TWI816261B - 半導體裝置及其製造方法、顯示裝置、及電子裝置 - Google Patents

半導體裝置及其製造方法、顯示裝置、及電子裝置 Download PDF

Info

Publication number
TWI816261B
TWI816261B TW110147987A TW110147987A TWI816261B TW I816261 B TWI816261 B TW I816261B TW 110147987 A TW110147987 A TW 110147987A TW 110147987 A TW110147987 A TW 110147987A TW I816261 B TWI816261 B TW I816261B
Authority
TW
Taiwan
Prior art keywords
film
oxide semiconductor
transistor
semiconductor film
insulating film
Prior art date
Application number
TW110147987A
Other languages
English (en)
Other versions
TW202215550A (zh
Inventor
神長正美
肥純一
羽持貴士
保坂泰靖
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW202215550A publication Critical patent/TW202215550A/zh
Application granted granted Critical
Publication of TWI816261B publication Critical patent/TWI816261B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/38Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
    • H01L21/385Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/441Deposition of conductive or insulating materials for electrodes
    • H01L21/443Deposition of conductive or insulating materials for electrodes from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/469Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After-treatment of these layers
    • H01L21/4757After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Liquid Crystal (AREA)
  • Non-Volatile Memory (AREA)

Abstract

本發明的目的之一是提高具有氧化物半導體膜的電晶體的場效移動率及其可靠性。本發明的一個實施方式是一種包括氧化物半導體膜的半導體裝置,該半導體裝置包括:第一絕緣膜;第一絕緣膜上的氧化物半導體膜;氧化物半導體膜上的第二絕緣膜及第三絕緣膜;以及第二絕緣膜上的閘極電極。第二絕緣膜包括氧氮化矽膜,當藉由氧電漿處理使第二絕緣膜包含過量氧時,可以對氧化物半導體膜高效地供應氧。

