 2022-08-23 | Apple Inc. | Task flow identification based on user intent |
US11462215B2 (en) | 2018-09-28 | 2022-10-04 | Apple Inc. | Multi-modal inputs for voice commands |
US11467802B2 (en) | 2017-05-11 | 2022-10-11 | Apple Inc. | Maintaining privacy of personal information |
US11468282B2 (en) | 2015-05-15 | 2022-10-11 | Apple Inc. | Virtual assistant in a communication session |
US11475884B2 (en) | 2019-05-06 | 2022-10-18 | Apple Inc. | Reducing digital assistant latency when a language is incorrectly determined |
US11475898B2 (en) | 2018-10-26 | 2022-10-18 | Apple Inc. | Low-latency multi-speaker speech recognition |
US11488406B2 (en) | 2019-09-25 | 2022-11-01 | Apple Inc. | Text detection using global geometry estimators |
US11496600B2 (en) | 2019-05-31 | 2022-11-08 | Apple Inc. | Remote execution of machine-learned models |
US11495218B2 (en) | 2018-06-01 | 2022-11-08 | Apple Inc. | Virtual assistant operation in multi-device environments |
US11500672B2 (en) | 2015-09-08 | 2022-11-15 | Apple Inc. | Distributed personal assistant |
US11501762B2 (en) * | 2020-07-29 | 2022-11-15 | Microsoft Technology Licensing, Llc | Compounding corrective actions and learning in mixed mode dictation |
US11515044B1 (en) * | 2021-12-31 | 2022-11-29 | Ix Innovation Llc | System for administering a qualitative assessment using an automated verbal interface |
US11526368B2 (en) | 2015-11-06 | 2022-12-13 | Apple Inc. | Intelligent automated assistant in a messaging environment |
US11526518B2 (en) | 2017-09-22 | 2022-12-13 | Amazon Technologies, Inc. | Data reporting system and method |
US11532306B2 (en) | 2017-05-16 | 2022-12-20 | Apple Inc. | Detecting a trigger of a digital assistant |
US11551691B1 (en) * | 2017-08-03 | 2023-01-10 | Wells Fargo Bank, N.A. | Adaptive conversation support bot |
US11579699B1 (en) * | 2015-09-07 | 2023-02-14 | Oliver Markus Haynold | Hysteretic multilevel touch control |
US11638059B2 (en) | 2019-01-04 | 2023-04-25 | Apple Inc. | Content playback on multiple devices |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9965247B2 (en) | 2016-02-22 | 2018-05-08 | Sonos, Inc. | Voice controlled media playback system based on user profile |
US10095470B2 (en) | 2016-02-22 | 2018-10-09 | Sonos, Inc. | Audio response playback |
US9772817B2 (en) | 2016-02-22 | 2017-09-26 | Sonos, Inc. | Room-corrected voice detection |
US10264030B2 (en) | 2016-02-22 | 2019-04-16 | Sonos, Inc. | Networked microphone device control |
US9947316B2 (en) | 2016-02-22 | 2018-04-17 | Sonos, Inc. | Voice control of a media playback system |
US9811314B2 (en) | 2016-02-22 | 2017-11-07 | Sonos, Inc. | Metadata exchange involving a networked playback system and a networked microphone system |
US9978390B2 (en) | 2016-06-09 | 2018-05-22 | Sonos, Inc. | Dynamic player selection for audio signal processing |
US10134399B2 (en) | 2016-07-15 | 2018-11-20 | Sonos, Inc. | Contextualization of voice inputs |
US10115400B2 (en) | 2016-08-05 | 2018-10-30 | Sonos, Inc. | Multiple voice services |
US9942678B1 (en) | 2016-09-27 | 2018-04-10 | Sonos, Inc. | Audio playback settings for voice interaction |
US9743204B1 (en) | 2016-09-30 | 2017-08-22 | Sonos, Inc. | Multi-orientation playback device microphones |
US10181323B2 (en) * | 2016-10-19 | 2019-01-15 | Sonos, Inc. | Arbitration-based voice recognition |
US11183181B2 (en) | 2017-03-27 | 2021-11-23 | Sonos, Inc. | Systems and methods of multiple voice services |
US10475449B2 (en) | 2017-08-07 | 2019-11-12 | Sonos, Inc. | Wake-word detection suppression |
US10048930B1 (en) | 2017-09-08 | 2018-08-14 | Sonos, Inc. | Dynamic computation of system response volume |
US10719507B2 (en) * | 2017-09-21 | 2020-07-21 | SayMosaic Inc. | System and method for natural language processing |
US10446165B2 (en) | 2017-09-27 | 2019-10-15 | Sonos, Inc. | Robust short-time fourier transform acoustic echo cancellation during audio playback |
US10051366B1 (en) | 2017-09-28 | 2018-08-14 | Sonos, Inc. | Three-dimensional beam forming with a microphone array |
US10621981B2 (en) | 2017-09-28 | 2020-04-14 | Sonos, Inc. | Tone interference cancellation |
US10482868B2 (en) | 2017-09-28 | 2019-11-19 | Sonos, Inc. | Multi-channel acoustic echo cancellation |
US10466962B2 (en) | 2017-09-29 | 2019-11-05 | Sonos, Inc. | Media playback system with voice assistance |
US10880650B2 (en) | 2017-12-10 | 2020-12-29 | Sonos, Inc. | Network microphone devices with automatic do not disturb actuation capabilities |
US11343614B2 (en) | 2018-01-31 | 2022-05-24 | Sonos, Inc. | Device designation of playback and network microphone device arrangements |
US11175880B2 (en) | 2018-05-10 | 2021-11-16 | Sonos, Inc. | Systems and methods for voice-assisted media content selection |
US10847178B2 (en) | 2018-05-18 | 2020-11-24 | Sonos, Inc. | Linear filtering for noise-suppressed speech detection |
US10959029B2 (en) | 2018-05-25 | 2021-03-23 | Sonos, Inc. | Determining and adapting to changes in microphone performance of playback devices |
US10811014B1 (en) * | 2018-06-28 | 2020-10-20 | Amazon Technologies, Inc. | Contact list reconciliation and permissioning |
US10681460B2 (en) | 2018-06-28 | 2020-06-09 | Sonos, Inc. | Systems and methods for associating playback devices with voice assistant services |
US10461710B1 (en) | 2018-08-28 | 2019-10-29 | Sonos, Inc. | Media playback system with maximum volume setting |
US11076035B2 (en) | 2018-08-28 | 2021-07-27 | Sonos, Inc. | Do not disturb feature for audio notifications |
