TWI809312B - 半導體裝置及用於形成半導體裝置的方法 - Google Patents

半導體裝置及用於形成半導體裝置的方法 Download PDF

Info

Publication number
TWI809312B
TWI809312B TW109132251A TW109132251A TWI809312B TW I809312 B TWI809312 B TW I809312B TW 109132251 A TW109132251 A TW 109132251A TW 109132251 A TW109132251 A TW 109132251A TW I809312 B TWI809312 B TW I809312B
Authority
TW
Taiwan
Prior art keywords
contact
layer
contact portion
conductive layer
semiconductor device
Prior art date
Application number
TW109132251A
Other languages
English (en)
Other versions
TW202207430A (zh
Inventor
吳林春
張坤
張中
文犀 周
夏志良
Original Assignee
大陸商長江存儲科技有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商長江存儲科技有限責任公司 filed Critical 大陸商長江存儲科技有限責任公司
Publication of TW202207430A publication Critical patent/TW202207430A/zh
Application granted granted Critical
Publication of TWI809312B publication Critical patent/TWI809312B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

公開了用於形成接觸結構及其半導體裝置的方法的實施例。在示例中,半導體裝置包括絕緣層、絕緣層之上的導電層、以及在導電層中並與絕緣層接觸的間隔部結構。半導體裝置還包括在間隔部結構中並垂直地延伸穿過絕緣層的第一接觸結構。第一接觸結構包括彼此接觸的第一接觸部分和第二接觸部分。第二接觸部分的上表面與導電層的上表面共面。

Description

半導體裝置及用於形成半導體裝置的方法
本公開的實施例涉及用於形成接觸結構及其半導體裝置的方法。
通過改善製程技術、電路設計、程式演算法、和製造製程將平面儲存單元縮放到較小的尺寸。然而,隨著儲存單元的特徵尺寸接近下限,平面製程和製造技術變得具有挑戰性且成本高昂。結果,平面儲存單元的儲存密度接近上限。
3D儲存架構可以解決平面儲存單元中的密度限制。3D儲存架構包括儲存陣列和用於控制通往和來自儲存陣列的信號的週邊裝置。
本文公開了用於形成接觸結構及其半導體裝置的方法的實施例。
在一個示例中,半導體裝置包括絕緣層、絕緣層之上的導電層、以及在導電層中並與絕緣層接觸的間隔部結構。該半導體裝置還包括在間隔部結構中並垂直地延伸穿過絕緣層的第一接觸結構。第一接觸結構包括彼此接觸的第一接觸部分和第二接觸部分。第二接觸部分的上表面與導電層的上表面共面。
在另一個示例中,半導體裝置包括絕緣層、絕緣層之上的導電層、 以及在導電層中並與絕緣層接觸的間隔部結構。該半導體裝置還包括在間隔部結構中並垂直地延伸穿過絕緣層的第一接觸結構。第一接觸結構包括彼此接觸的第一接觸部分和第二接觸部分。接觸結構還包括第一接觸部分的下表面在導電層的上表面下方的接觸介面處與第二接觸部分的上表面接觸。
在又一個示例中,用於形成半導體裝置的方法包括:形成從基礎結構的第一表面到基礎結構中的間隔部結構;形成由間隔部結構包圍的第一接觸部分;以及形成與第一接觸部分接觸的第二接觸部分。第二接觸部分從基礎結構的第二表面延伸到基礎結構中。
100:半導體裝置
102:絕緣層
104:基礎結構
106:儲存堆疊層
108:多晶矽層
110:導體層
112:介電層
114:字元線觸點
116:週邊觸點
116-1:第一接觸部分
116-2:第二接觸部分
118:絕緣結構
120:間隔部
126:源極觸點
200:半導體裝置
202:絕緣層
204:基礎結構
206:儲存堆疊層
208:多晶矽層
208-1:多晶矽子層
210:導體層
212:介電層
214:字元線觸點
216:接觸結構
216-1:第一接觸部分
216-2:第二接觸部分
218:絕緣結構
220:間隔部結構
224:停止層
226:源極接觸結構
300:半導體裝置
316:接觸結構
316-1:第一接觸部分
316-2:第二接觸部分
320:間隔部結構
402:絕緣層
404:基礎結構
406:儲存堆疊層
408:多晶矽層
408-1:多晶矽子層
410:導體層
412:介電層
414:字元線觸點
415:孔
416-1:第一接觸部分
416-2:第二接觸部分
418:絕緣結構
420:間隔部結構
424:停止層
425:孔
