TWI818189B - 熱處理方法及熱處理裝置 - Google Patents

熱處理方法及熱處理裝置 Download PDF

Info

Publication number
TWI818189B
TWI818189B TW109127165A TW109127165A TWI818189B TW I818189 B TWI818189 B TW I818189B TW 109127165 A TW109127165 A TW 109127165A TW 109127165 A TW109127165 A TW 109127165A TW I818189 B TWI818189 B TW I818189B
Authority
TW
Taiwan
Prior art keywords
film
heat treatment
heating
substrate
silicon film
Prior art date
Application number
TW109127165A
Other languages
English (en)
Other versions
TW202123342A (zh
Inventor
松浦廣行
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW202123342A publication Critical patent/TW202123342A/zh
Application granted granted Critical
Publication of TWI818189B publication Critical patent/TWI818189B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0025Especially adapted for treating semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6473Aspects related to microwave heating combined with other heating techniques combined with convection heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Recrystallisation Techniques (AREA)
  • Plasma & Fusion (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

提供一種可形成大粒徑之多晶矽膜的技術。本揭露一態樣之熱處理方法,係具有:在基板上形成膜中氫濃度為5×1019atoms/cm3以上之非晶矽膜的工序;以及藉由對該基板照射微波,以加熱該非晶矽膜而從該非晶矽膜形成多晶矽膜的工序。