US10878811B2 (en) | 2018-09-14 | 2020-12-29 | Sonos, Inc. | Networked devices, systems, and methods for intelligently deactivating wake-word engines |
US10587430B1 (en) | 2018-09-14 | 2020-03-10 | Sonos, Inc. | Networked devices, systems, and methods for associating playback devices based on sound codes |
US11024331B2 (en) | 2018-09-21 | 2021-06-01 | Sonos, Inc. | Voice detection optimization using sound metadata |
US10811015B2 (en) | 2018-09-25 | 2020-10-20 | Sonos, Inc. | Voice detection optimization based on selected voice assistant service |
US11100923B2 (en) | 2018-09-28 | 2021-08-24 | Sonos, Inc. | Systems and methods for selective wake word detection using neural network models |
US10692518B2 (en) | 2018-09-29 | 2020-06-23 | Sonos, Inc. | Linear filtering for noise-suppressed speech detection via multiple network microphone devices |
EP3654249A1 (en) | 2018-11-15 | 2020-05-20 | Snips | Dilated convolutions and gating for efficient keyword spotting |
US11183183B2 (en) | 2018-12-07 | 2021-11-23 | Sonos, Inc. | Systems and methods of operating media playback systems having multiple voice assistant services |
US11132989B2 (en) | 2018-12-13 | 2021-09-28 | Sonos, Inc. | Networked microphone devices, systems, and methods of localized arbitration |
US10602268B1 (en) | 2018-12-20 | 2020-03-24 | Sonos, Inc. | Optimization of network microphone devices using noise classification |
US11213946B1 (en) * | 2018-12-27 | 2022-01-04 | X Development Llc | Mitigating reality gap through optimization of simulated hardware parameter(s) of simulated robot |
US11315556B2 (en) | 2019-02-08 | 2022-04-26 | Sonos, Inc. | Devices, systems, and methods for distributed voice processing by transmitting sound data associated with a wake word to an appropriate device for identification |
US10586540B1 (en) | 2019-06-12 | 2020-03-10 | Sonos, Inc. | Network microphone device with command keyword conditioning |
US11361756B2 (en) | 2019-06-12 | 2022-06-14 | Sonos, Inc. | Conditional wake word eventing based on environment |
US11200894B2 (en) | 2019-06-12 | 2021-12-14 | Sonos, Inc. | Network microphone device with command keyword eventing |
CN110289016A (en) * | 2019-06-20 | 2019-09-27 | 深圳追一科技有限公司 | A kind of voice quality detecting method, device and electronic equipment based on actual conversation |
US11138969B2 (en) | 2019-07-31 | 2021-10-05 | Sonos, Inc. | Locally distributed keyword detection |
US11138975B2 (en) | 2019-07-31 | 2021-10-05 | Sonos, Inc. | Locally distributed keyword detection |
US10871943B1 (en) | 2019-07-31 | 2020-12-22 | Sonos, Inc. | Noise classification for event detection |
US11189286B2 (en) | 2019-10-22 | 2021-11-30 | Sonos, Inc. | VAS toggle based on device orientation |
US11200900B2 (en) | 2019-12-20 | 2021-12-14 | Sonos, Inc. | Offline voice control |
CN111161717B (en) * | 2019-12-26 | 2022-03-22 | 思必驰科技股份有限公司 | Skill scheduling method and system for voice conversation platform |
US11562740B2 (en) | 2020-01-07 | 2023-01-24 | Sonos, Inc. | Voice verification for media playback |
US11556307B2 (en) | 2020-01-31 | 2023-01-17 | Sonos, Inc. | Local voice data processing |
US11308958B2 (en) | 2020-02-07 | 2022-04-19 | Sonos, Inc. | Localized wakeword verification |
US11308962B2 (en) | 2020-05-20 | 2022-04-19 | Sonos, Inc. | Input detection windowing |
US11482224B2 (en) | 2020-05-20 | 2022-10-25 | Sonos, Inc. | Command keywords with input detection windowing |
US11435876B1 (en) * | 2020-10-23 | 2022-09-06 | Amazon Technologies, Inc. | Techniques for sharing item information from a user interface |
US11551700B2 (en) | 2021-01-25 | 2023-01-10 | Sonos, Inc. | Systems and methods for power-efficient keyword detection |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120192096A1 (en) * | 2011-01-25 | 2012-07-26 | Research In Motion Limited | Active command line driven user interface |
US20130332168A1 (en) * | 2012-06-08 | 2013-12-12 | Samsung Electronics Co., Ltd. | Voice activated search and control for applications |
US20130347029A1 (en) * | 2012-06-21 | 2013-12-26 | United Video Properties, Inc. | Systems and methods for navigating to content without an advertisement |
US20140040274A1 (en) * | 2012-07-31 | 2014-02-06 | Veveo, Inc. | Disambiguating user intent in conversational interaction system for large corpus information retrieval |
US8676904B2 (en) * | 2008-10-02 | 2014-03-18 | Apple Inc. | Electronic devices with voice command and contextual data processing capabilities |
US8739208B2 (en) * | 2009-02-12 | 2014-05-27 | Digimarc Corporation | Media processing methods and arrangements |
Family Cites Families (2570)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3859005A (en) | 1973-08-13 | 1975-01-07 | Albert L Huebner | Erosion reduction in wet turbines |
US4826405A (en) | 1985-10-15 | 1989-05-02 | Aeroquip Corporation | Fan blade fabrication system |
US7835989B1 (en) | 1992-12-09 | 2010-11-16 | Discovery Communications, Inc. | Electronic book alternative delivery systems |
US8073695B1 (en) | 1992-12-09 | 2011-12-06 | Adrea, LLC | Electronic book with voice emulation features |
US6311157B1 (en) | 1992-12-31 | 2001-10-30 | Apple Computer, Inc. | Assigning meanings to utterances in a speech recognition system |
US6122482A (en) | 1995-02-22 | 2000-09-19 | Global Communications, Inc. | Satellite broadcast receiving and distribution system |
US5901287A (en) | 1996-04-01 | 1999-05-04 | The Sabre Group Inc. | Information aggregation and synthesization system |