Description

半導體裝置及其製造方法、顯示裝置、及電子裝置
本發明的一個實施方式係關於一種包括氧化物半導體膜的半導體裝置及其製造方法、包括該半導體裝置的顯示裝置以及電子裝置。
注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的一個實施方式的技術領域係關於一種物體、方法或製造方法。此外,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。本發明的一個實施方式尤其係關於一種半導體裝置、顯示裝置、發光裝置、蓄電裝置、記憶體裝置、其驅動方法或其製造方法。
注意,在本說明書等中,半導體裝置是指藉由利用半導體特性而能夠工作的所有裝置。除了電晶體等半導體元件之外,半導體電路、算術裝置、記憶體裝置都是半導體裝置的一個實施方式。攝像裝置、顯示裝置、液 晶顯示裝置、發光裝置、電光裝置、發電裝置(包括薄膜太陽能電池或有機薄膜太陽能電池等)及電子裝置有時包括半導體裝置。
藉由利用形成在具有絕緣表面的基板上的半導體薄膜來構成電晶體的技術受到關注。該電晶體被廣泛地應用於如積體電路(IC)及影像顯示裝置(顯示裝置)等電子裝置。作為可以應用於電晶體的半導體薄膜,矽類半導體材料被周知。另外,作為其他材料,氧化物半導體受到關注。
例如,已公開有一種將電子載子濃度低於1018/cm3的包含銦(In)、鎵(Ga)及鋅(Zn)的非晶氧化物用於活性層的電晶體(參照專利文獻1)。
雖然使用氧化物半導體的電晶體的工作速度比使用非晶矽的電晶體快,並且與使用多晶矽的電晶體相比更容易製造,但是,已知使用氧化物半導體的電晶體具有電特性容易變動而導致其可靠性降低的問題。例如,在偏壓-熱應力測試(BT測試)的前後,電晶體的臨界電壓會變動。注意,在本說明書中,臨界電壓是指為了使電晶體成為“開啟狀態”所需要的閘極的電壓。並且,閘極電壓是指以源極的電位為基準時的閘極與源極之間的電位差。
[專利文獻1]日本專利申請公開第2006-165528號公 報
在將氧化物半導體膜用於通道區域的電晶體中,可能形成在氧化物半導體膜中的氧缺陷對電晶體特性造成影響。例如,當在氧化物半導體膜中形成有氧缺陷時,該氧缺陷與氫鍵合而成為載子供應源。當在氧化物半導體膜中形成有載子供應源時,具有氧化物半導體膜的電晶體的電特性發生變動,典型的是,臨界電壓的漂移。
例如,當氧化物半導體膜中的氧缺陷過多時,電晶體的臨界電壓向負方向漂移而使電晶體具有常開啟特性。因此,較佳為氧化物半導體膜中,尤其是通道區域中的氧缺陷較少或者氧缺陷量為不會使電晶體變為具有常開啟特性程度。
此外,當在閘極絕緣膜中存在載子陷阱中心時,會導致電晶體的臨界電壓漂移。載子陷阱中心的個數較佳為少,但是在形成閘極絕緣膜之後進行電漿處理等處理的情況下,有時會增加。
鑒於上述問題,本發明的一個實施方式的目的之一是抑制具有氧化物半導體膜的電晶體的電特性變動並提高可靠性。此外,本發明的一個實施方式的目的之一是提供一種新穎的半導體裝置。此外,本發明的一個實施方式的目的之一是提供一種新穎的顯示裝置。
注意,上述目的的記載不妨礙其他目的的存 在。本發明的一個實施方式並不需要實現所有上述目的。上述目的以外的目的從說明書等的記載看來是顯而易見的,並可以從說明書等中抽取上述目的以外的目的。
本發明的一個實施方式是一種包括具有氧化物半導體膜的電晶體的半導體裝置,電晶體包括:基板上的氧化物半導體膜;氧化物半導體膜上的閘極絕緣層;以及閘極絕緣層上的閘極電極。閘極絕緣層包括氧氮化矽膜。當利用熱脫附譜分析法對基板上的閘極絕緣層進行分析時,在150℃以上且350℃以下的基板溫度處呈現相當於氧分子的質荷比M/z=32的釋放氣體量的最大峰值。
在上述方式中,利用熱脫附譜分析法進行測量時的溫度範圍較佳為80℃至500℃。
此外,在上述各方式中,氧化物半導體膜較佳為包含In、M(M為Al、Ga、Y或Sn)和Zn。此外,在上述各方式中,較佳為氧化物半導體膜包含具有c軸配向性的結晶部。
本發明的其他實施方式是一種包括上述各方式中的任一個所述的半導體裝置和顯示元件的顯示裝置。本發明的其他實施方式是一種包括上述顯示裝置和觸控感測器的顯示模組。本發明的其他實施方式是一種包括上述各方式中的任一個所述的半導體裝置、上述顯示裝置或上述顯示模組以及操作鍵或電池的電子裝置。
本發明的其他實施方式是一種包括具有氧化物半導體膜的電晶體的半導體裝置的製造方法,包括如下 步驟:在基板上形成氧化物半導體膜;在氧化物半導體膜上形成至少包括氧氮化矽膜的閘極絕緣層;對閘極絕緣層進行氧電漿處理;在閘極絕緣層上形成閘極電極之後,以150℃以上且450℃以下的溫度進行加熱處理;使閘極絕緣層中的氧擴散到氧化物半導體膜中,來降低氧化物半導體膜的導電率。
在上述方式中,氧電漿處理較佳為以350℃以下的基板溫度進行。此外,在上述各方式中,氧氮化矽膜較佳為利用電漿CVD法以350℃以下的基板溫度形成。
本發明的其他實施方式是一種包括具有氧化物半導體膜的電晶體的半導體裝置的製造方法,包括如下步驟:在基板上形成氧化物半導體膜;在氧化物半導體膜上形成至少包括氧氮化矽膜的閘極絕緣層;在閘極絕緣層上利用濺射法在包含氧的氛圍下形成氧化物半導體。由此,邊對閘極絕緣層添加氧邊在該閘極絕緣層上形成閘極電極,然後以150℃以上且450℃以下的溫度進行加熱處理,使閘極絕緣層中的氧擴散到氧化物半導體膜中,來降低氧化物半導體膜的導電率。
藉由本發明的一個實施方式,可以抑制具有氧化物半導體膜的電晶體的電特性變動並提高可靠性。藉由本發明的一個實施方式,可以提供一種新穎的半導體裝置。藉由本發明的一個實施方式,可以提供一種新穎的顯示裝置。
注意,上述效果的記載不妨礙其他效果的存 在。本發明的一個實施方式並不需要實現所有上述效果。上述效果以外的目的從說明書、圖式、申請專利範圍等的記載看來是顯而易見的,並可以從上述說明書、圖式、申請專利範圍等的記載中抽取上述效果以外的效果。
100:電晶體
100A:電晶體
100B:電晶體
100C:電晶體
102:基板
104:絕緣膜
106:導電膜
108:氧化物半導體膜
108i:區域
108i_0:氧化物半導體膜
108n:區域
108n_2:區域
110:絕緣膜
110_0:絕緣膜
112:導電膜
112_0:導電膜
112_1:導電膜
112_2:導電膜
116:絕緣膜
118:絕緣膜
120a:導電膜
120b:導電膜
122:絕緣膜
140:遮罩
141a:開口部
141b:開口部
143:開口部
201:電晶體
202:電晶體
203:電晶體
216:分佈
217:分佈
218:分佈
220:箭頭
221:樣本
222:樣本
223:樣本
225:區域
226:樣本
227:樣本
228:樣本
231:虛線
232:實線
235:虛線
241:樣本
242:樣本
243:樣本
244:樣本
251:佈線
252:佈線
253:佈線
254:佈線
255:佈線
256:節點
257:電容器
281:電晶體
282:電晶體
289:電晶體
310:區域
311:區域
312:區域
317:樣本
318:樣本
319:矽
321:區域
325:金屬膜
329:重心位置
351:樣本
352:樣本
353:樣本
354:樣本
355:樣本
356:樣本
357:虛線
365:樣本
366:樣本
367:樣本
368:導電膜
370:氧化物半導體膜
376:正GBT(黑暗)
377:負GBT(黑暗)
378:正GBT(光照射)
379:負GBT(光照射)
381:樣本
382:樣本
501:像素電路
502:像素部
504:驅動電路部
504a:閘極驅動器
504b:源極驅動器
506:保護電路
507:端子部
550:電晶體
552:電晶體
554:電晶體
560:電容器
562:電容器
570:液晶元件
572:發光元件
700:顯示裝置
701:基板
702:像素部
704:源極驅動電路部
705:基板
706:閘極驅動電路部
708:FPC端子部
710:信號線
711:佈線部
712:密封劑
716:FPC
730:絕緣膜
732:密封膜
734:絕緣膜
736:彩色膜
738:遮光膜
750:電晶體
752:電晶體
760:連接電極
770:平坦化絕緣膜
772:導電膜
773:絕緣膜
774:導電膜
775:液晶元件
776:液晶層
778:結構體
780:異方性導電膜
782:發光元件
783:液滴噴射裝置
784:液滴
785:層
786:EL層
788:導電膜
790:電容器
791:觸控面板
792:絕緣膜
793:電極
794:電極
795:絕緣膜
796:電極
797:絕緣膜
800:反相器
810:OS電晶體
820:OS電晶體
831:信號波形
832:信號波形
840:虛線
841:實線
850:OS電晶體
860:CMOS反相器
900:半導體裝置
901:電源電路
902:電路
903:電壓生成電路
903A:電壓生成電路
903B:電壓生成電路
903C:電壓生成電路
904:電路
905:電壓生成電路
906:電路
911:電晶體
912:電晶體
912A:電晶體
912B:電晶體
921:控制電路
922:電晶體
1189:介面
1190:基板
1191:ALU
1192:控制器
1193:解碼器
1194:控制器
1195:控制器
1196:暫存器
1197:控制器
1198:介面
1199:ROM
1281:電晶體
1400:液滴噴射裝置
1402:基板
1403:液滴噴射單元
1404:成像單元
1405:頭部
1406:虛線
1407:控制單元
1408:存儲介質
1409:影像處理單元
1410:電腦
1411:標記
1412:頭部
1413:材料供應源
1414:材料供應源
1701:電路
1707:電容器
1708:電容器
1709:電晶體
1710:電晶體
1713:電晶體
1714:電晶體
1720:電路
7000:顯示模組
7001:上蓋
7002:下蓋
7003:FPC
7004:觸控面板
7005:FPC
7006:顯示面板
7007:背光
7008:光源
7009:框架
7010:印刷電路板
7011:電池
8000:照相機
8001:外殼
8002:顯示部
8003:操作按鈕
8004:快門按鈕
8006:鏡頭
8100:取景器
8101:外殼
8102:顯示部
8103:按鈕
8200:頭戴顯示器
8201:安裝部
8202:透鏡
8203:主體
8204:顯示部
8205:電纜
8206:電池
8300:頭戴顯示器
8301:外殼
8302:顯示部
8304:固定工具
8305:透鏡
9000:外殼
9001:顯示部
9003:揚聲器
9005:操作鍵
9006:連接端子
9007:感測器
9008:麥克風
9050:操作按鈕
9051:資訊
9052:資訊
9053:資訊
9054:資訊
9055:鉸鏈
9100:電視機
9101:可攜式資訊終端
9102:可攜式資訊終端
9200:可攜式資訊終端
9201:可攜式資訊終端
9500:顯示裝置
9501:顯示面板
9502:顯示區域
9503:區域
9511:軸部
9512:軸承部
在圖式中:
圖1A至圖1C是說明半導體裝置的俯視圖及剖面圖;
圖2A至圖2C是說明半導體裝置的俯視圖及剖面圖;
圖3A和圖3B是說明半導體裝置的剖面圖;
圖4A和圖4B是說明半導體裝置的剖面圖;
圖5A至圖5D是說明半導體裝置的製造方法的剖面圖;
圖6A至圖6C是說明半導體裝置的製造方法的剖面圖;
圖7A至圖7C是說明半導體裝置的製造方法的剖面圖;
圖8A至圖8C是說明根據本發明的氧化物半導體的原子個數比的範圍的圖;
圖9A至圖9C是氧化物半導體的疊層結構的能帶圖;
圖10A至圖10C是示出根據本發明的一個實施方式 的氧氮化矽膜的評價結果的圖;
圖11A和圖11B是示出根據本發明的一個實施方式的氧氮化矽膜的評價結果的圖;
圖12A至圖12C是示出根據本發明的一個實施方式的氧氮化矽膜的評價結果的圖;
圖13A和圖13B是說明半導體裝置的製造方法的剖面圖;
圖14A至圖14C是示出根據本發明的一個實施方式的氧擴散的效果的圖;
圖15是示出顯示裝置的一個實施方式的俯視圖;
圖16是示出顯示裝置的一個實施方式的剖面圖;
圖17是示出顯示裝置的一個實施方式的剖面圖;
圖18是示出顯示裝置的一個實施方式的剖面圖;
圖19是示出顯示裝置的一個實施方式的剖面圖;
圖20是示出顯示裝置的一個實施方式的剖面圖;
圖21A至圖21D是說明EL層的製造方法的剖面圖;
圖22是說明液滴噴射裝置的示意圖;
圖23A至圖23C是說明顯示裝置的方塊圖及電路圖;
圖24A至圖24C是用來說明本發明的一個實施方式的電路圖及時序圖;
圖25A至圖25C是用來說明本發明的一個實施方式的圖表及電路圖;
圖26A和圖26B是用來說明本發明的一個實施方式 的電路圖及時序圖;
圖27A和圖27B是用來說明本發明的一個實施方式的電路圖及時序圖;
圖28A至圖28E是用來說明本發明的一個實施方式的方塊圖、電路圖及波形圖;
圖29A和圖29B是用來說明本發明的一個實施方式的電路圖及時序圖;
圖30A和圖30B是用來說明本發明的一個實施方式的電路圖;
圖31A至圖31C是用來說明本發明的一個實施方式的電路圖;
圖32是說明顯示模組的圖;
圖33A至圖33E是說明電子裝置的圖;
圖34A至圖34G是說明電子裝置的圖;
圖35A和圖35B是說明顯示裝置的立體圖;
圖36A和圖36B是說明電晶體的Id-Vg特性和臨界電壓漂移的圖;
圖37是說明TDS分析結果的圖;
圖38A至圖38C是說明TDS分析結果的圖;
圖39A至圖39D是說明SIMS分析結果的圖;
圖40A至圖40I是說明TDS分析結果的圖;
圖41是說明TDS分析結果的圖;
圖42A和圖42B是說明TDS分析結果的圖;
圖43A和圖43B是說明IGZO膜的電阻的圖;
圖44是說明TDS分析結果的圖;
圖45是說明半導體裝置的剖面圖;
圖46A至圖46C是根據本發明的一個實施方式的半導體裝置的電路圖;
圖47A和圖47B是根據本發明的一個實施方式的半導體裝置的電路圖;
圖48是示出CPU的結構實例的方塊圖;
圖49是示出記憶元件的一個例子的電路圖;
圖50A至圖50F是根據本發明的一個實施方式的電晶體的汲極電流-閘極電壓特性;
圖51是示出根據本發明的一個實施方式的電晶體的GBT測試結果的圖;
圖52A至圖52D是根據本發明的一個實施方式的電晶體的電流應力特性。
本發明的選擇圖為圖44。
下面,參照圖式對實施方式進行說明。但是,所屬技術領域的通常知識者可以很容易地理解一個事實,就是實施方式可以以多個不同形式來實施,其方式和詳細內容可以在不脫離本發明的精神及其範圍的條件下被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在下面的實施方式所記載的內容中。
在圖式中,為便於清楚地說明,有時誇大表 示大小、層的厚度或區域。因此,本發明並不一定限定於上述尺寸。此外,在圖式中,示意性地示出理想的例子,因此本發明不侷限於圖式所示的形狀或數值等。
本說明書所使用的“第一”、“第二”、“第三”等序數詞是為了避免組件的混淆而附加的,而不是為了在數目方面上進行限定的。
在本說明書中,為方便起見,使用了“上”、“下”等表示配置的詞句,以參照圖式說明組件的位置關係。另外,組件的位置關係根據描述各組件的方向適當地改變。因此,不侷限於本說明書中所說明的詞句,可以根據情況適當地更換。
在本說明書等中,電晶體是指至少包括閘極、汲極以及源極這三個端子的元件。電晶體在汲極(汲極端子、汲極區域或汲極電極)與源極(源極端子、源極區域或源極電極)之間具有通道區域,並且電流能夠流過汲極、通道區域以及源極。注意,在本說明書等中,通道區域是指電流主要流過的區域。
另外,在使用極性不同的電晶體的情況或電路工作中的電流方向變化的情況等下,源極及汲極的功能有時相互調換。因此,在本說明書等中,源極和汲極可以相互調換。
在本說明書等中,“電連接”包括藉由“具有某種電作用的元件”連接的情況。在此,“具有某種電作用的元件”只要可以進行連接目標間的電信號的授收,就對其 沒有特別的限制。例如,“具有某種電作用的元件”不僅包括電極和佈線,而且還包括電晶體等的切換元件、電阻元件、電感器、電容器、其他具有各種功能的元件等。
在本說明書等中,“平行”是指兩條直線形成的角度為-10°以上且10°以下的狀態。因此,也包括該角度為-5°以上且5°以下的狀態。另外,“垂直”是指兩條直線形成的角度為80°以上且100°以下的狀態。因此也包括85°以上且95°以下的角度的狀態。
另外,在本說明書等中,可以將“膜”和“層”相互調換。例如,有時可以將“導電層”變換為“導電膜”。此外,例如,有時可以將“絕緣膜”變換為“絕緣層”。
在本說明書等中,在沒有特別的說明的情況下,關態電流(off-state current)是指電晶體處於關閉狀態(也稱為非導通狀態、遮斷狀態)的汲極電流。在沒有特別的說明的情況下,在n通道電晶體中,關閉狀態是指閘極與源極間的電壓Vgs低於臨界電壓Vth的狀態,在p通道電晶體中,關閉狀態是指閘極與源極間的電壓Vgs高於臨界電壓Vth的狀態。例如,n通道電晶體的關態電流有時是指閘極與源極間的電壓Vgs低於臨界電壓Vth時的汲極電流。
電晶體的關態電流有時取決於Vgs。因此,“電晶體的關態電流為I以下”有時是指存在使電晶體的關態電流成為I以下的Vgs的值。電晶體的關態電流有時是指:當Vgs為預定的值時的關閉狀態;當Vgs為預定的範 圍內的值時的關閉狀態;或者當Vgs為能夠獲得充分低的關態電流的值時的關閉狀態等。
作為一個例子,設想一種n通道電晶體,該n通道電晶體的臨界電壓Vth為0.5V,Vgs為0.5V時的汲極電流為1×10-9A,Vgs為0.1V時的汲極電流為1×10-13A,Vgs為-0.5V時的汲極電流為1×10-19A,Vgs為-0.8V時的汲極電流為1×10-22A。在Vgs為-0.5V時或在Vgs為-0.5V至-0.8V的範圍內,該電晶體的汲極電流為1×10-19A以下,所以有時稱該電晶體的關態電流為1×10-19A以下。由於存在使該電晶體的汲極電流成為1×10-22A以下的Vgs,因此有時稱該電晶體的關態電流為1×10-22A以下。
在本說明書等中,有時以每通道寬度W的電流值表示具有通道寬度W的電晶體的關態電流。另外,有時以每預定的通道寬度(例如1μm)的電流值表示具有通道寬度W的電晶體的關態電流。在為後者時,關態電流的單位有時以具有電流/長度的次元的單位(例如,A/μm)表示。
電晶體的關態電流有時取決於溫度。在本說明書中,在沒有特別的說明的情況下,關態電流有時表示在室溫、60℃、85℃、95℃或125℃下的關態電流。或者,有時表示在保證包括該電晶體的半導體裝置等的可靠性的溫度下或者在包括該電晶體的半導體裝置等被使用的溫度(例如,5℃至35℃的溫度範圍內)下的關態電流。“電晶體的關態電流為I以下”有時是指在室溫、60℃、85 ℃、95℃、125℃、保證包括該電晶體的半導體裝置的可靠性的溫度下或者在包括該電晶體的半導體裝置等被使用的溫度(例如,5℃至35℃的範圍的溫度)下存在使電晶體的關態電流成為I以下的Vgs的值。
電晶體的關態電流有時取決於汲極與源極間的電壓Vds。在本說明書中,在沒有特別的說明的情況下,關態電流有時表示Vds為0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V或20V時的關態電流。或者,有時表示保證包括該電晶體的半導體裝置等的可靠性的Vds時或者包括該電晶體的半導體裝置等所使用的Vds時的關態電流。“電晶體的關態電流為I以下”有時是指:在Vds為0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、20V、保證包括該電晶體的半導體裝置的可靠性的Vds或包括該電晶體的半導體裝置等被使用的Vds下存在使電晶體的關態電流成為I以下的Vgs的值。
在上述關態電流的說明中,可以將汲極換稱為源極。也就是說,關態電流有時指電晶體處於關閉狀態時流過源極的電流。
在本說明書等中,有時將關態電流記作洩漏電流。在本說明書等中,關態電流例如有時指在電晶體處於關閉狀態時流在源極與汲極間的電流。
在本說明書等中,電晶體的臨界電壓是指在電晶體中形成通道時的閘極電壓(Vg)。明確而言,電晶 體的臨界電壓有時是指:在以橫軸表示閘極電壓(Vg)且以縱軸表示汲極電流(Id)的平方根,而標繪出的曲線(Vg-
Figure 110147987-A0101-12-0014-144
Id特性)中,在將具有最大傾斜度的切線外推時的直線與汲極電流(Id)的平方根為0(Id為0A)處的交叉點的閘極電壓(Vg)。或者,電晶體的臨界電壓有時是指在以L為通道長度且以W為通道寬度,Id[A]×L[μm]/W[μm]的值為1×10-9[A]時的閘極電壓(Vg)。
注意,在本說明書等中,例如在導電性充分低時,有時即便在表示為“半導體”時也具有“絕緣體”的特性。此外,“半導體”與“絕緣體”的境界不清楚,因此有時不能精確地區別。由此,有時可以將本說明書等所記載的“半導體”換稱為“絕緣體”。同樣地,有時可以將本說明書等所記載的“絕緣體”換稱為“半導體”。或者,有時可以將本說明書等所記載的“絕緣體”換稱為“半絕緣體”。
另外,在本說明書等中,例如在導電性充分高時,有時即便在表示為“半導體”時也具有“導電體”的特性。此外,“半導體”和“導電體”的境界不清楚,因此有時不能精確地區別。由此,有時可以將本說明書所記載的“半導體”換稱為“導電體”。同樣地,有時可以將本說明書所記載的“導電體”換稱為“半導體”。
注意,在本說明書等中,半導體的雜質是指構成半導體膜的主要成分之外的元素。例如,濃度低於0.1atomic%的元素是雜質。當包含雜質時,例如,有可能 在半導體中形成DOS(Density of States:態密度),載子移動率有可能降低或結晶性有可能降低。在半導體包含氧化物半導體時,作為改變半導體特性的雜質,例如有第1族元素、第2族元素、第14族元素、第15族元素或主要成分之外的過渡金屬等,尤其是,有氫(包含於水中)、鋰、鈉、矽、硼、磷、碳、氮等。在是氧化物半導體的情況下,有時例如由於氫等雜質的混入導致氧缺陷的產生。此外,當半導體是矽時,作為改變半導體特性的雜質,例如有氧、除氫之外的第1族元素、第2族元素、第13族元素、第15族元素等。
實施方式1
在本實施方式中,對本發明的一個實施方式的包括具有過量氧區域的閘極絕緣膜的半導體裝置進行說明。此外,對本發明的一個實施方式的半導體裝置的製造方法進行說明。
〈1-1.半導體裝置的結構實例1〉
圖1A是本發明的一個實施方式的半導體裝置的電晶體100的俯視圖,圖1B相當於沿著圖1A所示的點劃線X1-X2的切斷面的剖面圖,圖1C相當於沿著圖1A所示的點劃線Y1-Y2的切斷面的剖面圖。注意,在圖1A中,為了方便起見,省略電晶體100的組件的一部分(被用作閘極絕緣膜的絕緣膜等)。此外,有時將點劃線X1-X2 方向稱為通道長度方向,將點劃線Y1-Y2方向稱為通道寬度方向。注意,有時在後面的電晶體的俯視圖中也與圖1A同樣地省略組件的一部分。
圖1A至圖1C所示的電晶體100是所謂的頂閘極結構的電晶體。
電晶體100包括:基板102上的絕緣膜104;絕緣膜104上的氧化物半導體膜108;氧化物半導體膜108上的絕緣膜110;絕緣膜110上的導電膜112;以及絕緣膜104、氧化物半導體膜108和導電膜112上的絕緣膜116。
此外,氧化物半導體膜108較佳為包含In、M(M為Al、Ga、Y或Sn)和Zn。
此外,氧化物半導體膜108包括:與導電膜112重疊且與絕緣膜104及絕緣膜110接觸的第一區域108i;以及與絕緣膜116接觸的第二區域108n。此外,第二區域108n的載子密度比第一區域108i高。就是說,本發明的一個實施方式的氧化物半導體膜108具有載子密度彼此不同的兩個區域。
此外,第一區域108i的載子密度較佳為1×105cm-3以上且低於1×1018cm-3,進一步較佳為1×107cm-3以上且1×1017cm-3以下,進一步較佳為1×109cm-3以上且5×1016cm-3以下,進一步較佳為1×1010cm-3以上且1×1016cm-3以下,進一步較佳為1×1011cm-3以上且1×1015cm-3以下。
雖然在圖1A至圖1C以及用來實施本發明的 一個實施方式的方式中主要示出氧化物半導體膜108具有單層結構的例子,但是氧化物半導體膜108也可以具有載子密度不同的膜的疊層結構。例如,氧化物半導體膜108可以具有第一氧化物半導體膜和第一氧化物半導體膜上的第二氧化物半導體膜的雙層結構。藉由使第一氧化物半導體膜具有高於第二氧化物半導體膜的載子密度,可以形成具有載子密度彼此不同的區域的氧化物半導體膜。
上述第一氧化物半導體膜的氧缺陷量或雜質濃度只要稍微大於第二氧化物半導體膜即可。
為了增高第一氧化物半導體膜的載子密度,可以對第一氧化物半導體膜添加形成氧缺陷的元素,使該氧缺陷與氫等鍵合。作為該將形成氧缺陷的元素的典型例子,可以舉出氫、硼、碳、氮、氟、磷、硫、氯和稀有氣體等。此外,作為稀有氣體元素的典型例子,可以舉出氦、氖、氬、氪和氙等。此外,作為用來在氧化物半導體膜中形成氧缺陷的元素,上述元素中的氮是特別較佳的。
例如,在形成第一氧化物半導體膜時,藉由作為沉積氣體使用氬氣體和一氧化二氮氣體,可以使第一氧化物半導體膜包含氮元素。此時,第一氧化物半導體膜具有氮濃度比第二氧化物半導體膜高的區域。
就是說,第一氧化物半導體膜的載子密度增高而被輕度n型化(Slightly n-type)。有時將載子密度增高的氧化物半導體膜稱為“Slightly-n”。
例如,在被施加到電晶體的閘極的電壓 (Vg)大於0V且為30V以下的情況下,第一氧化物半導體膜的載子密度較佳為高於1×1016cm-3且低於1×1018cm-3,更佳為高於1×1016cm-3且為1×1017cm-3以下。
此外,在第一氧化物半導體膜的載子密度得到增高的情況下,第一氧化物半導體膜的結晶性有時比第二氧化物半導體膜低。此時,氧化物半導體膜108具有結晶性低的氧化物半導體膜和結晶性高的氧化物半導體膜的疊層結構。此外,氧化物半導體膜的結晶性與氧化物半導體膜的膜密度有關,亦即,結晶性越高膜密度越高。因此,可以認為氧化物半導體膜108具有膜密度低的氧化物半導體膜和膜密度高的氧化物半導體膜的疊層結構。
例如,可以藉由利用X射線繞射(XRD:X-Ray Diffraction)或者使用穿透式電子顯微鏡(TEM:Transmission Electron Microscope)對氧化物半導體膜108的結晶性進行分析。此外,例如,可以藉由利用X射線反射法(XRR:X-ray Reflectometer)對氧化物半導體膜108的膜密度進行測量。
此外,第二區域108n與絕緣膜116接觸。絕緣膜116包含氮或氫。因此,絕緣膜116中的氮或氫被添加到第二區域108n中。藉由從絕緣膜116向第二區域108n添加氮或氫,可以進一步提高第二區域108n的載子密度。
電晶體100也可以包括絕緣膜116上的絕緣膜118、藉由形成在絕緣膜116、118中的開口部141a與 第二區域108n電連接的導電膜120a以及藉由形成在絕緣膜116、118中的開口部141b與第二區域108n電連接的導電膜120b。
在本說明書等中,有時將絕緣膜104稱為第一絕緣膜,將絕緣膜110稱為第二絕緣膜,將絕緣膜116稱為第三絕緣膜並將絕緣膜118稱為第四絕緣膜。另外,導電膜112能夠被用作閘極電極,導電膜120a能夠被用作源極電極,導電膜120b能夠被用作汲極電極。
另外,絕緣膜110被用作閘極絕緣膜。絕緣膜110具有由氧氮化矽膜構成的過量氧區域。當絕緣膜110具有過量氧區域時,可以對氧化物半導體膜108所具有的第一區域108i供應過量氧。尤其是,在本發明中,在形成絕緣膜110之後,以300℃以下,較佳為以250℃以下的基板溫度進行氧電漿處理,對絕緣膜110添加氧。由此,與習知的情況相比,可以將更多的過量氧從絕緣膜110供應到氧化物半導體膜。注意,在本發明的一個實施方式中,氧電漿處理是指包含氧的電漿處理。例如,在電漿處理中所使用的氣體可以包含不妨礙對膜添加氧的效果的除氧之外的氣體,例如,在電漿處理中所使用的氣體可以是流量比為90%的氧和10%的氬。
本發明的一個實施方式的絕緣膜110具有氧氮化矽膜的單層結構或包括氧氮化矽膜的疊層結構,其特徵在於:當利用TDS(Thermal Desorption Spectroscopy:熱脫附譜分析法)進行分析時,在測量溫度範圍內,在 150℃以上且300℃以下,理想的是,150℃以上且250℃以下的基板溫度處呈現相當於氧分子的質荷比M/z=32的釋放氣體量的最大峰值。注意,以下,將利用TDS進行分析時的氧分子的釋放特性視作質量數為32的氧分子的釋放特性。進行TDS分析時的測量溫度範圍典型地為80℃至500℃的範圍,作為氧分子的釋放特性,不考慮超過500℃的分析結果。藉由使用絕緣膜110中的過量氧填補在第一區域108i中形成的氧缺陷,可以提供一種可靠性高的半導體裝置。注意,在本說明書中,進行TDS分析時的基板溫度意味著基板表面溫度。
作為習知技術的對氧氮化矽膜添加氧的方法,可以舉出使用N2O氣體或NO2氣體的電漿處理。但是,本發明人發現:當對氧氮化矽膜進行使用N2O氣體或NO2氣體的電漿處理時,電子的陷阱中心增大。作為其原因之一,可以舉出絕緣膜110所包括的氧氮化矽膜中的氮氧化物(NOx)的增大。當對電晶體100進行偏壓-熱應力測試(BT測試)時,尤其是當對閘極電極施加正偏壓應力時,為了防止臨界電壓向正方向漂移,較佳為不進行使氮氧化物(NOx)增大的使用N2O氣體或NO2氣體的電漿處理。換言之,本發明的一個實施方式的在形成絕緣膜110之後進行氧電漿處理的方法是有效的。
此外,氧化物半導體膜108較佳為具有In的原子個數比高於M的原子個數比的區域。藉由使氧化物半導體膜108具有In的原子個數比高於M的原子個數比 的區域,可以提高電晶體100的場效移動率。明確而言,可以使電晶體100的場效移動率高於10cm2/Vs,較佳為高於30cm2/Vs。
例如,藉由將上述場效移動率高的電晶體用於生成閘極信號的閘極驅動器(特別是,與閘極驅動器所包括的移位暫存器的輸出端子連接的解多工器),可以提供一種邊框寬度窄(也稱為窄邊框)的半導體裝置或顯示裝置。
當在氧化物半導體膜108中形成有氧缺陷時,該氧缺陷與氫鍵合而成為載子供應源。當在氧化物半導體膜108中形成有載子供應源時,具有氧化物半導體膜108的電晶體100的電特性發生變動,典型的是,臨界電壓的漂移。因此,在氧化物半導體膜108中,尤其是在第一區域108i中,氧缺陷越少越好。
在第一區域108i中形成的氧缺陷被絕緣膜110所包含的過量氧填補。因此,氧化物半導體膜108中的第一區域108i具有較低的雜質濃度,而是缺陷態密度低的氧化物半導體膜。注意,將雜質濃度低且缺陷態密度低(氧缺陷少)的狀態稱為高純度本質或實質上高純度本質。高純度本質或實質上高純度本質的氧化物半導體膜的載子發生源少,所以可以降低載子密度。因此,在該氧化物半導體膜中形成有通道區域的電晶體很少具有負臨界電壓的電特性(也稱為常開啟特性)。
因為高純度本質或實質上高純度本質的氧化 物半導體膜具有較低的缺陷態密度,所以有可能具有較低的陷阱態密度。此外,高純度本質或實質上高純度本質的氧化物半導體膜的關態電流顯著低,通道寬度為1×106μm且通道長度L為10μm的元件也可以在源極電極與汲極電極之間的電壓(汲極電壓)為0.1V至10V的範圍內獲得關態電流為半導體參數分析儀的測量極限以下,亦即1×10-13A以下的特性。
圖2A至圖2C所示的電晶體100A包括基板102上的導電膜106,亦即,電晶體100A具有對圖1A至圖1C所示的電晶體100的結構附加導電膜106的結構。換言之,在圖2A至圖2C的電晶體中,可以將導電膜112和導電膜106用作閘極電極。
圖36A示出具有圖2A至圖2C所示的結構且將具有同一電位的導電膜112和導電膜106用作閘極電極的電晶體201至電晶體203的Id-Vg特性。電晶體201至電晶體203是藉由改變形成絕緣膜110之後的處理條件而形成的。Id-Vg特性的測量條件為如下:基板溫度為室溫,Id=0.1V時和Id=10V時,Vg在-15V至+20V的範圍內改變。圖36A示出條件206和條件207的電晶體的Id-Vg特性。條件206的通道的尺寸為L=2μm且W=50μm,條件207的通道的尺寸為L=6μm且W=50μm。在將導電膜112和導電膜106用作閘極電極的狀態下對Id-Vg特性進行測量。此外,將Id=0.1V時的特性與Id=10V時的特性重疊地表示,並將在特定的基板面內的多個電晶體的測 量結果重疊地表示。
電晶體201至電晶體203的絕緣膜110使用氧氮化矽形成,其形成條件都為相同。在電晶體201中,在形成絕緣膜110之後沒有進行N2O電漿處理和氧電漿處理,形成導電膜112。在電晶體202中,在形成絕緣膜110之後進行N2O電漿處理,形成導電膜112。在電晶體203中,在形成絕緣膜110之後進行氧電漿處理,形成導電膜112。然後,對電晶體201至電晶體203的絕緣膜110進行以250℃為上限的加熱處理。
在電晶體201的Id-Vg特性中,臨界電壓向負方向大幅度地漂移。另一方面,在電晶體202及電晶體203的Id-Vg特性中,臨界電壓為0V左右。換言之,可以認為形成絕緣膜110之後的N2O電漿處理或氧電漿處理有效地增加了絕緣膜110中的過量氧。
另一方面,圖36B示出電晶體202和電晶體203的BT測試的結果。縱軸表示Id-Vg特性中的臨界電壓的漂移量(△Vth),其單位為[V]。上述經過BT測試的電晶體的通道的尺寸為L=3μm且W=50μm。BT測試條件為如下:閘極偏壓為+30V或-30V,利用白色LED以10000lx的照度照射的環境或昏暗的環境,BT測試時間為60min。換言之,在如下四個條件下進行BT測試:正閘極偏壓應力PBTS、負閘極偏壓應力NBTS、光正閘極偏壓應力PBITS及光負閘極偏壓應力NBITS。此外,在BT測試及Id-Vg特性的測量中,基板溫度為60℃。
關於BT測試結果的正閘極偏壓應力PBTS的條件下的臨界電壓漂移,電晶體202為+8V左右,而電晶體203為+2V左右。這意味著在電晶體203的絕緣膜110所包括的氧氮化矽膜中成為電子的陷阱中心的氮氧化物(NOx)比電晶體202多。
如上所述,在本發明的一個實施方式的半導體裝置中,在氧化物半導體層的上方形成閘極絕緣膜。該閘極絕緣膜能夠對氧化物半導體膜供應過量氧並防止閘極絕緣膜所包含的氧氮化矽膜中的氮氧化物(NOx)的增加。由此,充分的氧被供應到氧化物半導體層,由此可以減少氧化物半導體層中的氧缺陷,而提高電晶體的可靠性。因此,可以提供一種可靠性高的半導體裝置。
〈1-2.半導體裝置的組件〉
下面,對本實施方式的半導體裝置所包括的組件進行詳細的說明。
〈基板〉
雖然對基板102的材料等沒有特別的限制,但是至少需要具有能夠承受後續的加熱處理的耐熱性。例如,作為基板102,可以使用玻璃基板、陶瓷基板、石英基板、藍寶石基板等。另外,還可以使用以矽或碳化矽為材料的單晶半導體基板或多晶半導體基板、以矽鍺等為材料的化合物半導體基板、SOI(Silicon On Insulator:絕緣層上覆 矽)基板等,並且也可以將在這些基板上設置有半導體元件的基板用作基板102。當作為基板102使用玻璃基板時,藉由使用第6代(1500mm×1850mm)、第7代(1870mm×2200mm)、第8代(2200mm×2400mm)、第9代(2400mm×2800mm)、第10代(2950mm×3400mm)等的大面積基板,可以製造大型顯示裝置。
另外,作為基板102也可以使用撓性基板,在該撓性基板上直接形成電晶體100。或者,也可以在基板102與電晶體之間設置剝離層。剝離層可以在如下情況下使用,亦即在剝離層上製造半導體裝置的一部分或全部,然後將其從基板102分離並轉置到其他基板上的情況。此時,也可以將電晶體100轉置到耐熱性低的基板或撓性基板上。
[第一絕緣膜]
絕緣膜104可以藉由適當地利用濺射法、CVD法、蒸鍍法、脈衝雷射沉積(PLD)法、印刷法、塗佈法等形成。絕緣膜104例如可以是氧化物絕緣膜及/或氮化物絕緣膜的單層或疊層。注意,為了提高絕緣膜104與氧化物半導體膜108的介面特性,絕緣膜104中的至少與氧化物半導體膜108接觸的區域較佳為使用氧化物絕緣膜形成。另外,藉由作為絕緣膜104使用因加熱而釋放氧的氧化物絕緣膜,可以利用加熱處理使絕緣膜104所包含的氧移動到氧化物半導體膜108中。
絕緣膜104的厚度可以為50nm以上、100nm以上且3000nm以下或200nm以上且1000nm以下。藉由增加絕緣膜104的厚度,可以使絕緣膜104的氧釋放量增加,而能夠減少絕緣膜104與氧化物半導體膜108之間的介面能階,並且減少包含在氧化物半導體膜108中的氧缺陷。
絕緣膜104例如可以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧化鉿、氧化鎵或者Ga-Zn氧化物等,並且以疊層或單層設置。在本實施方式中,作為絕緣膜104,使用氮化矽膜和氧氮化矽膜的疊層結構。如此,在絕緣膜104具有疊層結構時,作為下側的層使用氮化矽膜,作為上側的層使用氧氮化矽膜,由此可以對氧化物半導體膜108高效地供應氧。
[導電膜]
被用作閘極電極的導電膜112、被用作源極電極的導電膜120a和被用作汲極電極的導電膜120b可以使用選自鉻(Cr)、銅(Cu)、鋁(Al)、金(Au)、銀(Ag)、鋅(Zn)、鉬(Mo)、鉭(Ta)、鈦(Ti)、鎢(W)、錳(Mn)、鎳(Ni)、鐵(Fe)、鈷(Co)中的金屬元素、以上述金屬元素為成分的合金或者組合上述金屬元素的合金等形成。
此外,導電膜112、120a、120b可以使用包含銦和錫的氧化物(In-Sn氧化物)、包含銦和鎢的氧化 物(In-W氧化物)、包含銦和鎢和鋅的氧化物(In-W-Zn氧化物)、包含銦和鈦的氧化物(In-Ti氧化物)、包含銦和鈦和錫的氧化物(In-Ti-Sn氧化物)、包含銦和鋅的氧化物(In-Zn氧化物)、包含銦和錫和矽的氧化物(In-Sn-Si氧化物)、包含銦和鎵和鋅的氧化物(In-Ga-Zn氧化物)等氧化物導電體或氧化物半導體形成。
在此,對氧化物導電體進行說明。在本說明書等中,也可以將氧化物導電體稱為OC(Oxide Conductor)。例如,氧化物導電體是藉由如下步驟而得到的:在氧化物半導體中形成氧缺陷,對該氧缺陷添加氫而在導帶附近形成施體能階。其結果,氧化物半導體的導電性增高,而成為導電體。可以將成為導電體的氧化物半導體稱為氧化物導電體。一般而言,由於氧化物半導體的能隙大,因此對可見光具有透光性。另一方面,氧化物導電體是在導帶附近具有施體能階的氧化物半導體。因此,在氧化物導電體中,起因於施體能階的吸收的影響小,而對可見光具有與氧化物半導體大致相同的透光性。
尤其是,在將上述氧化物導電體用於導電膜112時,可以將過量氧添加到絕緣膜110中,所以是較佳的。
另外,作為導電膜112、120a、120b,也可以使用Cu-X合金膜(X為Mn、Ni、Cr、Fe、Co、Mo、Ta或Ti)。藉由使用Cu-X合金膜,可以利用濕蝕刻製程進行加工,所以可以抑制製造成本。
此外,作為導電膜112、120a、120b,尤其較佳為使用上述金屬元素中的鈦、鎢、鉭和鉬中的任一個或多個。尤其是,作為導電膜112、120a、120b,較佳為使用氮化鉭膜。該氮化鉭膜具有導電性且具有對銅或氫的高阻擋性。此外,因為從氮化鉭膜本身釋放的氫少,所以較佳為將其用作與氧化物半導體膜108接觸的導電膜或氧化物半導體膜108的附近的導電膜。
導電膜112、120a、120b可以利用無電鍍法形成。作為利用該無電鍍法可形成的材料,例如可以使用選自Cu、Ni、Al、Au、Sn、Co、Ag和Pd中的一個或多個。尤其是,藉由使用Cu或Ag,可以降低導電膜的電阻,所以是較佳的。
[第二絕緣膜]
被用作本發明的一個實施方式的電晶體100的閘極絕緣膜的絕緣膜110具有單層結構或疊層結構,並包括利用電漿增強化學氣相沉積法形成的氧氮化矽膜。此外,對絕緣膜110進行氧電漿處理。
本發明的一個實施方式的絕緣膜110的特徵在於:當進行TDS分析時,在測量溫度範圍內,在150℃至300℃的基板溫度處呈現相當於氧分子的質荷比M/z=32的釋放氣體量的最大峰值。以下,參照圖37至圖44對本發明的一個實施方式的絕緣膜110(亦即,經過氧電漿處理的氧氮化矽膜)的特性進行說明。
氧氮化矽膜中的過量氧原子因熱激發而發生脫離,其脫離溫度取決於膜中的原子的鍵合狀態等。此外,氧氮化矽膜中的氧原子的大部分在較寬的溫度範圍內脫離。於是,藉由在以較低的溫度使氧氮化矽膜包含過量氧原子之後,以較高的溫度將氧原子供應到氧化物半導體膜,可以增大供應到氧化物半導體膜的氧原子量。
在利用電漿增強化學氣相沉積法(PECVD法)形成氧氮化矽膜時,在基板溫度高的條件下形成的氧氮化矽膜具有如下特徵:緻密、優異的電絕緣耐壓特性及耐化學腐蝕性。在只考慮這些優點時,在半導體元件中使用氧氮化矽膜的情況下,形成氧氮化矽膜時的基板溫度較佳為高。另一方面,在使用氧氮化矽膜作為將氧化物半導體用於通道的電晶體的閘極絕緣膜的情況下,為了提高可靠性重要的是如何更有效地將氧氮化矽膜中的過量氧原子供應給氧化物半導體膜。
在本實施方式中,為了增加過量氧原子,在形成氧氮化矽膜之後對氧氮化矽膜進行氧電漿處理。並且,進行該氧電漿處理時的基板溫度為350℃以下,較佳為250℃以下。此外,在想要增加該氧氮化矽膜中的過量氧原子量時,降低成膜時的基板溫度。
下面示出如下情況的例子:可以藉由改變對氧氮化矽膜進行的氧電漿處理的條件來增加對氧化物半導體膜供應的氧量。圖37是對如下樣本進行TDS分析時的相當於氧分子的質荷比M/z=32的釋放氣體量的結果,該 樣本是在無鹼玻璃基板上形成厚度為100nm的氧氮化矽膜之後對氧氮化矽膜進行氧電漿處理而製造的樣本。當利用TDS進行分析時,將使用80℃至450℃的基板溫度範圍內的資料看作氧分子釋放量。在氧電漿處理中所使用的氣體只有氧。氧氮化矽膜利用電漿CVD法且使用SiH4氣體及N2O氣體以350℃的基板溫度形成。氧電漿處理中的基板溫度為350℃。
從圖37可知,在40Pa至250Pa的範圍內,氧電漿處理壓力越小或放電電力越高,越多的過剩的氧原子成為氧分子而從氧氮化矽膜釋放。
圖38A至圖38C是對如下樣本進行TDS分析時的相當於水分子的質荷比M/z=18的釋放氣體量的結果。圖38A示出樣本221的結果,圖38B示出樣本222的結果,圖38C示出樣本223的結果。這些樣本都是在無鹼玻璃基板上依次形成厚度為100nm的IGZO膜及厚度為100nm的氧氮化矽膜。氧氮化矽膜利用電漿CVD法且使用SiH4氣體及N2O氣體以350℃的基板溫度形成。然後,對樣本222的氧氮化矽膜以500W的放電電力進行氧電漿處理,並且對樣本223的氧氮化矽膜以3000W的放電電力進行氧電漿處理。縱軸為表示釋放量的信號的強度。
在進行TDS分析的樣本中形成IGZO膜時,作為靶材使用氧化物進行濺射成膜。靶材中的原子個數比為銦:鎵:鋅=4:2:4.1。成膜時的基板溫度為130℃,沉積氣 體流量比為Ar:O2=9:1,成膜壓力為0.6Pa。
從圖38A至圖38C可知,對各樣本的120℃附近的水分子的釋放量進行比較時,按樣本221、樣本222、樣本223的順序多。作為其原因之一,可以認為如下情況:藉由對氧氮化矽膜進行氧電漿處理,表面吸附水得到降低。