426:源極接觸結構
515:第二孔
516-1:第一接觸部分
516-2:第二接觸部分
519:阱結構
520:間隔部結構
612:通道結構
614:儲存膜
616:半導體通道
618:帽蓋層
620:通道插塞
622:絕緣間隔部
626:絕緣體核心
700:方法
702:操作
704:操作
706:操作
708:操作
710:操作
800:方法
802:操作
804:操作
806:操作
808:操作
810:操作
被併入到本文並形成說明書一部分的圖式示出了本公開的實施例,並且圖式與說明書一起進一步用於解釋本公開的原理並使相關領域中的技術人員能夠製作和使用本公開。
第1圖示出了半導體裝置中的現有接觸結構的截面圖。
第2A圖示出了根據本公開的一些實施例的半導體裝置中的示例性接觸結構的截面圖。
第2B圖示出了根據本公開的一些實施例的第2A圖中的接觸結構的俯視圖。
第3A圖示出了根據本公開的一些實施例的半導體裝置中的另一個示例性接觸結構的截面圖。
第3B圖示出了根據本公開的一些實施例的第3A圖中的接觸結構的俯視圖。
第4A圖至第4D圖示出了根據本公開的一些實施例的用於形成接觸結構的示例性製造製程。
第5A圖至第5D圖示出了根據本公開的一些實施例的用於形成另一個接觸 結構的示例性製造製程。
第6圖示出了根據本公開的各種實施例的示例性半導體裝置的一部分。
第7圖示出了根據本公開的一些實施例的用於形成接觸結構的示例性方法的流程圖。
第8圖示出了根據本公開的一些實施例的用於形成另一個接觸結構的示例性方法的流程圖。
將參考圖式描述本公開的實施例。
雖然討論了特定的構造和佈置,但是應當理解,這樣做僅出於說明性目的。相關領域中的技術人員將認識到,在不脫離本公開的精神和範圍的情況下,可以使用其他構造和佈置。對於相關領域中的技術人員將顯而易見的是,本公開還可以用在多種其他應用中。
注意,說明書中對“一個實施例”、“實施例”、“示例性實施例”、“一些實施例”等的引用指示所描述的實施例可以包括特定的特徵、結構、或特性,但每個實施例不一定都包括該特定的特徵、結構、或特性。而且,這樣的短語不一定指相同的實施例。此外,當結合實施例描述特定的特徵、結構或特性時,無論是否明確描述,結合其他實施例來實現這樣的特徵、結構或特性將在相關領域中的技術人員的知識範圍內。
通常,可以至少部分地根據上下文中的使用來理解術語。例如,至少部分地取決於上下文,本文所使用的術語“一個或複數個”可以用於描述單數意義上的任何特徵、結構或特性,或者可以用於描述複數意義上的特徵、結構、或特性的組合。類似地,至少部分地取決於上下文,諸如“一個”或“所述”的術語可以同樣被理解為傳達單數用法或傳達複數用法。另外,至少部分 地取決於上下文,術語“基於”可以同樣被理解為不一定旨在傳達一組排他的因素,並且可以代替地允許存在不一定清除描述的附加因素。
應當容易理解,在本公開中,“上”、上方、和“之上”的含義應當以最廣義的方式進行解釋,使得“上”不僅意味著“直接在某物上”,而且還包括“在某物上”並且其間具有中間特徵或層的含義,並且“上方”或“之上”不僅意味著在某物“上方”或“之上”的含義,而且還包括在某物“上方”或“之上”並且其間沒有中間特徵或層(即,直接在某物上)的含義。
此外,為了便於描述,在本文中可以使用諸如“之下”、“下方”、“下部”、“上方”、“上部”等空間相對術語,以描述一個元件或特徵與另一個(一個或複數個)元件或(一個或複數個)特徵的如圖中所示的關係。除了在圖中描述的取向以外,空間相對術語還旨在涵蓋裝置在使用或操作中的不同取向。裝置可以以其他方式定向(旋轉90度或以其他取向),並且在本文使用的空間相對描述語可以以類似方式被相應地解釋。
如本文所使用的,術語“基底”是指在其上添加後續材料層的材料。基底本身可以被圖案化。添加到基底頂部上的材料可以被圖案化或可以保持未被圖案化。此外,基底可以包括各種各樣的半導體材料,例如矽、鍺、砷化鎵、磷化銦等。替代性地,基底可以由非導電材料製成,例如玻璃、塑膠、或藍寶石晶圓。
如本文所使用的,術語“層”是指包括具有厚度的區域的材料部分。層可以在整個下層結構或上覆結構之上延伸,或者可以具有小於下層結構或上覆結構的範圍。此外,層可以是均質或不均質連續結構的區域,所述區域具有的厚度小於連續結構的厚度。例如,層可以位於連續結構的上表面和下表面之間或在連續結構的上表面和下表面處的任何一對水平平面之間。層可以水平地、垂直地或/及沿著錐形表面延伸。基底可以是一層,可以在其中包括一個 或複數個層,或/及可以在其上、其上方或/及其下方具有一個或複數個層。層可以包括多層。例如,互連層可以包括一個或複數個導體和接觸層(在其中形成互連線或/及垂直互連接入(VIA)觸點)和一個或複數個介電層。
如本文所使用的,術語“標稱的/標稱地”是指在產品或製程的設計階段期間設置的用於部件或製程操作的特性或參數的期望值或目標值,以及高於或/及低於期望值的值的範圍。值的範圍可以歸因於製造製程或公差的微小變化。如本文所使用的,術語“約”指示可以基於與主題半導體裝置相關聯的特定技術節點而變化的給定量的值。基於特定的技術節點,術語“約”可以指示在例如該值的10%-30%(例如,該值的±10%,±20%或±30%)內變化的給定量的值。