Description

熱處理方法及熱處理裝置
本發明係關於一種熱處理方法及熱處理裝置。
已知有一種技術,其會對基板上照射微波以使形成在基板上之非晶半導體膜退火,並由非晶半導體膜來形成多晶半導體膜(例如,參照專利文獻1)。
專利文獻1:日本特開2012-234864號公報
本揭露係提供一種可形成大粒徑之多晶矽膜的技術。
本揭露之一態樣的熱處理方法,係具有:在基板上形成膜中氫濃度為5×1019atoms/cm3以上之非晶矽膜的工序;以及藉由對該基板照射微波,以加熱該非晶矽膜而從該非晶矽膜形成多晶矽膜的工序。
根據本揭露,便可形成大粒徑之多晶矽膜。
10:處理容器
13:晶舟
16:氣體供給管
24:電阻發熱體
27:微波導入部
90:控制部
圖1係顯示熱處理裝置之一例的圖。
圖2係顯示一實施形態之熱處理裝置的動作之一例的流程圖。
圖3係顯示a-Si膜之結晶化狀態的圖。
圖4係顯示a-Si膜的膜中氫濃度與結晶化的活性化能量之關係性的圖。
圖5係顯示將膜中氫濃度為1×1020atoms/cm3之a-Si膜進行微波加熱時的結晶性之評估結果的圖。
圖6係顯示將膜中氫濃度為5×1019atoms/cm3之a-Si膜進行微波加熱時的結晶性之評估結果的圖。
圖7係顯示將膜中氫濃度為3×1019atoms/cm3之a-Si膜進行微波加熱時的結晶性之評估結果的圖。
圖8係顯示將膜中氫濃度為1×1020atoms/cm3之a-Si膜進行電阻加熱時的結晶性之評估結果的圖。
以下,一邊參照圖式來一邊對本揭露之非限定例示的實施形態進行說明。在所有圖式中,會針對相同或對應之構件或零件賦予相同或對應之參照符號,以省略重複之說明。
[熱處理裝置]
參照圖1來說明一實施形態之熱處理裝置。圖1係顯示熱處理裝置之一例的圖。圖1所示之熱處理裝置係會一次對多數基板進行熱處理之批次式裝置。
熱處理裝置係具有處理容器10。處理容器10係具有縱長之圓筒形狀,且會在內部收納作為基板之半導體晶圓(以下稱為「晶圓W」)。處理容器10係具有圓筒形狀之內管10a、下端敞開且覆蓋內管10a外側之有頂的圓筒形狀之外管10b。內管10a及外管10b之微波吸收率較小且係由耐熱材料,即石英來形成,並配置成同軸狀而具有雙重管構造。
處理容器10之下端係藉由例如不鏽鋼所形成的圓筒形狀之歧管11所支撐。在歧管11之上端形成有外管支撐部11a。外管支撐部11a會支撐外管10b 的下端。在外管支撐部11a與外管10b的下端之間係設有O型環等之密封構件11b,並會藉由密封構件11b來將外管10b內維持成氣密狀態。
在歧管11之內壁形成有圓環狀之內管支撐部11c。內管支撐部11c會支撐內管10a的下端。在歧管11之下端的開口部係透過O型環等之密封構件11d來氣密地安裝有蓋體12。藉此,處理容器10之下端的開口部,也就是歧管11的開口部會被氣密地堵塞。蓋體12係由例如不鏽鋼所形成。蓋體12之上面係例如形成為凹面狀。藉此,由後述微波導入部27被導入至金屬腔室21內之微波會在蓋體12之上面反射及散射,而均勻地分布在金屬腔室21內。
在蓋體12之中央部貫通設有旋轉軸14,係透過磁性流體密封件(未圖示)來可旋轉地支撐晶舟13。旋轉軸14係旋轉自如地支撐在舟升降機等之升降部(未圖示)。
在旋轉軸14之上端載置有保持晶圓W之晶舟13。晶舟13可收納在處理容器10內,且將多個晶圓W以既定間隔保持成架狀。晶舟13係藉由使升降部升降而與蓋體12一起上下移動。藉此,晶舟13會相對於處理容器10內插拔。在蓋體12與晶舟13之間設有保溫筒15。保溫筒15係由例如石英所形成,可防止晶舟13因與蓋體12側之傳熱而冷卻以將晶舟13保溫。
在歧管11設有會對內管10a內供給成膜氣體、蝕刻氣體等之處理氣體或吹淨氣體等之既定氣體的氣體供給管16。氣體供給管16係由例如石英所形成。氣體供給管16係貫通歧管11而被支撐。氣體供給管16之前端係開口,並由前端噴出既定氣體。流量被控制之既定氣體係透過氣體供給管16而被供給至處理容器10內。此外,圖1之範例中,雖圖示出一個氣體供給管16,但並不限於 此,也可以例如依據每一種氣體來具有多數氣體供給管16。另外,圖1中,係以細箭頭來表示從氣體供給管16供給之氣體的流動。
在歧管11設有會將處理容器10內之氣體加以排出的排氣管17。處理容器10內之氣體係由排氣管17排出。
在歧管11設有會檢測內管10a內之溫度的溫度感應器18。溫度感應器18係在內管10a內沿其長邊方向設置,且其基端係折曲成L字狀並貫通歧管11而設置。溫度感應器18係例如熱電偶、測溫電阻體。
在處理容器10周圍設有金屬腔室21。金屬腔室21係形成為具有曲面形狀之頂面且下端開口之圓筒形狀。金屬腔室21之下端係支撐在歧管11。金屬腔室21係由不鏽鋼、鋁、鋁合金等之金屬材料形成,且其內面被加工成鏡面,能使被導入之微波多重反射而有效率地加熱晶圓W。