圖39A和圖39B是利用二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)對樣本221、樣本222、樣本223的各膜的氫濃度進行測量的結果。在SIMS分析中,從基板一側向氧氮化矽膜的表面一側進行分佈測量。箭頭220示出分佈測量的方向。圖39A至圖39D示出氧氮化矽膜內的分佈216、IGZO膜內的分佈217、基板內的分佈218。
圖39A示出以不同的氧電漿處理的放電電力的條件對氧氮化矽膜中的氫濃度進行測量的SIMS分析結果。同樣地,圖39B示出對IGZO膜中的氫濃度進行測量的SIMS分析結果。樣本221採用沒有進行氧電漿處理的條件,樣本222採用放電電力為500W的條件,樣本223採用放電電力為3000W的條件。
圖39A至圖39D的橫軸為與膜面垂直的深度方向。橫軸的0nm表示便於進行SIMS測量的位置,區域225相當於氧氮化矽膜的表面附近的測量結果。在圖39A中,經過氧電漿處理製造出的樣本222及樣本223在區域225中的氫濃度低於沒有經過氧電漿處理製造出的樣本 221在區域225中的氫濃度。由此可以認為,圖38A至圖38C中120℃附近的水分子釋放量不同是由於附著於氧氮化矽膜表面的水經過氧電漿處理被減少了的緣故。
此外,從圖39B可知,在氧電漿處理的作用下IGZO膜的氫濃度減少。此時,放電電力越大,IGZO膜的氫濃度越低。對氧氮化矽膜進行氧電漿處理,不但能夠有效地降低氧氮化矽膜表面的氫濃度,而且能夠有效地降低IGZO膜(氧化物半導體膜)的氫濃度。
圖39C、圖39D是利用SIMS測量出的樣本226、227、228的各膜中的氫濃度的測量結果。樣本226是沒有對氧氮化矽膜進行氧電漿處理而製造出的樣本,亦即,以與樣本221同樣的條件製造。樣本227是藉由與樣本226同樣的製程並以處理室內的氣體壓力為200Pa的條件進行氧電漿處理而製造出的樣本,而樣本228是以處理室內的氣體壓力為40Pa的條件進行氧電漿處理而製造出的樣本。在圖39C中,對氧氮化矽膜的氫濃度進行測量,在圖39D中,對IGZO膜的氫濃度進行測量。可以認為:在以處理室內的氣體壓力為40Pa至200Pa的條件進行氧電漿處理時,壓力越低,氧化物半導體膜的氫濃度越低。
圖40A至圖40I是對如下樣本進行TDS分析時的相當於氧分子的質荷比M/z=32的釋放氣體量的結果。在所有樣本中,在無鹼玻璃基板上形成厚度為100nm的IGZO膜,接著形成厚度為100nm的氧氮化矽膜。氧氮化矽膜利用電漿CVD法且使用SiH4氣體及N2O氣體在 350℃的基板溫度下形成。再者,在放電電力為3000W,處理室內氣體壓力為200Pa的條件下進行氧電漿處理。
當利用TDS對各樣本進行分析時,圖40A的氧電漿處理時間為30sec,圖40B的氧電漿處理時間為60sec,圖40C的氧電漿處理時間為100sec,圖40D的氧電漿處理時間為300sec,圖40E的氧電漿處理時間為600sec。對上述樣本在220℃的基板溫度下進行氧電漿處理。此外,圖40F的氧電漿處理時間為30sec,圖40G的氧電漿處理時間為60sec,圖40H的氧電漿處理時間為100sec,圖40I的氧電漿處理時間為300sec。對上述樣本在350℃的基板溫度下進行氧電漿處理。
從圖40A至圖40I可知,對氧氮化矽膜進行氧電漿處理的時間越長,氧的釋放量越大。另外可知,進行氧電漿處理時的基板溫度越低,氧的釋放量越大。
圖41示出圖40A至圖40I所示的氧釋放量,橫軸表示處理時間,縱軸表示氧釋放氣體量。虛線231表示從以220℃的基板溫度進行氧電漿處理的結果(圖40A至圖40E)得到的值。實線232表示從以350℃的基板溫度進行氧電漿處理的結果(圖40F至圖40I)得到的值。當進行長時間的氧電漿處理時,在基板溫度為350℃的條件下進行氧電漿處理時的氧釋放量在小於2×1014分子/cm2處飽和,而即使進行長時間的氧電漿處理,在基板溫度為220℃的條件下進行氧電漿處理時的氧釋放量在1.2×1015分子/cm2處也沒有飽和。換言之,與350℃的溫度相比, 為了增高氧釋放量,進行氧電漿處理時的基板溫度較佳為220℃。
圖42A和圖42B示出對如下樣本進行TDS分析時的相當於氧分子的質荷比M/z=32的釋放氣體量,該樣本是在無鹼玻璃基板上形成厚度為100nm的氧氮化矽膜之後對氧氮化矽膜進行氧電漿處理而製造的樣本。氧氮化矽膜利用電漿CVD法且使用SiH4氣體及N2O氣體形成。圖42A是形成氧氮化矽膜時的溫度為350℃時的結果,測量溫度為80℃至450℃的範圍內的釋放量為5.17×1014分子/cm2。圖42B是形成氧氮化矽膜時的溫度為220℃時的結果,測量溫度為80℃至450℃的範圍內的釋放量為1.47×1015分子/cm2
作為圖42A與圖42B的結果不同的理由之一,可以舉出以下理由:在形成氧氮化矽膜時的溫度低,亦即為220℃的條件下,膜密度低,膜中的空隙多。該空隙可以被添加過量氧,上述氧氮化矽膜有可以吸收或供應更多的過量氧的可能性。
如此,為了將過量氧從氧氮化矽膜供應到氧化物半導體膜有效的是:以350℃以下的較低的基板溫度(如,以220℃)對氧氮化矽膜進行氧電漿處理;增大放電電力;減少放電時的處理室內的壓力;延長氧電漿處理時間;以及降低氧氮化矽膜的成膜溫度。此外,當氧氮化矽膜以成為過量氧的供應源的方式形成時,增大氧氮化矽膜的厚度也是有效的。
另一方面,在利用電漿CVD法在氧化物半導體膜上形成氧氮化矽膜時,根據成膜條件,有氧化物半導體膜的電阻下降的可能性。圖43A和圖43B示出如下樣本的IGZO膜的電阻值,該樣本在石英玻璃基板上形成厚度為50nm的IGZO膜並在IGZO膜上形成氧氮化矽膜。在各樣本中,基板是一個邊為1cm的正方形,在其四個角去除2mm平方的氧氮化矽膜,形成與IGZO膜電連接的2mm平方的電極。以該電極為端子,測量彼此相鄰的電極之間的電阻值(單位為Ω)。
氧氮化矽膜利用電漿CVD法且使用SiH4氣體及N2O氣體形成。氧氮化矽膜的厚度的條件為0nm(亦即,不進行成膜處理)至60nm。在圖43A的結果的各樣本中,形成氧氮化矽膜時的基板溫度為350℃,在圖43B的結果的各樣本中,形成氧氮化矽膜時的基板溫度為220℃。圖43A和圖43B中的虛線235為形成氧氮化矽膜之前的IGZO膜的電阻值。
在利用電漿CVD法形成氧氮化矽膜時,由於處理室內的氫電漿氛圍而氫擴散到IGZO膜中,氧缺陷與氫等鍵合,氧氮化矽膜的電阻可能會降低。與圖43B所示的基板溫度為220℃的條件相比,在圖43A所示的基板溫度為350℃的條件下,氧氮化矽膜的電阻降低的傾向顯著。可以認為這是由於高基板溫度促進了對IGZO膜的氫的擴散及氧缺陷與氫等的鍵合的緣故。從上述觀點來看,利用電漿CVD法形成氧氮化矽膜時的基板溫度較佳為 低。
為了確認氧電漿處理的效果,本發明人製造了在其結構中具有氧化物半導體膜和經過氧電漿處理的氧氮化矽膜的顯示裝置。圖44示出對藉由拆開顯示裝置而從該顯示裝置去除像素電極得到的電晶體進行TDS分析時的相當於氧分子的質荷比M/z=32的釋放氣體量的結果。所有被測量的樣本都去除了有機樹脂。樣本241是在形成氧氮化矽膜之後沒有進行氧電漿處理來製造的樣本。此外,樣本242是進行120sec的氧電漿處理來製造的樣本,樣本243是進行600sec的氧電漿處理來製造的樣本。此外,顯示裝置的結構與本發明的一個實施方式的結構不同,但是顯示裝置在IGZO膜上包括氧氮化矽膜,形成氧氮化矽膜之後或者進行氧電漿處理之後的處理溫度的上限為250℃。
另一方面,準備了如下樣本244,該樣本244是藉由如下方法獲得的:將市場上銷售的與本發明的一個實施方式不同的包括氧化物半導體膜及具有氧氮化矽膜的閘極絕緣膜的顯示裝置解體並去除其像素電極。圖44示出對該樣本244進行TDS分析時的相當於氧分子的質荷比M/z=32的釋放氣體量。
在沒有對氧氮化矽膜進行氧電漿處理的條件下製造的樣本241在利用TDS進行分析時的測量溫度範圍內的最大峰值呈現在150℃以下的測量溫度,在進行氧電漿處理的條件下製造的樣本242和樣本243在測量溫度 範圍內的最大峰值呈現在150℃至350℃的測量溫度。另一方面,與本發明的一個實施方式不同的市場上銷售的顯示裝置的樣本在測量溫度範圍內的最大峰值呈現在350℃至450℃的測量溫度。如此,可以根據呈現最大峰值時的樣本溫度區別市場上銷售的顯示裝置的樣本與在對氧氮化矽膜進行氧電漿處理的條件下製造的樣本。
由於進行氧電漿處理的氧氮化矽膜包含充分的過量氧,所以在之後的製程中進行加熱處理時能夠對氧化物半導體膜供應氧。即使在半導體裝置或顯示裝置完成之後對為本發明的特徵之一的經過氧電漿處理的氧氮化矽膜進行TDS分析,相當於氧分子的質荷比M/z=32的釋放氣體量在測量溫度範圍內的最大峰值呈現在150℃至350℃的測量溫度。由此可知,當在上述溫度範圍內進行加熱處理時,所完成的半導體裝置或顯示裝置所包括的電晶體中的氧化物半導體膜的導電率降低。
在電晶體的製程中,在對氧氮化矽膜進行氧電漿處理之後,在150℃以上,較佳為200℃以上,更佳為250℃以上的溫度下進行加熱處理,可以對氧化物半導體膜供應氧。但是,當加熱處理溫度超過450℃時,根據加熱處理氣體氛圍,氧化物半導體膜中的氧與氫鍵合而成為水被釋放,因此450℃以下是較佳的。此外,在形成有包含金屬材料的膜的情況下,同樣會吸收氧化物半導體膜中的氧,因此此時也需要適當地決定加熱處理溫度上限。
絕緣膜110可以採用利用電漿增強化學氣相 沉積法、濺射法等形成的包含氧化矽膜、氧氮化矽膜、氮氧化矽膜、氮化矽膜、氧化鋁膜、氧化鉿膜、氧化釔膜、氧化鋯膜、氧化鎵膜、氧化鉭膜、氧化鎂膜、氧化鑭膜、氧化鈰膜和氧化釹膜中的一種以上的絕緣層的雙層疊層結構或三層以上的疊層結構代替上述氧氮化矽膜的單層結構。
此外,與被用作電晶體100的通道區域的氧化物半導體膜108接觸的絕緣膜110較佳為氧化物絕緣膜,更佳為包括包含超過化學計量組成的氧的區域(過量氧區域)。換言之,絕緣膜110是能夠釋放氧的絕緣膜。為了在絕緣膜110中設置過量氧區域,例如,可以在氧氛圍下形成絕緣膜110或者在氧氛圍下對成膜之後的絕緣膜110進行加熱處理。
此外,當作為絕緣膜110使用包含氧化鉿的疊層結構時,可以具有如下效果。氧化鉿的相對介電常數比氧化矽或氧氮化矽高。因此,與使用氧化矽的情況相比可以使絕緣膜110的厚度大,由此,可以減少穿隧電流引起的洩漏電流。也就是說,可以實現關態電流小的電晶體。再者,與包括非晶結構的氧化鉿相比,包括結晶結構的氧化鉿具有的相對介電常數高。因此,為了形成關態電流小的電晶體,較佳為使用包括結晶結構的氧化鉿。作為結晶結構的一個例子,可以舉出單斜晶系或立方晶系等。注意,本發明的一個實施方式不侷限於此。
絕緣膜110的缺陷較佳為少,典型的是藉由 電子自旋共振法(ESR:Electron Spin Resonance)觀察的信號較佳為少。例如,作為上述信號,可以舉出起因於在2.001處觀察到g值的E’中心的信號。此外,E’中心起因於矽的懸空鍵。作為絕緣膜110使用起因於E’中心的自旋密度為3×1017spins/cm3以下、較佳為5×1016spins/cm3以下的氧化矽膜或氧氮化矽膜即可。
在絕緣膜110中有時觀察到除了上述信號以外起因於二氧化氮(NO2)的信號。該信號因N的核自旋而分裂成三個信號,各個g值為2.037以上且2.039以下(第一信號)、g值為2.001以上且2.003以下(第二信號)及g值為1.964以上且1.966以下(第三信號)。
例如,作為絕緣膜110較佳為使用起因於二氧化氮(NO2)的信號的自旋密度為1×1017spins/cm3以上且低於1×1018spins/cm3的絕緣膜。
二氧化氮(NO2)等氮氧化物(NOx)在絕緣膜110中形成能階。該能階位於氧化物半導體膜108的能隙中。由此,當氮氧化物(NOx)擴散到絕緣膜110與氧化物半導體膜108的介面時,有時該能階在絕緣膜110一側俘獲電子。其結果是,被俘獲的電子留在絕緣膜110與氧化物半導體膜108的介面附近,由此使電晶體的臨界電壓向正方向漂移。因此,當作為絕緣膜110使用氮氧化物的含量少的膜時,可以降低電晶體的臨界電壓的漂移。
作為氮氧化物(NOx)的釋放量少的絕緣膜例如可以使用氧氮化矽膜。該氧氮化矽膜是在TDS分析中 氨釋放量比氮氧化物(NOx)的釋放量多的膜,典型的是氨釋放量為1×1018分子/cm3以上且5×1019分子/cm3以下。此外,上述氨釋放量為TDS分析的測量中的加熱處理溫度為50℃以上且650℃以下或50℃以上且550℃以下的範圍內的總量。
由於當進行加熱處理時,氮氧化物(NOx)與氨及氧起反應,所以藉由使用氨釋放量多的絕緣膜可以減少氮氧化物(NOx)。
當使用SIMS對絕緣膜110進行分析時,膜中的氮濃度較佳為6×1020atoms/cm3以下。
[氧化物半導體膜]
氧化物半導體膜108可以使用上述材料形成。
當氧化物半導體膜108為In-M-Zn氧化物時,用來形成In-M-Zn氧化物的濺射靶材的金屬元素的原子個數比較佳為滿足In>M。作為這種濺射靶材的金屬元素的原子個數比,可以舉出In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.1等。
另外,當氧化物半導體膜108為In-M-Zn氧化物時,作為濺射靶材較佳為使用包含多晶的In-M-Zn氧化物的靶材。藉由使用包含多晶的In-M-Zn氧化物的靶材,容易形成具有結晶性的氧化物半導體膜108。注意,所形成的氧化物半導體膜108的原子個數比有時包括上述濺射靶材中的金屬元素的原子個數比的±40%的變動。例 如,當用於氧化物半導體膜108的濺射靶材的組成為In:Ga:Zn=4:2:4.1[原子個數比]時,有時所形成的氧化物半導體膜108的組成為In:Ga:Zn=4:2:3[原子個數比]附近。
氧化物半導體膜108的能隙為2eV以上,較佳為2.5eV以上。如此,藉由使用能隙較寬的氧化物半導體,可以降低電晶體100的關態電流。
氧化物半導體膜108的厚度為3nm以上且200nm以下,較佳為3nm以上且100nm以下,更佳為3nm以上且50nm以下。
氧化物半導體膜108可以為非單晶結構。非單晶結構例如包括下述CAAC-OS(C Axis Aligned Crystalline Oxide Semiconductor:c軸配向結晶氧化物半導體)、多晶結構、微晶結構或非晶結構。
[第三絕緣膜]
絕緣膜116包含氮或氫。作為絕緣膜116,例如可以舉出氮化物絕緣膜。作為該氮化物絕緣膜,明確而言,可以舉出包含氮化矽、氮氧化矽、氧氮化矽等的膜。包含在絕緣膜116的氫濃度較佳為1×1022atoms/cm3以上。此外,絕緣膜116與氧化物半導體膜108的第二區域108n接觸。因此,與絕緣膜116接觸的第二區域108n中的雜質(氮或氫)濃度變高,可以提高第二區域108n中的載子密度。
[第四絕緣膜]
作為絕緣膜118,可以舉出氧化物絕緣膜。此外,作為絕緣膜118,可以使用氧化物絕緣膜和氮化物絕緣膜的疊層膜。作為絕緣膜118,例如可以使用氧化矽、氧氮化矽、氮氧化矽、氧化鋁、氧化鉿、氧化鎵或Ga-Zn氧化物等。
此外,絕緣膜118較佳為具有阻擋來自外部的氫、水等的障壁膜的功能的膜。
絕緣膜118的厚度可以為30nm以上且500nm以下或100nm以上且400nm以下。
〈1-3.電晶體的結構例子2〉
接著,將參照圖2A至圖2C對與圖1A至圖1C所示的電晶體不同的結構進行說明。
圖2A是電晶體100A的俯視圖,圖2B是圖2A的點劃線X1-X2間的剖面圖,圖2C是圖2A的點劃線Y1-Y2間的剖面圖。
圖2A至圖2C所示的電晶體100A包括基板102上的導電膜106、導電膜106上的絕緣膜104、絕緣膜104上的氧化物半導體膜108、氧化物半導體膜108上的絕緣膜110、絕緣膜110上的導電膜112、絕緣膜104、氧化物半導體膜108及導電膜112上的絕緣膜116。
電晶體100A除了上述電晶體100的組件以外 還包括導電膜106、開口部143。
開口部143設置在絕緣膜104、110中。此外,導電膜106藉由開口部143與導電膜112電連接。因此,對導電膜106及導電膜112施加同一電位。此外,也可以不設置開口部143,而對導電膜106、導電膜112施加不同電位。或者,也可以不設置開口部143,且將導電膜106用作遮光膜。例如,藉由使用遮光性材料形成導電膜106,可以抑制光從下方照射到第一區域108i。
當採用電晶體100A的結構時,導電膜106具有第一閘極電極(也稱為底閘極電極)的功能,且導電膜112具有第二閘極電極(也稱為頂閘極電極)的功能。此外,絕緣膜104具有第一閘極絕緣膜的功能,且絕緣膜110具有第二閘極絕緣膜的功能。
導電膜106可以使用與上述導電膜112、120a、120b同樣的材料。尤其是,藉由導電膜106使用包含銅的材料形成,可以降低電阻,所以是較佳的。例如,較佳的是導電膜106採用在氮化鈦膜、氮化鉭膜或鎢膜上設置銅膜的疊層結構,且導電膜120a、120b採用在氮化鈦膜、氮化鉭膜或鎢膜上設置銅膜的疊層結構。此時,藉由將電晶體100A用於顯示裝置的像素電晶體和驅動電晶體中的一個或兩個,可以降低產生在導電膜106與導電膜120a之間的寄生電容以及產生在導電膜106與導電膜120b之間的寄生電容。因此,不僅將導電膜106、導電膜120a及導電膜120b用於電晶體100A的第一閘極 電極、源極電極及汲極電極,而且也可以用於顯示裝置的電源供應佈線、信號供應佈線或連接佈線等。
如此,與上述電晶體100不同地,圖2A至圖2C所示的電晶體100A具有在氧化物半導體膜108的上下包括被用作閘極電極的導電膜的結構。如電晶體100A所示,在本發明的一個實施方式的半導體裝置中,也可以設置多個閘極電極。
如圖2B及圖2C所示,氧化物半導體膜108位於與被用作第一閘極電極的導電膜106及被用作第二閘極電極的導電膜112的每一個相對的位置,夾在兩個被用作閘極電極的導電膜之間。
在通道寬度方向上,導電膜112的長度比氧化物半導體膜108大,並且氧化物半導體膜108整體夾著絕緣膜110被導電膜112覆蓋。導電膜112和導電膜106在形成於絕緣膜104及絕緣膜110中的開口部143中連接,因此在通道寬度方向上,氧化物半導體膜108的一個側面夾著絕緣膜110與導電膜112相對。
換言之,導電膜106及導電膜112在形成於絕緣膜104及絕緣膜110中的開口部143中連接,並包括位於氧化物半導體膜108的側端部的外側的區域。
藉由採用上述結構,可以利用被用作第一閘極電極的導電膜106及被用作第二閘極電極的導電膜112的電場電圍繞電晶體100A所包括的氧化物半導體膜108。如電晶體100A那樣,可以將利用第一閘極電極及第 二閘極電極的電場電圍繞形成有通道區域的氧化物半導體膜108的電晶體的裝置結構稱為Surrounded channel(S-channel:圍繞通道)結構。
因為電晶體100A具有S-channel結構,所以可以使用導電膜106或導電膜112對氧化物半導體膜108有效地施加用來引起通道的電場。由此,電晶體100A的電流驅動能力得到提高,從而可以得到高的通態電流特性。此外,由於可以增加通態電流,所以可以使電晶體100A微型化。另外,由於電晶體100A具有氧化物半導體膜108被導電膜106及導電膜112圍繞的結構,所以可以提高電晶體100A的機械強度。
在電晶體100A的通道寬度方向上,可以在氧化物半導體膜108的沒有形成開口部143的一側形成與開口部143不同的開口部。
此外,如電晶體100A那樣,在電晶體包括其間設置有半導體膜的一對閘極電極的情況下,也可以對一個閘極電極供應信號A,並且對另一個閘極電極供應固定電位Vb。另外,也可以對一個閘極電極供應信號A,並且對另一個閘極電極供應信號B。另外,也可以對一個閘極電極供應固定電位Va,並且對另一個閘極電極供應固定電位Vb。
信號A例如為用來控制導通狀態/非導通狀態的信號。信號A也可以為具有電位V1或者電位V2(V1>V2)的兩種電位的數位信號。例如,可以將電位 V1設定為高電源電位且將電位V2設定為低電源電位。信號A也可以為類比信號。
固定電位Vb例如為用來控制電晶體的臨界電壓VthA的電位。固定電位Vb可以為電位V1或者電位V2。此時,不需要另外設置用來產生固定電位Vb的電位產生電路,所以是較佳的。固定電位Vb也可以為與電位V1或者電位V2不同的電位。藉由降低固定電位Vb,有時可以提高臨界電壓VthA。其結果,有時可以降低閘極與源極之間的電壓Vgs為0V時的汲極電流,而可以降低包括電晶體的電路的洩漏電流。例如,可以使固定電位Vb低於低電源電位。另一方面,藉由提高固定電位Vb,有時可以降低臨界電壓VthA。其結果,有時可以提高閘極與源極之間的電壓Vgs為高電源電位時的汲極電流,而可以提高包括電晶體的電路的工作速度。例如,可以使固定電位Vb高於低電源電位。
信號B例如為用來控制電晶體的導通狀態/非導通狀態的信號。信號B也可以為具有電位V3或者電位V4(V3>V4)的兩種電位的數位信號。例如,可以將電位V3設定為高電源電位且將電位V4設定為低電源電位。信號B也可以為類比信號。
在信號A與信號B都是數位信號的情況下,信號B也可以為具有與信號A相同的數位值的信號。此時,有時可以增加電晶體的通態電流,而可以提高包括電晶體的電路的工作速度。此時,信號A的電位V1及電位 V2也可以與信號B的電位V3及電位V4不同。例如,當對應於被輸入信號B的閘極的閘極絕緣膜的厚度大於對應於被輸入信號A的閘極的閘極絕緣膜時,可以使信號B的電位振幅(V3-V4)大於信號A的電位振幅(V1-V2)。由此,有時可以使信號A及信號B給電晶體的導通狀態或非導通狀態帶來的影響大致相同。
在信號A與信號B都是數位信號的情況下,信號B也可以為具有與信號A不同的數位值的信號。此時,有時可以分別利用信號A及信號B控制電晶體,而可以實現更高的功能。例如,當電晶體為n通道電晶體時,在僅在信號A為電位V1且信號B為電位V3時該電晶體處於導通狀態的情況下或者在僅在信號A為電位V2且信號B為電位V4時該電晶體處於非導通狀態的情況下,有時可以由一個電晶體實現NAND電路或NOR電路等的功能。另外,信號B也可以為用來控制臨界電壓VthA的信號。例如,信號B也可以在包括電晶體的電路工作的期間與該電路不工作的期間具有不同電位。信號B也可以根據電路的工作模式具有不同電位。此時,信號B有可能沒有信號A那麼頻繁地切換電位。
在信號A與信號B都是類比信號的情況下,信號B也可以具有與信號A相同的電位的類比信號、用常數乘以信號A的電位而得的類比信號、或者將常數加到信號A的電位或從信號A的電位減去常數而得的類比信號等。此時,有時可以增加電晶體的通態電流,而提高包 括電晶體的電路的工作速度。信號B也可以為與信號A不同的類比信號。此時,有時可以分別利用信號A及信號B控制電晶體,而可以實現更高的功能。
信號A也可以為數位信號,信號B也可以為類比信號。或者,信號A也可以為類比信號,信號B也可以為數位信號。
當對電晶體的兩個閘極電極供應固定電位時,有時可以將電晶體用作相當於電阻元件的元件。例如,當電晶體為n通道電晶體時,藉由提高(降低)固定電位Va或固定電位Vb,有時可以降低(提高)電晶體的有效電阻。藉由提高(降低)固定電位Va和固定電位Vb,有時可以獲得比只具有一個閘極的電晶體低(高)的有效電阻。
電晶體100A的其他組件與上述電晶體100相同,並發揮相同的效果。
在電晶體100A上還可以形成絕緣膜。圖3A及圖3B示出此時的一個例子。圖3A及圖3B是電晶體100B的剖面圖。電晶體100B的俯視圖由於與圖2A所示的電晶體100A同樣,所以在此省略其說明。
圖3A及圖3B所示的電晶體100B在導電膜120a、120b、絕緣膜118上包括絕緣膜122。電晶體100B的上述以外的組件與電晶體100A相同,並且發揮同樣的效果。
絕緣膜122具有使起因於電晶體等的凹凸等 平坦的功能。絕緣膜122只要具有絕緣性即可,使用無機材料或有機材料形成。作為該無機材料,可以舉出氧化矽膜、氧氮化矽膜、氮氧化矽膜、氮化矽膜、氧化鋁膜、氮化鋁膜等。作為該有機材料,例如可以舉出丙烯酸樹脂或聚醯亞胺樹脂等感光性樹脂材料。
〈1-4.電晶體的結構例子3〉
接著,參照圖4A及圖4B對與圖2A至圖2C所示的電晶體100A不同的結構進行說明。
圖4A及圖4B是電晶體100C的剖面圖。此外,電晶體100C的俯視圖與圖2A所示的電晶體100A同樣,所以在此省略說明。
圖4A及圖4B所示的電晶體100C與電晶體100A的不同之處在於導電膜112的疊層結構、導電膜112的形狀及絕緣膜110的形狀。
電晶體100C的導電膜112包括絕緣膜110上的導電膜112_1、導電膜112_1上的導電膜112_2。例如,藉由作為導電膜112_1使用氧化物導電膜,可以對絕緣膜110添加過量氧。上述氧化物導電膜可以利用濺射法在含氧氣的氛圍下形成。此外,作為上述氧化物導電膜例如可以舉出包含銦和錫的氧化物、包含鎢和銦的氧化物、包含鎢和銦和鋅的氧化物、包含鈦和銦的氧化物、包含鈦和銦和錫的氧化物、包含銦和鋅的氧化物、包含矽和銦和錫的氧化物、包含銦和鎵和鋅的氧化物等。
如圖4B所示,在開口部143中,導電膜112_2與導電膜106連接。當形成開口部143時,在形成將成為導電膜112_1的導電膜之後,形成開口部143,由此可以實現圖4B所示的形狀。當對導電膜112_1使用氧化物導電膜時,藉由採用導電膜112_2與導電膜106連接的結構,可以降低導電膜112與導電膜106的接觸電阻。
電晶體100C的導電膜112及絕緣膜110為錐形形狀。更明確而言,導電膜112的下端部形成在導電膜112的上端部的外側。此外,絕緣膜110的下端部形成在絕緣膜110的上端部的外側。另外,導電膜112的下端部形成在與絕緣膜110的上端部大致相同的位置上。
藉由電晶體100C的導電膜112及絕緣膜110形成為錐形形狀,與電晶體100A的導電膜112及絕緣膜110形成為矩形形狀的情況相比,可以提高絕緣膜116的覆蓋性,所以是較佳的。
電晶體100C的其他組件與上述電晶體100A相同,並發揮相同的效果。
〈1-5.半導體裝置的製造方法〉
接著,使用圖5A至圖7C說明圖2A至圖2C所示的電晶體100A的製造方法的例子。圖5A至圖7C是說明電晶體100A的製造方法的通道長度(L)方向及通道寬度(W)方向的剖面圖。
首先,在基板102上形成導電膜106。接著, 在基板102及導電膜106上形成絕緣膜104,在絕緣膜104上形成島狀氧化物半導體膜108i_0(參照圖5A)。
作為導電膜106,可以使用上述材料形成。在本實施方式中,作為導電膜106,利用濺射裝置,形成厚度為50nm的鎢膜和厚度為400nm的銅膜的疊層膜。
此外,作為成為導電膜106的導電膜的加工方法,可以利用濕蝕刻法和乾蝕刻法中的任一個或兩個。在本實施方式中,利用濕蝕刻法對銅膜進行蝕刻,然後利用乾蝕刻法對鎢膜進行蝕刻而加工導電膜,由此形成導電膜106。
藉由適當地利用濺射法、CVD法、蒸鍍法、脈衝雷射沉積(PLD)法、印刷法及塗佈法等,可以形成絕緣膜104。在本實施方式中,利用電漿CVD設備,作為絕緣膜104形成厚度為400nm的氮化矽膜及厚度為50nm的氧氮化矽膜。
此外,也可以在形成絕緣膜104之後,對絕緣膜104添加氧。作為對絕緣膜104添加的氧,有氧自由基、氧原子、氧原子離子、氧分子離子等。作為添加方法,有離子摻雜法、離子植入法、電漿處理等。另外,也可以在絕緣膜104上形成抑制氧脫離的膜之後,經過該膜對絕緣膜104添加氧。
作為上述抑制氧脫離的膜,可以使用具有銦、鋅、鎵、錫、鋁、鉻、鉭、鈦、鉬、鎳、鐵、鈷和鎢中的一種以上的導電膜或半導體膜來形成。
當利用電漿處理添加氧時,藉由利用微波使氧激發而產生高密度的氧電漿,可以增加對絕緣膜104添加的氧量。
島狀氧化物半導體膜108i_0例如可以為單層。較佳的是,層疊第一氧化物半導體膜和第二氧化物半導體膜來形成島狀氧化物半導體膜108i_0。在如上所述層疊它們來形成島狀氧化物半導體膜108i_0時,在第一氧化物半導體膜的形成條件下,較佳的是,其基板溫度和氧流量比中的任一個或兩個比第二氧化物半導體膜低。
明確而言,第一氧化物半導體膜的形成條件為如下:基板溫度為室溫以上且低於150℃,較佳為100℃以上且140℃以下,氧流量比高於0%且低於30%。此外,第二氧化物半導體膜的形成條件為如下:基板溫度為150℃以上且350℃以下,較佳為160℃以上且200℃以下,氧流量比為30%以上且100%以下。
藉由採用上述形成條件,可以形成載子密度不同的氧化物半導體膜的疊層。此外,藉由在真空中連續地形成第一氧化物半導體膜及第二氧化物半導體膜,可以防止雜質混入到各介面,所以是較佳的。
此外,藉由在加熱的同時形成氧化物半導體膜108i_0,可以提高氧化物半導體膜108的結晶性。另一方面,當作為基板102使用大型玻璃基板(例如,第六代至第十代)時,在形成氧化物半導體膜108時的基板溫度為200℃以上且300℃以下的情況下,基板102有可能變 形(應變或翹曲)。因此,在使用大型玻璃基板的情況下,藉由將形成氧化物半導體膜108時的基板溫度設定為100℃以上且低於200℃,可以抑制玻璃基板的變形。
另外,需要進行濺射氣體的高度純化。例如,作為用作濺射氣體的氧氣體或氬氣體,使用露點為-40℃以下,較佳為-80℃以下,更佳為-100℃以下,進一步較佳為-120℃以下的高純度氣體,由此可以儘可能地防止水分等混入氧化物半導體膜。
另外,在藉由濺射法形成氧化物半導體膜的情況下,較佳為使用低溫泵等吸附式真空抽氣泵對濺射裝置的處理室進行抽氣使處理室成為高真空狀態(到5×10-7Pa至1×10-4Pa左右)以儘可能地去除對氧化物半導體膜來說是雜質的水等。尤其是,在濺射裝置的待機時處理室內的相當於H2O的氣體分子(相當於M/z=18的氣體分子)的分壓較佳為1×10-4Pa以下,更佳為5×10-5Pa以下。
此外,第一氧化物半導體膜利用濺射法且使用In-Ga-Zn氧化物半導體靶材(In:Ga:Zn=4:2:4.1[原子個數比])形成。此外,形成第一氧化物半導體膜時的基板溫度為130℃,作為沉積氣體使用流量為20sccm的氧氣體和流量為180sccm的氬氣體(氧流量比為10%)。
此外,第二氧化物半導體膜利用濺射法且使用In-Ga-Zn氧化物半導體靶材(In:Ga:Zn=4:2:4.1[原子個數比])形成。此外,形成第二氧化物半導體膜時的基板溫度為170℃,作為沉積氣體使用流量為60sccm的氧氣 體和流量為140sccm的氬氣體(氧流量比為30%)。
此外,上面示出藉由改變第一氧化物半導體膜和第二氧化物半導體膜的基板溫度及氧流量比,層疊載子密度不同的氧化物半導體膜的結構,但是不侷限於此。例如,藉由在形成第一氧化物半導體膜時添加雜質元素,可以形成具有與第二氧化物半導體膜不同的載子密度的氧化物半導體膜。作為該雜質元素,可以舉出氫、硼、碳、氮、氟、磷、硫、氯、稀有氣體等。
此外,作為對第一氧化物半導體膜添加的雜質元素,在上述元素中,氮特別是較佳的。例如,在形成第一氧化物半導體膜時,藉由將氬氣體及氮氣體用作沉積氣體,或者將氬氣體及一氧化二氮氣體用作沉積氣體,可以對第一氧化物半導體膜添加氮。
此外,在形成第一氧化物半導體膜時,在使用雜質元素的情況下,為了防止雜質元素混入到不想要添加雜質元素的膜諸如第二氧化物半導體膜中,較佳為獨立地設置用來形成第一氧化物半導體膜的處理室。
此外,也可以在形成第一氧化物半導體膜之後,對第一氧化物半導體膜添加雜質元素。作為在形成第一氧化物半導體膜之後添加雜質元素的方法,例如可以舉出摻雜處理或電漿處理。
另外,也可以在形成第一氧化物半導體膜及第二氧化物半導體膜之後進行加熱處理來實現第一氧化物半導體膜及第二氧化物半導體膜的脫氫化或脫水化。作為 加熱處理的溫度,典型地為150℃以上且低於基板的應變點、250℃以上且450℃以下或者300℃以上且450℃以下。
可以在包含氦、氖、氬、氙、氪等稀有氣體或包含氮的惰性氣體氛圍中進行加熱處理。或者,也可以在惰性氣體氛圍中進行加熱之後在氧氛圍中進行加熱。另外,上述惰性氣體氛圍及氧氛圍較佳為不包含氫、水等。處理時間可以是3分鐘以上且24小時以下。
該加熱處理可以使用電爐、RTA裝置等。藉由使用RTA裝置,可以限定於短時間內在基板的應變點以上的溫度下進行加熱處理。由此,可以縮短加熱處理時間。
邊對氧化物半導體膜進行加熱邊形成該氧化物半導體膜,或者在形成氧化物半導體膜之後進行加熱處理,由此,利用SIMS測得的氧化物半導體膜的氫濃度可以為5×1019atoms/cm3以下,1×1019atoms/cm3以下,5×1018atoms/cm3以下,1×1018atoms/cm3以下,5×1017atoms/cm3以下或者1×1016atoms/cm3以下。
接著,在絕緣膜104及氧化物半導體膜上形成絕緣膜110_0(參照圖5B)。
作為絕緣膜110_0,可以藉由使用電漿增強化學氣相沉積裝置(也稱為PECVD設備或者電漿CVD設備)形成氧化矽膜或氧氮化矽膜。此時,作為源氣體,較佳為使用包含矽的沉積氣體及氧化性氣體。作為包含矽的 沉積氣體的典型例子,有矽烷、乙矽烷、丙矽烷、氟化矽烷等。作為氧化性氣體,有氧、臭氧、一氧化二氮、二氧化氮等。
另外,作為絕緣膜110_0,可以在如下條件下利用電漿CVD設備形成缺陷量少的氧氮化矽膜:相對於沉積氣體流量的氧化性氣體流量大於20倍且小於100倍,或者為40倍以上且80倍以下;並且處理室內的壓力低於100Pa,或為50Pa以下。
此外,作為絕緣膜110_0,可以在如下條件形成緻密的氧化矽膜或氧氮化矽膜:將設置在電漿CVD設備的抽成真空的處理室內的基板保持在280℃以上且400℃以下的溫度,將源氣體引入處理室內而將處理室內的壓力設定為20Pa以上且250Pa以下,更佳為100Pa以上且250Pa以下,並對設置在處理室內的電極供應高頻功率。
另外,可以藉由使用微波的電漿CVD法形成絕緣膜110_0。微波是指300MHz至300GHz的頻率範圍。微波的電子溫度低,並且其電子能量小。此外,在被供應的電力中,用於加速電子的比例少,能夠用於更多分子的離解及電離,並且能夠使密度高的電漿(高密度電漿)激發。因此,電漿對被形成面及沉積物造成的損傷少,由此能夠形成缺陷少的絕緣膜110_0。
另外,可以藉由使用有機矽烷氣體的CVD法形成絕緣膜110_0。作為有機矽烷氣體,可以使用正矽酸乙酯(TEOS:化學式為Si(OC2H5)4)、四甲基矽烷 (TMS:化學式為Si(CH3)4)、四甲基環四矽氧烷(TMCTS)、八甲基環四矽氧烷(OMCTS)、六甲基二矽氮烷(HMDS)、三乙氧基矽烷(SiH(OC2H5)3)、三(二甲胺基)矽烷(SiH(N(CH3)2)3)等含有矽的化合物。藉由利用使用有機矽烷氣體的CVD法,能夠形成覆蓋性高的絕緣膜110_0。
在本實施方式中,作為絕緣膜110_0,使用電漿CVD設備形成厚度為100nm的氧氮化矽膜。
接著,在利用光微影製程在絕緣膜110_0的所希望的位置上形成遮罩之後,對絕緣膜110_0的一部分及絕緣膜104的一部分進行蝕刻,由此形成到達導電膜106的開口部143(參照圖5C)。
作為開口部143的形成方法,可以使用濕蝕刻法和乾蝕刻法中的任何一個或兩個。在本實施方式中,利用乾蝕刻法形成開口部143。
接著,以覆蓋開口部143的方式在導電膜106及絕緣膜110_0上形成導電膜112_0。另外,例如在作為導電膜112_0使用金屬氧化膜的情況下,在形成導電膜112_0時有時氧從導電膜112_0被添加到絕緣膜110_0中(參照圖5D)。
在圖5D中,以箭頭示意性地示出被添加到絕緣膜110_0的氧。此外,藉由以覆蓋開口部143的方式形成導電膜112_0,導電膜106與導電膜112_0電連接。
當作為導電膜112_0使用金屬氧化膜時,較 佳為在包含氧氣體的氛圍下利用濺射法形成導電膜112_0。藉由在包含氧氣體的氛圍下形成導電膜112_0,可以將氧適當地添加到絕緣膜110_0中。另外,作為導電膜112_0的形成方法,不侷限於濺射法,也可以利用其他方法,例如ALD(Atomic Layer Deposition:原子層沉積)法。
在本實施方式中,作為導電膜112_0,利用濺射法形成100nm厚的In-Ga-Zn氧化物的IGZO膜(In:Ga:Zn=4:2:4.1(原子個數比))。另外,可以在形成導電膜112_0之前或之後對絕緣膜110_0進行氧添加處理。該氧添加處理可以與能夠在形成絕緣膜104之後進行的氧添加處理同樣地進行。
接著,利用光微影製程在導電膜112_0的所希望的位置上形成遮罩140(參照圖6A)。
接著,藉由從遮罩140的上方進行蝕刻,對導電膜112_0及絕緣膜110_0進行加工。另外,在對導電膜112_0及絕緣膜110_0進行加工之後,去除遮罩140。藉由對導電膜112_0及絕緣膜110_0進行加工,形成島狀的導電膜112及島狀的絕緣膜110(參照圖6B)。
在本實施方式中,使用乾蝕刻法對導電膜112_0及絕緣膜110_0進行加工。
另外,當對導電膜112及絕緣膜110進行加工時,有時不與導電膜112重疊的區域的氧化物半導體膜的厚度變薄。另外,當對導電膜112及絕緣膜110進行加 工時,有時不與氧化物半導體膜重疊的區域的絕緣膜104的厚度變薄。另外,當對導電膜112_0及絕緣膜110_0進行加工時,有時蝕刻劑或蝕刻氣體(例如,氯等)被添加到氧化物半導體膜中或者導電膜112_0及絕緣膜110_0的構成元素被添加到氧化物半導體膜中。
接著,在絕緣膜104、氧化物半導體膜及導電膜112上形成絕緣膜116。藉由形成絕緣膜116,與絕緣膜116接觸的氧化物半導體膜成為第二區域108n。另外,與絕緣膜110接觸的氧化物半導體膜成為第一區域108i。由此,形成包括第一區域108i及第二區域108n的氧化物半導體膜108(參照圖6C)。
作為絕緣膜116可以選擇上述材料形成。在本實施方式中,作為絕緣膜116,使用電漿CVD設備形成100nm厚的氮氧化矽膜。另外,當形成該氮氧化矽膜時,以220℃進行電漿處理及沉積處理這兩個步驟。該電漿處理的條件為如下:在進行成膜之前將流量為100sccm的氬氣體引入處理室內;將處理室內的壓力設定為40Pa;以RF電源(27.12MHz)供應1000W的功率。另外,該沉積處理的條件為如下:將流量為50sccm的矽烷氣體、流量為5000sccm的氮氣體以及流量為100sccm的氨氣體引入處理室內;將處理室內的壓力設定為100Pa;以RF電源(27.12MHz)供應1000W的功率。
藉由使絕緣膜116包括氮氧化矽膜,可以對與絕緣膜116接觸的第二區域108n供應氮氧化矽膜中的 氮或氫。此外,藉由將形成絕緣膜116時的溫度設定為上述溫度,可以抑制包含在絕緣膜110中的過量氧釋放到外部。
下面,在絕緣膜116上形成絕緣膜118(參照圖7A)。
作為絕緣膜118可以選擇上述材料形成。在本實施方式中,作為絕緣膜118,使用電漿CVD設備形成300nm厚的氧氮化矽膜。
接著,在利用光微影製程在絕緣膜118的所希望的位置上形成遮罩之後,對絕緣膜118的一部分及絕緣膜116的一部分進行蝕刻,由此形成到達第二區域108n的開口部141a及141b(參照圖7B)。
作為絕緣膜118及絕緣膜116的蝕刻方法,可以利用濕蝕刻法和乾蝕刻法中的任何一個或兩個。在本實施方式中,利用乾蝕刻法對絕緣膜118及絕緣膜116進行加工。
接著,以覆蓋開口部141a及141b的方式在第二區域108n及絕緣膜118上形成導電膜,且將該導電膜加工為所希望的形狀,來形成導電膜120a及120b(參照圖7C)。
作為導電膜120a及120b可以選擇上述材料形成。在本實施方式中,作為導電膜120a及120b,使用濺射裝置形成50nm厚的鎢膜和400nm厚的銅膜的疊層膜。
作為成為導電膜120a及120b的導電膜的加工方法,可以利用濕蝕刻法和乾蝕刻法中的任何一個或兩個。在本實施方式中,利用濕蝕刻法對銅膜進行蝕刻,然後利用乾蝕刻法對鎢膜進行蝕刻,對導電膜進行加工而形成導電膜120a及120b。
藉由上述製程可以製造圖2A至圖2C所示的電晶體100A。
作為構成電晶體100A的膜(絕緣膜、金屬氧化膜、氧化物半導體膜、導電膜等)的方法,除了上述方法以外,可以藉由濺射法、化學氣相沉積(CVD)法、真空蒸鍍法、脈衝雷射沉積(PLD)法、ALD(原子層沉積)法形成。或者,可以藉由塗佈法或印刷法形成。作為成膜方法,典型的有濺射法、電漿增強化學氣相沉積(PECVD)法,但也可以使用熱CVD法。作為熱CVD法的例子,可以舉出有機金屬化學氣相沉積(MOCVD)法。
藉由熱CVD法進行的成膜可以以如下方式來執行:藉由將處理室內的壓力設定為大氣壓或減壓,將源氣體及氧化劑同時供應到處理室內,並使其在基板附近或基板上相互反應而沉積在基板上。如此,由於熱CVD法不產生電漿來形成膜,因此具有不產生起因於電漿損傷的缺陷的優點。
藉由MOCVD法等熱CVD法可以形成上述導電膜、絕緣膜、氧化物半導體膜、金屬氧化膜,例如,當 形成In-Ga-Zn-O膜時,使用三甲基銦(In(CH3)3)、三甲基鎵(Ga(CH3)3)及二甲基鋅(Zn(CH3)2)。不侷限於上述組合,也可以使用三乙基鎵(Ga(C2H5)3)代替三甲基鎵,並且可以使用二乙基鋅(Zn(C2H5)2)代替二甲基鋅。
另外,在使用利用ALD法的成膜裝置形成氧化鉿膜時,使用如下兩種氣體:藉由使包含溶劑和鉿前體的液體(鉿醇鹽、四二甲基醯胺鉿(TDMAH、Hf[N(CH3)2]4))或四(乙基甲基醯胺)鉿等鉿醯胺)氣化而得到的源氣體;以及被用作氧化劑的臭氧(O3)。
另外,在使用利用ALD法的成膜裝置形成氧化鋁膜時,使用如下兩種氣體:藉由使包含溶劑和鋁前體的液體(三甲基鋁(TMA、Al(CH3)3)等)氣化而得到的源氣體;以及被用作氧化劑的H2O。作為其它材料有三(二甲基醯胺)鋁、三異丁基鋁、鋁三(2,2,6,6-四甲基-3,5-庚二酮)等。
另外,在使用利用ALD法的成膜裝置形成氧化矽膜時,使六氯乙矽烷附著在被成膜面上,供應氧化性氣體(O2、一氧化二氮)的自由基使其與附著物起反應。
另外,在使用利用ALD法的成膜裝置形成鎢膜時,依次引入WF6氣體和B2H6氣體形成初始鎢膜,然後使用WF6氣體和H2氣體形成鎢膜。注意,也可以使用SiH4氣體代替B2H6氣體。
另外,在使用利用ALD法的成膜裝置形成氧 化物半導體膜如In-Ga-Zn-O膜時,使用In(CH3)3氣體和O3氣體形成In-O層,然後使用Ga(CH3)3氣體和O3氣體形成Ga-O層,之後使用Zn(CH3)2氣體和O3氣體形成Zn-O層。注意,這些層的順序不侷限於上述例子。此外,也可以使用這些氣體來形成混合化合物層如In-Ga-O層、In-Zn-O層、Ga-Zn-O層等。注意,雖然也可以使用利用Ar等惰性氣體進行起泡而得到的H2O氣體代替O3氣體,但是較佳為使用不包含H的O3氣體。
在本實施方式中,示出電晶體包括氧化物半導體膜的情況的例子,但是本發明的一個實施方式不侷限於此。在本發明的一個實施方式中,電晶體不需要必須包括氧化物半導體膜。例如,電晶體的通道區域、通道區域附近、源極區域或汲極區域也可以使用包含Si(矽)、Ge(鍺)、SiGe(矽鍺)、GaAs(砷化鎵)等的材料形成。
本實施方式所示的結構、方法可以與其他實施方式所示的結構、方法適當地組合而使用。
實施方式2
在本實施方式中,示出能夠用於本發明的一個實施方式的實施方式1所示的電晶體的變形例子。