如本文所使用的,階梯結構是指包括至少兩個水平表面(例如,沿xy平面)和至少兩個(例如,第一和第二)垂直表面(例如,沿z軸)的一組表面,使得每個水平表面與從水平表面的第一邊緣向上延伸的第一垂直表面鄰接,並且與從水平表面的第二邊緣向下延伸的第二垂直表面鄰接。“臺階”或“階”是指在一組鄰接的表面的高度中的垂直偏移。在本公開中,術語“階”和術語“臺階”是指階梯結構的一級並且被互換使用。在本公開中,水平方向可以指與基底(例如,為在基底之上的結構的形成提供製造平臺的基底)的頂表面平行的方向(例如,x方向或y方向),並且垂直方向可以指垂直於基底的頂表面的方向(例如,z方向)。
如本文所使用的,術語“3D NAND記憶裝置”是指在橫向定向的基底上具有垂直定向的儲存單元電晶體串(在本文中稱為“儲存串”,例如NAND儲存串)的半導體裝置,使得儲存串相對於基底在垂直方向上延伸。如本文所使用的,術語“垂直的/垂直地”意味著標稱地垂直於基底的橫向表面。
在一些3D NAND記憶裝置中,選擇性地生長半導體插塞以包圍通道 結構的側壁,例如,被稱為側壁選擇性磊晶生長(SEG)。與在通道結構的下部端部處形成的另一種類型的半導體插塞(例如,底部SEG)相比,側壁SEG的形成避免了在通道孔的下表面處對儲存膜和半導體通道的蝕刻(也稱為“SONO”穿孔),由此增加了製程容許度,特別是在使用先進技術製造具有多堆疊架構(例如,96級或更多級)的3D NAND記憶裝置時。此外,側壁SEG結構可以與背面製程結合以從基底的背面形成源極觸點,從而避免了在正面源極觸點和字元線之間的洩漏電流和寄生電容,並增加了有效裝置面積。
也可以在這些3D NAND記憶裝置中使用背面製程來形成週邊觸點,例如在週邊區域中形成並促進儲存單元與週邊電路之間的電接觸的穿矽觸點(TSV)。然而,由於3D NAND記憶裝置的級的增加,週邊觸點的製造面臨挑戰。例如,使用背面製程形成週邊觸點常常包括兩步蝕刻製程,例如,用於在基底上方為第一接觸部分形成第一開口的第一蝕刻製程,以及用於為第二接觸部分從背面形成第二開口的第二蝕刻製程。常常在沉積導電材料以填充第二開口並形成第二接觸部分之前,在第二開口中沉積介電間隔部。兩步蝕刻製程和沉積製程可能不期望地是冗長的和複雜的。
第1圖示出了半導體裝置100中的現有接觸結構的截面圖。半導體裝置100包括基礎結構104、基礎結構104上的絕緣結構118、以及在基礎結構104上並在絕緣結構118中的儲存堆疊層106。基礎結構104包括絕緣層102和在絕緣層102之上的多晶矽層108。儲存堆疊層106具有複數個臺階的階梯結構,並且包括複數個交錯的導體層110和介電層112。半導體裝置100還包括延伸到多晶矽層108中並電性連接到多晶矽層108的複數個通道結構(第1圖中未示出)。通道結構和導體層110的交叉點形成複數個儲存單元。半導體裝置100還包括在絕緣層102和多晶矽層108中延伸的源極觸點126。源極觸點126與多晶矽層108接觸並電性連接到通道結構以用於施加源極電壓。半導體裝置100還包括在絕緣結構118 中延伸並且與相應臺階的導體層110接觸的字元線觸點114。
半導體裝置100還包括在多晶矽層108中的間隔部120以及在絕緣結構118、間隔部120、和絕緣層102中延伸的週邊觸點116。週邊觸點116包括在絕緣結構118中延伸的第一接觸部分116-1和在基礎結構104中延伸的第二接觸部分116-2。第一接觸部分116-1和第二接觸部分116-2彼此連接並與儲存堆疊層106分開。通過背面製程形成第二接觸部分116-2和源極觸點126。間隔部120使第二接觸部分116-2與多晶矽層108絕緣。
為了形成間隔部120和第二接觸部分116-2,在形成第一接觸部分116-1之後,通過從背面(例如,下表面)去除基礎結構104的一部分來形成孔。所述孔在絕緣層102和多晶矽層108中延伸,直到所述孔與第一接觸部分116-1接觸為止。然後在孔中沉積介電材料。在凹陷蝕刻以去除介電材料的一部分從而暴露第一接觸部分116-1之後,在介電層之上沉積導電材料以填充孔並形成第二接觸部分116-2。多晶矽層108中的介電材料的部分形成間隔部120。常常,為了確保第二接觸部分116-2與第一接觸部分116-1可以形成期望的接觸,該孔被過蝕刻到絕緣結構118中。孔的上表面(即,第二接觸部分116-2的上表面)常常是非平坦的,例如,不與多晶矽層108的上表面共面。例如,如第1圖中所示,可以在第二接觸部分116-2的上表面上形成突出結構。如上所述,週邊觸點116特別是第二接觸部分116-2的形成可能是冗長且複雜的。需要改善用於形成週邊觸點(例如TSV)的現有製造製程。
根據本公開的各種實施例提供了改善的半導體裝置及其製造方法。根據所公開的製造方法,為了形成接觸結構,在基礎結構的正面上形成間隔部結構。可以通過蝕刻製程隨後通過沉積製程來形成間隔部結構,以填充由蝕刻製程形成的開口結構。雖然蝕刻製程和沉積製程可以單獨執行,但是可以將蝕刻製程和沉積製程併入當前製程流程,而無需附加的製造步驟。例如,可以以 任何適當的蝕刻/圖案化製程來執行蝕刻製程以用於在形成第一接觸部分之前在半導體裝置中形成另一個結構,並且沉積製程可以是任何適當的沉積製程以用於在形成第一接觸部分之前在半導體裝置中形成另一個結構。在一些實施例中,使用零遮罩來執行蝕刻製程,所述蝕刻製程用於在在基礎結構上形成任何結構之前在基底中對結構進行圖案化。在一些實施例中,蝕刻製程與在基礎結構上對結構(例如,儲存堆疊層中的底部選擇閘切口結構)進行圖案化的圖案化製程相同。在一些實施例中,沉積製程可以與形成儲存堆疊層位於其中的絕緣結構的沉積製程相同。因此可以簡化製造製程。