在金屬腔室21之內周壁設有隔熱材23。隔熱材23係形成為圓筒形狀。隔熱材23之下端係支撐在歧管11。隔熱材23係由例如熱傳導性較低且較柔軟之不定形狀的二氧化矽及氧化鋁之混合物所形成。隔熱材23之內周係相對於外管10b之外面分離既定距離而加以配置。
在隔熱材23之內周壁配置有捲繞成螺旋狀之電阻發熱體24。電阻發熱體24係連接於電源,並藉由被供給電力而發熱,以加熱保持在晶舟13的晶圓W。電阻發熱體24係由例如剖面形狀為圓形之線材所形成的電熱絲。另外,電阻發熱體24也可以是由例如剖面形狀為矩形之薄板構件所形成的電熱絲。電阻發熱體24係例如在隔熱材23之內周壁螺旋狀地形成槽,而被嵌入固定在槽中。另外,電阻發熱體24也可以在上下方向分割成多個區域。電阻發熱體24在 上下方向分割成多個區域時,可藉由在每一個區域控制電阻發熱體24之發熱量,來調節處理容器10之上下方向的溫度。
冷媒(例如空氣)係由形成在歧管11之冷媒導入部(未圖示)來被導入至外管10b與金屬腔室21之間的空間。在金屬腔室21之頂面係設有冷媒排氣部25,被導入至空間之冷媒係由冷媒排氣部25排出。藉此,可將處理容器10內在短時間加以冷卻。此外,圖1中,係以粗箭頭來表示由冷媒導入部導入之冷媒的流動。
在金屬腔室21周圍係設有水冷護套26以覆蓋該金屬腔室21之外周及頂面。水冷護套26之下端係支撐在基礎板22。水冷護套26在內部係具有使冷卻水流通之冷卻水流道26a,且藉由對冷卻水流道26a供給冷卻水來冷卻金屬腔室21,以抑制由金屬腔室21內部往外部之熱影響。
熱處理裝置進一步具有將微波導入至金屬腔室21內且加熱處理容器10內之晶圓W的微波導入部27。微波導入部27係具有微波產生源27a與導波管27b。微波產生源27a係使微波產生。導波管27b係貫通金屬腔室21、隔熱材23及水冷護套26來加以設置,且將微波產生源27a所產生之微波加以傳送,並導入至金屬腔室21內。
微波之頻率係例如2.45GHz~100GHz,較佳為20GHz~100GHz(準毫米波~毫米波帶),更佳為28GHz。藉由使微波之頻率為20GHz~100GHz,會抑制在金屬腔室21內產生駐波,而可均勻地加熱收納在處理容器10內之多個晶圓W。另外,藉由使微波之頻率為20GHz~100GHz,能將微波以高輸出導入至金屬腔室21內。一般而言,將頻率為30GHz以上之微波以10kW以上之輸出來加以利用時,雖然會使用迴旋管,但市售之迴旋管係大型的。因此,藉由使微波之頻 率為28GHz,即使是以10kW左右之高輸出來產生微波之情形也可以利用較小型之迴旋管。因此,適用在熱處理裝置較為容易。另外,微波之頻率為28GHz時,即使是在減壓下也不會產生電弧放電,因此可在微波導入至處理容器10內之狀態下執行減壓程序。作為減壓程序,可舉出例如減壓CVD(LPCVD:Low Pressure Chemical Vapor Deposition)、原子層沉積(ALD:Atomic Layer Deposition)。
熱處理裝置進一步具有控制熱處理裝置之各部位的動作之控制部90。控制部90可為例如電腦。控制熱處理裝置整體之動作的電腦程式係記憶在記憶媒體。記憶媒體可為軟碟、CD、硬碟、快閃記憶體、DVD等。
[熱處理裝置的動作]
針對一實施形態之熱處理裝置的動作(熱處理方法)來進行說明。圖2係顯示一實施形態之熱處理裝置的動作之一例的流程圖。圖2所示之熱處理方法係使用前述熱處理裝置而在晶圓W上形成多晶矽膜(以下也稱為「p-Si膜」)的方法。
首先,圖2之熱處理方法開始後,控制部90會控制熱處理裝置之各部位,並將表面形成有高氫濃度之非晶矽膜(以下也稱為「a-Si膜」)的晶圓W加以搬入(步驟S21)。高氫濃度之a-Si膜係例如膜中氫濃度為5×1019atoms/cm3以上,2×1021atoms/cm3以下的a-Si膜。一實施形態中,控制部90會控制升降部,以將保持有多個晶圓W之晶舟13搬入至處理容器10內,並以蓋體12將處理容器10下端之開口氣密地堵塞來加以密閉。在各晶圓W之表面形成有膜中氫濃度為5×1019atoms/cm3以上之a-Si膜。另外,控制部90會通過排氣管17來將處理容器10內之氣體加以排出,以將處理容器10內減壓成既定壓力。此外,膜中氫濃度係藉由拉塞福背向散射光譜(RBS:Rutherford Back-Scattering Spectroscopy)法或傅 立葉轉換紅外線光譜(FTIR:Fourier Transform Infrared Spectroscopy)法所測定的值。