在圖4A和圖4B所示電晶體100C中,藉由如下步驟可以如圖45所示地在第一區域108i與第二區域108n之間設置區域108n_2:以在電晶體的通道長度方向 上的長度比絕緣膜110短的方式形成導電膜112,藉由摻雜處理或電漿處理添加雜質元素,或者進行加熱處理。此時,區域108n_2的導電率高於第一區域108i且低於第二區域108n。藉由形成這種區域108n_2,在半導體裝置或顯示裝置工作時,可以防止電晶體中的汲極端部的電場強度局部性地變大。
本實施方式所示的結構、方法可以與其他實施方式所示的結構、方法適當地組合而實施。
實施方式3
在本實施方式中,對能夠用於本發明的一個實施方式的氧化物半導體進行說明。
〈2-1.氧化物半導體的組成〉
氧化物半導體較佳為至少包含銦或鋅。特別較佳為包含銦及鋅。另外,較佳的是,除此之外,還包含鋁、鎵、釔或錫等。另外,也可以包含硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢或鎂等中的一種或多種。
在此考慮氧化物半導體為包含銦、元素M及鋅的InMZnO的情況。注意,元素M為鋁、鎵、釔或錫等。作為其他的可用於元素M的元素,除了上述元素以外,還有硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢、鎂等。注意,作為元素M有時可以組 合多個上述元素。
〈結構〉
氧化物半導體被分為單晶氧化物半導體和非單晶氧化物半導體。作為非單晶氧化物半導體例如有CAAC-OS(c-axis aligned crystalline oxide semiconductor)、多晶氧化物半導體、nc-OS(nanocrystalline oxide semiconductor)、a-like OS(amorphous-like oxide semiconductor)及非晶氧化物半導體等。
CAAC-OS具有c軸配向性,其多個奈米晶在a-b面方向上連結而結晶結構具有畸變。注意,畸變是指在多個奈米晶連結的區域中晶格排列一致的區域與其他晶格排列一致的區域之間的晶格排列的方向變化的部分。
雖然奈米晶基本上是六角形,但是並不侷限於正六角形,有不是正六角形的情況。此外,在畸變中有時具有五角形及七角形等晶格排列。另外,在CAAC-OS的畸變附近觀察不到明確的晶界(grain boundary)。亦即,可知藉由使晶格排列畸變,可抑制晶界的形成。這可能是由於CAAC-OS可容許因如下原因而發生的畸變:在a-b面方向上的氧原子的排列的低密度或因金屬元素被取代而使原子間的鍵合距離產生變化等。
CAAC-OS有具有層狀結晶結構(也稱為層狀結構)的傾向,在該層狀結晶結構中層疊有包含銦及氧的層(下面稱為In層)和包含元素M、鋅及氧的層(下面 稱為(M,Zn)層)。另外,銦和元素M彼此可以取代,在用銦取代(M,Zn)層中的元素M的情況下,也可以將該層表示為(In,M,Zn)層。另外,在用元素M取代In層中的銦的情況下,也可以將該層表示為(In,M)層。
在nc-OS中,微小的區域(例如1nm以上且10nm以下的區域,特別是1nm以上且3nm以下的區域)中的原子排列具有週期性。另外,nc-OS在不同的奈米晶之間觀察不到結晶定向的規律性。因此,在膜整體中觀察不到配向性。所以,有時nc-OS在某些分析方法中與a-like OS或非晶氧化物半導體沒有差別。
a-like OS是具有介於nc-OS與非晶氧化物半導體之間的結構的氧化物半導體。a-like OS包含空洞或低密度區域。也就是說,a-like OS的結晶性比nc-OS及CAAC-OS的結晶性低。
氧化物半導體具有各種結構及各種特性。本發明的一個實施方式的氧化物半導體也可以包括非晶氧化物半導體、多晶氧化物半導體、a-like OS、nc-OS、CAAC-OS中的兩種以上。
〈原子個數比〉
下面,參照圖8A、圖8B及圖8C對根據本發明的氧化物半導體所包含的銦、元素M及鋅的原子個數比的較佳的範圍進行說明。注意,在圖8A至圖8C中,不示出氧的原子個數比。另外,將氧化物半導體所包含的銦、元 素M及鋅的原子個數比的各項分別稱為[In]、[M]、[Zn]。
在圖8A、圖8B及圖8C中,虛線表示[In]:[M]:[Zn]=(1+α):(1-α):1的原子個數比(-1
Figure 110147987-A0101-12-0067-145
α
Figure 110147987-A0101-12-0067-146
1)的線、[In]:[M]:[Zn]=(1+α):(1-α):2的原子個數比的線、[In]:[M]:[Zn]=(1+α):(1-α):3的原子個數比的線、[In]:[M]:[Zn]=(1+α):(1-α):4的原子個數比的線及[In]:[M]:[Zn]=(1+α):(1-α):5的原子個數比的線。
點劃線表示[In]:[M]:[Zn]=5:1:β的原子個數比的(β
Figure 110147987-A0101-12-0067-147
0)的線、[In]:[M]:[Zn]=2:1:β的原子個數比的線、[In]:[M]:[Zn]=1:1:β的原子個數比的線、[In]:[M]:[Zn]=1:2:β的原子個數比的線、[In]:[M]:[Zn]=1:3:β的原子個數比的線及[In]:[M]:[Zn]=1:4:β的原子個數比的線。
此外,圖8A、圖8B及圖8C所示的[In]:[M]:[Zn]=0:2:1的原子個數比及其附近值的氧化物半導體容易具有尖晶石型結晶結構。
有時在氧化物半導體中,多個相共存(例如,二相共存、三相共存等)。例如,當原子個數比接近[In]:[M]:[Zn]=0:2:1時,尖晶石型結晶結構和層狀結晶結構的二相容易共存。當原子個數比接近[In]:[M]:[Zn]=1:0:0時,方鐵錳礦型結晶結構和層狀結晶結構的二相容易共存。當在氧化物半導體中多個相共存時,可能在不同的結晶結構之間形成晶界。
圖8A所示的區域A示出氧化物半導體所包含 的銦、元素M及鋅的較佳的原子個數比範圍的一個例子。
在氧化物半導體中,藉由提高銦的含量,可以提高氧化物半導體的載子移動率(電子移動率)。因此,銦含量高的氧化物半導體的載子移動率比銦含量低的氧化物半導體高。
另一方面,氧化物半導體的銦含量及鋅含量變低時,載子移動率變低。因此,當原子個數比為[In]:[M]:[Zn]=0:1:0或接近[In]:[M]:[Zn]=0:1:0時(例如,圖8C中的區域C),絕緣性變高。
因此,本發明的一個實施方式的氧化物半導體較佳為具有圖8A的以區域A表示的原子個數比,此時該氧化物半導體膜易具有載子移動率高且晶界少的層狀結構。
具有區域A的原子個數比的氧化物半導體,尤其是具有圖8B所示的區域B的原子個數比的氧化物半導體更容易成為CAAC-OS且具有較高的載子移動率。
CAAC-OS是結晶性高的氧化物半導體。另一方面,在CAAC-OS中無法確認到明確的晶界,所以可以說不容易發生起因於晶界的電子移動率的降低。此外,氧化物半導體的結晶性有時因雜質的混入或缺陷的生成等而降低,因此可以說CAAC-OS是雜質或缺陷(氧缺陷等)少的氧化物半導體。因此,具有CAAC-OS的氧化物半導體的物理性質穩定。因此,具有CAAC-OS的氧化物半導 體具有耐熱性及高可靠性。
區域B包括[In]:[M]:[Zn]=4:2:3至4:2:4.1的原子個數比及其附近值。附近值例如包括[In]:[M]:[Zn]=5:3:4的原子個數比。另外,區域B包括[In]:[M]:[Zn]=5:1:6的原子個數比及其附近值以及[In]:[M]:[Zn]=5:1:7的原子個數比及其附近值。
注意,氧化物半導體所具有的性質不是僅由原子個數比決定的。即使在原子個數比相同的情況下,根據形成條件,氧化物半導體的性質有時不同。例如,當使用濺射裝置形成氧化物半導體膜時,形成其原子個數比與靶材的原子個數比不同的膜。此外,根據成膜時的基板溫度,有時膜的[Zn]小於靶材的[Zn]。因此,圖示的區域是表示具有氧化物半導體傾向於具有特定特性的原子個數比的區域,區域A至區域C的邊界不嚴格。
[具有氧化物半導體的電晶體]
在此,對將上述氧化物半導體用於電晶體的情況進行說明。
藉由將上述氧化物半導體用於電晶體,可以減少晶界中的載子散射等,因此可以實現場效移動率高的電晶體。另外,可以實現可靠性高的電晶體。
另外,較佳為將載子密度低的氧化物半導體用於電晶體的通道區域。在以降低氧化物半導體膜的載子密度為目的的情況下,可以降低氧化物半導體膜中的雜質 濃度以降低缺陷態密度。在本說明書等中,將雜質濃度低且缺陷態密度低的狀態稱為“高純度本質”或“實質上高純度本質”。例如,氧化物半導體的載子密度可以低於8×1011/cm3,較佳為低於1×1011/cm3,更佳為低於1×1010/cm3且為1×10-9/cm3以上。
另外,因為高純度本質或實質上高純度本質的氧化物半導體膜具有較低的缺陷態密度,所以有可能具有較低的陷阱態密度。
此外,被氧化物半導體的陷阱能階俘獲的電荷到消失需要較長的時間,有時像固定電荷那樣動作。因此,有時在陷阱態密度高的氧化物半導體中形成有通道區域的電晶體的電特性不穩定。
因此,為了使電晶體的電特性穩定,降低氧化物半導體中的雜質濃度是有效的。為了降低氧化物半導體中的雜質濃度,較佳為還降低附近膜中的雜質濃度。作為雜質有氫、氮、鹼金屬、鹼土金屬、鐵、鎳、矽等。
〈雜質〉
在此,說明氧化物半導體中的各雜質的影響。
在氧化物半導體包含第14族元素之一的矽或碳時,氧化物半導體中形成缺陷能階。因此,以具有如下區域的方式形成氧化物半導體:氧化物半導體中或氧化物半導體的介面附近的矽或碳的濃度(藉由二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)測得的濃 度)被控制為2×1018atoms/cm3以下,較佳為2×1017atoms/cm3以下。
另外,當氧化物半導體包含鹼金屬或鹼土金屬時,有時形成缺陷能階而形成載子。因此,使用包含鹼金屬或鹼土金屬的氧化物半導體的電晶體容易具有常開啟特性。由此,較佳為降低氧化物半導體中的鹼金屬或鹼土金屬的濃度。明確而言,以具有如下區域的方式形成氧化物半導體:利用SIMS測得的鹼金屬或鹼土金屬的濃度被控制為1×1018atoms/cm3以下,較佳為2×1016atoms/cm3以下。
當氧化物半導體包含氮時,產生作為載子的電子,並載子密度增加,而氧化物半導體容易被n型化。其結果,將含有氮的氧化物半導體用於半導體的電晶體容易具有常開啟型特性。因此,較佳為儘可能地減少氧化物半導體中的氮,例如,利用SIMS測得的氧化物半導體中的氮濃度為小於5×1019atoms/cm3,較佳為5×1018atoms/cm3以下,更佳為1×1018atoms/cm3以下,進一步較佳為5×1017atoms/cm3以下。
包含在氧化物半導體中的氫與鍵合於金屬原子的氧起反應生成水,因此有時形成氧缺陷。當氫進入該氧缺陷時,有時產生作為載子的電子。另外,有時由於氫的一部分與鍵合於金屬原子的氧鍵合,產生作為載子的電子。因此,使用包含氫的氧化物半導體的電晶體容易具有常開啟特性。由此,較佳為儘可能減少氧化物半導體中的 氫。明確而言,在氧化物半導體中,利用SIMS測得的氫濃度低於1×1020atoms/cm3,較佳為低於1×1019atoms/cm3,更佳為低於5×1018atoms/cm3,進一步較佳為低於1×1018atoms/cm3
藉由將雜質被充分降低的氧化物半導體用於電晶體的通道區域,可以使電晶體具有穩定的電特性。
〈能帶圖〉
接著,對該氧化物半導體採用雙層結構或三層結構的情況進行說明。參照圖9A至圖9C對如下能帶圖進行說明:氧化物半導體S1、氧化物半導體S2和氧化物半導體S3的疊層結構的能帶圖及與該疊層結構接觸的絕緣體的能帶圖;氧化物半導體S2和氧化物半導體S3的疊層結構的能帶圖及與該疊層結構接觸的絕緣體的能帶圖;以及氧化物半導體S1和氧化物半導體S2的疊層結構的能帶圖和與該疊層結構接觸的絕緣體的能帶圖。
圖9A是包括絕緣體I1、氧化物半導體S1、氧化物半導體S2、氧化物半導體S3及絕緣體I2的疊層結構的厚度方向上的能帶圖的一個例子。另外,圖9B是包括絕緣體I1、氧化物半導體S2、氧化物半導體S3及絕緣體I2的疊層結構的厚度方向上的能帶圖的一個例子。圖9C是包括絕緣體I1、氧化物半導體S1、氧化物半導體S2及絕緣體I2的疊層結構的厚度方向上的能帶圖的一個例子。注意,為了便於理解,能帶圖示出絕緣體I1、氧化 物半導體S1、氧化物半導體S2、氧化物半導體S3及絕緣體I2的導帶底的能階(Ec)。
較佳的是,氧化物半導體S1、氧化物半導體S3的導帶底的能階比氧化物半導體S2更靠近真空能階,典型的是,氧化物半導體S2的導帶底的能階與氧化物半導體S1、氧化物半導體S3的導帶底的能階的差為0.15eV以上、0.5eV以上且2eV以下或者1eV以下。就是說,氧化物半導體S1、氧化物半導體S3的電子親和力與氧化物半導體S2的電子親和力的差為0.15eV以上、0.5eV以上且2eV以下或者1eV以下。
如圖9A、圖9B和圖9C所示,在氧化物半導體S1、氧化物半導體S2、氧化物半導體S3中,導帶底的能階平緩地變化。換言之,也可以將上述情況表達為導帶底的能階連續地變化或者連續地接合。為了實現這種能帶圖,較佳為降低形成在氧化物半導體S1與氧化物半導體S2的介面或者氧化物半導體S2與氧化物半導體S3的介面的混合層的缺陷態密度。
明確而言,藉由使氧化物半導體S1和氧化物半導體S2、氧化物半導體S2和氧化物半導體S3包含氧之外的共同元素(主要成分),可以形成缺陷態密度低的混合層。例如,在氧化物半導體S2為In-Ga-Zn氧化物的情況下,作為氧化物半導體S1、氧化物半導體S3較佳為使用In-Ga-Zn氧化物、Ga-Zn氧化物、氧化鎵等。
此時,氧化物半導體S2成為載子的主要路 徑。因為可以降低氧化物半導體S1與氧化物半導體S2的介面以及氧化物半導體S2與氧化物半導體S3的介面的缺陷態密度,所以介面散射對載子傳導的影響小,從而可以得到大通態電流。
在電子被陷阱能階俘獲時,被俘獲的電子像固定電荷那樣動作,導致電晶體的臨界電壓向正方向漂移。藉由設置氧化物半導體S1、氧化物半導體S3,可以使陷阱能階遠離氧化物半導體S2。藉由採用該結構,可以防止電晶體的臨界電壓向正方向漂移。
作為氧化物半導體S1、氧化物半導體S3,使用其導電率比氧化物半導體S2充分低的材料。此時,氧化物半導體S2、氧化物半導體S2與氧化物半導體S1的介面以及氧化物半導體S2與氧化物半導體S3的介面主要被用作通道區域。例如,氧化物半導體S1、氧化物半導體S3可以使用具有在圖8C中以絕緣性高的區域C表示的原子個數比的氧化物半導體。注意,圖8C所示的區域C表示[In]:[M]:[Zn]=0:1:0及其附近值、[In]:[M]:[Zn]=1:3:2及其附近值以及[In]:[M]:[Zn]=1:3:4及其附近值的原子個數比。
尤其是,當作為氧化物半導體S2使用具有以區域A表示的原子個數比的氧化物時,作為氧化物半導體S1及氧化物半導體S3較佳為使用[M]/[In]為1以上,較佳為2以上的氧化物半導體。另外,作為氧化物半導體S3,較佳為使用能夠得到充分高的絕緣性的[M]/([Zn]+ [In])為1以上的氧化物半導體。
〈2-2.將氧化物半導體用於電晶體的結構〉
下面,對將氧化物半導體用於電晶體的結構進行說明。
藉由將氧化物半導體用於電晶體,可以減少晶界中的載子散射等,因此可以實現場效移動率高的電晶體。另外,可以實現可靠性高的電晶體。
另外,較佳為將載子密度低的氧化物半導體用於電晶體的通道區域。例如,氧化物半導體的載子密度可以低於8×1011/cm3,較佳為低於1×1011/cm3,更佳為低於1×1010/cm3且為1×10-9/cm3以上。
因為高純度本質或實質上高純度本質的氧化物半導體的載子發生源較少,所以有可能降低載子密度。另外,因為高純度本質或實質上高純度本質的氧化物半導體具有較低的缺陷態密度,所以有可能具有較低的陷阱態密度。
此外,被氧化物半導體的陷阱能階俘獲的電荷到消失需要較長的時間,有時像固定電荷那樣動作。因此,有時在陷阱態密度高的氧化物半導體中形成有通道區域的電晶體的電特性不穩定。
因此,為了使電晶體的電特性穩定,降低氧化物半導體中的雜質濃度是有效的。為了降低氧化物半導體中的雜質濃度,較佳為還降低附近膜中的雜質濃度。作 為雜質有氫、氮、鹼金屬、鹼土金屬、鐵、鎳、矽等。
在此,說明氧化物半導體中的各雜質的影響。
在氧化物半導體包含第14族元素之一的矽或碳時,氧化物半導體中形成缺陷能階。因此,以具有如下區域的方式形成氧化物半導體:氧化物半導體中或氧化物半導體的介面附近的矽或碳的濃度(藉由二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)測得的濃度)被控制為2×1018atoms/cm3以下,較佳為2×1017atoms/cm3以下。
另外,當氧化物半導體包含鹼金屬或鹼土金屬時,有時形成缺陷能階而形成載子。因此,使用包含鹼金屬或鹼土金屬的氧化物半導體的電晶體容易具有常開啟特性。由此,較佳為降低氧化物半導體中的鹼金屬或鹼土金屬的濃度。明確而言,以具有如下區域的方式形成氧化物半導體:利用SIMS測得的鹼金屬或鹼土金屬的濃度被控制為1×1018atoms/cm3以下,較佳為2×1016atoms/cm3以下。
當氧化物半導體包含氮時,產生作為載子的電子,並載子密度增加,而氧化物半導體容易被n型化。其結果,將含有氮的氧化物半導體用於半導體的電晶體容易具有常開啟型特性。因此,較佳為儘可能地減少氧化物半導體中的氮,例如,利用SIMS測得的氧化物半導體中的氮濃度為小於5×1019atoms/cm3,較佳為5×1018atoms/cm3以下, 更佳為1×1018atoms/cm3以下,進一步較佳為5×1017atoms/cm3以下。
包含在氧化物半導體中的氫與鍵合於金屬原子的氧起反應生成水,因此有時形成氧缺陷。當氫進入該氧缺陷時,有時產生作為載子的電子。另外,有時由於氫的一部分與鍵合於金屬原子的氧鍵合,產生作為載子的電子。因此,使用包含氫的氧化物半導體的電晶體容易具有常開啟特性。由此,較佳為儘可能減少氧化物半導體中的氫。明確而言,在氧化物半導體中,利用SIMS測得的氫濃度低於1×1020atoms/cm3,較佳為低於1×1019atoms/cm3,更佳為低於5×1018atoms/cm3,進一步較佳為低於1×1018atoms/cm3
藉由將雜質被充分降低的氧化物半導體用於電晶體的通道形成區域,可以使電晶體具有穩定的電特性。
氧化物半導體膜的能隙較佳為2eV以上、2.5eV以上或3eV以上。
氧化物半導體膜的厚度為3nm以上且200nm以下,較佳為3nm以上且100nm以下,更佳為3nm以上且60nm以下。
在氧化物半導體膜是In-M-Zn氧化物的情況下,用來形成In-M-Zn氧化物的濺射靶材的金屬元素的原子個數比較佳為In:M:Zn=1:1:0.5、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:1.5、In:M:Zn=2:1:2.3、 In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.1、In:M:Zn=5:1:7等。
注意,所形成的氧化物半導體膜中的金屬元素的原子個數比可以與上述濺射靶材中的金屬元素的原子個數比在±40%左右的範圍內不同。例如,當作為濺射靶材使用原子個數比為In:Ga:Zn=4:2:4.1的靶材時,所形成的氧化物半導體膜的原子個數比可能接近In:Ga:Zn=4:2:3。另外,當作為濺射靶材使用原子個數比為In:Ga:Zn=5:1:7的靶材時,所形成的氧化物半導體膜的原子個數比可能接近In:Ga:Zn=5:1:6。
〈2-3.氧化物半導體的結構〉
以下,對可用於本發明的一個實施方式所公開的電晶體中的CAC(Cloud-Aligned Composite)-OS的構成進行說明。
CAC-OS例如是指構成氧化物半導體的元素以0.5nm以上且10nm以下,較佳為1nm以上且2nm以下或近似的尺寸不均勻地分佈的材料的一種構成。注意,在下面也將在氧化物半導體中一個或多個金屬元素不均勻地分佈且包含該金屬元素的區域以0.5nm以上且10nm以下,較佳為1nm以上且2nm以下或近似的尺寸混合的狀態稱為馬賽克(mosaic)狀或補丁(patch)狀。
氧化物半導體較佳為至少包含銦。尤其是,較佳為包含銦及鋅。除此之外,也可以還包含選自鋁、 鎵、釔、銅、釩、鈹、硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種。
例如,In-Ga-Zn氧化物中的CAC-OS(在CAC-OS中,尤其可以將In-Ga-Zn氧化物稱為CAC-IGZO)是指材料分成銦氧化物(以下,稱為InOX1(X1為大於0的實數))或銦鋅氧化物(以下,稱為InX2ZnY2OZ2(X2、Y2及Z2為大於0的實數))以及鎵氧化物(以下,稱為GaOX3(X3為大於0的實數))或鎵鋅氧化物(以下,稱為GaX4ZnY4OZ4(X4、Y4及Z4為大於0的實數))等而成為馬賽克狀,且馬賽克狀的InOX1或InX2ZnY2OZ2均勻地分佈在膜中的構成(以下,也稱為雲狀)。
換言之,CAC-OS是具有以GaOX3為主要成分的區域和以InX2ZnY2OZ2或InOX1為主要成分的區域混在一起的構成的複合氧化物半導體。在本說明書中,例如,當第一區域的In與元素M的原子個數比大於第二區域的In與元素M的原子個數比時,第一區域的In濃度高於第二區域。
注意,IGZO是通稱,有時是指包含In、Ga、Zn及O的化合物。作為典型例子,可以舉出以InGaO3(ZnO)m1(m1為自然數)或In(1+x0)Ga(1-x0)O3(ZnO)m0(-1
Figure 110147987-A0101-12-0079-148
x0
Figure 110147987-A0101-12-0079-149
1,m0為任意數)表示的結晶性化合物。
上述結晶性化合物具有單晶結構、多晶結構或CAAC結構。CAAC結構是多個IGZO的奈米晶具有c 軸配向性且在a-b面上以不配向的方式連接的結晶結構。
另一方面,CAC-OS與氧化物半導體的材料構成有關。CAC-OS是指如下構成:在包含In、Ga、Zn及O的材料構成中,一部分中觀察到以Ga為主要成分的奈米粒子狀區域以及一部分中觀察到以In為主要成分的奈米粒子狀區域分別以馬賽克狀無規律地分散。因此,在CAC-OS中,結晶結構是次要因素。
CAC-OS不包含組成不同的二種以上的膜的疊層結構。例如,不包含由以In為主要成分的膜與以Ga為主要成分的膜的雙層構成的結構。
注意,有時觀察不到以GaOX3為主要成分的區域與以InX2ZnY2OZ2或InOX1為主要成分的區域之間的明確的邊界。
在CAC-OS中包含選自鋁、釔、銅、釩、鈹、硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種以代替鎵的情況下,CAC-OS是指如下構成:一部分中觀察到以該元素為主要成分的奈米粒子狀區域以及一部分中觀察到以In為主要成分的奈米粒子狀區域以馬賽克狀無規律地分散。
CAC-OS例如可以藉由在對基板不進行意圖性的加熱的條件下利用濺射法來形成。在利用濺射法形成CAC-OS的情況下,作為沉積氣體,可以使用選自惰性氣體(典型的是氬)、氧氣體和氮氣體中的一種或多種。另外,成膜時的沉積氣體的總流量中的氧氣體的流量比越低 越好,例如,將氧氣體的流量比設定為0%以上且低於30%,較佳為0%以上且10%以下。
CAC-OS具有如下特徵:藉由根據X射線繞射(XRD:X-ray diffraction)測定法之一的out-of-plane法利用θ/2θ掃描進行測定時,觀察不到明確的峰值。也就是說,根據X射線繞射,可知在測定區域中沒有a-b面方向及c軸方向上的配向。
另外,在藉由照射束徑為1nm的電子束(也稱為奈米束)而取得的CAC-OS的電子繞射圖案中,觀察到環狀的亮度高的區域以及在該環狀區域內的多個亮點。由此,根據電子繞射圖案,可知CAC-OS的結晶結構具有在平面方向及剖面方向上沒有配向的nc(nano-crystal)結構。
另外,例如在In-Ga-Zn氧化物的CAC-OS中,根據藉由能量色散型X射線分析法(EDX:Energy Dispersive X-ray spectroscopy)取得的EDX面分析影像,可確認到:具有以GaOX3為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域不均勻地分佈而混合的構成。
CAC-OS的結構與金屬元素均勻地分佈的IGZO化合物不同,具有與IGZO化合物不同的性質。換言之,CAC-OS具有以GaOX3等為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域互相分離且以各元素為主要成分的區域為馬賽克狀的構成。
在此,以InX2ZnY2OZ2或InOX1為主要成分的區域的導電性高於以GaOX3等為主要成分的區域。換言之,當載子流過以InX2ZnY2OZ2或InOX1為主要成分的區域時,呈現氧化物半導體的導電性。因此,當以InX2ZnY2OZ2或InOX1為主要成分的區域在氧化物半導體中以雲狀分佈時,可以實現高場效移動率(μ)。
另一方面,以GaOX3等為主要成分的區域的絕緣性高於以InX2ZnY2OZ2或InOX1為主要成分的區域。換言之,當以GaOX3等為主要成分的區域在氧化物半導體中分佈時,可以抑制洩漏電流而實現良好的切換工作。
因此,當將CAC-OS用於半導體元件時,藉由起因於GaOX3等的絕緣性及起因於InX2ZnY2OZ2或InOX1的導電性的互補作用可以實現高通態電流(Ion)及高場效移動率(μ)。
另外,使用CAC-OS的半導體元件具有高可靠性。因此,CAC-OS適用於顯示器等各種半導體裝置。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式4
在將氧化物導電體用於本發明的一個實施方式的電晶體100所包括的導電膜112時,可以對絕緣膜110添加過量氧,並且可以使該過量氧擴散到氧化物半導體膜108所具有的第一區域108i中,所以是較佳的。此時,有可能 可以減少包括氧氮化矽膜的絕緣膜110中的缺陷。在本實施方式中,對將氧化物導電體用於導電膜112時的絕緣膜110中的缺陷進行說明。
氧氮化矽膜中的缺陷影響到對氧氮化矽膜的上下的膜之間施加電場時的洩漏電流。就是說,藉由分別形成在氧氮化矽膜上形成有金屬膜的MOS(Metal-Oxide-Silicon)樣本和在氧氮化矽膜上形成有氧化物導電體的MOS樣本並對上述MOS樣本的氧氮化矽膜的洩漏電流進行評價,可以獲得各氧氮化矽膜中的缺陷的資訊。
為了對將氧化物導電體用於導電膜112時的絕緣膜110中的缺陷進行評價,準備兩個樣本,亦即,第一MOS樣本317和第二MOS樣本318。在第一MOS樣本317中,在添加有賦予P型導電型的雜質的矽基板上形成有厚度為10nm的氧氮化矽膜,在氧氮化矽膜上形成有金屬膜。
在第二MOS樣本318中,在添加有賦予P型導電型的雜質的矽基板上形成有厚度為10nm的氧氮化矽膜,在氧氮化矽膜上形成有氧化物半導體膜,在氧化物半導體膜上形成有金屬膜。
金屬膜包括厚度為30nm的氮化鈦、氮化鈦上的厚度為135nm的鎢和鎢上的厚度為200nm的鋁。此外,氧化物導電膜利用濺射法且使用In-Ga-Zn氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])在100%的氧氣體氛圍下形成。
在高電場區域中,流過氧氮化矽膜的電流主要為Fowler-Nordheim(福勒-諾德海姆:F-N)電流。F-N電流以公式1的JFN表示。
Figure 110147987-A0101-12-0084-1
藉由標繪出從公式1獲得的ln(J/E2)和1/E來得到直線,但是在具有深缺陷能階的情況下,F-N標繪的一部分與直線偏離。該與直線偏離的區域被稱為ledge區域,其起因於F-N電流的電子被深缺陷能階俘獲的過程。換言之,被俘獲的電子形成固定電荷,而促使I-V曲線的平行漂移,由此形成ledge區域。可以根據該平行漂移量估計出被俘獲的電荷密度。
圖10A示出MOS結構中的metal區域310、oxide區域311、silicon區域312的能帶圖。
第一MOS樣本317和第二MOS樣本318的相當於oxide區域311的膜是氧氮化矽膜。第一MOS樣本317的相當於metal區域310的膜是金屬膜,第二MOS樣本318的相當於metal區域310的膜是氧化物導電膜和其上的金屬膜。
在對氧氮化矽膜的上下的膜之間施加電壓時,如圖10A所示,在oxide區域311中產生從metal區域310到陷阱314的電子的注入315。
於是,可以從公式2、公式3和電荷注入前後的I-V曲線漂移量(△Vg)估計出陷阱電荷密度(Qt(t))及陷阱電荷重心位置316(
Figure 110147987-A0101-12-0085-152
),上述公式2是設想正電荷被陷阱能階俘獲的情況的公式,並且上述公式3是設想負電荷被陷阱能階俘獲的情況的公式。在公式2中,tox表示oxide區域311的厚度。
Figure 110147987-A0101-12-0085-2
Figure 110147987-A0101-12-0085-3
在此,陷阱電荷重心位置316以oxide區域311中的與silicon區域312的介面之間的距離表示。此外,可以從陷阱電荷密度的電荷注入時間依賴性算出oxide區域311中的總陷阱電荷的面密度(surface density of the total trapped charge)。
圖10B示出如此獲得的oxide區域311中的總陷阱電荷的面密度,圖10C示出陷阱電荷重心位置。由此可知,與第一MOS樣本317相比,第二MOS樣本318的氧氮化矽膜的總陷阱電荷的面密度得到降低,並且第二MOS樣本318的陷阱電荷重心位置316移動到電極的相反一側。
在此時獲得的F-N標繪(參照圖11A)的第二MOS樣本318的測量結果中,第一MOS樣本317的測量結果中觀察的ledge區域321消失。圖11A的縱軸表示ln(J/E2)[A/MV2],這相當於單位面積的洩漏電流。從圖10A至圖11B可知,因為在第二MOS樣本318中,在氧氮化矽膜上形成有氧化物導電膜,所以氧氮化矽膜中的陷阱電荷(被深缺陷能階俘獲的電子)密度得到降低。
圖11B示意性地示出第一MOS樣本317和第二MOS樣本318的結構。第一MOS樣本317和第二MOS樣本318都包括:矽319;氧氮化矽膜326;以及金屬膜325。第二MOS樣本318還包括氧化物導電膜313。在氧氮化矽膜326上形成有金屬膜325的第一MOS樣本317中,氧氮化矽膜326中的陷阱電荷327的重心位置328大致位於氧氮化矽膜326的中央,因此可以認為缺陷平均地存在於氧氮化矽膜326中(參照圖11B)。相比之下,在設置氧化物導電膜313的情況下,陷阱電荷327的重心位置329位於矽319與氧氮化矽膜326的介面附近,陷阱電荷密度也小。從上述結果可知,由於氧化物導電膜313的形成,氧氮化矽膜326的缺陷密度在氧化物導電膜313附近的區域中得到降低。
由此可知,藉由將氧化物導電體用於本發明的一個實施方式的電晶體100中的導電膜112可以降低絕緣膜110的缺陷密度。
實施方式5
在本實施方式中,示出在350℃的基板溫度下形成氧氮化矽膜來形成絕緣膜110時的電晶體100的特性。
本發明的一個實施方式的電晶體100的被用作閘極絕緣膜的絕緣膜110較佳為具有如下特徵:缺陷少;對氧化物半導體膜108造成的損傷少;以及能夠對氧化物半導體膜108供應過量氧。
在實施方式1中,作為被用作本發明的一個實施方式的電晶體100的閘極絕緣膜的絕緣膜110,使用利用電漿增強化學氣相沉積法形成的氧氮化矽膜。如實施方式1所示,以低溫形成的氧氮化矽膜中的空隙被添加過量氧,可以吸收更多的過量氧,或者可以將更多的過量氧供應到氧化物半導體膜。
在形成氧氮化矽膜時的溫度較高的條件下,可以形成膜密度大,亦即缺陷少的膜。於是,從獲得高可靠性的觀點來看,使絕緣膜110具有藉由如下方法形成的膜的疊層結構是有效的:在350℃的基板溫度下在氧化物半導體膜108所具有的第一區域108i上形成氧氮化矽膜,然後在220℃的基板溫度下形成氧氮化矽膜。
在考慮到層疊絕緣膜110時的生產率的情況下,成膜溫度較佳為恆定。
圖12A示出對氧氮化矽膜的濕蝕刻速率進行比較的結果。在樣本351和樣本352中,在玻璃上形成氧氮化矽膜。形成樣本351時的基板溫度為220℃,形成樣 本352時的基板溫度為350℃。
在樣本351和樣本352中,利用使用包含流量為20sccm的SiH4和流量為3000sccm的N2O的氣體的電漿CVD法形成氧氮化矽膜。成膜壓力為200Pa,成膜電力為100W。在濕蝕刻中,作為溶液使用HF(0.5%),溫度為室溫。
如圖12A所示,樣本352的蝕刻速率比樣本351小。由此可知,與220℃的基板溫度相比,在350℃的基板溫度下形成氧氮化矽膜時,可以得到更緻密的膜。
圖12B示出對氧氮化矽膜的FT-IR測量進行比較的結果。在樣本353和樣本354中,在矽晶圓上形成氧氮化矽膜。形成樣本353時的基板溫度為220℃,形成樣本354時的基板溫度為350℃。圖12B中的位於波數1050cm-1處的與縱軸平行的虛線357表示起因於Si-O鍵合的波數。
在樣本353和樣本354中,利用使用包含流量為20sccm的SiH4和流量為3000sccm的N2O的氣體的電漿CVD法形成氧氮化矽膜。成膜壓力為200Pa,成膜電力為100W。
如圖12B所示,樣本354的Si-O的鍵合密度比樣本353稍微大。由此可知,與220℃的基板溫度相比,在350℃的基板溫度下形成氧氮化矽膜時,可以得到更緻密的膜。
圖12C示出利用ESR法對氧氮化矽膜的氮氧 化物(NOx)濃度進行比較的結果。縱軸表示自旋密度。在樣本355和樣本356中,在玻璃上形成厚度為10nm的氧化物半導體膜,然後依次形成厚度為20nm的氧氮化矽膜及厚度為100nm的氧化物導電膜。但是,在ESR測量之前去除氧化物導電膜。
形成樣本355的氧氮化矽膜時的基板溫度為220℃,形成樣本356的氧氮化矽膜時的基板溫度為350℃。此外,在樣本355和樣本356中,氧化物半導體膜利用濺射法且使用In-Ga-Zn氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])在90%的氬氣體和10%的氧氣體的氛圍下以130℃的基板溫度形成。利用電漿CVD法形成氧氮化矽膜,作為氣體使用流量為20sccm的SiH4和流量為3000sccm的N2O。成膜壓力為200Pa,成膜電力為100W。氧化物導電膜利用濺射法且使用In-Ga-Zn氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])形成。
圖12C示出形成氧氮化矽膜之後以及去除上述氧化物導電膜之後的來源於氮氧化物(NOx)的自旋密度[spins/cm3]。如此,可以說:與220℃的基板溫度相比,在350℃的基板溫度下形成氧氮化矽膜時,可以得到氮氧化物(NOx)濃度更低的膜。
從上述結果可知,較佳為將在350℃的基板溫度下形成的缺陷少且氮氧化物(NOx)濃度低的緻密的氧氮化矽膜用於絕緣膜110。但是,如圖43A所示,在將形成時的基板溫度為350℃的條件的氧氮化矽膜用於絕緣膜 110時,導致氧化物半導體膜108的低電阻化。
為了避免上述氧化物半導體膜108的低電阻化,可以採用如下方法。第一種方法是在形成絕緣膜110之後使用電漿CVD設備進行氧電漿處理361的方法(參照圖13A)。第二種方法是在形成絕緣膜116之後進行加熱處理的方法(參照圖13B)。藉由上述處理,可以加強對於氧化物半導體膜108的過量氧362的供應。尤其較佳的是,同時進行上述處理。
作為在形成絕緣膜110之後使用電漿CVD設備進行的氧電漿處理361,例如可以利用實施例1所示的方法。此外,在形成絕緣膜116之後進行的加熱處理例如可以採用如下條件:利用氮氛圍,處理溫度為350℃,處理時間為1小時。
此外,參照圖14A和圖14B說明以證明形成絕緣膜116之後進行的加熱處理能夠有效地對氧化物半導體膜添加氧為目的而進行的實驗的結果。在本實驗中進行評價的樣本是藉由如下步驟形成的:在玻璃基板上依次形成厚度為100nm的氧化物半導體膜、厚度為100nm的氧氮化矽膜、厚度為100nm的氧化物導電膜以及厚度為100nm的氮化矽膜。
氧化物半導體膜利用濺射法且使用In-Ga-Zn氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比])在90%的氬氣體和10%的氧氣體的氛圍下以130℃的基板溫度形成。
氧氮化矽膜利用基板溫度為220℃的電漿 CVD法,層疊成膜條件不同的兩個層來形成。首先,在第一成膜條件下,作為氣體使用流量為50sccm的SiH4和流量為2000sccm的N2O。成膜壓力為20Pa,成膜電力為100W。在第一成膜條件下,形成厚度為30nm的氧氮化矽膜。該氧氮化矽膜中的NOx的量較少。在第二成膜條件下,作為氣體使用流量為160sccm的SiH4和流量為4000sccm的N2O。成膜壓力為200Pa,成膜電力為1500W。在第二成膜條件下,形成厚度為70nm的氧氮化矽膜。
氧化物導電膜使用In-Ga-Zn氧化物靶材(In:Ga:Zn=4:2:4.1[原子個數比]),層疊成膜條件不同的兩個層形成。首先,在第一成膜條件下,利用濺射法,在100%的18O氣體的氛圍下以170℃的基板溫度形成。在第一成膜條件下,形成厚度為10nm的氧化物導電膜。在第二成膜條件下,利用濺射法,在90%的氬氣體和10%的18O氣體的氛圍下以170℃的基板溫度形成。在第二成膜條件下,形成厚度為90nm的氧化物導電膜。
在如下條件下形成氮化矽膜:基板溫度為220℃,將流量為50sccm的矽烷氣體、流量為5000sccm的氮氣體和流量為100sccm的氨氣體引入到處理室內,壓力為200Pa,在設置於電漿CVD設備內的平行平板型電極之間供應1000W的RF電力。
然後,沒有對樣本365進行加熱處理,樣本366在氮氛圍下以250℃的溫度進行加熱處理,樣本367 在氮氛圍下以350℃的溫度進行加熱處理。
圖14A及圖14B是利用SIMS分析對樣本365、樣本366、樣本367的18O濃度分佈進行評價的結果。18O只在形成樣本365、樣本366、樣本367的氧化物導電膜時使用,所以如果其他膜中的18O濃度高,則可以認為18O是從氧化物導電膜擴散的。在SIMS分析中,邊從基板一側向膜表面一側進行挖掘,邊進行分佈評價。
在圖14A及圖14B中,橫軸表示離樣本的表面的深度,縱軸表示檢測出氧化物導電膜368、氧氮化矽膜369和氧化物半導體膜370中的18O的SIMS的信號。圖14A是對氧氮化矽膜369的18O濃度進行測量的結果。同樣地,圖14B是對氧化物半導體膜370的18O濃度進行測量的結果。
從圖14A及圖14B的結果可知,藉由在形成氮化矽膜之後進行加熱處理,可以使氧氮化矽膜中的更多的氧擴散到氧化物半導體膜中。
此外,圖14C示出以調查在哪個製程中進行加熱處理能夠有效地對氧化物半導體膜添加氧為目的而進行的實驗的結果。
在本實驗中進行評價的樣本是如下樣本:在石英基板上依次形成厚度為40nm的氧化物半導體膜、厚度為150nm的氧氮化矽膜、厚度為100nm的氧化物導電膜以及厚度為100nm的氮化矽膜。在圖14C中,橫軸表示製程,縱軸表示上述氧化物半導體膜的電阻。以下示出 製造方法。
首先,在基板上形成氧化物半導體膜(製程A)。氧化物半導體膜的成膜條件與樣本365至樣本367相同。在該製程A之後測量氧化物半導體膜的電阻值。
接著,在氧化物半導體膜上形成氧氮化矽膜(製程B)。氧氮化矽膜利用電漿CVD法形成,基板溫度為350℃,作為氣體使用流量為20sccm的SiH4、流量為3000sccm的N2O。成膜壓力為200Pa,成膜電力為100W。在該製程B之後測量氧化物半導體膜的電阻值。
接著,在氮氛圍下以350℃的溫度進行加熱處理(製程C)。在該製程C之後測量氧化物半導體膜的電阻值。
接著,以350℃的基板溫度進行氧電漿處理(製程D)。氧電漿處理的條件為如下:將流量為3000sccm的氧引入到處理室內,壓力為40Pa,在設置於電漿CVD設備內的平行平板型電極之間供應3000W的RF電力,處理時間為250sec。在該製程D之後測量氧化物半導體膜的電阻值。
接著,形成氧化物導電膜(製程E)。氧化物導電膜的成膜條件與樣本365至樣本367相同。在該製程E之後測量氧化物半導體膜的電阻值。
接著,形成氮化矽膜(製程F)。氮化矽膜的成膜條件與樣本365至樣本367相同。在該製程F之後測量氧化物半導體膜的電阻值。
接著,在氮氛圍下以250℃的溫度進行加熱處理(製程G1)。在該製程G1之後測量氧化物半導體膜的電阻值。另外,在其他樣本中,在氮氛圍下以350℃的溫度進行加熱處理,而不以250℃的溫度進行加熱處理(製程G2)。在該製程G2之後測量氧化物半導體膜的電阻值。
在圖14C中,從製程A至製程G1、製程G2之後的各氧化物半導體膜的電阻值可知,雖然在氧氮化矽成膜製程中氧化物半導體膜的電阻值下降,但是藉由在氮化矽膜成膜之後以350℃進行焙燒電阻值得到大幅度提高。此外,製程A和製程G2之後的氧化物半導體膜的電阻值大於電阻測量裝置的上限的4.0×107Ω。
由此可知,藉由在形成氮化矽膜之後以350℃進行加熱處理進一步促進了過氧化。圖14A及圖14B所示的SIMS中的18O的濃度也表明了上述過氧化的促進。
在同時進行形成氧氮化矽膜之後的氧電漿處理和形成氮化矽膜之後的350℃的加熱處理時,將在350℃的條件下形成的氧氮化矽膜用於絕緣膜110來製造的電晶體100可以獲得與如下電晶體100同等的可靠性,該電晶體100是在350℃的基板溫度下形成氧氮化矽膜,接著在220℃的基板溫度下形成氧氮化矽膜,並且將該氧氮化矽膜用作絕緣膜110來製造的。注意,此時,藉由偏壓-熱應力測試評價可靠性,在後面的實施例1中示出該測試的詳細內容。
就是說,藉由進行對氧化物半導體膜108供應充分的過量氧的處理,可以將在350℃的基板溫度下形成的緻密且缺陷密度小的氧氮化矽膜用於絕緣膜110。由此,可以改善生產率。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式6
在本實施方式中,使用圖15至圖20說明包括在前面的實施方式中例示的半導體裝置的顯示裝置的一個例子。
圖15是示出顯示裝置的一個例子的俯視圖。圖15所示的顯示裝置700包括:設置在第一基板701上的像素部702;設置在第一基板701上的源極驅動電路部704及閘極驅動電路部706;以圍繞像素部702、源極驅動電路部704及閘極驅動電路部706的方式設置的密封劑712;以及以與第一基板701對置的方式設置的第二基板705。注意,由密封劑712密封第一基板701及第二基板705。也就是說,像素部702、源極驅動電路部704及閘極驅動電路部706被第一基板701、密封劑712及第二基板705密封。注意,雖然在圖15中未圖示,但是在第一基板701與第二基板705之間設置有顯示元件。
另外,在顯示裝置700中,在第一基板701上的不由密封劑712圍繞的區域中設置有分別電連接於像素部702、源極驅動電路部704及閘極驅動電路部706的 FPC(Flexible printed circuit:軟性印刷電路板)端子部708。另外,FPC端子部708連接於FPC716,並且藉由FPC716對像素部702、源極驅動電路部704及閘極驅動電路部706供應各種信號等。另外,像素部702、源極驅動電路部704、閘極驅動電路部706以及FPC端子部708各與信號線710連接。由FPC716供應的各種信號等是藉由信號線710供應到像素部702、源極驅動電路部704、閘極驅動電路部706以及FPC端子部708的。