US7113958B1 (en) | 1996-08-12 | 2006-09-26 | Battelle Memorial Institute | Three-dimensional display of document set |
US6199076B1 (en) | 1996-10-02 | 2001-03-06 | James Logan | Audio program player including a dynamic program selection controller |
US7787647B2 (en) | 1997-01-13 | 2010-08-31 | Micro Ear Technology, Inc. | Portable system for programming hearing aids |
US8479122B2 (en) | 2004-07-30 | 2013-07-02 | Apple Inc. | Gestures for touch sensitive input devices |
WO1999038149A1 (en) | 1998-01-26 | 1999-07-29 | Wayne Westerman | Method and apparatus for integrating manual input |
US7663607B2 (en) | 2004-05-06 | 2010-02-16 | Apple Inc. | Multipoint touchscreen |
US7840912B2 (en) | 2006-01-30 | 2010-11-23 | Apple Inc. | Multi-touch gesture dictionary |
US7614008B2 (en) | 2004-07-30 | 2009-11-03 | Apple Inc. | Operation of a computer with touch screen interface |
US7603684B1 (en) | 1998-05-19 | 2009-10-13 | United Video Properties, Inc. | Program guide system with video-on-demand browsing |
US7711672B2 (en) | 1998-05-28 | 2010-05-04 | Lawrence Au | Semantic network methods to disambiguate natural language meaning |
US7526466B2 (en) | 1998-05-28 | 2009-04-28 | Qps Tech Limited Liability Company | Method and system for analysis of intended meaning of natural language |
DE69937962T2 (en) | 1998-10-02 | 2008-12-24 | International Business Machines Corp. | DEVICE AND METHOD FOR PROVIDING NETWORK COORDINATED CONVERSION SERVICES |
US6163794A (en) | 1998-10-23 | 2000-12-19 | General Magic | Network system extensible by users |
US6321092B1 (en) | 1998-11-03 | 2001-11-20 | Signal Soft Corporation | Multiple input data management for wireless location-based applications |
US7447637B1 (en) | 1998-12-23 | 2008-11-04 | Eastern Investments, Llc | System and method of processing speech within a graphic user interface |
US7881936B2 (en) | 1998-12-04 | 2011-02-01 | Tegic Communications, Inc. | Multimodal disambiguation of speech recognition |
US7712053B2 (en) | 1998-12-04 | 2010-05-04 | Tegic Communications, Inc. | Explicit character filtering of ambiguous text entry |
US7679534B2 (en) | 1998-12-04 | 2010-03-16 | Tegic Communications, Inc. | Contextual prediction of user words and user actions |
US8938688B2 (en) | 1998-12-04 | 2015-01-20 | Nuance Communications, Inc. | Contextual prediction of user words and user actions |
US6842877B2 (en) | 1998-12-18 | 2005-01-11 | Tangis Corporation | Contextual responses based on automated learning techniques |
GB2388938B (en) | 1999-02-22 | 2004-03-17 | Nokia Corp | A communication terminal having a predictive editor application |
US7596606B2 (en) | 1999-03-11 | 2009-09-29 | Codignotto John D | Message publishing system for publishing messages from identified, authorized senders |
US7761296B1 (en) | 1999-04-02 | 2010-07-20 | International Business Machines Corporation | System and method for rescoring N-best hypotheses of an automatic speech recognition system |
US7558381B1 (en) | 1999-04-22 | 2009-07-07 | Agere Systems Inc. | Retrieval of deleted voice messages in voice messaging system |
US7030863B2 (en) | 2000-05-26 | 2006-04-18 | America Online, Incorporated | Virtual keyboard system with automatic correction |
US7821503B2 (en) | 2003-04-09 | 2010-10-26 | Tegic Communications, Inc. | Touch screen and graphical user interface |
DE60043008D1 (en) | 1999-05-27 | 2009-11-05 | Tegic Comm Inc | KEYBOARD SYSTEM WITH AUTOMATIC CORRECTION |
EP1224569A4 (en) | 1999-05-28 | 2005-08-10 | Sehda Inc | Phrase-based dialogue modeling with particular application to creating recognition grammars for voice-controlled user interfaces |
US20140098247A1 (en) | 1999-06-04 | 2014-04-10 | Ip Holdings, Inc. | Home Automation And Smart Home Control Using Mobile Devices And Wireless Enabled Electrical Switches |
US8065155B1 (en) | 1999-06-10 | 2011-11-22 | Gazdzinski Robert F | Adaptive advertising apparatus and methods |
US7711565B1 (en) | 1999-06-10 | 2010-05-04 | Gazdzinski Robert F | “Smart” elevator system and method |
AUPQ138199A0 (en) | 1999-07-02 | 1999-07-29 | Telstra R & D Management Pty Ltd | A search system |
US7743188B2 (en) | 1999-08-12 | 2010-06-22 | Palm, Inc. | Method and apparatus for accessing a contacts database and telephone services |
US7451177B1 (en) | 1999-08-12 | 2008-11-11 | Avintaquin Capital, Llc | System for and method of implementing a closed loop response architecture for electronic commerce |
US7925610B2 (en) | 1999-09-22 | 2011-04-12 | Google Inc. | Determining a meaning of a knowledge item using document-based information |
US6789231B1 (en) | 1999-10-05 | 2004-09-07 | Microsoft Corporation | Method and system for providing alternatives for text derived from stochastic input sources |
US7176372B2 (en) | 1999-10-19 | 2007-02-13 | Medialab Solutions Llc | Interactive digital music recorder and player |
US8392188B1 (en) | 1999-11-05 | 2013-03-05 | At&T Intellectual Property Ii, L.P. | Method and system for building a phonotactic model for domain independent speech recognition |
US7725307B2 (en) | 1999-11-12 | 2010-05-25 | Phoenix Solutions, Inc. | Query engine for processing voice based queries including semantic decoding |
US9076448B2 (en) | 1999-11-12 | 2015-07-07 | Nuance Communications, Inc. | Distributed real time speech recognition system |
US7392185B2 (en) | 1999-11-12 | 2008-06-24 | Phoenix Solutions, Inc. | Speech based learning/training system using semantic decoding |