接著,控制部90會控制熱處理裝置之各部位,並以微波來加熱收納在處理容器10內之多個晶圓W(步驟S22)。一實施形態中,控制部90會控制微波產生源27a並透過導波管27b來將微波導入至金屬腔室21內,以將晶圓W加熱成既定溫度。與使電阻發熱體發熱來加熱晶圓W之情形相較,藉由微波來加熱晶圓W能以低溫且短時間來使a-Si膜結晶化而形成大粒徑之p-Si膜。以下,將微波所致之晶圓W的加熱也稱為微波加熱,將電阻發熱體所致之晶圓W的加熱也稱為電阻加熱。此外,既定溫度係a-Si膜結晶化的溫度,例如為550℃~650℃。
另外,控制部90也可以在與控制電源以使電阻發熱體24發熱的同時,控制微波產生源27a並將微波導入至金屬腔室21內,以將晶圓W加熱成既定溫度。亦即,也可以藉由電阻加熱及微波加熱來將晶圓W加熱成既定溫度。此外,既定溫度係a-Si膜結晶化的溫度,例如為550℃~650℃。
再者,控制部90也可以控制電源以使電阻發熱體24發熱來將晶圓W加熱成第1溫度後,再控制微波產生源27a並將微波導入至金屬腔室21內來將晶圓W加熱成第2溫度。亦即,也可以藉由電阻加熱來進行預備加熱後,再藉由微波加熱來進行正式加熱。第1溫度係較a-Si膜結晶化的溫度要低之溫度,例如為200℃~400℃。第2溫度係較第1溫度要高且為a-Si膜結晶化的溫度,例如為550℃~650℃。
如此般,藉由併用電阻加熱與微波加熱,便可抑制自晶圓W經由不易被微波加熱之石英管(內管10a及外管10b)而往金屬腔室21的放熱。因此,能 以良好的面內均勻性及良好的面間均勻性來高速加熱晶圓W。其結果,便能以良好的面內均勻性及良好的面間均勻性來形成多晶矽膜。
接著,控制部90會控制熱處理裝置之各部位,並將已施予熱處理的晶圓W加以搬出(步驟S23)。一實施形態中,控制部90會將吹淨氣體從氣體供給管16供給至處理容器10內,並使處理容器10內返回大氣壓。另外,控制部90會控制升降部來將晶舟13搬出至處理容器10外,便結束處理。
接著,針對在晶圓W上形成膜中氫濃度為5×1019atoms/cm3以上之a-Si膜的方法之一例進行說明。a-Si膜可使用例如前述熱處理裝置來形成,也可以使用其他成膜裝置來形成。
將晶圓W收納在可減壓的處理容器內,並將處理容器內調整成既定壓力,在將晶圓W加熱成既定溫度之狀態下,對晶圓W供給含矽氣體,藉此能在晶圓W上形成膜中氫濃度為5×1019atoms/cm3以上之a-Si膜。既定壓力及既定溫度係依據含矽氣體之種類來決定。例如,使用矽烷(SiH4)氣體來作為含矽氣體之情形,係將處理容器內調整成100Pa~600Pa,並將晶圓W加熱成400℃~470℃,藉此能形成膜中氫濃度為5×1019atoms/cm3以上之a-Si膜。另外,例如使用二矽烷(Si2H6)氣體來作為含矽氣體之情形,係將處理容器內調整成50Pa~500Pa,並將晶圓W加熱成300℃~420℃,藉此能形成膜中氫濃度為5×1019atoms/cm3以上之a-Si膜。
[實施例]
針對為了確認一實施形態之熱處理裝置所達成的效果而進行的實施例來進行說明。
實施例1中,將在二氧化矽(SiO2)膜上形成有膜中氫濃度為6×1020、5×1019、3×1019、1×1019atoms/cm3之a-Si膜的矽晶圓藉由微波加熱並以520℃加熱50分鐘。接著,藉由穿透式電子顯微鏡(TEM:Transmission Electron Mocroscope)來觀察各矽晶圓之剖面,以確認a-Si膜的結晶化狀態。
圖3係顯示a-Si膜之結晶化狀態的圖。圖3中,自左側起依序表示膜中氫濃度[atoms/cm3]、退火溫度[℃]、退火時間[min]、及TEM影像。膜中氫濃度係加熱(退火)前之a-Si膜的膜中氫濃度。退火溫度係藉由微波加熱來加熱矽晶圓的溫度。退火時間係藉由微波加熱來加熱矽晶圓的時間。TEM影像係以TEM來觀察進行微波加熱後之矽晶圓的剖面之影像。
如圖3所示,膜中氫濃度為6×1020atoms/cm3之情形,可知a-Si膜未結晶化。另外,膜中氫濃度為5×1019atoms/cm3之情形,可知a-Si膜局部結晶化。另外,膜中氫濃度為3×1019atoms/cm3及1×1019atoms/cm3之情形,可知a-Si膜大部分結晶化。由該等結果可知,在以相同溫度加熱時,膜中氫濃度越高之a-Si膜則越不易結晶化。
實施例2中,針對膜中氫濃度不同之a-Si膜,藉由RBS法來評估膜中氫濃度與結晶化之結晶化能量的關係。
圖4係顯示a-Si膜的膜中氫濃度與結晶化的活性化能量之關係性的圖。圖4中,橫軸係表示a-Si膜之膜中氫濃度[atoms/cm3],縱軸係表示結晶化的活性化能量[eV]。
如圖4所示,可知膜中氫濃度越高則結晶化的活性化能量會變越大。由該結果可知,在使用膜中氫濃度較高之a-Si膜時,則會使a-Si膜結晶化時之溫度變越高。
實施例3中,在變更a-Si膜之膜中氫濃度或a-Si膜之加熱方法時,針對加熱a-Si膜而形成之p-Si膜之結晶粒徑來進行評估。