另外,也可以在顯示裝置700中設置多個閘極驅動電路部706。另外,作為顯示裝置700,雖然示出將源極驅動電路部704及閘極驅動電路部706形成在與像素部702相同的第一基板701上的例子,但是並不侷限於該結構。例如,可以只將閘極驅動電路部706形成在第一基板701上,或者可以只將源極驅動電路部704形成在第一基板701上。此時,也可以採用將形成有源極驅動電路或閘極驅動電路等的基板(例如,由單晶半導體膜、多晶半導體膜形成的驅動電路基板)形成於第一基板701的結構。另外,對另行形成的驅動電路基板的連接方法沒有特別的限制,而可以採用COG(Chip On Glass:晶粒玻璃接合)方法、打線接合方法等。
另外,顯示裝置700所包括的像素部702、源極驅動電路部704及閘極驅動電路部706包括多個電晶體。
另外,顯示裝置700可以包括各種元件。作 為該元件,例如可以舉出電致發光(EL)元件(包含有機物及無機物的EL元件、有機EL元件、無機EL元件、LED等)、發光電晶體元件(根據電流發光的電晶體)、電子發射元件、液晶元件、電子墨水元件、電泳元件、電濕潤(electrowetting)元件、電漿顯示面板(PDP)、MEMS(微機電系統)、顯示器(例如柵光閥(GLV)、數位微鏡裝置(DMD)、數位微快門(DMS)元件、干涉調變(IMOD)元件等)、壓電陶瓷顯示器等。
此外,作為使用EL元件的顯示裝置的一個例子,有EL顯示器等。作為使用電子發射元件的顯示裝置的一個例子,有場致發射顯示器(FED)或SED方式平面型顯示器(SED:Surface-conduction Electron-emitter Display:表面傳導電子發射顯示器)等。作為使用液晶元件的顯示裝置的一個例子,有液晶顯示器(透射式液晶顯示器、半透射式液晶顯示器、反射式液晶顯示器、直觀式液晶顯示器、投射式液晶顯示器)等。作為使用電子墨水元件或電泳元件的顯示裝置的一個例子,有電子紙等。注意,當實現半透射式液晶顯示器或反射式液晶顯示器時,使像素電極的一部分或全部具有反射電極的功能,即可。例如,使像素電極的一部分或全部包含鋁、銀等,即可。並且,此時也可以將SRAM等記憶體電路設置在反射電極下。由此,可以進一步降低功耗。
作為顯示裝置700的顯示方式,可以採用逐行掃描方式或隔行掃描方式等。另外,作為當進行彩色顯 示時在像素中控制的顏色要素,不侷限於RGB(R表示紅色,G表示綠色,B表示藍色)這三種顏色。例如,可以由R像素、G像素、B像素及W(白色)像素的四個像素構成。或者,如PenTile排列,也可以由RGB中的兩個顏色構成一個顏色要素,並根據顏色要素選擇不同的兩個顏色來構成。或者可以對RGB追加黃色(yellow)、青色(cyan)、洋紅色(magenta)等中的一種以上的顏色。另外,各個顏色要素的點的顯示區域的大小可以不同。但是,所公開的發明不侷限於彩色顯示的顯示裝置,而也可以應用於黑白顯示的顯示裝置。
另外,為了將白色光(W)用於背光(有機EL元件、無機EL元件、LED、螢光燈等)使顯示裝置進行全彩色顯示,也可以使用彩色層(也稱為濾光片)。作為彩色層,例如可以適當地組合紅色(R)、綠色(G)、藍色(B)、黃色(Y)等而使用。藉由使用彩色層,可以與不使用彩色層的情況相比進一步提高顏色再現性。此時,也可以藉由設置包括彩色層的區域和不包括彩色層的區域,將不包括彩色層的區域中的白色光直接用於顯示。藉由部分地設置不包括彩色層的區域,在顯示明亮的影像時,有時可以減少彩色層所引起的亮度降低而減少功耗兩成至三成左右。但是,在使用有機EL元件或無機EL元件等自發光元件進行全彩色顯示時,也可以從具有各發光顏色的元件發射R、G、B、Y、W。藉由使用自發光元件,有時與使用彩色層的情況相比進一步減少功耗。
此外,作為彩色化的方式,除了經過濾色片將來自上述白色光的發光的一部分轉換為紅色、綠色及藍色的方式(濾色片方式)之外,還可以使用分別使用紅色、綠色及藍色的發光的方式(三色方式)以及將來自藍色光的發光的一部分轉換為紅色或綠色的方式(顏色轉換方式或量子點方式)。
在本實施方式中,使用圖16至圖18說明作為顯示元件使用液晶元件及EL元件的結構。圖16及圖17是沿著圖15所示的點劃線Q-R的剖面圖,作為顯示元件使用液晶元件的結構。另外,圖18是沿著圖15所示的點劃線Q-R的剖面圖,作為顯示元件使用EL元件的結構。
下面,首先說明圖16至圖18所示的共同部分,接著說明不同的部分。
〈3-1.顯示裝置的共同部分的說明〉
圖16至圖18所示的顯示裝置700包括:引線配線部711;像素部702;源極驅動電路部704;FPC端子部708;以及密封劑712。另外,引線配線部711包括信號線710。另外,像素部702包括電晶體750及電容器790。另外,源極驅動電路部704包括電晶體752。
電晶體750及電晶體752具有與圖3A和圖3B所示的電晶體100B同樣的結構。電晶體750及電晶體752也可以採用使用上述實施方式所示的其他電晶體的結 構。
在本實施方式中使用的電晶體包括高度純化且氧缺陷的形成被抑制的氧化物半導體膜。該電晶體可以降低關態電流。因此,可以延長影像信號等電信號的保持時間,在開啟電源的狀態下也可以延長寫入間隔。因此,可以降低更新工作的頻率,由此可以發揮抑制功耗的效果。
另外,在本實施方式中使用的電晶體能夠得到較高的場效移動率,因此能夠進行高速驅動。例如,藉由將這種能夠進行高速驅動的電晶體用於液晶顯示裝置,可以在同一基板上形攝像素部的切換電晶體及用於驅動電路部的驅動電晶體。也就是說,因為作為驅動電路不需要另行使用由矽晶圓等形成的半導體裝置,所以可以縮減半導體裝置的構件數。另外,在像素部中也可以藉由使用能夠進行高速驅動的電晶體提供高品質的影像。
電容器790包括:藉由對與電晶體750所包括的被用作第一閘極電極的導電膜相同的導電膜進行加工而形成的下部電極;以及藉由對與電晶體750所包括的被用作源極電極及汲極電極的導電膜或被用作第二閘極電極的導電膜相同的導電膜進行加工而形成的上部電極。另外,在下部電極與上部電極之間設置有:藉由形成與電晶體750所包括的被用作第一閘極絕緣膜的絕緣膜相同的絕緣膜而形成的絕緣膜;以及藉由形成與電晶體750上的被用作保護絕緣膜的絕緣膜相同的絕緣膜而形成的絕緣膜。 就是說,電容器790具有將用作電介質膜的絕緣膜夾在一對電極之間的疊層型結構。
另外,在圖16至圖18中,在電晶體750、電晶體752及電容器790上設置有平坦化絕緣膜770。
在圖16至圖18中示出像素部702所包括的電晶體750及源極驅動電路部704所包括的電晶體752使用相同的結構的電晶體的結構,但是不侷限於此。例如,像素部702及源極驅動電路部704也可以使用不同電晶體。明確而言,可以舉出像素部702使用頂閘極型電晶體,且源極驅動電路部704使用底閘極型電晶體的結構,或者像素部702使用底閘極型電晶體,且源極驅動電路部704使用頂閘極型電晶體的結構等。此外,也可以將上述源極驅動電路部704換稱為閘極驅動電路部。
信號線710與被用作電晶體750、752的源極電極及汲極電極的導電膜在同一製程中形成。作為信號線710,例如,當使用包含銅元素的材料時,起因於佈線電阻的信號延遲等較少,而可以實現大螢幕的顯示。
另外,FPC端子部708包括連接電極760、異方性導電膜780及FPC716。連接電極760與被用作電晶體750、752的源極電極及汲極電極的導電膜在同一製程中形成。另外,連接電極760與FPC716所包括的端子藉由異方性導電膜780電連接。
另外,作為第一基板701及第二基板705,例如可以使用玻璃基板。另外,作為第一基板701及第二基 板705,也可以使用具有撓性的基板。作為該具有撓性的基板,例如可以舉出塑膠基板等。
另外,在第一基板701與第二基板705之間設置有結構體778。結構體778是藉由選擇性地對絕緣膜進行蝕刻而得到的柱狀的間隔物,用來控制第一基板701與第二基板705之間的距離(液晶盒厚(cell gap))。另外,作為結構體778,也可以使用球狀的間隔物。
另外,在第二基板705一側,設置有被用作黑矩陣的遮光膜738、被用作濾色片的彩色膜736、與遮光膜738及彩色膜736接觸的絕緣膜734。
〈3-2.使用液晶元件的顯示裝置的結構例子〉
圖16所示的顯示裝置700包括液晶元件775。液晶元件775包括導電膜772、導電膜774及液晶層776。導電膜774設置在第二基板705一側並被用作相對電極。圖16所示的顯示裝置700可以藉由由施加到導電膜772與導電膜774之間的電壓改變液晶層776的配向狀態,由此控制光的透過及非透過而顯示影像。
導電膜772電連接到電晶體750所具有的被用作源極電極及汲極電極的導電膜。導電膜772形成在平坦化絕緣膜770上並被用作像素電極,亦即顯示元件的一個電極。
另外,作為導電膜772,可以使用對可見光具有透光性的導電膜或對可見光具有反射性的導電膜。作為 對可見光具有透光性的導電膜,例如,較佳為使用包含選自銦(In)、鋅(Zn)、錫(Sn)中的一種的材料。作為對可見光具有反射性的導電膜,例如,較佳為使用包含鋁或銀的材料。
在導電膜772使用對於可見光具有反射性的導電膜時,顯示裝置700為反射型液晶顯示裝置。此外,在導電膜772使用對於可見光具有透光性的導電膜時,顯示裝置700為透射型液晶顯示裝置。
藉由改變導電膜772上的結構,可以改變液晶元件的驅動方式。圖17示出此時的一個例子。此外,圖17所示的顯示裝置700是作為液晶元件的驅動方式使用水平電場方式(例如,FFS模式)的結構的一個例子。在圖17所示的結構的情況下,導電膜772上設置有絕緣膜773,絕緣膜773上設置有導電膜774。此時,導電膜774具有共用電極的功能,可以由隔著絕緣膜773在導電膜772與導電膜774之間產生的電場控制液晶層776的配向狀態。
注意,雖然在圖16及圖17中未圖示,但是也可以分別在導電膜772和導電膜774中的一個或兩個與液晶層776接觸的一側設置配向膜。此外,雖然在圖16及圖17中未圖示,但是也可以適當地設置偏振構件、相位差構件、抗反射構件等光學構件(光學基板)等。例如,也可以使用利用偏振基板及相位差基板的圓偏振。此外,作為光源,也可以使用背光、側光等。
在作為顯示元件使用液晶元件的情況下,可以使用熱致液晶、低分子液晶、高分子液晶、高分子分散型液晶、鐵電液晶、反鐵電液晶等。這些液晶材料根據條件呈現出膽固醇相、層列相、立方相、手性向列相、均質相等。
此外,在採用橫向電場方式的情況下,也可以使用不使用配向膜的呈現藍相的液晶。藍相是液晶相的一種,是指當使膽固醇型液晶的溫度上升時即將從膽固醇相轉變到均質相之前出現的相。因為藍相只在較窄的溫度範圍內出現,所以將其中混合了幾wt%以上的手性試劑的液晶組合物用於液晶層,以擴大溫度範圍。由於包含呈現藍相的液晶和手性試劑的液晶組成物的回應速度快,並且其具有光學各向同性。由此,包含呈現藍相的液晶和手性試劑的液晶組成物不需要配向處理。另外,因不需要設置配向膜而不需要摩擦處理,因此可以防止由於摩擦處理而引起的靜電破壞,由此可以降低製程中的液晶顯示裝置的不良和破損。此外,呈現藍相的液晶材料的視角依賴性小。
另外,當作為顯示元件使用液晶元件時,可以使用:TN(Twisted Nematic:扭曲向列)模式、IPS(In-Plane-Switching:平面內切換)模式、FFS(Fringe Field Switching:邊緣電場切換)模式、ASM(Axially Symmetric aligned Micro-cell:軸對稱排列微單元)模式、OCB(Optical Compensated Birefringence:光學補償 彎曲)模式、FLC(Ferroelectric Liquid Crystal:鐵電性液晶)模式以及AFLC(AntiFerroelectric Liquid Crystal:反鐵電性液晶)模式等。
另外,顯示裝置700也可以使用常黑型液晶顯示裝置,例如採用垂直配向(VA)模式的透過型液晶顯示裝置。作為垂直配向模式,可以舉出幾個例子,例如可以使用MVA(Multi-Domain Vertical Alignment:多域垂直配向)模式、PVA(Patterned Vertical Alignment:垂直配向構型)模式、ASV(Advanced Super View:超視覺)模式等。
〈3-3.使用發光元件的顯示裝置〉
圖18所示的顯示裝置700包括發光元件782。發光元件782包括導電膜772、EL層786及導電膜788。圖18所示的顯示裝置700藉由發光元件782所包括的EL層786發光,可以顯示影像。此外,EL層786具有有機化合物或量子點等無機化合物。
作為可以用於有機化合物的材料,可以舉出螢光性材料或磷光性材料等。此外,作為可以用於量子點的材料,可以舉出膠狀量子點、合金型量子點、核殼(Core Shell)型量子點、核型量子點等。另外,也可以使用包含第12族與第16族、第13族與第15族或第14族與第16族的元素群的材料。或者,可以使用包含鎘(Cd)、硒(Se)、鋅(Zn)、硫(S)、磷(P)、銦 (In)、碲(Te)、鉛(Pb)、鎵(Ga)、砷(As)、鋁(Al)等元素的量子點材料。
上述有機化合物及無機化合物例如可以利用蒸鍍法(包括真空蒸鍍法)、液滴噴射法(也稱為噴墨法)、塗佈法、凹版印刷法等方法形成。此外,作為EL層786也可以包含低分子材料、中分子材料(包括低聚物、樹枝狀聚合物)或者高分子材料。
這裡,參照圖21A至圖21D說明液滴噴射法形成EL層786的方法。圖21A至圖21D是說明EL層786的形成方法的剖面圖。
首先,在平坦化絕緣膜770上形成導電膜772,以覆蓋導電膜772的一部分的方式形成絕緣膜730(參照圖21A)。
接著,在作為絕緣膜730的開口的導電膜772的露出部利用液滴噴射裝置783噴射液滴784,來形成包含組成物的層785。液滴784是包含溶劑的組成物,附著於導電膜772上(參照圖21B)。
此外,也可以在減壓下進行噴射液滴784的製程。
接著,藉由去除包含組成物的層785中的溶劑而使其固化,形成EL層786(參照圖21C)。
作為去除溶劑的方法,可以進行乾燥製程或加熱製程。
接著,在EL層786上形成導電膜788,形成 發光元件782(參照圖21D)。
如上所述,藉由利用液滴噴射法形成EL層786,可以選擇性地噴射組成物,因此可以減少材料的損失。另外,由於不需要經過用來進行形狀的加工的光微影製程等,所以可以使製程簡化,從而可以以低成本形成EL層。
另外,上述的液滴噴射法為包括如下單元的總稱,該單元為具有組成物的噴射口的噴嘴或者具有一個或多個噴嘴的頭等液滴噴射單元。
接著,參照圖22說明在液滴噴射法中利用的液滴噴射裝置。圖22是說明液滴噴射裝置1400的示意圖。
液滴噴射裝置1400包括液滴噴射單元1403。液滴噴射單元1403包括頭部1405、頭部1412。
藉由由電腦1410控制與頭部1405、頭部1412連接的控制單元1407,可以描畫預先程式設計了的圖案。
另外,作為描畫的時機,例如可以以形成在基板1402上的標記1411為基準而進行描畫。或者,也可以以基板1402的邊緣為基準而確定基準點。在此,利用攝像單元1404檢測出標記1411,將藉由影像處理單元1409轉換為數位信號的標記1411利用電腦1410識別而產生控制信號,以將該控制信號傳送至控制單元1407。
作為攝像單元1404,可以利用使用電荷耦合 器(CCD)、互補型金屬-氧化物-半導體(CMOS)的影像感測器等。另外,在基板1402上需要形成的圖案的資料存儲於存儲介質1408,可以基於該資料將控制信號傳送至控制單元1407,來分別控制液滴噴射單元1403的頭部1405、頭部1412等各頭。噴射的材料分別從材料供應源1413、材料供應源1414藉由管道供應到頭部1405、頭部1412。
頭部1405的內部包括以虛線1406所示的填充液狀材料的空間及噴射口的噴嘴。在此未圖示,但是頭部1412具有與頭部1405相同的內部結構。藉由將頭部1405的噴嘴的尺寸與頭部1412的噴嘴的尺寸不同,可以使用不同的材料同時描畫具有不同的寬度的圖案。使用一個頭可以噴射多種發光材料且描畫圖案,於是在對廣區域描畫圖案的情況下,為了提高處理量,同時使用多個噴嘴噴射同一發光材料而可以描畫圖案。在使用大型基板的情況下,頭部1405和頭部1412在圖22所示的箭頭的X、Y或Z的方向上自由地對基板進行掃描,可以自由地設定描畫的區域,由此可以在一個基板上描畫多個相同的圖案。
另外,可以在減壓下進行噴射組成物的製程。可以在加熱基板的狀態下噴射組成物。在噴射組成物之後,進行乾燥製程和燒成製程中的一個或兩個。乾燥製程及燒成製程都是一種加熱處理的製程,各製程的目的、溫度及時間不同。乾燥製程及燒成製程在常壓或減壓下藉由雷射的照射、快速熱退火或加熱爐的使用等進行。注 意,對進行該加熱處理的時機、加熱處理的次數沒有特別的限制。為了進行良好的乾燥製程及燒成製程,其溫度依賴於基板的材料及組成物的性質。
如上所述,可以利用液滴噴射裝置形成EL層786。
再次回到圖18所示的顯示裝置700的說明。
在圖18所示的顯示裝置700中,在平坦化絕緣膜770及導電膜772上設置有絕緣膜730。絕緣膜730覆蓋導電膜772的一部分。發光元件782採用頂部發射結構。因此,導電膜788具有透光性且使EL層786發射的光透過。注意,雖然在本實施方式中例示出頂部發射結構,但是不侷限於此。例如,也可以應用於向導電膜772一側發射光的底部發射結構或向導電膜772一側及導電膜788一側的兩者發射光的雙面發射結構。
另外,在與發光元件782重疊的位置上設置有彩色膜736,並在與絕緣膜730重疊的位置、引線配線部711及源極驅動電路部704中設置有遮光膜738。彩色膜736及遮光膜738被絕緣膜734覆蓋。由密封膜732填充發光元件782與絕緣膜734之間。注意,雖然例示出在圖18所示的顯示裝置700中設置彩色膜736的結構,但是並不侷限於此。例如,在藉由分別塗布來形成EL層786時,也可以採用不設置彩色膜736的結構。
〈3-4.在顯示裝置中設置輸入輸出裝置的結構例子〉
也可以在圖17及圖18所示的顯示裝置700中設置輸入輸出裝置。作為該輸入輸出裝置例如可以舉出觸控面板等。
圖19示出對圖17所示的顯示裝置700設置觸控面板791的結構,圖20示出對圖18所示的顯示裝置700設置觸控面板791的結構。
圖19是在圖17所示的顯示裝置700中設置觸控面板791的剖面圖,圖20是在圖18所示的顯示裝置700中設置觸控面板791的剖面圖。
首先,以下說明圖19及圖20所示的觸控面板791。
圖19及圖20所示的觸控面板791是設置在基板705與彩色膜736之間的所謂In-Cell型觸控面板。觸控面板791在形成彩色膜736之前形成在基板705一側即可。
觸控面板791包括遮光膜738、絕緣膜792、電極793、電極794、絕緣膜795、電極796、絕緣膜797。例如,藉由接近手指或觸控筆等檢測物件,可以檢測出電極793與電極794的互電容的變化。
此外,在圖19及圖20所示的電晶體750的上方示出電極793、電極794的交叉部。電極796藉由設置在絕緣膜795中的開口部與夾住電極794的兩個電極793電連接。此外,在圖19及圖20中示出設置有電極796的區域設置在像素部702中的結構,但是不侷限於 此,例如也可以形成在源極驅動電路部704中。
電極793及電極794設置在與遮光膜738重疊的區域。此外,如圖19所示,電極793較佳為以不與發光元件775重疊的方式設置。此外,如圖20所示,電極793較佳為以不與液晶元件782重疊的方式設置。換言之,電極793在與發光元件782及液晶元件775重疊的區域具有開口部。也就是說,電極793具有網格形狀。藉由採用這種結構,電極793可以具有不遮斷發光元件782所發射的光的結構。或者,電極793也可以具有不遮斷透過液晶元件775的光的結構。因此,由於因配置觸控面板791而導致的亮度下降極少,所以可以實現可見度高且功耗得到降低的顯示裝置。此外,電極794也可以具有相同的結構。
電極793及電極794由於不與發光元件782重疊,所以電極793及電極794可以使用可見光的穿透率低的金屬材料。或者,電極793及電極794由於不與液晶元件775重疊,所以電極793及電極794可以使用可見光的穿透率低的金屬材料。
因此,與使用可見光的穿透率高的氧化物材料的電極相比,可以降低電極793及電極794的電阻,由此可以提高觸控面板的感測器靈敏度。
例如,電極793、794、796也可以使用導電奈米線。該奈米線的直徑平均值可以為1nm以上且100nm以下,較佳為5nm以上且50nm以下,更佳為5nm以上且 25nm以下。此外,作為上述奈米線可以使用Ag奈米線、Cu奈米線、Al奈米線等金屬奈米線或碳奈米管等。例如,在作為電極793、794、796中的任一個或全部使用Ag奈米線的情況下,能夠實現89%以上的可見光穿透率及40Ω/平方以上且100Ω/平方以下的片電阻值。
雖然在圖19及圖20中示出In-Cell型觸控面板的結構,但是不侷限於此。例如,也可以採用形成在顯示裝置700上的所謂On-Cell型觸控面板或貼合於顯示裝置700而使用的所謂Out-Cell型觸控面板。
如此,本發明的一個實施方式的顯示裝置可以與各種方式的觸控面板組合而使用。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式7
在本實施方式中,參照圖23A至圖23C說明具有本發明的一個實施方式的半導體裝置的顯示裝置。
〈4.顯示裝置的電路結構〉
圖23A所示的顯示裝置包括:具有顯示元件的像素的區域(以下稱為像素部502);配置在像素部502外側並具有用來驅動像素的電路的電路部(以下稱為驅動電路部504);具有保護元件的功能的電路(以下稱為保護電路506);以及端子部507。此外,也可以採用不設置保護 電路506的結構。
驅動電路部504的一部分或全部較佳為形成在與像素部502同一的基板上。由此,可以減少構件的數量或端子的數量。當驅動電路部504的一部分或全部不形成在與像素部502相同的基板上時,可以藉由COG(Chip On Glass)或TAB(Tape Automated Bonding)安裝驅動電路部504的一部分或全部。
像素部502包括用來驅動配置為X行(X為2以上的自然數)Y列(Y為2以上的自然數)的多個顯示元件的電路(以下稱為像素電路501),驅動電路部504包括輸出選擇像素的信號(掃描信號)的電路(以下稱為閘極驅動器504a)、用來供應用來驅動像素的顯示元件的信號(資料信號)的電路(以下稱為源極驅動器504b)等的驅動電路。
閘極驅動器504a具有移位暫存器等。閘極驅動器504a藉由端子部507被輸入用來驅動移位暫存器的信號並將該信號輸出。例如,閘極驅動器504a被輸入啟動脈衝信號、時脈信號等並輸出脈衝信號。閘極驅動器504a具有控制被供應掃描信號的佈線(以下稱為掃描線GL_1至GL_X)的電位的功能。另外,也可以設置多個閘極驅動器504a,並藉由多個閘極驅動器504a分別控制掃描線GL_1至GL_X。或者,閘極驅動器504a具有能夠供應初始化信號的功能。但是,不侷限於此,閘極驅動器504a可以供應其他信號。
源極驅動器504b具有移位暫存器等。除了用來驅動移位暫存器的信號之外,作為資料信號的基礎的信號(影像信號)也藉由端子部507被輸入到源極驅動器504b。源極驅動器504b具有以影像信號為基礎生成寫入到像素電路501的資料信號的功能。另外,源極驅動器504b具有依照輸入啟動脈衝信號、時脈信號等而得到的脈衝信號來控制資料信號的輸出的功能。另外,源極驅動器504b具有控制被供應資料信號的佈線(以下稱為資料線DL_1至DL_Y)的電位的功能。或者,源極驅動器504b具有能夠供應初始化信號的功能。但是,不侷限於此,源極驅動器504b可以供應其他信號。
源極驅動器504b例如使用多個類比開關等來構成。藉由依次使多個類比開關成為開啟狀態,源極驅動器504b可以輸出對影像信號進行時間分割而成的信號作為資料信號。此外,也可以使用移位暫存器等構成源極驅動器504b。
多個像素電路501的每一個分別藉由被供應掃描信號的多個掃描線GL之一而被輸入脈衝信號,並藉由被供應資料信號的多個資料線DL之一而被輸入資料信號。另外,多個像素電路501的每一個藉由閘極驅動器504a來控制資料信號的資料的寫入及保持。例如,藉由掃描線GL_m(m是X以下的自然數)從閘極驅動器504a對第m行第n列的像素電路501輸入脈衝信號,並根據掃描線GL_m的電位而藉由資料線DL_n(n是Y以下的 自然數)從源極驅動器504b對第m行第n列的像素電路501輸入資料信號。
圖23A所示的保護電路506例如與作為閘極驅動器504a和像素電路501之間的佈線的掃描線GL連接。或者,保護電路506與作為源極驅動器504b和像素電路501之間的佈線的資料線DL連接。或者,保護電路506可以與閘極驅動器504a和端子部507之間的佈線連接。或者,保護電路506可以與源極驅動器504b和端子部507之間的佈線連接。此外,端子部507是指設置有用來從外部的電路對顯示裝置輸入電源、控制信號及影像信號的端子的部分。
保護電路506是在自身所連接的佈線被供應一定的範圍之外的電位時使該佈線和其他佈線作為導通狀態的電路。
如圖23A所示,藉由對像素部502和驅動電路部504分別設置保護電路506,可以提高顯示裝置對因ESD(Electro Static Discharge:靜電放電)等而產生的過電流的電阻。但是,保護電路506的結構不侷限於此,例如,也可以採用將閘極驅動器504a與保護電路506連接的結構或將源極驅動器504b與保護電路506連接的結構。或者,也可以採用將端子部507與保護電路506連接的結構。
另外,雖然在圖23A中示出由閘極驅動器504a和源極驅動器504b形成驅動電路部504的例子,但 是不侷限於此結構。例如,也可以採用只形成閘極驅動器504a並安裝另外準備的形成有源極驅動電路的基板(例如,使用單晶半導體膜、多晶半導體膜形成的驅動電路基板)的結構。
此外,圖23A所示的多個像素電路501例如可以採用圖23B所示的結構。
圖23B所示的像素電路501包括液晶元件570、電晶體550以及電容元件560。作為電晶體550,可以應用上述實施方式所示的電晶體。
根據像素電路501的規格適當地設定液晶元件570的一對電極中的一個電極的電位。根據被寫入的資料設定液晶元件570的配向狀態。此外,也可以對多個像素電路501的每一個所具有的液晶元件570的一對電極中的一個電極供應共用電位。此外,也可以對各行的像素電路501的每一個所具有的液晶元件570的一對電極中的一個電極供應不同電位。
例如,作為具備液晶元件570的顯示裝置的驅動方法也可以使用如下模式:TN模式;STN模式;VA模式;ASM(Axially Symmetric Aligned Micro-cell:軸對稱排列微單元)模式;OCB(Optically Compensated Birefringence:光學補償彎曲)模式;FLC(Ferroelectric Liquid Crystal:鐵電性液晶)模式;AFLC(AntiFerroelectric Liquid Crystal:反鐵電液晶)模式;MVA模式;PVA(Patterned Vertical Alignment:垂直配向構型)模式; IPS模式;FFS模式;或TBA(Transverse Bend Alignment:橫向彎曲配向)模式等。另外,作為顯示裝置的驅動方法,除了上述驅動方法之外,還有ECB(Electrically Controlled Birefringence:電控雙折射)模式、PDLC(Polymer Dispersed Liquid Crystal:聚合物分散型液晶)模式、PNLC(Polymer Network Liquid Crystal:聚合物網路型液晶)模式、賓主模式等。但是,不侷限於此,作為液晶元件及其驅動方式可以使用各種液晶元件及驅動方式。
在第m行第n列的像素電路501中,電晶體550的源極電極和汲極電極中的一個與資料線DL_n電連接,源極和汲極中的另一個與液晶元件570的一對電極中的另一個電極電連接。此外,電晶體550的閘極電極與掃描線GL_m電連接。電晶體550具有藉由成為開啟狀態或關閉狀態而對資料信號的資料的寫入進行控制的功能。
電容元件560的一對電極中的一個電極與被供應電位的佈線(以下,稱為電位供應線VL)電連接,另一個電極與液晶元件570的一對電極中的另一個電極電連接。此外,根據像素電路501的規格適當地設定電位供應線VL的電位的值。電容元件560被用作儲存被寫入的資料的儲存電容器。
例如,在具有圖23B的像素電路501的顯示裝置中,藉由圖23A所示的閘極驅動器504a依次選擇各行的像素電路501,並使電晶體550成為開啟狀態而寫入 資料信號的資料。
當電晶體550成為關閉狀態時,被寫入資料的像素電路501成為保持狀態。藉由按行依次進行上述步驟,可以顯示影像。
圖23A所示的多個像素電路501例如可以採用圖23C所示的結構。
另外,圖23C所示的像素電路501包括電晶體552及554、電容元件562以及發光元件572。可以將上述實施方式所示的電晶體應用於電晶體552和電晶體554中的一個或兩個。
電晶體552的源極電極和汲極電極中的一個電連接於被供應資料信號的佈線(以下,稱為資料線DL_n)。並且,電晶體552的閘極電極電連接於被供應閘極信號的佈線(以下,稱為掃描線GL_m)。
電晶體552具有藉由成為開啟狀態或關閉狀態而對資料信號的寫入進行控制的功能。
電容元件562的一對電極中的一個與被供應電位的佈線(以下,稱為電位供應線VL_a)電連接,另一個與電晶體552的源極電極和汲極電極中的另一個電連接。
電容元件562被用作儲存被寫入的資料的儲存電容器。
電晶體554的源極電極和汲極電極中的一個與電位供應線VL_a電連接。並且,電晶體554的閘極電 極與電晶體552的源極電極和汲極電極中的另一個電連接。
發光元件572的陽極和陰極中的一個與電位供應線VL_b電連接,另一個與電晶體554的源極電極和汲極電極中的另一個電連接。
作為發光元件572,可以使用例如有機電致發光元件(也稱為有機EL元件)等。注意,發光元件572並不侷限於有機EL元件,也可以為由無機材料構成的無機EL元件。
此外,高電源電位VDD施加到電位供應線VL_a和電位供應線VL_b中的一個,低電源電位VSS施加到另一個。
例如,在具有圖23C的像素電路501的顯示裝置中,例如,藉由圖23A所示的閘極驅動器504a依次選擇各行的像素電路501,並使電晶體552成為開啟狀態而寫入資料信號的資料。
當電晶體552成為關閉狀態時,被寫入資料的像素電路501成為保持狀態。並且,流在電晶體554的源極電極與汲極電極之間的電流量根據被寫入的資料信號的電位被控制,發光元件572以對應於流動的電流量的亮度發光。藉由按行依次進行上述步驟,可以顯示影像。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式8
在本實施方式中,參照圖24A至圖27B對能夠應用上述實施方式所說明的電晶體的電路結構的例子進行說明。
注意,在本實施方式中,下面將上面實施方式所說明的包括氧化物半導體的電晶體稱為OS電晶體而進行說明。
〈5.反相器電路的結構例子〉
圖24A示出可適用於驅動電路所包括的移位暫存器及緩衝器等的反相器的電路圖。反相器800將施加到輸入端子IN的信號的邏輯被反轉的信號輸出到輸出端子OUT。反相器800包括多個OS電晶體。信號SBG是能夠切換OS電晶體的電特性的信號。
圖24B是反相器800的一個例子。反相器800包括OS電晶體810及OS電晶體820。反相器800可以只使用n通道型電晶體,所以與使用CMOS(Complementary Metal Oxide Semiconductor:互補型金屬-氧化物-半導體)制造反相器(CMOS反相器)的情況相比,可以以低成本制造反相器800。
另外,包括OS電晶體的反相器800也可以設置在由Si電晶體構成的CMOS上。因為反相器800可以與CMOS電路重疊,所以可以抑制追加反相器800導致的電路面積的增大。
OS電晶體810、820包括被用作前閘極的第一閘極、被用作背閘極的第二閘極、被用作源極和汲極中的一個的第一端子以及被用作源極和汲極中的另一個的第二端子。
OS電晶體810的第一閘極與OS電晶體810的第二端子連接。OS電晶體810的第二閘極與供應信號SBG的佈線連接。OS電晶體810的第一端子與供應電壓VDD的佈線連接。OS電晶體810的第二端子與輸出端子OUT連接。
OS電晶體820的第一閘極與輸入端子IN連接。OS電晶體820的第二閘極與輸入端子IN連接。OS電晶體820的第一端子與輸出端子OUT連接。OS電晶體820的第二端子與供應電壓VSS的佈線連接。
圖24C是用來說明反相器800的工作的時序圖。圖24C的時序圖示出輸入端子IN的信號波形、輸出端子OUT的信號波形、信號SBG的信號波形以及OS電晶體810的臨界電壓的變化。
藉由將信號SBG施加到OS電晶體810的第二閘極,可以控制OS電晶體810的臨界電壓。
信號SBG具有用來使臨界電壓向負方向漂移的電壓VBG_A以及用來使臨界電壓向正方向漂移的電壓VBG_B。藉由對第二閘極施加電壓VBG_A,可以使OS電晶體810的臨界電壓向負方向漂移而成為臨界電壓VTH_A。另外,藉由對第二閘極施加電壓VBG_B,可以使OS電晶 體810的臨界電壓向正方向漂移而成為臨界電壓VTH_B
為了使上述說明視覺化,圖25A示出電晶體的電特性之一的Id-Vg曲線。
藉由將第二閘極的電壓提高到電壓VBG_A,可以將示出上述OS電晶體810的電特性的曲線向圖25A中的以虛線840表示的曲線漂移。另外,藉由將第二閘極的電壓降低到電壓VBG_B,可以將示出上述OS電晶體810的電特性的曲線向圖25A中的以實線841表示的曲線漂移。藉由將信號SBG切換為電壓VBG_A或電壓VBG_B,如圖25A所示,可以使OS電晶體810的臨界電壓向正方向漂移或向負方向漂移。
藉由使臨界電壓向正方向漂移而成為臨界電壓VTH_B,可以使OS電晶體810處於電流不容易流過的狀態。圖25B視覺性地示出此時的狀態。
如圖25B所示,可以使流過OS電晶體810的電流IB極小。因此,在施加到輸入端子IN的信號為高位準而OS電晶體820成為開啟狀態(ON)時,可以急劇降低輸出端子OUT的電壓。
如圖25B所示,可以使OS電晶體810處於電流不容易流過的狀態,所以可以在圖24C所示的時序圖中使輸出端子的信號波形831產生急劇的變化。因為可以減少流過供應電壓VDD的佈線與供應電壓VSS的佈線之間的貫通電流,所以可以以低功耗進行工作。
另外,藉由使臨界電壓向負方向漂移而成為 臨界電壓VTH_A,可以使OS電晶體810處於電流容易流過的狀態。圖25C視覺性地示出此時的狀態。如圖25C所示,可以將此時流過的電流IA設定為至少大於電流IB的值。因此,在施加到輸入端子IN的信號為低位準而OS電晶體820成為關閉狀態(OFF)時,可以急劇提高輸出端子OUT的電壓。如圖25C所示,可以使OS電晶體810處於電流容易流過的狀態,所以可以在圖24C所示的時序圖中使輸出端子的信號波形832產生急劇的變化。
注意,信號SBG對OS電晶體810的臨界電壓的控制較佳為在切換OS電晶體820的狀態之前,亦即在時刻T1和T2之前進行。例如,如圖24C所示,較佳為在將施加到輸入端子IN的信號切換為高位準的時刻T1之前將OS電晶體810的臨界電壓從臨界電壓VTH_A切換為臨界電壓VTH_B。另外,如圖24C所示,較佳為在將施加到輸入端子IN的信號切換為低位準的時刻T2之前將OS電晶體810的臨界電壓從臨界電壓VTH_B切換為臨界電壓VTH_A
注意,雖然圖24C的時序圖示出根據施加到輸入端子IN的信號切換信號SBG的結構,但是也可以採用別的結構。例如,可以採用使處於浮動狀態的OS電晶體810的第二閘極保持用來控制臨界電壓的電壓的結構。圖26A示出能夠實現該結構的電路結構的一個例子。
在圖26A中,除了圖24B所示的電路結構之外還包括OS電晶體850。OS電晶體850的第一端子與 OS電晶體810的第二閘極連接。OS電晶體850的第二端子與供應電壓VBG_B(或電壓VBG_A)的佈線連接。OS電晶體850的第一閘極與供應信號SF的佈線連接。OS電晶體850的第二閘極與供應電壓VBG_B(或電壓VBG_A)的佈線連接。
參照圖26B的時序圖對圖26A的工作進行說明。
在將施加到輸入端子IN的信號切換為高位準的時刻T3之前,將用來控制OS電晶體810的臨界電壓的電壓施加到OS電晶體810的第二閘極。將信號SF設定為高位準而OS電晶體850成為開啟狀態,對節點NBG施加用來控制臨界電壓的電壓VBG_B
在節點NBG成為電壓VBG_B之後,使OS電晶體850處於關閉狀態。因為OS電晶體850的關態電流極小,所以藉由使其維持關閉狀態,可以保持節點NBG所保持的電壓VBG_B。因此,對OS電晶體850的第二閘極施加電壓VBG_B的工作的次數減少,所以可以減少改寫電壓VBG_B所需要的功耗。
注意,雖然在圖24B及圖26A的電路結構中示出藉由外部控制對OS電晶體810的第二閘極施加電壓的結構,但是也可以採用別的結構。例如,也可以採用基於施加到輸入端子IN的信號生成用來控制臨界電壓的電壓而將其施加到OS電晶體810的第二閘極的結構。圖27A示出能夠實現該結構的電路結構的一個例子。
圖27A示出在圖24B所示的電路結構中的輸入端子IN與OS電晶體810的第二閘極之間追加CMOS反相器860的結構。CMOS反相器860的輸入端子與輸入端子IN連接。CMOS反相器860的輸出端子與OS電晶體810的第二閘極連接。
參照圖27B的時序圖對圖27A的工作進行說明。圖27B的時序圖示出輸入端子IN的信號波形、輸出端子OUT的信號波形、CMOS反相器860的輸出波形IN_B以及OS電晶體810的臨界電壓的變化。
作為使施加到輸入端子IN的信號的邏輯反轉的信號的輸出波形IN_B可以被用作用來控制OS電晶體810的臨界電壓的信號。因此,如圖25A至圖25C所說明,可以控制OS電晶體810的臨界電壓。例如,在圖27B所示的時刻T4,施加到輸入端子IN的信號為高位準而OS電晶體820成為開啟狀態。此時,輸出波形IN_B為低位準。因此,可以使OS電晶體810處於電流不容易流過的狀態,所以可以急劇降低輸出端子OUT的電壓。
另外,在圖27B所示的時刻T5,施加到輸入端子IN的信號為低位準而OS電晶體820成為關閉狀態。此時,輸出波形IN_B為高位準。因此,可以使OS電晶體810處於電流容易流過的狀態,所以可以急劇提高輸出端子OUT的電壓。
如上所述,在本實施方式的結構中,根據輸入端子IN的信號的邏輯而切換包括OS電晶體的反相器 的背閘極的電壓。藉由採用該結構,可以控制OS電晶體的臨界電壓。藉由根據施加到輸入端子IN的信號控制OS電晶體的臨界電壓,可以使輸出端子OUT的電壓產生急劇的變化。另外,可以減少供應電源電壓的佈線之間的貫通電流。因此,可以實現低功耗化。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式9
在本實施方式中,參照圖28A至圖31C說明如下半導體裝置的例子:將上述實施方式中說明的具有氧化物半導體的電晶體(OS電晶體)用於多個電路的半導體裝置。
〈6.半導體裝置的電路結構實例〉
圖28A是半導體裝置900的方塊圖。半導體裝置900包括電源電路901、電路902、電壓產生電路903、電路904、電壓產生電路905及電路906。
電源電路901是生成成為基準的電壓VORG的電路。電壓VORG也可以為多個電壓,而不需要為單一電壓。電壓VORG可以基於從半導體裝置900的外部供應的電壓Vo而產生。半導體裝置900可以基於從外部供應的單一電源電壓而產生電壓VORG。由此,半導體裝置900可以在從外部沒有供應多個電源電壓的情況下工作。
電路902、電路904及電路906是使用不同的電源電壓工作的電路。例如,電路902的電源電壓是基於電壓VORG及電壓VSS(VORG>VSS)的電壓。另外,例如,電路904的電源電壓是基於電壓VPOG及電壓VSS(VPOG>VORG)的電壓。另外,例如,電路906的電源電壓是基於電壓VORG、電壓VSS及電壓VNEG(VORG>VSS>VNEG)的電壓。此外,當將電壓VSS設定為與地電位(GND)相等的電位時,可以減少電源電路901所產生的電壓的種類。
電壓產生電路903是產生電壓VPOG的電路。電壓產生電路903可以基於從電源電路901供應的電壓VORG產生電壓VPOG。由此,包括電路904的半導體裝置900可以基於從外部供應的單一電源電壓工作。
電壓產生電路905是產生電壓VNEG的電路。電壓產生電路905可以基於從電源電路901供應的電壓VORG生成電壓VNEG。由此,包括電路906的半導體裝置900可以基於從外部供應的單一電源電壓工作。
圖28B示出以電壓VPOG工作的電路904的一個例子,圖28C示出用來使電路904工作的信號波形的一個例子。
圖28B示出電晶體911。供應到電晶體911的閘極的信號例如基於電壓VPOG及電壓VSS產生。該信號在使電晶體911成為導通狀態時基於電壓VPOG產生,且在使電晶體911成為非導通狀態時基於電壓VSS產生。 如圖28C所示,電壓VPOG比電壓VORG高。由此,電晶體911可以確實地使源極(S)與汲極(D)之間成為導通狀態。其結果是,電路904可以實現錯誤工作的減少。
圖28D示出以電壓VNEG工作的電路906的一個例子,圖28E示出用來使電路906工作的信號波形的一個例子。
圖28D示出包括背閘極的電晶體912。供應到電晶體912的閘極的信號例如基於電壓VORG及電壓VSS產生。該信號在使電晶體912成為導通狀態時基於電壓VORG產生,且在使電晶體912成為非導通狀態時基於電壓VSS產生。另外,供應到電晶體912的背閘極的信號基於電壓VNEG產生。如圖28E所示,電壓VNEG比電壓VSS(GND)低。由此,可以以使電晶體912的臨界電壓向正方向漂移的方式進行控制。由此,可以確實地使電晶體912成為非導通狀態,從而可以使流過源極(S)和汲極(D)之間的電流小。其結果是,電路906可以實現錯誤工作的減少及低功耗化。
另外,既可以將電壓VNEG直接施加到電晶體912的背閘極,又可以基於電壓VORG及電壓VNEG產生供應到電晶體912的閘極的信號並將該信號供應到電晶體912的背閘極。
圖29A和圖29B示出圖28D及圖28E的變形例。
在圖29A所示的電路圖中,示出電壓產生電 路905與電路906之間能夠由控制電路921控制其導通狀態的電晶體922。電晶體922為n通道型OS電晶體。控制電路921所輸出的控制信號SBG為控制電晶體922的導通狀態的信號。另外,電路906所包括的電晶體912A、電晶體912B是與電晶體922同樣的OS電晶體。
在圖29B的時序圖中,示出控制信號SBG及節點NBG的電位變化,節點NBG表示電晶體912A、電晶體912B的背閘極的電位狀態。當控制信號SBG為高位準時,電晶體922成為導通狀態,並且節點NBG成為電壓VNEG。然後,當控制信號SBG為低位準時,節點NBG成為電浮動狀態。電晶體922為OS電晶體,因此其關態電流小。由此,即使節點NBG成為電浮動狀態,也可以保持供應了的電壓VNEG