US7050977B1 (en) | 1999-11-12 | 2006-05-23 | Phoenix Solutions, Inc. | Speech-enabled server for internet website and method |
US7337389B1 (en) | 1999-12-07 | 2008-02-26 | Microsoft Corporation | System and method for annotating an electronic document independently of its content |
US7434177B1 (en) | 1999-12-20 | 2008-10-07 | Apple Inc. | User interface for providing consolidation and access |
US8271287B1 (en) | 2000-01-14 | 2012-09-18 | Alcatel Lucent | Voice command remote control system |
GB2360106B (en) | 2000-02-21 | 2004-09-22 | Ac Properties Bv | Ordering playable works |
US6757362B1 (en) | 2000-03-06 | 2004-06-29 | Avaya Technology Corp. | Personal virtual assistant |
WO2001067225A2 (en) | 2000-03-06 | 2001-09-13 | Kanisa Inc. | A system and method for providing an intelligent multi-step dialog with a user |
US8645137B2 (en) | 2000-03-16 | 2014-02-04 | Apple Inc. | Fast, language-independent method for user authentication by voice |
US8024415B2 (en) | 2001-03-16 | 2011-09-20 | Microsoft Corporation | Priorities generation and management |
US7187947B1 (en) | 2000-03-28 | 2007-03-06 | Affinity Labs, Llc | System and method for communicating selected information to an electronic device |
US7478129B1 (en) | 2000-04-18 | 2009-01-13 | Helen Jeanne Chemtob | Method and apparatus for providing group interaction via communications networks |
US7080315B1 (en) | 2000-06-28 | 2006-07-18 | International Business Machines Corporation | Method and apparatus for coupling a visual browser to a voice browser |
US7672952B2 (en) | 2000-07-13 | 2010-03-02 | Novell, Inc. | System and method of semantic correlation of rich content |
US7853664B1 (en) | 2000-07-31 | 2010-12-14 | Landmark Digital Services Llc | Method and system for purchasing pre-recorded music |
WO2002019147A1 (en) * | 2000-08-28 | 2002-03-07 | Emotion, Inc. | Method and apparatus for digital media management, retrieval, and collaboration |
US7688306B2 (en) | 2000-10-02 | 2010-03-30 | Apple Inc. | Methods and apparatuses for operating a portable device based on an accelerometer |
US7218226B2 (en) | 2004-03-01 | 2007-05-15 | Apple Inc. | Acceleration-based theft detection system for portable electronic devices |
JP2004518209A (en) * | 2000-10-24 | 2004-06-17 | トムソン ライセンシング ソシエテ アノニム | Data collection method, recording medium, and transmission medium using embedded media player page |
US6915262B2 (en) | 2000-11-30 | 2005-07-05 | Telesector Resources Group, Inc. | Methods and apparatus for performing speech recognition and using speech recognition results |
US7016847B1 (en) | 2000-12-08 | 2006-03-21 | Ben Franklin Patent Holdings L.L.C. | Open architecture for a voice user interface |
WO2002048866A2 (en) | 2000-12-11 | 2002-06-20 | Microsoft Corporation | Method and system for management of multiple network resources |
US7607083B2 (en) | 2000-12-12 | 2009-10-20 | Nec Corporation | Test summarization using relevance measures and latent semantic analysis |
US6973427B2 (en) | 2000-12-26 | 2005-12-06 | Microsoft Corporation | Method for adding phonetic descriptions to a speech recognition lexicon |
US6677932B1 (en) | 2001-01-28 | 2004-01-13 | Finger Works, Inc. | System and method for recognizing touch typing under limited tactile feedback conditions |
US8213910B2 (en) | 2001-02-09 | 2012-07-03 | Harris Technology, Llc | Telephone using a connection network for processing data remotely from the telephone |
US6570557B1 (en) | 2001-02-10 | 2003-05-27 | Finger Works, Inc. | Multi-touch system and method for emulating modifier keys via fingertip chords |
US7171365B2 (en) | 2001-02-16 | 2007-01-30 | International Business Machines Corporation | Tracking time using portable recorders and speech recognition |
US7290039B1 (en) | 2001-02-27 | 2007-10-30 | Microsoft Corporation | Intent based processing |
US7277853B1 (en) | 2001-03-02 | 2007-10-02 | Mindspeed Technologies, Inc. | System and method for a endpoint detection of speech for improved speech recognition in noisy environments |
US7366979B2 (en) | 2001-03-09 | 2008-04-29 | Copernicus Investments, Llc | Method and apparatus for annotating a document |
AU2002237495A1 (en) | 2001-03-13 | 2002-09-24 | Intelligate Ltd. | Dynamic natural language understanding |
WO2002073449A1 (en) | 2001-03-14 | 2002-09-19 | At & T Corp. | Automated sentence planning in a task classification system |
US7209880B1 (en) | 2001-03-20 | 2007-04-24 | At&T Corp. | Systems and methods for dynamic re-configurable speech recognition |
JP2002358092A (en) | 2001-06-01 | 2002-12-13 | Sony Corp | Voice synthesizing system |
US20020194003A1 (en) | 2001-06-05 | 2002-12-19 | Mozer Todd F. | Client-server security system and method |
US8831949B1 (en) | 2001-06-28 | 2014-09-09 | At&T Intellectual Property I, L.P. | Voice recognition for performing authentication and completing transactions in a systems interface to legacy systems |
US7606712B1 (en) | 2001-06-28 | 2009-10-20 | At&T Intellectual Property Ii, L.P. | Speech recognition interface for voice actuation of legacy systems |
US20050134578A1 (en) | 2001-07-13 | 2005-06-23 | Universal Electronics Inc. | System and methods for interacting with a control environment |
US7987151B2 (en) | 2001-08-10 | 2011-07-26 | General Dynamics Advanced Info Systems, Inc. | Apparatus and method for problem solving using intelligent agents |
US7920682B2 (en) | 2001-08-21 | 2011-04-05 | Byrne William J | Dynamic interactive voice interface |