圖5係顯示將膜中氫濃度為1×1020atoms/cm3之a-Si膜進行微波加熱時的結晶性之評估結果的圖。圖6係顯示將膜中氫濃度為5×1019atoms/cm3之a-Si膜進行微波加熱時的結晶性之評估結果的圖。圖7係顯示將膜中氫濃度為3×1019atoms/cm3之a-Si膜進行微波加熱時的結晶性之評估結果的圖。圖8係顯示將膜中氫濃度為1×1020atoms/cm3之a-Si膜進行電阻加熱時的結晶性之評估結果的圖。
圖5~圖8中,分別從上方起依序表示加熱方法、膜中氫濃度、EBSD映射影像、平均粒徑及最大粒徑。
加熱方法係加熱a-Si膜的方法,為微波加熱或電阻加熱。微波加熱中,係藉由對a-Si膜照射頻率為28GHz之微波,以將形成有a-Si膜之基板的溫度加熱成600℃~650℃,並保持2~4小時。電阻加熱中,係藉由使電阻發熱體發熱,以將形成有a-Si膜之基板的溫度加熱成620℃~670℃,並保持6~12小時。
膜中氫濃度係加熱前之a-Si膜的膜中氫濃度。
EBSD映射影像係顯示藉由電子背向散射繞射(EBSD:Electron Back Scattered Diffraction pattern)法來觀察p-Si膜之結晶粒徑的結果之影像。左側的影像係表示以雙晶粒界Σ3-CSL為結晶粒界之情形的結果,右側的影像係表示不以雙晶粒界Σ3-CSL為結晶粒界之情形的結果。
平均粒徑及最大粒徑分別係根據EBSD法所得之影像來算出的p-Si膜之結晶粒徑的平均值及最大值。
如圖5所示,將膜中氫濃度為1×1020atoms/cm3之a-Si膜進行微波加熱時的p-Si膜之平均粒徑及最大粒徑,在以雙晶粒界Σ3-CSL為結晶粒界之情形,分別為0.36μm、2.02μm。另外,在不以雙晶粒界Σ3-CSL為結晶粒界之情形,分別為0.48μm、3.71μm。
如圖6所示,將膜中氫濃度為5×1019atoms/cm3之a-Si膜進行微波加熱時的p-Si膜之平均粒徑及最大粒徑,在以雙晶粒界Σ3-CSL為結晶粒界之情形,分別為0.30μm、1.15μm。另外,在不以雙晶粒界Σ3-CSL為結晶粒界之情形,分別為0.43μm、1.35μm。
另外,如圖7所示,將膜中氫濃度為3×1019atoms/cm3之a-Si膜進行微波加熱時的p-Si膜之平均粒徑及最大粒徑,在以雙晶粒界Σ3-CSL為結晶粒界之情形,分別為0.25μm、0.78μm。另外,在不以雙晶粒界Σ3-CSL為結晶粒界之情形,分別為0.30μm、0.78μm。
另外,如圖8所示,將膜中氫濃度為1×1020atoms/cm3之a-Si膜進行電阻加熱時的p-Si膜之平均粒徑及最大粒徑,在以雙晶粒界Σ3-CSL為結晶粒界之情形,分別為0.24μm、1.35μm。另外,在不以雙晶粒界Σ3-CSL為結晶粒界之情形,分別為0.44μm、2.15μm。
由圖5~圖7之結果可說是相較於使用膜中氫濃度為3×1019atoms/cm3之a-Si膜,使用膜中氫濃度為1×1020atoms/cm3及5×1019atoms/cm3之a-Si膜更能形成大粒徑之p-Si膜。
另外,由圖5及圖8之結果可說是在膜中氫濃度相同之情形,相較於使用電阻加熱,藉由使用微波加熱,僅管是低溫且短時間的加熱,仍然能夠形成大粒徑之p-Si膜。
如以上所說明,根據一實施形態,係藉由對基板照射微波以加熱形成在基板上之a-Si膜,而使a-Si膜結晶化來形成p-Si膜。藉此,相較於使用電阻發熱體之電阻發熱,能以低溫且短時間來形成大粒徑之p-Si膜。亦即,能以低溫且短時間來形成具有高載子遷移度之p-Si膜。
另外,根據一實施形態,係使用膜中氫濃度為5×1019atoms/cm3以上之a-Si膜來形成p-Si膜。藉此,與以往使用膜中氫濃度為3×1019atoms/cm3左右之a-Si膜來形成p-Si膜之情形相較,可形成大粒徑之p-Si膜。亦即,能形成具有高載子遷移度之p-Si膜。
另外,根據一實施形態,係使a-Si膜成膜在基板上,並加熱已成膜的a-Si膜來形成p-Si膜。藉此,與在基板上直接形成p-Si膜之情形相較,能形成階段覆蓋率(step coverage)良好的膜。
如此般,一實施形態所形成之p-Si膜由於階段覆蓋率良好且具有高載子遷移度,因此適於作為3D-NAND用之矽通道。
此外,上述實施形態中,隔熱材23及電阻發熱體24係第1加熱部之一例,微波導入部27係第2加熱部之一例。另外,晶舟13係基板保持具之一例,氣體供給管16係氣體供給部之一例。
應被認為本說明書揭露的實施形態在所有方面皆為例示,而非用來加以限制。上述實施形態在不脫離申請專利範圍及其要旨的情況下,也能夠以各種形態來加以省略、置換、變更。
S21:將形成有膜中氫濃度為5×1019atoms/cm3以上之a-Si膜的晶圓加以搬入
S22:以微波加熱晶圓
S23:搬出晶圓