圖30A示出可適用於上述電壓產生電路903的電路結構的一個例子。圖30A所示的電壓產生電路903是五級電荷泵,其中包括二極體D1至二極體D5、電容器C1至電容器C5以及反相器INV。時脈信號CLK直接或者藉由反相器INV被供應到電容器C1至電容器C5。當反相器INV的電源電壓為基於電壓VORG及電壓VSS施加的電壓時,可以得到藉由供應時脈信號CLK升壓到電壓VORG的五倍的正電壓的電壓VPOG。另外,二極體D1至二極體D5的順方向電壓為0V。此外,藉由改變電荷泵的級數,可以獲得所希望的電壓VPOG
圖30B示出可適用於上述電壓產生電路905 的電路結構的一個例子。圖30B所示的電壓產生電路905是四級電荷泵,其中包括二極體D1至二極體D5、電容器C1至電容器C5以及反相器INV。時脈信號CLK直接或者藉由反相器INV被供應到電容器C1至電容器C5。當反相器INV的電源電壓為基於電壓VORG及電壓VSS施加的電壓時,可以得到藉由供應時脈信號CLK從地電位(亦即,電壓VSS)降壓到電壓VORG的四倍的負電壓的電壓VNEG。另外,二極體D1至二極體D5的順方向電壓為0V。此外,藉由改變電荷泵的級數,可以獲得所希望的電壓VNEG
注意,上述電壓生成電路903的電路結構不侷限於圖30A所示的電路圖的結構。圖31A至圖31C示出電壓生成電路903的變形例子。在圖31A至圖31C所示的電壓生成電路903A至電壓生成電路903C中,改變供應到各佈線的電壓或者改變元件的配置,由此可以實現電壓生成電路903的變形例子。
圖31A所示的電壓產生電路903A包括電晶體M1至電晶體M10、電容器C11至電容器C14以及反相器INV1。時脈信號CLK直接或者藉由反相器INV1被供應到電晶體M1至電晶體M10的閘極。藉由供應時脈信號CLK,可以獲得升壓到電壓VORG的四倍的正電壓的電壓VPOG。此外,藉由改變電荷泵的級數,可以獲得所希望的電壓VPOG。在圖31A所示的電壓產生電路903A中,藉由使用OS電晶體作為電晶體M1至電晶體M10,可以使關 態電流小,並可以抑制在電容器C11至電容器C14中保持的電荷的洩漏。由此,可以高效地從電壓VORG升壓到電壓VPOG
圖31B所示的電壓產生電路903B包括電晶體M11至電晶體M14、電容器C15及電容器C16以及反相器INV2。時脈信號CLK直接或者藉由反相器INV2被供應到電晶體M11至電晶體M14的閘極。藉由供應時脈信號CLK,可以獲得升壓到電壓VORG的兩倍的正電壓的電壓VPOG。在圖31B所示的電壓產生電路903B中,藉由使用OS電晶體作為電晶體M11至電晶體M14,可以使關態電流小,並可以抑制在電容器C15及電容器C16中保持的電荷的洩漏。由此,可以高效地從電壓VORG升壓到電壓VPOG
另外,圖31C所示的電壓生成電路903C包括電感器Ind1、電晶體M15、二極體D6及電容器C17。電晶體M15的導通狀態被控制信號EN控制。可以得到藉由控制信號EN使電壓VORG升壓的電壓VPOG。因為在圖31C所示的電壓生成電路903C中使用電感器Ind1進行升壓,所以可以以高轉換效率進行升壓。
如上所述,在本實施方式的結構中,可以在半導體裝置內部生成包括在該半導體裝置中的電路所需要的電壓。因此,可以減少從半導體裝置的外部被施加的電源電壓的個數。
本實施方式所示的結構等可以與其他實施方 式所示的結構適當地組合而實施。
實施方式10
在本實施方式中,參照圖32至圖35B對包括本發明的一個實施方式的半導體裝置的顯示模組、電子裝置進行說明。
〈7-1.顯示模組〉
圖32所示的顯示模組7000在上蓋7001與下蓋7002之間包括連接於FPC7003的觸控面板7004、連接於FPC7005的顯示面板7006、背光7007、框架7009、印刷電路板7010、電池7011。
例如可以將本發明的一個實施方式的半導體裝置用於顯示面板7006。
上蓋7001及下蓋7002可以根據觸控面板7004及顯示面板7006的尺寸可以適當地改變形狀或尺寸。
觸控面板7004能夠是電阻膜式觸控面板或電容式觸控面板,並且能夠被形成為與顯示面板7006重疊。此外,也可以使顯示面板7006的相對基板(密封基板)具有觸控面板的功能。另外,也可以在顯示面板7006的各像素內設置光感測器,而形成光學觸控面板。
背光7007具有光源7008。注意,雖然在圖32中例示出在背光7007上配置光源7008的結構,但是 不侷限於此。例如,可以在背光7007的端部設置光源7008,並使用光擴散板。當使用有機EL元件等自發光型發光元件時,或者當使用反射式面板等時,可以採用不設置背光7007的結構。
框架7009除了具有保護顯示面板7006的功能以外還具有用來遮斷因印刷電路板7010的工作而產生的電磁波的電磁屏蔽的功能。此外,框架7009也可以具有散熱板的功能。
印刷電路板7010具有電源電路以及用來輸出視訊信號及時脈信號的信號處理電路。作為對電源電路供應電力的電源,既可以採用外部的商業電源,又可以採用來自另行設置的電池7011的電源。當使用商業電源時,可以省略電池7011。
此外,在顯示模組7000中還可以設置偏光板、相位差板、稜鏡片等構件。
〈7-2.電子裝置1〉
此外,圖33A至圖33E示出電子裝置的一個例子。
圖33A是安裝有取景器8100的照相機8000的外觀圖。
照相機8000包括外殼8001、顯示部8002、操作按鈕8003、快門按鈕8004等。另外,照相機8000安裝有可裝卸的鏡頭8006。
在此,照相機8000具有能夠從外殼8001拆 卸下鏡頭8006而交換的結構,鏡頭8006和外殼也可以被形成為一體。
藉由按下快門按鈕8004,照相機8000可以進行成像。另外,顯示部8002被用作觸控面板,也可以藉由觸摸顯示部8002進行成像。
照相機8000的外殼8001包括具有電極的嵌入器(mount),除了可以與取景器8100連接以外,還可以與閃光燈裝置等連接。
取景器8100包括外殼8101、顯示部8102以及按鈕8103等。
外殼8101包括嵌合到照相機8000的嵌入器的嵌入器,可以將取景器8100安裝到照相機8000。另外,該嵌入器包括電極,可以將從照相機8000經過該電極接收的影像等顯示到顯示部8102上。
按鈕8103被用作電源按鈕。藉由利用按鈕8103,可以切換顯示部8102的顯示或非顯示。
本發明的一個實施方式的顯示裝置可以適用於照相機8000的顯示部8002及取景器8100的顯示部8102。
另外,在圖33A中,照相機8000與取景器8100是分開且可拆卸的電子裝置,但是也可以在照相機8000的外殼8001中內置有具備顯示裝置的取景器。
此外,圖33B是示出頭戴顯示器8200的外觀的圖。
頭戴顯示器8200包括安裝部8201、鏡頭8202、主體8203、顯示部8204以及電纜8205等。另外,在安裝部8201中內置有電池8206。
藉由電纜8205,將電力從電池8206供應到主體8203。主體8203具備無線接收器等,能夠將所接收的影像資料等的影像資訊顯示到顯示部8204上。另外,藉由利用設置在主體8203中的相機捕捉使用者的眼球及眼瞼的動作,並根據該資訊算出使用者的視點的座標,可以利用使用者的視點作為輸入方法。
另外,也可以對安裝部8201的被使用者接觸的位置設置多個電極。主體8203也可以具有藉由檢測出根據使用者的眼球的動作而流過電極的電流,識別使用者的視點的功能。此外,主體8203可以具有藉由檢測出流過該電極的電流來監視使用者的脈搏的功能。安裝部8201可以具有溫度感測器、壓力感測器、加速度感測器等各種感測器,也可以具有將使用者的生物資訊顯示在顯示部8204上的功能。另外,主體8203也可以檢測出使用者的頭部的動作等,並與使用者的頭部的動作等同步地使顯示在顯示部8204上的影像變化。
可以對顯示部8204適用本發明的一個實施方式的顯示裝置。
圖33C、圖33D及圖33E是示出頭戴顯示器8300的外觀的圖。頭戴顯示器8300包括外殼8301、顯示部8302、帶狀的固定工具8304以及一對透鏡8305。
使用者可以藉由透鏡8305看到顯示部8302上的顯示。較佳的是,彎曲配置顯示部8302。藉由彎曲配置顯示部8302,使用者可以感受高真實感。注意,在本實施方式中,例示出設置一個顯示部8302的結構,但是不侷限於此,例如也可以採用設置兩個顯示部8302的結構。此時,在將每個顯示部配置在使用者的每個眼睛一側時,可以進行利用視差的三維顯示等。
可以將本發明的一個實施方式的顯示裝置適用於顯示部8302。因為包括本發明的一個實施方式的半導體裝置的顯示裝置具有極高的解析度,所以即使如圖33E那樣地使用透鏡8305放大,也可以不使使用者看到像素而可以顯示現實感更高的影像。
〈7-3.電子裝置2〉
接著,圖34A至圖34G示出與圖33A至圖33E所示的電子裝置不同的電子裝置的例子。
圖34A至圖34G所示的電子裝置包括外殼9000、顯示部9001、揚聲器9003、操作鍵9005(包括電源開關或操作開關)、連接端子9006、感測器9007(該感測器具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)、麥克風9008等。
圖34A至圖34G所示的電子裝置具有各種功能。例如,可以具有如下功能:將各種資訊(靜態影像、動態影像、文字影像等)顯示在顯示部上的功能;觸控面板的功能;顯示日曆、日期或時間等的功能;藉由利用各種軟體(程式)控制處理的功能;進行無線通訊的功能;藉由利用無線通訊功能來連接到各種電腦網路的功能;藉由利用無線通訊功能,進行各種資料的發送或接收的功能;讀出儲存在存儲介質中的程式或資料來將其顯示在顯示部上的功能;等。注意,圖34A至圖34G所示的電子裝置可具有的功能不侷限於上述功能,而可以具有各種功能。另外,雖然在圖34A至圖34G中未圖示,但是電子裝置可以包括多個顯示部。此外,也可以在該電子裝置中設置照相機等而使其具有如下功能:拍攝靜態影像的功能;拍攝動態影像的功能;將所拍攝的影像儲存在存儲介質(外部存儲介質或內置於照相機的存儲介質)中的功能;將所拍攝的影像顯示在顯示部上的功能;等。
下面,詳細地說明圖34A至圖34G所示的電子裝置。
圖34A是示出電視機9100的立體圖。可以將例如是50英寸以上或100英寸以上的大型的顯示部9001組裝到電視機9100。
圖34B是示出可攜式資訊終端9101的立體圖。可攜式資訊終端9101例如具有電話機、電子筆記本和資訊閱讀裝置等中的一種或多種的功能。明確而言,可 以將其用作智慧手機。另外,可攜式資訊終端9101可以設置有揚聲器9003、連接端子9006、感測器9007等。另外,可攜式資訊終端9101可以將文字及影像資訊顯示在其多個面上。例如,可以將三個操作按鈕9050(還稱為操作圖示或只稱為圖示)顯示在顯示部9001的一個面上。另外,可以將由虛線矩形表示的資訊9051顯示在顯示部9001的另一個面上。此外,作為資訊9051的例子,可以舉出提示收到來自電子郵件、SNS(Social Networking Services:社交網路服務)或電話等的資訊的顯示;電子郵件或SNS等的標題;電子郵件或SNS等的發送者姓名;日期;時間;電量;以及天線接收強度等。或者,可以在顯示有資訊9051的位置上顯示操作按鈕9050等代替資訊9051。
圖34C是示出可攜式資訊終端9102的立體圖。可攜式資訊終端9102具有將資訊顯示在顯示部9001的三個以上的面上的功能。在此,示出資訊9052、資訊9053、資訊9054分別顯示於不同的面上的例子。例如,可攜式資訊終端9102的使用者能夠在將可攜式資訊終端9102放在上衣口袋裡的狀態下確認其顯示(這裡是資訊9053)。明確而言,將打來電話的人的電話號碼或姓名等顯示在能夠從可攜式資訊終端9102的上方觀看這些資訊的位置。使用者可以確認到該顯示而無需從口袋裡拿出可攜式資訊終端9102,由此能夠判斷是否接電話。
圖34D是示出手錶型可攜式資訊終端9200的 立體圖。可攜式資訊終端9200可以執行行動電話、電子郵件、文章的閱讀及編輯、音樂播放、網路通訊、電腦遊戲等各種應用程式。此外,顯示部9001的顯示面被彎曲,能夠在所彎曲的顯示面上進行顯示。另外,可攜式資訊終端9200可以進行被通訊標準化的近距離無線通訊。例如,藉由與可進行無線通訊的耳麥相互通訊,可以進行免提通話。此外,可攜式資訊終端9200包括連接端子9006,可以藉由連接器直接與其他資訊終端進行資料的交換。另外,也可以藉由連接端子9006進行充電。此外,充電工作也可以利用無線供電進行,而不藉由連接端子9006。
圖34E、圖34F和圖34G是示出能夠折疊的可攜式資訊終端9201的立體圖。另外,圖34E是展開狀態的可攜式資訊終端9201的立體圖,圖34F是從展開狀態和折疊狀態中的一個狀態變為另一個狀態的中途的狀態的可攜式資訊終端9201的立體圖,圖34G是折疊狀態的可攜式資訊終端9201的立體圖。可攜式資訊終端9201在折疊狀態下可攜性好,在展開狀態下因為具有無縫拼接的較大的顯示區域而其顯示的一覽性強。可攜式資訊終端9201所包括的顯示部9001由鉸鏈9055所連接的三個外殼9000來支撐。藉由鉸鏈9055使兩個外殼9000之間彎折,可以從可攜式資訊終端9201的展開狀態可逆性地變為折疊狀態。例如,可以以1mm以上且150mm以下的曲率半徑使可攜式資訊終端9201彎曲。
接著,圖35A和圖35B示出與圖33A至圖33E、圖34A至圖34G所示的電子裝置不同的電子裝置的例子。圖35A和圖35B是包括多個顯示面板的顯示裝置的立體圖。圖35A是多個顯示面板被捲繞時的立體圖,圖35B是展開多個顯示面板時的立體圖。
圖35A和圖35B所示的顯示裝置9500包括多個顯示面板9501、軸部9511、軸承部9512。多個顯示面板9501都包括顯示區域9502、具有透光性的區域9503。
多個顯示面板9501具有撓性。以其一部分互相重疊的方式設置相鄰的兩個顯示面板9501。例如,可以重疊相鄰的兩個顯示面板9501的各具有透光性的區域9503。藉由使用多個顯示面板9501,可以實現螢幕大的顯示裝置。另外,根據使用情況可以捲繞顯示面板9501,所以可以實現通用性高的顯示裝置。
圖35A和圖35B示出相鄰的顯示面板9501的顯示區域9502彼此分開的情況,但是不侷限於此,例如,也可以藉由沒有間隙地重疊相鄰的顯示面板9501的顯示區域9502,實現連續的顯示區域9502。
本實施方式所示的電子裝置具有包括用來顯示某些資訊的顯示部的特徵。注意,本發明的一個實施方式的半導體裝置也可以應用於不包括顯示部的電子裝置。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式11
〈半導體電路〉
本說明書等所公開的電晶體可以被用於OR電路、AND電路、NAND電路及NOR電路等邏輯電路、反相器電路、緩衝器電路、移位暫存器電路、正反器電路、編碼器電路、解碼器電路、放大電路、類比開關電路、積分電路、微分電路以及記憶元件等各種半導體電路。
圖46A至圖46C的電路圖示出使用本說明書等所公開的電晶體的半導體電路的例子。在電路圖中,為了明確表示使用氧化物半導體的電晶體,對使用氧化物半導體的電晶體的電路符號附上“OS”。
圖46A所示的半導體電路示出反相器電路的結構例子,其中將p通道型電晶體281與n通道型電晶體282串聯連接且將各閘極連接。
圖46B所示的半導體電路示出類比開關電路的結構例子,其中將p通道型電晶體281與n通道型電晶體282並聯連接。
圖46C所示的半導體電路示出NAND電路的結構例子,其中使用電晶體281a、電晶體281b、電晶體282a及電晶體282b。NAND電路根據輸入到輸入端子IN_A和輸入端子IN_B的電位的組合改變輸出電位。
〈記憶體裝置〉
圖47A所示的半導體電路示出記憶體裝置的結構例 子,其中將電晶體289的源極和汲極中的一個與電晶體1281的閘極及電容器257的一個電極連接。另外,圖47B所示的電路示出記憶體裝置的結構例子,其中將電晶體289的源極和汲極中的一個與電容器257的一個電極連接。
在圖47A及圖47B所示的半導體電路中,可以將從電晶體289的源極和汲極中的另一個輸入的電荷保持在節點256中。藉由將使用氧化物半導體的電晶體用作電晶體289,可以長期間保持節點256中的電荷。
雖然在圖47A中電晶體1281是p通道型電晶體,但是也可以使用n通道型電晶體。例如,作為電晶體1281,也可以使用電晶體281或電晶體282。此外,作為電晶體1281,也可以使用OS電晶體。
在此,對圖47A及圖47B所示的半導體裝置(記憶體裝置)進行詳細說明。
圖47A所示的半導體裝置包括使用第一半導體的電晶體1281、使用第二半導體的電晶體289以及電容器257。
電晶體289是使用上述實施方式所公開的OS電晶體。藉由使用關態電流小的電晶體289,可以長期間將存儲內容保持在節點。也就是說,因為不需要更新工作或可以使更新工作的頻率極低,所以能夠實現低功耗的記憶體裝置。
在圖47A中,佈線251與電晶體1281的源極 和汲極中的一個電連接,佈線252與電晶體1281的源極和汲極中的另一個電連接。此外,佈線253與電晶體289的閘極電連接,佈線254與電晶體289的閘極電連接。此外,電晶體1281的閘極、電晶體289的源極和汲極中的另一個及電容器257的電極中的一個與節點256電連接。此外,佈線255與電容器257的電極中的另一個電連接。
圖47A所示的記憶體裝置具有能夠保持供應給節點256的電荷的特性,由此能夠如下所述地進行資料的寫入、保持和讀出。
[寫入工作及保持工作]
對資料的寫入和保持進行說明。首先,將佈線254的電位設定為使電晶體289成為開啟狀態的電位。由此,佈線253的電位供應給節點256。也就是說,對節點256供應規定的電荷(寫入)。這裡,供應賦予兩種不同電位位準的電荷(以下,也稱為“低位準電荷”、“高位準電荷”)中的任一個。然後,藉由將佈線254的電位設定為使電晶體289成為關閉狀態的電位,在節點256中保持電荷。
高位準電荷是對節點256供應比低位準電荷高的電位的電荷。在作為電晶體1281使用p通道型電晶體的情況下,高位準電荷和低位準電荷都是供應比電晶體1281的臨界電壓高的電位的電荷。在作為電晶體1281使用n通道型電晶體的情況下,高位準電荷和低位準電荷都是供應比電晶體1281的臨界電壓低的電位的電荷。也就 是說,高位準電荷和低位準電荷都是供應使電晶體1281成為關閉狀態的電位的電荷。
因為電晶體289的關態電流極低,所以節點256的電荷被長時間地保持。
[讀出工作]
接著,對資料的讀出進行說明。在對佈線251供應與佈線252的電位不同的規定電位(恆定電位)的狀態下,藉由對佈線255供應讀出電位VR,可以讀出保持在節點256中的資料。
當由高位準電荷供應的電位為VH,由低位準電荷供應的電位為VL時,讀出電位VR可以為{(Vth-VH)+(Vth+VL)}/2。此外,當作為電晶體1281使用p通道型電晶體時,不進行資料讀出時的佈線255的電位可以為比VH高的電位,而當作為電晶體1281使用n通道型電晶體時,不進行資料讀出時的佈線255的電位可以為比VL低的電位。
例如,在作為電晶體1281使用p通道型電晶體的情況下,當電晶體1281的Vth為-2V,VH為1V,VL為-1V時,VR可以為-2V。在寫入到節點256的電位是VH的情況下,當VR供應給佈線255時,VR+VH,亦即-1V施加到電晶體1281的閘極。-1V高於Vth,因此電晶體1281不成為開啟狀態。由此,佈線252的電位不產生變化。此外,在寫入到節點256的電位是VL的情況下,當 VR供應給佈線255時,VR+VL,亦即-3V施加到電晶體1281的閘極。-3V低於Vth,因此電晶體1281成為開啟狀態。由此,佈線252的電位變化。
另外,在作為電晶體1281使用n通道型電晶體的情況下,當電晶體1281的Vth為2V,VH為1V,VL為-1V時,VR可以為2V。在寫入到節點256的電位是VH的情況下,當VR供應給佈線255時,VR+VH,亦即3V施加到電晶體1281的閘極。3V高於Vth,因此電晶體1281成為開啟狀態。由此,佈線252的電位變化。此外,在寫入到節點256的電位是VL的情況下,當VR供應給佈線255時,VR+VL,亦即1V施加到電晶體1281的閘極。1V低於Vth,因此電晶體1281不成為開啟狀態。由此,佈線252的電位不產生變化。
藉由辨別佈線252的電位,可以讀出節點256所保持的資料。
圖47B所示的半導體裝置與圖47A所示的半導體裝置不同之處為圖47B所示的半導體裝置不包括電晶體1281。在此情況下也可以藉由與圖47A所示的半導體裝置相同的工作進行資料的寫入及保持。
下面,說明圖47B所示的半導體裝置中的資料讀出。在對佈線254施加使電晶體289成為開啟狀態的電位時,處於浮動狀態的佈線253和電容器257導通,且在佈線253和電容器257之間再次分配電荷。其結果是,佈線253的電位產生變化。佈線253的電位的變化量根據 節點256的電位(或積累在節點256中的電荷)而具有不同的值。
例如,在節點256的電位為V,電容器257的電容為C,佈線253所具有的電容成分為CB,在再次分配電荷之前的佈線253的電位為VB0時,再次分配電荷之後的佈線253的電位為(CB×VB0+C×V)/(CB+C)。因此,在假定作為記憶單元的狀態,節點256的電位成為兩種狀態,亦即V1和V0(V1>V0)時,可以知道保持電位V1時的佈線253的電位(=(CB×VB0+C×V1)/(CB+C))高於保持電位V0時的佈線253的電位(=(CB×VB0+C×V0)/(CB+C))。
而且,藉由對佈線253的電位和規定的電位進行比較可以讀出資料。
上述記憶體裝置可以應用使用氧化物半導體的關態電流極小的電晶體來長期間地保持存儲內容。也就是說,不需要更新工作或可以使更新工作的頻率極低,從而可以實現低耗電的半導體裝置。此外,在沒有電力的供應時(但是,較佳為固定電位)也可以長期間地保持存儲內容。
此外,因為該儲存裝置在寫入資料時不需要高電壓,所以其中不容易產生元件的劣化。由於例如不如習知的非揮發性記憶體那樣地對浮動閘極注入電子或從浮動閘極抽出電子,因此根本不會發生如絕緣體的劣化等的問題。換言之,在根據本發明的一個實施方式的記憶體裝 置中,在現有非揮發性記憶體中成為問題的重寫次數不受到限制,而使其可靠性得到極大提高。再者,根據電晶體的導通狀態或非導通狀態而進行資料寫入,從而可以進行高速工作。
〈CPU〉
下面,對使用上述電晶體的CPU的一個例子進行說明。圖48是示出其一部分使用上述電晶體的CPU的結構實例的方塊圖。
圖48所示的CPU在基板1190上具有:ALU1191(ALU:Arithmetic logic unit:算術邏輯單元)、ALU控制器1192、指令解碼器1193、中斷控制器1194、時序控制器1195、暫存器1196、暫存器控制器1197、匯流排介面1198(Bus I/F)、能夠重寫的ROM1199以及ROM介面1189(ROM I/F)。作為基板1190使用半導體基板、SOI基板、玻璃基板等。ROM1199及ROM介面1189也可以設置在不同的晶片上。當然,圖48所示的CPU只是簡化其結構而所示的一個例子而已,所以實際上的CPU根據其用途具有各種各樣的結構。例如,也可以以包括圖48所示的CPU或算術電路的結構為核心,設置多個該核心並使其同時工作。另外,在CPU的內部算術電路或資料匯流排中能夠處理的位元數例如可以為8位元、16位元、32位元、64位元等。
藉由匯流排介面1198輸入到CPU的指令在 輸入到指令解碼器1193並被解碼後輸入到ALU控制器1192、中斷控制器1194、暫存器控制器1197、時序控制器1195。
ALU控制器1192、中斷控制器1194、暫存器控制器1197、時序控制器1195根據被解碼的指令進行各種控制。明確而言,ALU控制器1192生成用來控制ALU1191的工作的信號。另外,中斷控制器1194在執行CPU的程式時,根據其優先度或遮罩狀態來判斷來自外部的輸入/輸出裝置或週邊電路的中斷要求而對該要求進行處理。暫存器控制器1197生成暫存器1196的位址,並對應於CPU的狀態來進行暫存器1196的讀出或寫入。
另外,時序控制器1195生成用來控制ALU1191、ALU控制器1192、指令解碼器1193、中斷控制器1194以及暫存器控制器1197的工作時序的信號。例如,時序控制器1195具有根據基準時脈信號來生成內部時脈信號的內部時脈生成器,並將內部時脈信號供應到上述各種電路。
在圖48所示的CPU中,在暫存器1196中設置有記憶單元。可以將上述電晶體或記憶體裝置等用於暫存器1196的記憶單元。
在圖48所示的CPU中,暫存器控制器1197根據ALU1191的指令進行暫存器1196中的保持工作的選擇。換言之,暫存器控制器1197在暫存器1196所具有的記憶單元中選擇由正反器保持資料還是由電容器保持資 料。在選擇由正反器保持資料的情況下,對暫存器1196中的記憶元件供應電源電壓。在選擇由電容器保持資料的情況下,對電容器進行資料的重寫,而可以停止對暫存器1196中的記憶單元供應電源電壓。
圖49是可以用作暫存器1196的記憶元件的電路圖的一個例子。記憶元件1730包括在電源關閉時失去存儲資料的電路1701、在電源關閉時不失去存儲資料的電路1702、開關1703、開關1704、邏輯元件1706、電容器1707以及具有選擇功能的電路1720。電路1702包括電容器1708、電晶體1709及電晶體1710。另外,記憶元件1730根據需要還可以包括其他元件諸如二極體、電阻器或電感器等。
在此,電路1702可以使用上述記憶體裝置。在停止對記憶元件1730供應電源電壓時,接地電位(0V)或使電晶體1709關閉的電位持續被輸入到電路1702中的電晶體1709的閘極。例如,電晶體1709的閘極藉由電阻器等負載接地。
在此示出開關1703為具有一導電型(例如,n通道型)的電晶體1713,而開關1704為具有與電晶體1713相反的導電型(例如,p通道型)的電晶體1714的例子。這裡,開關1703的第一端子對應於電晶體1713的源極和汲極中的一個,開關1703的第二端子對應於電晶體1713的源極和汲極中的另一個,並且開關1703的第一端子與第二端子之間的導通或非導通(亦即,電晶體 1713的開啟狀態或關閉狀態)由輸入到電晶體1713的閘極中的控制信號RD選擇。開關1704的第一端子對應於電晶體1714的源極和汲極中的一個,開關1704的第二端子對應於電晶體1714的源極和汲極中的另一個,並且開關1704的第一端子與第二端子之間的導通或非導通(亦即,電晶體1714的開啟狀態或關閉狀態)由輸入到電晶體1714的閘極中的控制信號RD選擇。
電晶體1709的源極和汲極中的一個電連接到電容器1708的一對電極的一個及電晶體1710的閘極。在此,將連接部分稱為節點M2。電晶體1710的源極和汲極中的一個電連接到能夠供應低電源電位的佈線(例如,GND線),而另一個電連接到開關1703的第一端子(電晶體1713的源極和汲極中的一個)。開關1703的第二端子(電晶體1713的源極和汲極中的另一個)電連接到開關1704的第一端子(電晶體1714的源極和汲極中的一個)。開關1704的第二端子(電晶體1714的源極和汲極中的另一個)電連接到能夠供應電源電位VDD的佈線。開關1703的第二端子(電晶體1713的源極和汲極中的另一個)、開關1704的第一端子(電晶體1714的源極和汲極中的一個)、邏輯元件1706的輸入端子和電容器1707的一對電極的一個是電連接的。在此,將連接部分稱為節點M1。可以對電容器1707的一對電極的另一個輸入固定電位。例如,可以對其輸入低電源電位(GND等)或高電源電位(VDD等)。電容器1707的一對電極的另一個 電連接到能夠供應低電源電位的佈線(例如,GND線)。可以對電容器1708的一對電極的另一個輸入固定電位。例如,可以對其輸入低電源電位(GND等)或高電源電位(VDD等)。電容器1708的一對電極的另一個電連接到能夠供應低電源電位的佈線(例如,GND線)。
另外,當積極地利用電晶體或佈線的寄生電容等時,可以不設置電容器1707及電容器1708。
控制信號WE輸入到電晶體1709的閘極電極。開關1703及開關1704的第一端子與第二端子之間的導通狀態或非導通狀態由與控制信號WE不同的控制信號RD選擇,當一個開關的第一端子與第二端子之間處於導通狀態時,另一個開關的第一端子與第二端子之間處於非導通狀態。
對應於保持在電路1701中的資料的信號輸入到電晶體1709的源極和汲極中的另一個。圖49示出從電路1701輸出的信號輸入到電晶體1709的源極和汲極中的另一個的例子。由邏輯元件1706使從開關1703的第二端子(電晶體1713的源極和汲極中的另一個)輸出的信號的邏輯值反轉而成為反轉信號,將其經由電路1720輸入到電路1701。
雖然圖49示出從開關1703的第二端子(電晶體1713的源極和汲極中的另一個)輸出的信號藉由邏輯元件1706及電路1720輸入到電路1701的例子,但是 不侷限於此。另外,也可以不使從開關1703的第二端子(電晶體1713的源極和汲極中的另一個)輸出的信號的邏輯值反轉而輸入到電路1701。例如,當電路1701包括其中保持使從輸入端子輸入的信號的邏輯值反轉的信號的節點時,可以將從開關1703的第二端子(電晶體1713的源極和汲極中的另一個)輸出的信號輸入到該節點。
作為圖49所示的電晶體1709,可以使用上述實施方式所示的電晶體100。此外,可以對該電晶體1709的閘極電極輸入控制信號WE,並且對其背閘極電極輸入控制信號WE2。控制信號WE2可以是具有固定電位的信號。該固定電位例如可以選自接地電位或低於電晶體1709的源極電位的電位等。控制信號WE2是具有用來控制電晶體1709的臨界電壓的電位信號,能夠進一步降低電晶體1709的閘極電壓為0V時的汲極電流。另外,作為電晶體1709也可以使用不具有第二閘極的電晶體。
在圖49所示的用於記憶元件1730的電晶體中,電晶體1709以外的電晶體也可以使用其通道形成在由氧化物半導體以外的半導體構成的層或基板1190中的電晶體。例如,可以使用其通道形成在矽層或矽基板中的電晶體。另外,用於記憶元件1730的電晶體可以都是其通道由氧化物半導體層形成的電晶體。或者,記憶元件1730可以將除了電晶體1709以外的電晶體與其通道由氧化物半導體層形成的電晶體及其通道形成在由氧化物半導體以外的半導體構成的層或基板1190中的電晶體組合。
圖49所示的電路1701例如可以使用正反器電路。另外,作為邏輯元件1706例如可以使用反相器或時脈反相器等。
在本發明的一個實施方式的半導體裝置中,在不向記憶元件1730供應電源電壓的期間,可以由設置在電路1702中的電容器1708將儲存在電路1701中的資料保持在節點M2中。
另外,如上所述,OS電晶體的關態電流極小。例如,OS電晶體的關態電流比其通道形成在具有結晶性的矽中的電晶體的關態電流小得多。因此,藉由將該電晶體用作電晶體1709,即便在不向記憶元件1730供應電源電壓的期間也可以長期間儲存電容器1708所保持的信號。因此,記憶元件1730在停止供應電源電壓的期間也可以保持存儲內容(資料)。
另外,藉由設置開關1703及開關1704,可以縮短在再次開始供應電源電壓之後直到電路1701重新保持原來的資料為止所需要的時間。
另外,在電路1702中,保持在節點M2的信號被輸入到電晶體1710的閘極。因此,在再次開始向記憶元件1730供應電源電壓之後,根據保持在節點M2的信號決定電晶體1710的狀態(開啟狀態或關閉狀態),並可以從電路1702讀出信號。因此,即便對應於保持在節點M2中的信號的電位稍有變動,也可以準確地讀出原來的信號。
藉由將這種記憶元件1730用於CPU所具有的暫存器或快取記憶體等記憶體裝置,可以防止記憶體裝置內的資料因停止電源電壓的供應而消失。另外,可以在再次開始供應電源電壓之後在短時間內恢復到停止供應電源之前的狀態。因此,可以在CPU整體或構成CPU的一個或多個邏輯電路中在短期間內停止電源,可以提高停止電源的頻率,從而可以抑制功耗。
注意,在本實施方式中,雖然對將記憶元件1730用於CPU的例子進行說明,但是也可以將記憶元件1730應用於LSI諸如DSP(Digital Signal Processor:數位信號處理器)、定製LSI、PLD(Programmable Logic Device:可程式邏輯裝置)等、RF-Id(Radio Frequency Identification:射頻識別)。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施例1
在本實施例中,製造相當於圖2A至圖2C所示的電晶體100A的電晶體,並進行該電晶體的可靠性測試。在本實施例中,製造下面所示的樣本381及樣本382,對它們進行評價。樣本381及樣本382是包括本發明的一個實施方式的電晶體的樣本。另外,在樣本381及樣本382中形成有通道長度L=3μm且通道寬度W=50μm的電晶體。樣本381與樣本382的不同之處在於絕緣膜 110的製造方法。
下面,說明在本實施例中製造的樣本381及樣本382。另外,在下面的說明中,使用對圖2A至圖2C所示的電晶體100A附上的符號進行說明。
首先,在基板102上形成導電膜106。作為基板102,使用玻璃基板。另外,作為導電膜106,使用濺射裝置形成10nm厚的鈦膜及100nm厚的銅膜。
接著,在基板102及導電膜106上形成絕緣膜104。作為絕緣膜104,使用電漿CVD設備形成400nm厚的氮化矽膜以及50nm厚的氧氮化矽膜。
絕緣膜104的成膜條件為如下。首先,基板溫度為350℃;將流量為200sccm的矽烷氣體、流量為2000sccm的氮氣體及流量為100sccm的氨氣體引入處理室內;壓力為100Pa;對設置在電漿CVD設備內的平行板電極之間供應2000W的RF電力,形成50nm厚的氮化矽膜,接著,將氨氣體的流量改變為2000sccm,形成300nm厚的氮化矽膜,接著,將氨氣體的流量改變為100sccm,形成50nm厚的氮化矽膜。接下來,基板溫度為350℃;將流量為20sccm的矽烷氣體及流量為3000sccm的一氧化二氮氣體引入處理室內,壓力為40Pa,對設置在電漿CVD設備內的平行板電極之間供應100W的RF電力,來形成50nm厚的氧氮化矽膜。
接著,在絕緣膜104上形成氧化物半導體膜108。作為氧化物半導體膜108,利用濺射裝置形成。
作為氧化物半導體膜108,形成40nm厚的IGZO膜,成膜條件為如下:基板溫度為130℃;以9:1的流量比將氬氣體及氧氣體引入處理室內;壓力為0.6Pa;對設置在濺射裝置內的氧化物半導體靶材(In:Ga:Zn=4:2:4.1[原子個數比])供應2500W的AC功率。
接著,在絕緣膜104及氧化物半導體膜108上形成絕緣膜110。
作為樣本381的絕緣膜110,使用電漿CVD設備形成第一層的30nm厚的氧氮化矽膜、第二層的100nm厚的氧氮化矽膜以及第三層的20nm厚的氧氮化矽膜。第一層的氧氮化矽膜的成膜條件為如下:基板溫度為350℃;將流量為20sccm的矽烷氣體及流量為3000sccm的一氧化二氮氣體引入處理室內;壓力為200Pa;對設置在電漿CVD設備中的平行板電極之間供應100W的RF電力。另外,第二層的氧氮化矽膜的成膜條件為如下:基板溫度為220℃;將流量為160sccm的矽烷氣體及流量為4000sccm的一氧化二氮氣體引入處理室內;壓力為200Pa;對設置在電漿CVD設備中的平行板電極之間供應1500W的RF電力。另外,第三層的氧氮化矽膜的成膜條件與第一層的氧氮化矽膜的成膜條件相同。
另一方面,樣本382的絕緣膜110使用電漿CVD設備形成厚度為150nm的氧氮化矽膜的單層。氧氮化矽膜的成膜條件為如下:基板溫度為350℃,將流量為 20sccm的矽烷氣體和流量為18000sccm的一氧化二氮氣體引入到處理室內,壓力為200Pa,在設置於電漿CVD設備內的平行平板型電極之間供應100W的RF電力。
如此,樣本381與樣本382之間的不同之處在於絕緣膜110的製造方法,但是其他製程是相同的。
接著,在氮氛圍下以350℃的基板溫度對樣本381和樣本382進行1小時的加熱處理。
接著,以350℃的基板溫度對樣本381和樣本382進行氧電漿處理。氧電漿處理的條件為如下:將流量為3000sccm的氧引入到處理室內,壓力為40Pa,在設置於電漿CVD設備內的平行平板型電極之間供應3000W的RF電力,處理時間為250sec。
接著,去除絕緣膜110及絕緣膜104中的所希望的區域,形成到達導電膜106的開口部143。
接著,以覆蓋開口部143的方式在絕緣膜110上形成導電膜112。作為導電膜112,使用濺射裝置形成第一層的10nm厚的In-Ga-Zn氧化物以及第二層的90nm厚的In-Ga-Zn氧化物。第一層的In-Ga-Zn氧化物的成膜條件為如下:基板溫度為170℃;將流量為200sccm的氧氣體引入處理室內;壓力為0.6Pa;對設置在濺射裝置內的氧化物半導體靶材(In:Ga:Zn=4:2:4.1[原子個數比])供應2500W的AC功率。第二層的In-Ga-Zn氧化物的成膜條件為如下:基板溫度為170℃;將流量為180sccm的氬氣體以及流量為20sccm的氧氣體引入處理室內;壓力為 0.6Pa;對設置在濺射裝置內的氧化物半導體靶材(In:Ga:Zn=4:2:4.1[原子個數比])供應2500W的AC功率。
然後,使用乾蝕刻裝置將絕緣膜110及導電膜112加工為島狀,使氧化物半導體膜108的表面的一部分露出。
接著,在絕緣膜104、氧化物半導體膜108及導電膜112上形成絕緣膜116。
絕緣膜116經過電漿處理及沉積處理這兩個步驟形成。電漿處理的條件為如下:基板溫度為220℃;將流量為100sccm的氬氣體引入處理室內;壓力為40Pa;對設置在電漿CVD設備內的平行板電極之間供應1000W的RF電力。接著,沉積處理的條件為如下:基板溫度為220℃;將流量為50sccm的矽烷氣體、流量為5000sccm的氮氣體以及流量為100sccm的氨氣體引入處理室內;壓力為100Pa;對設置在電漿CVD設備內的平行板電極之間供應1000W的RF電力,來形成厚度為100nm的氮化矽膜。
接著,在絕緣膜116上形成絕緣膜118。
絕緣膜118的成膜條件為如下:基板溫度為220℃;將流量為160sccm的矽烷氣體以及流量為4000sccm的一氧化二氮氣體引入處理室內;壓力為200Pa;對設置在電漿CVD設備內的平行板電極之間供應1500W的RF電力形成厚度為300nm的氧氮化矽膜。
接著,去除絕緣膜116、118的所希望的區域,形成到達氧化物半導體膜108的開口部141a、141b。
作為開口部141a、141b的形成方法,利用乾蝕刻法。
接著,以覆蓋開口部141a、141b的方式在絕緣膜118上形成導電膜,將該導電膜加工為島狀,來形成用作源極電極及汲極電極的導電膜120a、120b。
導電膜120a、120b使用濺射裝置且使用厚度為50nm的Ti膜、厚度為400nm的Al膜和厚度為100nm的Ti膜形成。
接著,作為平坦化膜,形成厚度為1.5μm的丙烯酸樹脂膜。
接著,進行加熱處理。作為該加熱處理,基板溫度為250℃,在氮氛圍下進行1小時的加熱處理。
經過上述製程,製造本實施例的樣本381及樣本382。另外,在樣本381及樣本382的製程中的最高溫度為350℃。
圖50A示出樣本381的通道長度為2μm的電晶體的汲極電流-閘極電壓特性,圖50B示出通道長度為3μm的電晶體的特性,圖50C示出通道長度為6μm的電晶體的特性。此外,圖50D示出樣本382的通道長度為2μm的電晶體的汲極電流-閘極電壓特性,圖50E示出通道長度為3μm的電晶體的特性,圖50F示出通道長度為 6μm的電晶體的特性。各電晶體的通道寬度都為50μm。此外,在源極電極與汲極電極之間的電壓(汲極電壓)為0.1V和10V的條件下進行測量。此外,在各圖表中重疊地表示同一基板上的20個電晶體的特性。
如圖50A至圖50F所示,上述製造的樣本381及樣本382的汲極電流-閘極電壓特性(Id-Vg特性)都是正常的。
此外,對上述電晶體進行可靠性測試。本實施例的可靠性測試條件為如下:閘極電壓(Vg)為±30V;汲極電壓(Vd)和源極電壓(Vs)都為0V(comm);施壓溫度為60℃;以及施壓時間為1小時,並且在黑暗環境及光照射環境(使用白色LED照射10000lx左右的光)的兩種環境下進行GBT測試。就是說,將電晶體的源極電極和汲極電極的電位設定為相同的電位,並且在固定時間內(這裡,1小時)對閘極電極施加與源極電極及汲極電極不同的電位。將上述測試稱為GBT(Gate Bias Temperature)試驗。
另外,將施加到閘極電極的電位比源極電極及汲極電極的電位高的情況稱為正施壓,而將施加到閘極電極的電位比源極電極及汲極電極的電位低的情況稱為負施壓。因此,根據施壓的情況及測定環境,在正GBT(黑暗)376、負GBT(黑暗)377、正GBT(光照射)378以及負GBT(光照射)379的四種條件下進行可靠性評價。
另外,下面將正GBT(黑暗)表示為PBTS (Positive Bias Temperature Stress),將負GBT(黑暗)表示為NBTS(Negative Bias Temperature Stress),將正GBT(光照射)表示為PBITS(Positive Bias Illumination Temperature Stress),將負GBT(光照射)表示為NBITS(Negative Bias Illumination Temperature Stress)。
圖51示出樣本381及樣本382的GBT測試結果。另外,在圖51中,縱軸表示電晶體的臨界電壓的變化量(△Vth)。
從圖51所示的結果可知,在GBT測試中,本實施例所製造的樣本381及樣本382所包括的電晶體的臨界電壓的變化量(△Vth)都在用於驅動顯示裝置的規格的範圍內。由此,確認到樣本381及樣本382所包括的電晶體具有高可靠性。
尤其是,關於PBTS的條件下的臨界電壓的變化量,樣本382比樣本381小。可以認為這是因為在350℃下形成的氧氮化矽膜中的氮氧化物(NOx)的量較少的緣故。
圖52A重疊地表示電流應力測試的前後的樣本381的電晶體的Id-Vg曲線。電流應力條件為如下:樣本溫度為60℃,汲極電壓為10V,源極電極與汲極電極之間的電流(汲極電流)為100nA,應力時間為3600sec,將樣本設置在較暗的環境中。經過電流應力測試的電晶體的通道長度為3μm,通道寬度為3μm。此時的電晶體的臨界電壓Vth的變化量為0.08V,場效移動率的變化為- 1.45%。
同樣地,圖52B示出樣本382的電晶體的Id-Vg曲線。此時的電晶體的臨界電壓Vth的變化量為0.014V,場效移動率的變化為-0.02%。
圖52C示出樣本381的電晶體的電流應力測試中的汲極電流的變化率。同樣地,圖52D示出樣本382的電晶體的汲極電流的變化率。如此,樣本382的電晶體的電流應力所導致的汲極電流的變化率比樣本381的電晶體小。就是說,藉由作為絕緣膜110使用在350℃的基板溫度下形成的單層的氧氮化矽膜,可以抑制電流應力測試所導致的劣化。
以上,本實施例所示的結構可以與實施方式適當地組合而實施。