US7774388B1 (en) | 2001-08-31 | 2010-08-10 | Margaret Runchey | Model of everything with UR-URL combination identity-identifier-addressing-indexing method, means, and apparatus |
KR100556072B1 (en) | 2001-09-21 | 2006-03-07 | 레노보 (싱가포르) 피티이. 엘티디. | Input apparatus, computer apparatus, method for identifying input object, method for identifying input object in keyboard, and computer program |
US7403938B2 (en) | 2001-09-24 | 2008-07-22 | Iac Search & Media, Inc. | Natural language query processing |
US7324947B2 (en) | 2001-10-03 | 2008-01-29 | Promptu Systems Corporation | Global speech user interface |
US7312785B2 (en) | 2001-10-22 | 2007-12-25 | Apple Inc. | Method and apparatus for accelerated scrolling |
ITFI20010199A1 (en) | 2001-10-22 | 2003-04-22 | Riccardo Vieri | SYSTEM AND METHOD TO TRANSFORM TEXTUAL COMMUNICATIONS INTO VOICE AND SEND THEM WITH AN INTERNET CONNECTION TO ANY TELEPHONE SYSTEM |
US7913185B1 (en) | 2001-10-25 | 2011-03-22 | Adobe Systems Incorporated | Graphical insertion of JavaScript pop-up menus |
US20030101054A1 (en) | 2001-11-27 | 2003-05-29 | Ncc, Llc | Integrated system and method for electronic speech recognition and transcription |
US7483832B2 (en) | 2001-12-10 | 2009-01-27 | At&T Intellectual Property I, L.P. | Method and system for customizing voice translation of text to speech |
US7490039B1 (en) | 2001-12-13 | 2009-02-10 | Cisco Technology, Inc. | Text to speech system and method having interactive spelling capabilities |
US7103542B2 (en) | 2001-12-14 | 2006-09-05 | Ben Franklin Patent Holding Llc | Automatically improving a voice recognition system |
US20030191629A1 (en) * | 2002-02-04 | 2003-10-09 | Shinichi Yoshizawa | Interface apparatus and task control method for assisting in the operation of a device using recognition technology |
US8374879B2 (en) * | 2002-02-04 | 2013-02-12 | Microsoft Corporation | Systems and methods for managing interactions from multiple speech-enabled applications |
US7272377B2 (en) | 2002-02-07 | 2007-09-18 | At&T Corp. | System and method of ubiquitous language translation for wireless devices |
US8249880B2 (en) | 2002-02-14 | 2012-08-21 | Intellisist, Inc. | Real-time display of system instructions |
US7009663B2 (en) | 2003-12-17 | 2006-03-07 | Planar Systems, Inc. | Integrated optical light sensitive active matrix liquid crystal display |
US7221287B2 (en) | 2002-03-05 | 2007-05-22 | Triangle Software Llc | Three-dimensional traffic report |
JP2003295882A (en) | 2002-04-02 | 2003-10-15 | Canon Inc | Text structure for speech synthesis, speech synthesizing method, speech synthesizer and computer program therefor |
US7707221B1 (en) | 2002-04-03 | 2010-04-27 | Yahoo! Inc. | Associating and linking compact disc metadata |
US7043474B2 (en) | 2002-04-15 | 2006-05-09 | International Business Machines Corporation | System and method for measuring image similarity based on semantic meaning |
US7869998B1 (en) | 2002-04-23 | 2011-01-11 | At&T Intellectual Property Ii, L.P. | Voice-enabled dialog system |
US8135115B1 (en) | 2006-11-22 | 2012-03-13 | Securus Technologies, Inc. | System and method for multi-channel recording |
US7490034B2 (en) | 2002-04-30 | 2009-02-10 | Microsoft Corporation | Lexicon with sectionalized data and method of using the same |
US7221937B2 (en) | 2002-05-06 | 2007-05-22 | Research In Motion Limited | Event reminder method |
US7493560B1 (en) | 2002-05-20 | 2009-02-17 | Oracle International Corporation | Definition links in online documentation |
US8611919B2 (en) | 2002-05-23 | 2013-12-17 | Wounder Gmbh., Llc | System, method, and computer program product for providing location based services and mobile e-commerce |
US7546382B2 (en) | 2002-05-28 | 2009-06-09 | International Business Machines Corporation | Methods and systems for authoring of mixed-initiative multi-modal interactions and related browsing mechanisms |
US7398209B2 (en) | 2002-06-03 | 2008-07-08 | Voicebox Technologies, Inc. | Systems and methods for responding to natural language speech utterance |
US7680649B2 (en) | 2002-06-17 | 2010-03-16 | International Business Machines Corporation | System, method, program product, and networking use for recognizing words and their parts of speech in one or more natural languages |
US8219608B2 (en) | 2002-06-20 | 2012-07-10 | Koninklijke Philips Electronics N.V. | Scalable architecture for web services |
US7568151B2 (en) | 2002-06-27 | 2009-07-28 | Microsoft Corporation | Notification of activity around documents |
AU2003280474A1 (en) | 2002-06-28 | 2004-01-19 | Conceptual Speech, Llc | Multi-phoneme streamer and knowledge representation speech recognition system and method |
US7079713B2 (en) | 2002-06-28 | 2006-07-18 | Microsoft Corporation | Method and system for displaying and linking ink objects with recognized text and objects |
US7656393B2 (en) | 2005-03-04 | 2010-02-02 | Apple Inc. | Electronic device having display and surrounding touch sensitive bezel for user interface and control |
US7693720B2 (en) | 2002-07-15 | 2010-04-06 | Voicebox Technologies, Inc. | Mobile systems and methods for responding to natural language speech utterance |
US7665024B1 (en) | 2002-07-22 | 2010-02-16 | Verizon Services Corp. | Methods and apparatus for controlling a user interface based on the emotional state of a user |
US6876727B2 (en) | 2002-07-24 | 2005-04-05 | Sbc Properties, Lp | Voice over IP method for developing interactive voice response system |