間隔部結構可以由多晶矽層中的溝槽結構或孔形成。第二接觸部分位於間隔部結構中並且與多晶矽層絕緣。在一些實施例中,由導電層中的孔形成間隔部結構允許第一接觸部分的下表面更靠近絕緣層,從而減少形成孔(其形成第二導體部分)所需的蝕刻,從而進一步簡化製造製程。
第2A圖示出了根據一些實施例的半導體裝置200中的示例性接觸結構的截面圖。第2B圖示出了根據一些實施例的半導體裝置200中的接觸結構的俯視圖。為了便於說明,一起描述第2A圖和第2B圖。
如第2A圖中所示,半導體裝置200包括基礎結構204、基礎結構204之上的絕緣結構218、以及在絕緣結構218和基礎結構204中延伸的接觸結構216。半導體裝置200還可以包括基礎結構204位於其上的基底。在一些實施例中,半導體裝置200包括在基礎結構204之上並在絕緣結構218中的儲存堆疊層206。半導體裝置200可以包括字元線觸點214,字元線觸點214在絕緣結構218中,與儲存堆疊層206接觸並導電連接到儲存堆疊層206。在一些實施例中,半導體裝置200包括與基礎結構204接觸並導電連接到基礎結構204的源極接觸結構226。在一些實施例中,接觸結構216位於半導體裝置200的週邊區域中。儲存堆疊層206可以位於半導體裝置200的核心區域或/及階梯區域中。作為示例,在 本公開中,半導體裝置由3D NAND記憶裝置表示,並且接觸結構(例如,216)被描述為3D NAND記憶裝置中的週邊觸點。在一些實施例中,接觸結構216在半導體裝置200的基礎結構204的相對側上電性連接週邊電路和接觸墊(未示出),使得週邊電路可以通過接觸墊電性連接到外部電路。在一些實施例中,接觸結構216在半導體裝置200的基礎結構204的相對側上電性連接到週邊電路和源極接觸結構226,使得週邊電路可以電性連接到源極接觸結構226以控制3D NAND記憶裝置的源極的操作。應當理解,形成這些接觸結構的結構和製造方法也可以用於在任何其他適當的結構/裝置中形成接觸結構。
半導體裝置200的基底可以包括矽(例如,單晶矽)、矽鍺(SiGe)、砷化鎵(GaAs)、鍺(Ge)、絕緣體上矽(SOI)、絕緣體上鍺(GOI)、或任何其他適當的材料。在一些實施例中,基底是減薄的基底(例如,半導體層),所述減薄的基底通過研磨、蝕刻、化學機械研磨(CMP)、或其任何組合而被減薄。在一些實施例中,基底被去除並且不包括在半導體裝置200中。應當注意,在本公開的圖式中包括x軸、y軸和z軸以進一步說明半導體裝置中的部件的空間關係。作為示例,半導體裝置200的基底包括在x方向和y方向(即,橫向方向)上橫向地延伸的兩個橫向表面(例如,上表面和下表面)。z方向表示垂直於x-y平面(即,由x方向和y方向形成的平面)的方向。如本文所使用的,當半導體裝置(例如,半導體裝置200)的基底在z方向(即,垂直方向)上放置在半導體裝置的最低平面中時,半導體裝置的一個部件(例如,層或裝置)是在另一個部件(例如,層或裝置)“上”、“上方”還是“下方”,是在z方向上相對於半導體裝置的基底來確定的。在整個本公開中,應用了用於描述空間關係的相同概念。
在一些實施例中,半導體裝置200是非單片3D NAND記憶裝置的一部分,在非單片3D NAND記憶裝置中部件單獨地形成在不同的基底上,然後以 面對面的方式、面對背的方式、或背對背方式進行鍵合。可以在不同於其上形成有第2A圖中所示的部件的儲存陣列基底的單獨的週邊裝置基底上形成用於促進半導體裝置200的操作的週邊裝置(未示出),例如任何適當的數位、類比或/及混合信號週邊電路。可以理解,如下詳細所述,可以從半導體裝置200去除儲存陣列基底,並且週邊裝置基底可以成為半導體裝置200的基底。進一步理解的,取決於週邊裝置基底和儲存陣列裝置基底如何進行鍵合,儲存陣列裝置(例如,第2A圖中所示)可以處於原始位置,或者可以在半導體裝置200中上下翻轉。為了便於參考,第2A圖描述了在其中儲存陣列裝置處於原始位置(即,沒有上下翻轉)的半導體裝置200的狀態。然而,應當理解,在一些示例中,第2A圖中所示的儲存陣列裝置可以在半導體裝置200中上下翻轉,並且他們的相對位置可以相應地改變。在整個本公開中,應用了用於描述空間關係的相同概念。