Claims (14)

  1. 一種半導體裝置的製造方法,包括以下步驟:在基板之上形成第一氧化物半導體膜,該第一氧化物半導體膜包括銦、元素M、及鋅;使用設備在該第一氧化物半導體膜之上形成絕緣層;在形成該絕緣層之後,使用該設備進行電漿處理;以及在進行該電漿處理之後,在該絕緣層之上形成閘極電極,其中,M為鋁、鎵、釔或錫,並且其中,進行該電漿處理以增加該絕緣層中所包含的氧的量。
  2. 一種半導體裝置的製造方法,包括以下步驟:形成第一氧化物半導體膜;在該第一氧化物半導體膜之上形成第二氧化物半導體膜;使用設備在該第二氧化物半導體膜之上形成絕緣層;在形成該絕緣層之後,使用該設備進行電漿處理;以及形成與該第一氧化物半導體膜及該第二氧化物半導體膜重疊的閘極電極,其中,該第一氧化物半導體膜及該第二氧化物半導體 膜中的其中一者包括銦、元素M、及鋅,並且具有In:M:Zn=4:2:3或5:1:a或者其附近的原子個數比,其中,a>0,其中,M為鋁、鎵、釔或錫,其中,該第一氧化物半導體膜及該第二氧化物半導體膜中的該其中一者包括結晶區域,並且其中,進行該電漿處理以增加該絕緣層中所包含的氧的量。
  3. 根據請求項2之半導體裝置的製造方法,還包括在形成該閘極電極之後,以150℃以上且450℃以下的溫度進行加熱處理之步驟,以便將該絕緣層中所包含的氧供應到該第二氧化物半導體膜中。
  4. 根據請求項1或2之半導體裝置的製造方法,其中,該絕緣層與該閘極電極直接接觸。
  5. 根據請求項1或2之半導體裝置的製造方法,其中,該絕緣層以350℃以下的基板溫度來形成。
  6. 根據請求項1或2之半導體裝置的製造方法,其中,該絕緣層中的氮濃度為6×1020atoms/cm3以下。
  7. 根據請求項1或2之半導體裝置的製造方法,其中,該第一氧化物半導體膜的厚度為3nm以上且50nm以下。
  8. 根據請求項1或2之半導體裝置的製造方法,其中,該閘極電極係使用與用於該絕緣層的設備不同的設備來形成。
  9. 根據請求項1或2之半導體裝置的製造方法,其中,該絕緣層的自旋密度為3×1017spins/cm3以下。
  10. 根據請求項1或2之半導體裝置的製造方法,其中,該第一氧化物半導體膜中的矽及碳的濃度為2×1018atoms/cm3以下。
  11. 根據請求項1或2之半導體裝置的製造方法,還包括在形成該第一氧化物半導體膜的該步驟之前形成第二閘極電極的步驟,其中,該第一氧化物半導體膜與該閘極電極重疊。
  12. 一種半導體裝置的製造方法,包括以下步驟:在基板之上形成第一氧化物半導體膜;在該第一氧化物半導體膜之上形成包括氧氮化矽的閘極絕緣層;藉由濺射法在包含氧的氛圍下形成第二氧化物半導體膜,並在該閘極絕緣層之上形成閘極電極且同時將氧添加到該閘極絕緣層;以及在形成該閘極電極之後,以150℃以上且450℃以下的溫度進行加熱處理。
  13. 一種半導體裝置的製造方法,包括以下步驟:在基板之上形成第一氧化物半導體膜;在該第一氧化物半導體膜之上形成包括氧氮化矽的閘極絕緣層; 藉由濺射法在包含氧的氛圍下形成第二氧化物半導體膜,並在該閘極絕緣層之上形成閘極電極且同時將氧添加到該閘極絕緣層;以及在形成該閘極電極之後,以150℃以上且450℃以下的溫度進行加熱處理,並且使該閘極絕緣層中的氧擴散到該第一氧化物半導體膜,藉以降低該第一氧化物半導體膜的導電率。
  14. 根據請求項12或13之半導體裝置的製造方法,其中,該閘極電極係藉由蝕刻該第二氧化物半導體膜來形成。
TW110147987A 2016-02-18 2017-02-15 半導體裝置及其製造方法、顯示裝置、及電子裝置 TWI816261B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-028586 2016-02-18
JP2016028586 2016-02-18
JP2016193217 2016-09-30
JP2016-193217 2016-09-30