US7535997B1 (en) | 2002-07-29 | 2009-05-19 | At&T Intellectual Property I, L.P. | Systems and methods for silent message delivery |
US7822687B2 (en) * | 2002-09-16 | 2010-10-26 | Francois Brillon | Jukebox with customizable avatar |
US7027842B2 (en) | 2002-09-24 | 2006-04-11 | Bellsouth Intellectual Property Corporation | Apparatus and method for providing hands-free operation of a device |
US9342829B2 (en) | 2002-10-01 | 2016-05-17 | Andrew H B Zhou | Systems and methods for mobile application, wearable application, transactional messaging, calling, digital multimedia capture and payment transactions |
US7822611B2 (en) | 2002-11-12 | 2010-10-26 | Bezar David B | Speaker intent analysis system |
US8972266B2 (en) | 2002-11-12 | 2015-03-03 | David Bezar | User intent analysis extent of speaker intent analysis system |
AU2003293071A1 (en) | 2002-11-22 | 2004-06-18 | Roy Rosser | Autonomous response engine |
US7298930B1 (en) | 2002-11-29 | 2007-11-20 | Ricoh Company, Ltd. | Multimodal access of meeting recordings |
AU2003296981A1 (en) | 2002-12-10 | 2004-06-30 | Kirusa, Inc. | Techniques for disambiguating speech input using multimodal interfaces |
FR2848688A1 (en) | 2002-12-17 | 2004-06-18 | France Telecom | Text language identifying device for linguistic analysis of text, has analyzing unit to analyze chain characters of words extracted from one text, where each chain is completed so that each time chains are found in word |
US8661112B2 (en) | 2002-12-20 | 2014-02-25 | Nuance Communications, Inc. | Customized interactive voice response menus |
CN1714584B (en) | 2002-12-20 | 2010-05-05 | 诺基亚有限公司 | Method and device for organizing user provided information with meta-information |
US7703091B1 (en) | 2002-12-31 | 2010-04-20 | Emc Corporation | Methods and apparatus for installing agents in a managed network |
US7003464B2 (en) | 2003-01-09 | 2006-02-21 | Motorola, Inc. | Dialog recognition and control in a voice browser |
US7593868B2 (en) | 2003-01-29 | 2009-09-22 | Innovation Interactive Llc | Systems and methods for providing contextual advertising information via a communication network |
US7617094B2 (en) | 2003-02-28 | 2009-11-10 | Palo Alto Research Center Incorporated | Methods, apparatus, and products for identifying a conversation |
US7805299B2 (en) | 2004-03-01 | 2010-09-28 | Coifman Robert E | Method and apparatus for improving the transcription accuracy of speech recognition software |
US7809565B2 (en) | 2003-03-01 | 2010-10-05 | Coifman Robert E | Method and apparatus for improving the transcription accuracy of speech recognition software |
US7606790B2 (en) * | 2003-03-03 | 2009-10-20 | Digimarc Corporation | Integrating and enhancing searching of media content and biometric databases |
US7529671B2 (en) | 2003-03-04 | 2009-05-05 | Microsoft Corporation | Block synchronous decoding |
JP4828091B2 (en) | 2003-03-05 | 2011-11-30 | ヒューレット・パッカード・カンパニー | Clustering method program and apparatus |
US8064753B2 (en) | 2003-03-05 | 2011-11-22 | Freeman Alan D | Multi-feature media article and method for manufacture of same |
US7835504B1 (en) | 2003-03-16 | 2010-11-16 | Palm, Inc. | Telephone number parsing and linking |
US8244712B2 (en) | 2003-03-18 | 2012-08-14 | Apple Inc. | Localized viewing of file system names |
US7613797B2 (en) | 2003-03-19 | 2009-11-03 | Unisys Corporation | Remote discovery and system architecture |
US7496498B2 (en) | 2003-03-24 | 2009-02-24 | Microsoft Corporation | Front-end architecture for a multi-lingual text-to-speech system |
US8745541B2 (en) | 2003-03-25 | 2014-06-03 | Microsoft Corporation | Architecture for controlling a computer using hand gestures |
US7941009B2 (en) | 2003-04-08 | 2011-05-10 | The Penn State Research Foundation | Real-time computerized annotation of pictures |
US8224757B2 (en) | 2003-04-15 | 2012-07-17 | Sap Ag | Curriculum management system |
US7711550B1 (en) | 2003-04-29 | 2010-05-04 | Microsoft Corporation | Methods and system for recognizing names in a computer-generated document and for providing helpful actions associated with recognized names |
US7669134B1 (en) | 2003-05-02 | 2010-02-23 | Apple Inc. | Method and apparatus for displaying information during an instant messaging session |
US7407384B2 (en) | 2003-05-29 | 2008-08-05 | Robert Bosch Gmbh | System, method and device for language education through a voice portal server |
US7493251B2 (en) | 2003-05-30 | 2009-02-17 | Microsoft Corporation | Using source-channel models for word segmentation |
US7496230B2 (en) | 2003-06-05 | 2009-02-24 | International Business Machines Corporation | System and method for automatic natural language translation of embedded text regions in images during information transfer |
US7778432B2 (en) | 2003-06-06 | 2010-08-17 | Gn Resound A/S | Hearing aid wireless network |
US7720683B1 (en) | 2003-06-13 | 2010-05-18 | Sensory, Inc. | Method and apparatus of specifying and performing speech recognition operations |
KR100634496B1 (en) | 2003-06-16 | 2006-10-13 | 삼성전자주식회사 | Input language recognition method and apparatus and method and apparatus for automatically interchanging input language modes employing the same |
US7559026B2 (en) | 2003-06-20 | 2009-07-07 | Apple Inc. | Video conferencing system having focus control |
US7827047B2 (en) | 2003-06-24 | 2010-11-02 | At&T Intellectual Property I, L.P. | Methods and systems for assisting scheduling with automation |
US7757182B2 (en) | 2003-06-25 | 2010-07-13 | Microsoft Corporation | Taskbar media player |