如第2A圖中所示,基礎結構204可以包括絕緣層202和絕緣層202上的多晶矽層208。可選地,基礎結構204可以包括絕緣層202和多晶矽層208之間的停止層224。絕緣層202可以包括在其中可以形成互連線和VIA觸點的一個或複數個層間介電(ILD)層(也稱為“金屬間介電(IMD)層”)。絕緣層202的ILD層可以包括介電材料,包括但不限於氧化矽、氮化矽、氮氧化矽、低介電常數(低k)介電材料、或其任何組合。在一些實施例中,絕緣層202包括氧化矽。停止層224(如果有的話)可以直接設置在絕緣層202上。停止層224可以是單層結構或多層結構。在一些實施例中,停止層224是單層結構,並且包括高介電常數(高k)介電層。在一些實施例中,停止層224是雙層結構,並且包括第二停止層上的第一停止層。第一停止層可以包括氮化矽,並且第二停止層可以包括高k介電材料。高k介電層可以包括例如氧化鋁、氧化鉿、氧化鋯、或氧化鈦,僅舉幾例。在一個示例中,停止層224可以包括氧化鋁。如以下詳細描述的,由於停止層224的功能是使通道孔的蝕刻停止,所以應理解,停止層224可以包括 相對於其上方的層中的材料具有相對高的蝕刻選擇性(例如,大於約5)的任何其他適當的材料。在一些實施例中,停止層224除了充當蝕刻停止層之外,停止層224還充當背面基底減薄停止層。
多晶矽層208可以直接設置在停止層224上。在一些實施例中,墊氧化物層(例如,氧化矽層)設置在停止層224和多晶矽層208之間,以緩和多晶矽層208和停止層224(例如,氧化鋁層)之間的應力。根據一些實施例,多晶矽層208包括N型摻雜的多晶矽層。即,多晶矽層208可以摻雜有貢獻自由電子並增加本質半導體的導電性的任何適當的N型摻雜劑,例如磷(P)、砷(Ar)、或銻(Sb)。多晶矽層208可以包括在多晶矽層208的頂表面和下表面之間的多晶矽子層208-1,並且可以導電連接到3D NAND儲存串的半導體通道和半導體裝置200的源極接觸結構。如下面詳細描述的,由於擴散製程,多晶矽層208可以在垂直方向上具有適當均勻的摻雜濃度分佈。應當理解,由於多晶矽層208的多晶矽子層208-1可以具有與多晶矽層208的其餘部分相同的多晶矽材料,並且在擴散之後在多晶矽層208中摻雜濃度可以是均勻的,因此在半導體裝置200中多晶矽層208的多晶矽子層208-1與其餘部分可能是不可區分的。儘管如此,多晶矽子層208-1是指多晶矽層208的與半導體通道接觸而不是與通道結構的下部部分中的儲存膜接觸的部分。
如上所述,雖然第2A圖示出了多晶矽層208在停止層224上方,但是應當理解,在一些示例中,停止層224可以在多晶矽層208上方,因為第2A圖中所示的儲存陣列裝置可以在半導體裝置200中上下翻轉,並且儲存陣列裝置的相對位置可以相應地改變。在一些實施例中,第2A圖中所示的儲存陣列裝置在半導體裝置200中(在頂部)上下翻轉並(在底部)鍵合到週邊裝置,使得停止層224在多晶矽層208上方。雖然在本公開中,多晶矽層208被描述為導電層以用於促進儲存堆疊層206與半導體裝置200的源極觸點之間的電耦合,但是在各種實 施例中,還可以在儲存堆疊層206與絕緣層202之間形成任何其他適當的導電材料,以用於執行與多晶矽層208類似/相同的功能。
儲存堆疊層206可以包括多晶矽層208之上的複數個交錯的導體層210和介電層212,而多晶矽層208可位在儲存堆疊層206與絕緣層202之間。儲存堆疊層206中的導體層210和介電層212可以在垂直方向上交替。換句話說,除了在儲存堆疊層206的頂部或底部處的那些之外,每個導體層210可以在兩側上被兩個介電層212鄰接,並且每個介電層212可以在兩側上被兩個導體層210鄰接。導體層210可以包括導電材料,包括但不限於W、Co、Cu、Al、多晶矽、摻雜的矽、矽化物、或其任何組合。每個導體層210可以包括由黏附層和閘極介電層包圍的閘電極(閘極線)。導體層210的閘電極可以作為字元線橫向地延伸,從而終止於儲存堆疊層206的一個或複數個階梯結構。介電層212可以包括介電材料,包括但不限於氧化矽、氮化矽、氮氧化矽、或其任何組合。儲存堆疊層206可以具有包括例如沿x/y方向橫向地延伸的複數個臺階的階梯結構。每個臺階可以包括一個或複數個導體層210和介電層212的對(稱為導體層/介電層對)。如第2A圖中所示,在絕緣結構218中延伸的字元線觸點214可以與相應臺階的頂部導體層210接觸並導電連接到相應臺階的頂部導體層210。字元線觸點214可以包括導電材料,包括但不限於W、Co、Cu、Al、多晶矽、摻雜的矽、矽化物、或其任何組合。絕緣結構218可以包括介電材料,包括但不限於氧化矽、氮化矽、氮氧化矽、或其任何組合。
在一些實施例中,半導體裝置200是3D NAND記憶裝置,並且包括形成在儲存堆疊層206中的複數個儲存單元。儲存單元可以由導體層210和儲存堆疊層206中的3D NAND儲存串的交叉點形成。第6圖示出了儲存堆疊層206中的通道結構的截面圖。
如第6圖中所示,通道結構612垂直地延伸穿過儲存堆疊層206和多晶 矽層208,從而停止在停止層224(如果有的話)處。即,通道結構612可以包括兩個部分:由多晶矽層208包圍的下部部分(即,在多晶矽層208和儲存堆疊層206之間的介面下方)和由儲存堆疊層206包圍的上部部分(即,在多晶矽層208與儲存堆疊層206之間的介面上方)。如本文中所使用的,當基底放置在半導體裝置200的最低平面中時,部件(例如,通道結構612)的“上部部分/端部”是在z方向上更遠離基底的部分/端部,並且部件(例如,通道結構612)的“下部部分/端部”是在z方向上更靠近基底的部分/端部。在一些實施例中,每個通道結構612不進一步延伸超過停止層224,因為通道孔的蝕刻被停止層224停止。例如,通道結構612的下部端部可以標稱地與停止層224的上表面齊平。