Publications (2)

Publication Number Publication Date
TW202215550A TW202215550A (zh) 2022-04-16
TWI816261B true TWI816261B (zh) 2023-09-21

Family

ID=59624828

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106104930A TWI755375B (zh) 2016-02-18 2017-02-15 半導體裝置及其製造方法、顯示裝置、及電子裝置
TW110147987A TWI816261B (zh) 2016-02-18 2017-02-15 半導體裝置及其製造方法、顯示裝置、及電子裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106104930A TWI755375B (zh) 2016-02-18 2017-02-15 半導體裝置及其製造方法、顯示裝置、及電子裝置

Country Status (7)

Country Link
US (5) US10204798B2 (zh)
JP (3) JP6929079B2 (zh)
KR (1) KR20180116291A (zh)
CN (2) CN108738364B (zh)
DE (1) DE112017000905T5 (zh)
TW (2) TWI755375B (zh)
WO (1) WO2017141140A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202203465A (zh) 2013-10-10 2022-01-16 日商半導體能源研究所股份有限公司 液晶顯示裝置
CN108738364B (zh) 2016-02-18 2022-06-28 株式会社半导体能源研究所 半导体装置、其制造方法、显示装置以及电子设备
JP6968567B2 (ja) 2016-04-22 2021-11-17 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102583770B1 (ko) * 2016-09-12 2023-10-06 삼성디스플레이 주식회사 메모리 트랜지스터 및 이를 갖는 표시장치
US10147681B2 (en) 2016-12-09 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102607697B1 (ko) * 2017-02-07 2023-11-29 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
US10263107B2 (en) * 2017-05-01 2019-04-16 The Regents Of The University Of California Strain gated transistors and method
JP2019061130A (ja) * 2017-09-27 2019-04-18 株式会社ジャパンディスプレイ 表示装置および表示装置の製造方法
KR102446301B1 (ko) * 2017-12-11 2022-09-23 엘지디스플레이 주식회사 지지층을 갖는 박막 트랜지스터, 그 제조방법 및 이를 포함하는 표시장치
JP7259216B2 (ja) * 2018-06-04 2023-04-18 三菱ケミカル株式会社 偏光子保護フィルム
CN112292752A (zh) * 2018-06-08 2021-01-29 株式会社半导体能源研究所 半导体装置及半导体装置的制造方法
JP7043608B2 (ja) * 2018-08-23 2022-03-29 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム
CN114973943A (zh) * 2019-04-03 2022-08-30 京东方科技集团股份有限公司 显示面板和显示装置
US11993844B2 (en) * 2019-04-24 2024-05-28 The Regents Of The University Of California Passivation of silicon dioxide defects for atomic layer deposition
WO2021040917A1 (en) * 2019-08-26 2021-03-04 E Ink Corporation Electro-optic device comprising an identification marker
KR20210051551A (ko) * 2019-10-30 2021-05-10 엘지디스플레이 주식회사 박막 트랜지스터, 그를 포함한 게이트 구동부, 및 그를 포함한 표시장치
CN110911496B (zh) * 2019-11-11 2023-01-24 深圳市华星光电半导体显示技术有限公司 薄膜晶体管、薄膜晶体管的制备方法及显示面板
KR20210134176A (ko) 2020-04-29 2021-11-09 삼성디스플레이 주식회사 유기발광 디스플레이 장치 및 그 제조방법
TWI753712B (zh) * 2020-12-21 2022-01-21 財團法人工業技術研究院 微機電紅外光感測裝置
CN116761897A (zh) * 2021-01-14 2023-09-15 光驰科技(上海)有限公司 基因检测用具和基因检测用试剂盒
WO2023079398A1 (ja) * 2021-11-05 2023-05-11 株式会社半導体エネルギー研究所 半導体装置、及び電子機器
CN117374205A (zh) * 2022-06-30 2024-01-09 群创光电股份有限公司 电子装置及其制备方法
CN116069697B (zh) * 2023-03-06 2023-08-22 荣耀终端有限公司 Type-C接口电平控制方法及相关装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200814239A (en) * 2006-05-26 2008-03-16 Semiconductor Energy Lab Nonvolatile semiconductor memory device and manufacturing method thereof, semiconductor device and manufacturing method thereof, and manufacturing method of insulating film

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126729B2 (ja) 2004-11-10 2013-01-23 キヤノン株式会社 画像表示装置
JP5138163B2 (ja) 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
CN101057339B (zh) 2004-11-10 2012-12-26 佳能株式会社 无定形氧化物和场效应晶体管
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
KR20170024130A (ko) 2009-10-21 2017-03-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
KR101590220B1 (ko) 2009-12-31 2016-01-29 벤타나 메디컬 시스템즈, 인코포레이티드 유일 특이적 핵산 프로브 제조 방법
KR101872927B1 (ko) 2010-05-21 2018-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN102893403B (zh) 2010-05-21 2016-08-03 株式会社半导体能源研究所 半导体装置及其制造方法
US9443984B2 (en) 2010-12-28 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2012090973A1 (en) 2010-12-28 2012-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN102760697B (zh) 2011-04-27 2016-08-03 株式会社半导体能源研究所 半导体装置的制造方法
US8809928B2 (en) * 2011-05-06 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and method for manufacturing the semiconductor device
JP6004308B2 (ja) 2011-08-12 2016-10-05 Nltテクノロジー株式会社 薄膜デバイス
TWI581431B (zh) 2012-01-26 2017-05-01 半導體能源研究所股份有限公司 半導體裝置及半導體裝置的製造方法
US8916424B2 (en) 2012-02-07 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI596778B (zh) 2012-06-29 2017-08-21 半導體能源研究所股份有限公司 半導體裝置及半導體裝置的製造方法
WO2014021442A1 (en) 2012-08-03 2014-02-06 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor stacked film and semiconductor device
JP6283191B2 (ja) * 2012-10-17 2018-02-21 株式会社半導体エネルギー研究所 半導体装置
US9455349B2 (en) 2013-10-22 2016-09-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor thin film transistor with reduced impurity diffusion
TWI658597B (zh) 2014-02-07 2019-05-01 日商半導體能源研究所股份有限公司 半導體裝置
US9640669B2 (en) * 2014-03-13 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic appliance including the semiconductor device, the display device, and the display module
JP6559444B2 (ja) * 2014-03-14 2019-08-14 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102333604B1 (ko) 2014-05-15 2021-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 이 반도체 장치를 포함하는 표시 장치
CN108738364B (zh) * 2016-02-18 2022-06-28 株式会社半导体能源研究所 半导体装置、其制造方法、显示装置以及电子设备
JP6369506B2 (ja) 2016-06-20 2018-08-08 株式会社竹屋 遊技機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200814239A (en) * 2006-05-26 2008-03-16 Semiconductor Energy Lab Nonvolatile semiconductor memory device and manufacturing method thereof, semiconductor device and manufacturing method thereof, and manufacturing method of insulating film

Also Published As

Publication number Publication date
US10580662B2 (en) 2020-03-03
TWI755375B (zh) 2022-02-21
KR20180116291A (ko) 2018-10-24
US20170243759A1 (en) 2017-08-24
US11842901B2 (en) 2023-12-12
US20210035816A1 (en) 2021-02-04
US20200185233A1 (en) 2020-06-11
US20190189466A1 (en) 2019-06-20
WO2017141140A1 (en) 2017-08-24
CN115172467A (zh) 2022-10-11
US11404285B2 (en) 2022-08-02
JP6929079B2 (ja) 2021-09-01
JP2023174725A (ja) 2023-12-08
US10886143B2 (en) 2021-01-05
TW201801189A (zh) 2018-01-01
TW202215550A (zh) 2022-04-16
US10204798B2 (en) 2019-02-12
US20220319866A1 (en) 2022-10-06
CN108738364A (zh) 2018-11-02
DE112017000905T5 (de) 2018-10-25
CN108738364B (zh) 2022-06-28
JP2018060995A (ja) 2018-04-12
JP2021158366A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
TWI816261B (zh) 半導體裝置及其製造方法、顯示裝置、及電子裝置
TWI758755B (zh) 半導體裝置以及包括該半導體裝置的顯示裝置
TWI721985B (zh) 半導體裝置、包括該半導體裝置的顯示裝置
TWI715649B (zh) 電子裝置、半導體裝置的製造方法、以及使用其製造之電晶體
TWI682550B (zh) 半導體裝置、該半導體裝置的製造方法以及包括該半導體裝置的顯示裝置
US11038065B2 (en) Semiconductor device, manufacturing method of the semiconductor device, or display device including the semiconductor device
TWI739757B (zh) 半導體裝置的製造方法
TWI693712B (zh) 以低溫度製造半導體裝置的方法
TW201807817A (zh) 半導體裝置及包括該半導體裝置的顯示裝置
TWI755370B (zh) 氧化物半導體膜,半導體裝置,及顯示裝置
TW202416390A (zh) 半導體裝置及其製造方法、顯示裝置、及電子裝置