TWI816965B - 直流脈衝電源裝置 - Google Patents

直流脈衝電源裝置 Download PDF

Info

Publication number
TWI816965B
TWI816965B TW109100284A TW109100284A TWI816965B TW I816965 B TWI816965 B TW I816965B TW 109100284 A TW109100284 A TW 109100284A TW 109100284 A TW109100284 A TW 109100284A TW I816965 B TWI816965 B TW I816965B
Authority
TW
Taiwan
Prior art keywords
voltage
reactor
power supply
pulse
output
Prior art date
Application number
TW109100284A
Other languages
English (en)
Chinese (zh)
Other versions
TW202046623A (zh
Inventor
安達俊幸
米山知宏
宮嵜洸一
Original Assignee
日商京三製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商京三製作所股份有限公司 filed Critical 日商京三製作所股份有限公司
Publication of TW202046623A publication Critical patent/TW202046623A/zh
Application granted granted Critical
Publication of TWI816965B publication Critical patent/TWI816965B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32027DC powered
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/06Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Amplifiers (AREA)
  • Generation Of Surge Voltage And Current (AREA)
TW109100284A 2019-01-24 2020-01-06 直流脈衝電源裝置 TWI816965B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019010637A JP7051727B2 (ja) 2019-01-24 2019-01-24 直流パルス電源装置
JP2019-010637 2019-01-24

Publications (2)

Publication Number Publication Date
TW202046623A TW202046623A (zh) 2020-12-16
TWI816965B true TWI816965B (zh) 2023-10-01

Family

ID=71736189

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109100284A TWI816965B (zh) 2019-01-24 2020-01-06 直流脈衝電源裝置

Country Status (7)

Country Link
US (1) US11881777B2 (enExample)
EP (1) EP3916991A4 (enExample)
JP (1) JP7051727B2 (enExample)
KR (1) KR102616569B1 (enExample)
CN (1) CN113348618A (enExample)
TW (1) TWI816965B (enExample)
WO (1) WO2020152947A1 (enExample)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051727B2 (ja) 2019-01-24 2022-04-11 株式会社京三製作所 直流パルス電源装置
JP6835900B2 (ja) * 2019-04-11 2021-02-24 株式会社京三製作所 直流パルス電源装置、及び直流パルス電源装置の磁気飽和リセット方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969587A2 (en) * 1998-06-30 2000-01-05 General Electric Company Voltage clamp snubbers for three level converter
US6043636A (en) * 1997-10-20 2000-03-28 Diversified Technologies, Inc. Voltage transient suppression
US20150085534A1 (en) * 2013-09-20 2015-03-26 Alexander ABRAMOVITZ Regenerative and ramping acceleration (rara) snubbers for isolated and tapped-inductor converters