通道結構612可以包括填充有(一種或多種)半導體材料(例如,作為半導體通道616)和(一種或多種)介電材料(例如,作為儲存膜614)的通道孔。在一些實施例中,半導體通道616包括矽,例如非晶矽、多晶矽、或單晶矽。在一個示例中,半導體通道616包括多晶矽。在一些實施例中,儲存膜614是包括穿隧層、儲存層(也稱為“電荷捕獲層”)、和阻隔層的複合層。通道孔的剩餘空間可以部分地或完全地填充有帽蓋層618,帽蓋層618包括諸如氧化矽或/及氣隙的介電材料。通道結構612可以具有圓柱形狀(例如,柱形形狀)。根據一些實施例,儲存膜614的帽蓋層618、半導體通道616、穿隧層、儲存層和阻隔層從柱的中心朝著柱的外表面按此順序徑向佈置。穿隧層可以包括氧化矽、氮氧化矽、或其任何組合。儲存層可以包括氮化矽、氮氧化矽、或其任何組合。阻隔層可以包括氧化矽、氮氧化矽、高k介電材料、或其任何組合。在一個示例中,儲存膜614可以包括氧化矽/氮氧化矽/氧化矽(ONO)的複合層。在一些實施例中,通道結構612還包括在通道結構612的上部部分的頂部處的通道插塞620。通道插塞620可以包括半導體材料(例如,多晶矽)。在一些實施例中,通道插塞620充當NAND儲存串的汲極。
如第6圖中所示,根據一些實施例,半導體通道616的沿通道結構612的側壁(例如,在通道結構612的下部部分中)的一部分與多晶矽子層208-1接觸。即,根據一些實施例,在通道結構612的鄰接多晶矽層208的多晶矽子層208-1的下部部分中斷開儲存膜614,從而暴露半導體通道616以與周圍的多晶矽子層208-1接觸。結果,包圍半導體通道616並與半導體通道616接觸的多晶矽子層208-1可以用作通道結構612的“側壁SEG”。在一些實施例中,源極接觸結構226與多晶矽層208接觸並且通過多晶矽層208電性連接到半導體通道616。
如第6圖中所示,在一些實施例中,半導體裝置200還包括垂直地延伸穿過儲存堆疊層206的交錯的導體層210和介電層212的絕緣間隔部622。在一些實施例中,根據一些實施例,絕緣間隔部622延伸到多晶矽層208中並停止在多晶矽子層208-1處。在一些實施例中,絕緣間隔部622的下部端部標稱地與多晶矽子層208-1的上表面齊平。每個絕緣間隔部622也可以橫向地延伸以將通道結構612分隔成複數個塊。根據一些實施例,不同於一些3D NAND記憶裝置中的縫隙結構,絕緣間隔部622在其中不包括任何觸點(即,不充當源極觸點)。在一些實施例中,每個絕緣間隔部622包括填充有一種或多種介電材料的開口(例如,縫隙),所述介電材料包括但不限於氧化矽、氮化矽、氮氧化矽、或其任何組合。在一個示例中,每個絕緣間隔部622可以填充有作為絕緣體核心626的氧化矽以及與閘極介電層連接的高k介電材料。
源極接觸結構226可以相對於停止層224(即,背面)從多晶矽層208的相對側垂直地延伸穿過絕緣層202和停止層224(如果有的話),以與多晶矽層208接觸。應當理解,在不同的示例中,源極接觸結構226延伸到多晶矽層208中的深度可以變化。源極接觸結構226可以從(去除的)儲存陣列基底的背面通過多晶矽層208將半導體裝置200的NAND儲存串的源極電性連接到週邊裝置,並且因此,源極接觸結構226在本文中可以稱為“背面源極拾取部(pick up)”。源 極接觸結構226可以包括任何適當類型的觸點。在一些實施例中,源極接觸結構226包括VIA觸點。在一些實施例中,源極接觸結構226包括橫向延伸的壁狀觸點。源極接觸結構226可以包括一個或複數個導電層,例如金屬層,例如鎢(W)、鈷(Co)、銅(Cu)、或鋁(Al)、或由黏合劑層(例如氮化鈦(TiN))包圍的矽化物層。
返回參考第2A圖和第2B圖,接觸結構216可以在絕緣結構218和基礎結構204中延伸,並且可以導電連接到任何週邊電路以用於儲存單元的操作。在一些實施例中,接觸結構216延伸穿過多晶矽層208和絕緣層202。接觸結構216可以包括在絕緣結構218中延伸的第一接觸部分216-1和在基礎結構204(例如,多晶矽層208和絕緣層202、以及停止層224(如果有的話))中延伸的第二接觸部分216-2,且第二接觸部分216-2貫穿絕緣層202與停止層224。第一接觸部分216-1和第二接觸部分216-2可以在接觸介面處彼此接觸且導電連接到彼此。半導體裝置200還可以包括在多晶矽層208中並包圍第二接觸部分216-2的間隔部結構220,使得第二接觸部分216-2與多晶矽層208絕緣。
在一些實施例中,如第2B圖中所示,第二接觸部分216-2的橫向截面面積大於或等於第一接觸部分216-1的橫向截面面積,使得第一接觸部分216-1與第二接觸部分216-2完全重疊。第一接觸部分216-1和第二接觸部分216-2的橫向截面可以均具有任何適當的形狀,例如橢圓形、正方形、矩形、和圓形形狀。例如,第一接觸部分216-1和第二接觸部分216-2的橫向截面可以分別標稱地為圓形和正方形。第二接觸部分216-2的上表面可以足夠平坦,例如,與多晶矽層208的上表面標稱地水平/共面。第一接觸部分216-1和第二接觸部分216-2之間的接觸介面可以與多晶矽層208的上表面共面(或至少標稱地共面)。即,第一接觸部分216-1的下表面和第二接觸部分216-2的上表面可以均與多晶矽層208的上表面共面(或至少標稱地共面)。在一些實施例中,第一接觸部分216-1和第二接觸 部分216-2均可以由鎢、鈷、銅或鋁或/及矽化物製成。