Claims (7)

  1. 一種熱處理方法,係具有:在基板上形成膜中氫濃度為2×1021atoms/cm3之非晶矽膜的工序;以及藉由對該基板照射微波,以加熱該非晶矽膜而從該非晶矽膜形成多晶矽膜的工序。
  2. 如申請專利範圍第1項之熱處理方法,其進一步具有在形成該多晶矽膜的工序前,藉由電阻發熱體之發熱來加熱該基板的工序。
  3. 如申請專利範圍第1或2項之熱處理方法,其中形成該多晶矽膜的工序係在已藉由電阻發熱體之發熱而加熱該基板的狀態下來對該基板照射微波。
  4. 如申請專利範圍第1或2項之熱處理方法,其中該微波的頻率為20GHz~100GHz。
  5. 一種熱處理裝置,係具備:可減壓的處理容器;氣體供給部,係將氣體供給至該處理容器的內部;第1加熱部,係設在該處理容器的周圍,且藉由電阻發熱體之發熱來加熱收納在該處理容器的內部之基板;第2加熱部,係藉由從該處理容器的外部照射微波來加熱該基板;以及控制部,係進行如申請專利範圍第1至4項中任一項之熱處理方法。
  6. 如申請專利範圍第5項之熱處理裝置,其中該處理容器會收納架狀地保持在基板保持具的多個基板。
  7. 如申請專利範圍第6項之熱處理裝置,其中該微波的頻率為20GHz~100GHz。
TW109127165A 2019-08-20 2020-08-11 熱處理方法及熱處理裝置 TWI818189B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-150686 2019-08-20
JP2019150686A JP7321032B2 (ja) 2019-08-20 2019-08-20 熱処理方法及び熱処理装置