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395675A (en) 1981-10-22 1983-07-26 Bell Telephone Laboratories, Incorporated Transformerless noninverting buck boost switching regulator
JPH01252165A (ja) 1988-03-30 1989-10-06 Toshiba Lighting & Technol Corp 昇圧チョッパ回路
JPH02219461A (ja) * 1989-02-16 1990-09-03 Nippon Telegr & Teleph Corp <Ntt> 巻上げコイル付昇圧形dc―dcコンバータ
JP3001723B2 (ja) 1992-05-26 2000-01-24 株式会社東芝 パルス充電回路
JP2630221B2 (ja) * 1993-10-08 1997-07-16 日本電気株式会社 Dc−dcコンバータ
JPH08222258A (ja) 1995-02-15 1996-08-30 Fuji Electric Co Ltd 燃料電池発電装置
US5929614A (en) * 1997-06-13 1999-07-27 Northrop Grumman Corporation High efficiency DC step-up voltage converter
US6380722B2 (en) * 2000-02-28 2002-04-30 Intel Corporation Method to increase the efficiency of a power switching device
JP2002218743A (ja) * 2001-01-23 2002-08-02 Meidensha Corp コンデンサの充電装置
US6822427B2 (en) 2002-05-01 2004-11-23 Technical Witts, Inc. Circuits and circuit elements for high efficiency power conversion
JP2004080880A (ja) * 2002-08-13 2004-03-11 Fuji Electric Holdings Co Ltd スナバ回路
ITTO20030550A1 (it) * 2003-07-15 2005-01-16 Fiat Ricerche Circuito elevatore di tensione per l'alimentazione di
JP4526879B2 (ja) 2004-06-18 2010-08-18 四変テック株式会社 直流電源装置
US7023186B2 (en) * 2004-08-05 2006-04-04 Astec International Limited Two stage boost converter topology
US20070053217A1 (en) 2005-09-02 2007-03-08 Lear Corporation Converter for automotive use
JP2012178952A (ja) 2011-02-28 2012-09-13 Sanken Electric Co Ltd スイッチング電源回路
JP5519562B2 (ja) 2011-03-17 2014-06-11 株式会社日本自動車部品総合研究所 スイッチング電源装置
JP5794006B2 (ja) 2011-07-15 2015-10-14 株式会社明電舎 コンデンサの充電器
GB2523386B (en) * 2014-02-24 2016-07-06 Tdk-Lambda Uk Ltd Snubber
CN105515392B (zh) * 2015-12-28 2018-06-01 深圳茂硕电气有限公司 一种直流-直流升压变换电路
US9780676B2 (en) 2016-02-22 2017-10-03 Infineon Technologies Austria Ag Power converter with a snubber circuit
CN106452083B (zh) * 2016-10-17 2018-09-21 盐城工学院 高增益直流电压提升变换电路
JP7051727B2 (ja) 2019-01-24 2022-04-11 株式会社京三製作所 直流パルス電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043636A (en) * 1997-10-20 2000-03-28 Diversified Technologies, Inc. Voltage transient suppression
EP0969587A2 (en) * 1998-06-30 2000-01-05 General Electric Company Voltage clamp snubbers for three level converter
US20150085534A1 (en) * 2013-09-20 2015-03-26 Alexander ABRAMOVITZ Regenerative and ramping acceleration (rara) snubbers for isolated and tapped-inductor converters

Also Published As

Publication number Publication date
EP3916991A4 (en) 2022-09-28
US11881777B2 (en) 2024-01-23
US20220094266A1 (en) 2022-03-24
TW202046623A (zh) 2020-12-16
KR102616569B1 (ko) 2023-12-27
KR20210100157A (ko) 2021-08-13
CN113348618A (zh) 2021-09-03
EP3916991A1 (en) 2021-12-01
JP7051727B2 (ja) 2022-04-11
JP2020120522A (ja) 2020-08-06
WO2020152947A1 (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
US6717827B2 (en) Switching power supply
JP2012213260A (ja) スイッチング電源装置
KR20090033087A (ko) 승압형 고효율 dc-dc 컨버터
WO2023075693A1 (en) Power converter modulation sequence
TWI816965B (zh) 直流脈衝電源裝置
JP2010124567A (ja) スイッチング電源装置
JP6107848B2 (ja) 双方向dc/dcコンバータ
TWI816966B (zh) 直流脈衝電源裝置
JP4110477B2 (ja) Dc−dcコンバータ
US20140133190A1 (en) Isolated switch-mode dc/dc converter with sine wave transformer voltages
TWI845591B (zh) 直流脈衝電源裝置
JP4764980B2 (ja) 直流−直流変換装置
CN115664223B (zh) 一种准z源全桥变换器和控制方法
JP3934654B2 (ja) Dc−dcコンバータ
KR101958005B1 (ko) 포워드-플라이백 컨버터 기반의 열전발전 시스템
WO2024241493A1 (ja) 電力変換装置
CN121175919A (en) Power conversion device
JP2006203996A (ja) Dc/dcコンバータ