間隔部結構220可以在多晶矽層208中,與第二接觸部分216-2接觸並包圍第二接觸部分216-2,使得第二接觸部分216-2(或接觸結構216)與多晶矽層208絕緣。間隔部結構220(例如,在xy平面中)的橫向尺寸可以足夠大以使第二接觸部分216-2在所有方向上與多晶矽層208絕緣。間隔部結構220的與絕緣結構218接觸的上表面可以與多晶矽層208的上表面共面。間隔部結構220的下表面可以與絕緣層202(或者停止層224,如果有的話)接觸,使得第二接觸部分216-2與多晶矽層208完全絕緣。在各種實施例中,間隔部結構220的下表面可以與多晶矽層208的下表面水平或在多晶矽層208的下表面下方。例如,間隔部結構220的下表面可以在停止層224中或絕緣層202中。在一些實施例中,間隔部結構220包括介電材料,例如氧化矽、氮化矽、氮氧化矽、或其組合。應當理解,如果間隔部結構220包括與絕緣結構218或/及停止層224或絕緣層202相同的材料,則間隔部結構220的上表面或/及下表面可能是不可區分的。
第3A圖示出了根據一些實施例的半導體裝置300中的另一個示例性接觸結構的截面圖。第3B圖示出了根據一些實施例的半導體裝置300中的接觸結構的俯視圖。為了便於說明,一起描述第3A圖和第3B圖,並且為了易於描述,不再重複兩個半導體裝置200和300中的其他相同結構的細節。
如第3A圖中所示,半導體裝置300包括接觸結構316和間隔部結構320。接觸結構316可以包括彼此接觸並且導電連接到彼此的第一接觸部分316-1和第二接觸部分316-2。接觸結構316可以延伸穿過間隔部結構320,使得間隔部結構320使接觸結構316與多晶矽層208絕緣。不同於接觸結構216,第一接觸部分316-1和第二接觸部分316-2之間的接觸介面可以低於多晶矽層208的上表面。例如,接觸介面(例如,第一接觸部分316-1的下表面和第二接觸部分316-2的上表面)可以在多晶矽層208的上表面和下表面之間。在一些實施例中,接觸介面 可以與多晶矽層208的下表面共面(或至少標稱地共面)。即,第一接觸部分316-1可以在多晶矽層208中延伸(例如,延伸穿過多晶矽層208)。因此,在間隔部結構320中第二接觸部分316-2可以具有減小的厚度。
不同於間隔部結構220,間隔部結構320包圍第一接觸部分316-1的至少一部分,使得第一接觸部分316-1與多晶矽層208絕緣。如果第一接觸部分316-1和第二接觸部分316-2之間的接觸介面在多晶矽層208的上表面和下表面之間,則間隔部結構320還可以使第二接觸部分316-2的一部分與多晶矽層208絕緣。在一些實施例中,如第3B圖中所示,第二接觸部分316-2的橫向截面面積大於或等於第一接觸部分316-1的橫向截面面積,使得第一接觸部分316-1與第二接觸部分316-2完全重疊。第一接觸部分316-1和第二接觸部分316-2以及間隔部結構320的材料和形狀可以分別與第一接觸部分216-1和第二接觸部分216-2以及間隔部結構220的材料和形狀類似或相同,並且在本文中不再重複詳細描述。
第4A圖至第4D圖示出根據本公開的一些實施例的用於形成半導體裝置的製造製程。第7圖示出了根據本公開的一些實施例的用於形成半導體裝置的方法700的流程圖。第4A圖至第4D圖和第7圖中描述的半導體裝置的示例包括第2A圖和第2B圖中所描述的半導體裝置。將一起描述第4A圖至第4D圖和第7圖。應當理解,方法700中所示的操作不是窮舉的,並且也可以在任何所示的操作之前、之後、或之間執行其他操作。此外,可以同時執行一些操作,或者以與第7圖中所示的不同的循序執行一些操作。
參考第7圖,方法700開始於操作702和操作704,在操作702中,在基礎結構中形成溝槽結構,並且在操作704中,在溝槽結構中形成間隔部結構。第4A圖示出了對應的結構。
如第4A圖中所示,在製造製程的開始,可以在基礎結構404中形成溝槽結構。溝槽結構的形狀和深度可以對應於隨後形成的間隔部結構的形狀和深 度。基礎結構404可以包括停止層424上的多晶矽層408,停止層424還在絕緣層402上。多晶矽層408可以包括犧牲子層,該犧牲子層隨後形成多晶矽層408中的多晶矽子層。多晶矽層408、停止層424、和絕緣層402的詳細描述可以參考多晶矽層208、停止層224、和絕緣層202的描述,並且在本文中不再重複。
溝槽結構可以圍繞基礎結構404的週邊區域(例如,多晶矽層408)中的區,使得被圍繞的區(例如,在多晶矽層408中)可以與多晶矽層408的位於溝槽結構外部的部分絕緣。在一些實施例中,溝槽結構可以從多晶矽層408的上表面至少延伸到多晶矽層408的下表面。例如,溝槽結構的下表面可以停止在停止層424上或中。在一些實施例中,多晶矽層408的下表面停止在停止層424處。溝槽結構的厚度/深度可以至少是多晶矽層408沿著z方向的厚度。可以在微影製程之後通過諸如乾式蝕刻或/及濕式蝕刻的任何適當的圖案化製程來形成溝槽結構。