US7634732B1 (en) | 2003-06-26 | 2009-12-15 | Microsoft Corporation | Persona menu |
US7739588B2 (en) | 2003-06-27 | 2010-06-15 | Microsoft Corporation | Leveraging markup language data for semantically labeling text strings and data and for providing actions based on semantically labeled text strings and data |
US7580551B1 (en) | 2003-06-30 | 2009-08-25 | The Research Foundation Of State University Of Ny | Method and apparatus for analyzing and/or comparing handwritten and/or biometric samples |
EP1639441A1 (en) | 2003-07-01 | 2006-03-29 | Nokia Corporation | Method and device for operating a user-input area on an electronic display device |
US8373660B2 (en) | 2003-07-14 | 2013-02-12 | Matt Pallakoff | System and method for a portable multimedia client |
US7757173B2 (en) | 2003-07-18 | 2010-07-13 | Apple Inc. | Voice menu system |
KR100811232B1 (en) | 2003-07-18 | 2008-03-07 | 엘지전자 주식회사 | Turn-by-turn navigation system ? next guidance way |
US8311835B2 (en) | 2003-08-29 | 2012-11-13 | Microsoft Corporation | Assisted multi-modal dialogue |
US7475010B2 (en) | 2003-09-03 | 2009-01-06 | Lingospot, Inc. | Adaptive and scalable method for resolving natural language ambiguities |
US7539619B1 (en) | 2003-09-05 | 2009-05-26 | Spoken Translation Ind. | Speech-enabled language translation system and method enabling interactive user supervision of translation and speech recognition accuracy |
US20050054381A1 (en) | 2003-09-05 | 2005-03-10 | Samsung Electronics Co., Ltd. | Proactive user interface |
US7475015B2 (en) | 2003-09-05 | 2009-01-06 | International Business Machines Corporation | Semantic language modeling and confidence measurement |
AU2003260819A1 (en) | 2003-09-12 | 2005-04-06 | Nokia Corporation | Method and device for handling missed calls in a mobile communications environment |
US7418392B1 (en) | 2003-09-25 | 2008-08-26 | Sensory, Inc. | System and method for controlling the operation of a device by voice commands |
US7386440B2 (en) | 2003-10-01 | 2008-06-10 | International Business Machines Corporation | Method, system, and apparatus for natural language mixed-initiative dialogue processing |
CN101661754B (en) | 2003-10-03 | 2012-07-11 | 旭化成株式会社 | Data processing unit and control method thereof |
US7620894B1 (en) | 2003-10-08 | 2009-11-17 | Apple Inc. | Automatic, dynamic user interface configuration |
US7487092B2 (en) | 2003-10-17 | 2009-02-03 | International Business Machines Corporation | Interactive debugging and tuning method for CTTS voice building |
US7643990B1 (en) | 2003-10-23 | 2010-01-05 | Apple Inc. | Global boundary-centric feature extraction and associated discontinuity metrics |
US7669177B2 (en) | 2003-10-24 | 2010-02-23 | Microsoft Corporation | System and method for preference application installation and execution |
JP4516527B2 (en) | 2003-11-12 | 2010-08-04 | 本田技研工業株式会社 | Voice recognition device |
US7584092B2 (en) | 2004-11-15 | 2009-09-01 | Microsoft Corporation | Unsupervised learning of paraphrase/translation alternations and selective application thereof |
US7561069B2 (en) | 2003-11-12 | 2009-07-14 | Legalview Assets, Limited | Notification systems and methods enabling a response to change particulars of delivery or pickup |
US7779356B2 (en) | 2003-11-26 | 2010-08-17 | Griesmer James P | Enhanced data tip system and method |
US20090018918A1 (en) | 2004-11-04 | 2009-01-15 | Manyworlds Inc. | Influence-based Social Network Advertising |
WO2005062293A1 (en) | 2003-12-05 | 2005-07-07 | Kabushikikaisha Kenwood | Audio device control device,audio device control method, and program |
US7689412B2 (en) | 2003-12-05 | 2010-03-30 | Microsoft Corporation | Synonymous collocation extraction using translation information |
US7412388B2 (en) | 2003-12-12 | 2008-08-12 | International Business Machines Corporation | Language-enhanced programming tools |
US7427024B1 (en) | 2003-12-17 | 2008-09-23 | Gazdzinski Mark J | Chattel management apparatus and methods |
US8103510B2 (en) | 2003-12-26 | 2012-01-24 | Kabushikikaisha Kenwood | Device control device, speech recognition device, agent device, on-vehicle device control device, navigation device, audio device, device control method, speech recognition method, agent processing method, on-vehicle device control method, navigation method, and audio device control method, and program |
US7552055B2 (en) | 2004-01-10 | 2009-06-23 | Microsoft Corporation | Dialog component re-use in recognition systems |
US8160883B2 (en) | 2004-01-10 | 2012-04-17 | Microsoft Corporation | Focus tracking in dialogs |
US7660715B1 (en) | 2004-01-12 | 2010-02-09 | Avaya Inc. | Transparent monitoring and intervention to improve automatic adaptation of speech models |
US8281339B1 (en) | 2004-01-12 | 2012-10-02 | United Video Properties, Inc. | Customizable flip and browse overlays in an interactive television system |
US7707039B2 (en) | 2004-02-15 | 2010-04-27 | Exbiblio B.V. | Automatic modification of web pages |
US7610258B2 (en) | 2004-01-30 | 2009-10-27 | Microsoft Corporation | System and method for exposing a child list |
US7542971B2 (en) | 2004-02-02 | 2009-06-02 | Fuji Xerox Co., Ltd. | Systems and methods for collaborative note-taking |
US7596499B2 (en) | 2004-02-02 | 2009-09-29 | Panasonic Corporation | Multilingual text-to-speech system with limited resources |
US7721226B2 (en) | 2004-02-18 | 2010-05-18 | Microsoft Corporation | Glom widget |
US7433876B2 (en) | 2004-02-23 | 2008-10-07 | Radar Networks, Inc. | Semantic web portal and platform |