Publications (2)

Publication Number Publication Date
TW202123342A TW202123342A (zh) 2021-06-16
TWI818189B true TWI818189B (zh) 2023-10-11

Family

ID=74647347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109127165A TWI818189B (zh) 2019-08-20 2020-08-11 熱處理方法及熱處理裝置

Country Status (5)

Country Link
US (1) US20210057217A1 (zh)
JP (1) JP7321032B2 (zh)
KR (1) KR102603029B1 (zh)
CN (1) CN112420510A (zh)
TW (1) TWI818189B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961152B1 (ja) 2020-07-07 2021-11-05 東洋インキScホールディングス株式会社 カーボンナノチューブ、カーボンナノチューブ分散液、それを用いた非水電解質二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797999A (en) * 1995-09-08 1998-08-25 Sharp Kabushiki Kaisha Solar cell and method for fabricating the same
US6133076A (en) * 1999-08-24 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor
US20020100409A1 (en) * 1998-07-10 2002-08-01 Jin Jang Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
US20140287588A1 (en) * 2012-05-16 2014-09-25 Ulvac, Inc. Deposition Method and Deposition Apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3392325B2 (ja) * 1997-08-29 2003-03-31 シャープ株式会社 液晶表示装置
JP5723204B2 (ja) * 2010-04-28 2015-05-27 株式会社半導体エネルギー研究所 半導体基板の作製方法
JP2012033750A (ja) * 2010-07-30 2012-02-16 Toshiba Corp 半導体装置及びその製造方法
JP2012234864A (ja) 2011-04-28 2012-11-29 Toshiba Corp 半導体装置及びその製造方法
TW201306132A (zh) * 2011-07-29 2013-02-01 Nat Univ Tsing Hua 非晶矽薄膜之微波照射結晶方法
WO2017056243A1 (ja) * 2015-09-30 2017-04-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797999A (en) * 1995-09-08 1998-08-25 Sharp Kabushiki Kaisha Solar cell and method for fabricating the same
US20020100409A1 (en) * 1998-07-10 2002-08-01 Jin Jang Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
US6133076A (en) * 1999-08-24 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor
US20140287588A1 (en) * 2012-05-16 2014-09-25 Ulvac, Inc. Deposition Method and Deposition Apparatus

Also Published As

Publication number Publication date
KR102603029B1 (ko) 2023-11-15
KR20210022499A (ko) 2021-03-03
JP2021034455A (ja) 2021-03-01
JP7321032B2 (ja) 2023-08-04
US20210057217A1 (en) 2021-02-25
TW202123342A (zh) 2021-06-16
CN112420510A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
JP5241499B2 (ja) プラズマクリーニング方法、プラズマcvd方法、およびプラズマ処理装置
JP5451018B2 (ja) 選択的酸化プロセスの酸化物成長速度の改良方法
JP5393895B2 (ja) 半導体装置の製造方法及び基板処理装置
JP4342895B2 (ja) 熱処理方法及び熱処理装置
JP6998873B2 (ja) タングステン膜の成膜方法
JPH03224223A (ja) 選択cvd法
CN104885201B (zh) 半导体器件的制造方法、衬底处理装置以及记录介质
JP2003209063A (ja) 熱処理装置および熱処理方法
TW201218300A (en) Substrate processing apparatus and method of manufacturing a semiconductor device
TWI818189B (zh) 熱處理方法及熱處理裝置
JP5647651B2 (ja) マイクロ波処理装置の洗浄方法
JP5425361B2 (ja) プラズマ表面処理方法、プラズマ処理方法およびプラズマ処理装置
TW201421545A (zh) 被處理體的處理方法
JP5599623B2 (ja) 堆積チャンバにおける酸化からの導電体の保護
WO2001061736A1 (fr) Procede de traitement d'une plaquette
US10242878B2 (en) Substrate processing method and recording medium
JP2006351814A (ja) クリーニング方法、コンピュータプログラム及び成膜装置
JP2011100962A (ja) 成膜方法及びプラズマ処理装置
JP2002110551A (ja) 半導体薄膜の形成方法及び装置
JP4553227B2 (ja) 熱処理方法
KR101108573B1 (ko) 기판 열처리 장치 및 방법
JP4157718B2 (ja) 窒化シリコン膜作製方法及び窒化シリコン膜作製装置
TW200947526A (en) Method for forming a polysilicon film
JP2009246071A (ja) 基板処理装置,基板処理方法
TW202027198A (zh) 用於形成過渡金屬材料的群集處理系統