US8654936B1 (en) | 2004-02-24 | 2014-02-18 | At&T Intellectual Property I, L.P. | Home control, monitoring and communication system using remote voice commands |
KR100462292B1 (en) | 2004-02-26 | 2004-12-17 | 엔에이치엔(주) | A method for providing search results list based on importance information and a system thereof |
US20050195094A1 (en) | 2004-03-05 | 2005-09-08 | White Russell W. | System and method for utilizing a bicycle computer to monitor athletic performance |
US7693715B2 (en) | 2004-03-10 | 2010-04-06 | Microsoft Corporation | Generating large units of graphonemes with mutual information criterion for letter to sound conversion |
US7711129B2 (en) | 2004-03-11 | 2010-05-04 | Apple Inc. | Method and system for approximating graphic equalizers using dynamic filter order reduction |
US7478033B2 (en) | 2004-03-16 | 2009-01-13 | Google Inc. | Systems and methods for translating Chinese pinyin to Chinese characters |
JP4587160B2 (en) | 2004-03-26 | 2010-11-24 | キヤノン株式会社 | Signal processing apparatus and method |
US7716216B1 (en) | 2004-03-31 | 2010-05-11 | Google Inc. | Document ranking based on semantic distance between terms in a document |
US7747601B2 (en) | 2006-08-14 | 2010-06-29 | Inquira, Inc. | Method and apparatus for identifying and classifying query intent |
US8713418B2 (en) | 2004-04-12 | 2014-04-29 | Google Inc. | Adding value to a rendered document |
US7496512B2 (en) | 2004-04-13 | 2009-02-24 | Microsoft Corporation | Refining of segmental boundaries in speech waveforms using contextual-dependent models |
US7623119B2 (en) | 2004-04-21 | 2009-11-24 | Nokia Corporation | Graphical functions by gestures |
JP4296598B2 (en) | 2004-04-30 | 2009-07-15 | カシオ計算機株式会社 | Communication terminal device and communication terminal processing program |
US7657844B2 (en) | 2004-04-30 | 2010-02-02 | International Business Machines Corporation | Providing accessibility compliance within advanced componentry |
US7447665B2 (en) | 2004-05-10 | 2008-11-04 | Kinetx, Inc. | System and method of self-learning conceptual mapping to organize and interpret data |
US7778830B2 (en) | 2004-05-19 | 2010-08-17 | International Business Machines Corporation | Training speaker-dependent, phrase-based speech grammars using an unsupervised automated technique |
US8130929B2 (en) | 2004-05-25 | 2012-03-06 | Galileo Processing, Inc. | Methods for obtaining complex data in an interactive voice response system |
US7873149B2 (en) | 2004-06-01 | 2011-01-18 | Verizon Business Global Llc | Systems and methods for gathering information |
US8224649B2 (en) | 2004-06-02 | 2012-07-17 | International Business Machines Corporation | Method and apparatus for remote command, control and diagnostics of systems using conversational or audio interface |
US8095364B2 (en) | 2004-06-02 | 2012-01-10 | Tegic Communications, Inc. | Multimodal disambiguation of speech recognition |
US7673340B1 (en) | 2004-06-02 | 2010-03-02 | Clickfox Llc | System and method for analyzing system user behavior |
EP1756539A1 (en) | 2004-06-04 | 2007-02-28 | Philips Intellectual Property & Standards GmbH | Performance prediction for an interactive speech recognition system |
US20070182595A1 (en) | 2004-06-04 | 2007-08-09 | Firooz Ghasabian | Systems to enhance data entry in mobile and fixed environment |
US7747980B2 (en) | 2004-06-08 | 2010-06-29 | Covia Labs, Inc. | Method and system for specifying device interoperability source specifying renditions data and code for interoperable device team |
WO2005122145A1 (en) | 2004-06-08 | 2005-12-22 | Metaphor Solutions, Inc. | Speech recognition dialog management |
US7565104B1 (en) | 2004-06-16 | 2009-07-21 | Wendell Brown | Broadcast audio program guide |
US8321786B2 (en) | 2004-06-17 | 2012-11-27 | Apple Inc. | Routine and interface for correcting electronic text |
GB0413743D0 (en) | 2004-06-19 | 2004-07-21 | Ibm | Method and system for approximate string matching |
US20070214133A1 (en) | 2004-06-23 | 2007-09-13 | Edo Liberty | Methods for filtering data and filling in missing data using nonlinear inference |
US8099395B2 (en) | 2004-06-24 | 2012-01-17 | Oracle America, Inc. | System level identity object |
JP4416643B2 (en) | 2004-06-29 | 2010-02-17 | キヤノン株式会社 | Multimodal input method |
US7720674B2 (en) | 2004-06-29 | 2010-05-18 | Sap Ag | Systems and methods for processing natural language queries |
US7505795B1 (en) | 2004-07-07 | 2009-03-17 | Advanced Micro Devices, Inc. | Power save management with customized range for user configuration and tuning value based upon recent usage |
US8589156B2 (en) | 2004-07-12 | 2013-11-19 | Hewlett-Packard Development Company, L.P. | Allocation of speech recognition tasks and combination of results thereof |
US7823123B2 (en) | 2004-07-13 | 2010-10-26 | The Mitre Corporation | Semantic system for integrating software components |
JP4301102B2 (en) | 2004-07-22 | 2009-07-22 | ソニー株式会社 | Audio processing apparatus, audio processing method, program, and recording medium |
US8036893B2 (en) | 2004-07-22 | 2011-10-11 | Nuance Communications, Inc. | Method and system for identifying and correcting accent-induced speech recognition difficulties |
US7936861B2 (en) | 2004-07-23 | 2011-05-03 | At&T Intellectual Property I, L.P. | Announcement system and method of use |
US7603349B1 (en) * | 2004-07-29 | 2009-10-13 | Yahoo! Inc. | User interfaces for search systems using in-line contextual queries |
US8381135B2 (en) | 2004-07-30 |