基礎結構404可以形成在基底的一側(例如,第一側)上。基底可以是矽基底或由任何適當的材料製成的載體基底,所述材料例如半導體、玻璃、藍寶石、塑膠,僅舉幾例。在一些實施例中,絕緣層402包括諸如氧化矽的介電材料。在一些實施例中,停止層424包括諸如氧化鋁的高k介電材料。在一些實施例中,多晶矽層408包括具有均勻摻雜分佈的多晶矽。在一些實施例中,通過諸如化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、電鍍、化學鍍沉積及其組合的任何適當的膜沉積方法在基底上依次形成絕緣層402、停止層424、和多晶矽層408。隨後,可以去除基底和對基底減薄以用於形成各種結構,例如接觸穿孔。在一些實施例中,在製造製程的適當時間去除基底或對基底減薄,使得可以從基礎結構404的下表面形成接觸穿孔。
在基底上的基礎結構404上形成介電堆疊層,該介電堆疊層隨後形成儲存堆疊層。介電堆疊層可以包括複數個交錯的犧牲層和介電層。在一些實施 例中,具有複數個犧牲層和介電層的對的介電堆疊層形成在多晶矽層408上。交錯的犧牲層和介電層可以交替地沉積在多晶矽層408上以形成介電堆疊層。在一些實施例中,每個介電層包括氧化矽層,並且每個犧牲層包括氮化矽層。在一些實施例中,在多晶矽層408和介電堆疊層之間形成墊氧化物層(例如,氧化矽層,未示出)。可以在製造製程期間的適當時間,在介電堆疊層和基礎結構404之上沉積具有適當的介電材料(例如,氧化矽)的絕緣結構418,使得介電堆疊層位於絕緣結構418中。可以通過包括但不限於CVD、PVD、ALD、或其任何組合的一種或多種薄膜沉積製程來形成介電堆疊層、絕緣結構418和墊氧化物層(如果有的話)。
在形成接觸結構的第一接觸部分之前,可以在製造製程期間的任何適當時間在半導體裝置的週邊區域中形成溝槽結構。在一些實施例中,溝槽結構是通過使用“零遮罩”對基礎結構404(例如,多晶矽層408)進行圖案化來形成的,所述零遮罩用於在基礎結構404上形成任何結構之前對基礎結構404進行圖案化。在一些實施例中,在基礎結構404上形成一個或複數個犧牲層和介電層的對之後,通過對介電堆疊層進行圖案化來形成溝槽結構,例如,以用於形成底部選擇閘切口結構。因此可以將用於形成溝槽結構的圖案併入現有的圖案化遮罩,使得可以用其他現有的蝕刻操作來執行用於形成溝槽結構的基礎結構404的蝕刻,從而減少了總蝕刻操作的數量。在各種實施例中,取決於製造製程,溝槽結構還可以通過單獨的圖案化/蝕刻製程來形成,或者與其他適當的結構同時形成。
可以在溝槽結構中形成間隔部結構420。可以沉積介電材料(例如,氧化矽)以填充溝槽結構,從而形成間隔部結構420。在形成接觸結構的第一接觸部分之前,可以通過諸如CVD、PVD、ALD、及其組合的任何適當的膜沉積方法來沉積介電材料,並且可以在製造製程期間的任何適當時間沉積介電材 料。在一些實施例中,在形成介電堆疊層之後,可以通過與形成絕緣結構418相同的沉積製程來形成間隔部結構420。在一些實施例中,在基礎結構404上形成一個或複數個犧牲層和介電層的對之後,並且在形成整個介電堆疊層之前,可以通過與在介電堆疊層中形成底部選擇閘切口結構相同的沉積製程來形成間隔部結構420。在各種實施例中,取決於製造製程,間隔部結構420也可以通過單獨的沉積製程形成,或者與其他適當的結構同時填充有介電材料。
在形成接觸結構之前,儘管在第4A圖至第4D圖中未示出其他結構,但可以在半導體裝置(例如,介電堆疊層)中形成其他結構。在一些實施例中,形成垂直地延伸穿過介電堆疊層、多晶矽層408並停止在停止層424處的通道結構。在一些實施例中,為了形成通道結構,形成垂直地延伸穿過介電堆疊層和多晶矽層408的通道孔(例如,開口),並且沿通道孔的側壁依次形成儲存膜(例如,阻隔層、儲存層和穿隧層)和半導體通道。膜和層在通道孔中的沉積可以包括ALD、CVD、PVD、任何其他適當的製程或其任何組合。在一些實施例中,通道插塞形成在半導體通道上方並與半導體通道接觸。在一些實施例中,用於形成通道孔的製造製程包括濕式蝕刻製程或/及乾式蝕刻製程,例如深反應離子蝕刻(DRIE)。根據一些實施例,由於在停止層424和多晶矽層408的材料之間的蝕刻選擇性,持續對通道孔的蝕刻直到被停止層424停止為止。
為了導電連接多晶矽層408和通道結構,在多晶矽層408中形成與半導體通道接觸並導電連接到半導體通道的多晶矽子層408-1。在一些實施例中,去除儲存膜的下部部分,使得儲存膜變得斷開。可以通過用多晶矽的子層替換犧牲子層來形成與半導體通道接觸的多晶矽子層408-1。多晶矽子層408-1的形成可以包括適當的乾式蝕刻製程或/及濕式蝕刻製程、CVD、PVD、ALD、及其組合。也可以形成將儲存單元劃分成複數個塊的絕緣間隔部。絕緣間隔部的形成可以包括適當的乾式蝕刻製程或/及濕式蝕刻製程、CVD、PVD、ALD、及其組 合。可以執行閘極替換製程以替換介電堆疊層中的犧牲層從而形成複數個導體層。可以在多晶矽層408上形成具有複數個交錯的導體層410和介電層412的儲存堆疊層406。閘極替換製程可以包括適當的等向性蝕刻製程、CVD、PVD、ALD、及其組合。延伸穿過儲存堆疊層406的通道結構可以通過半導體通道與多晶矽層408接觸並導電連接到多晶矽層408。在一些實施例中,儲存堆疊層406可以被重複地圖案化以形成階梯結構,該階梯結構包括橫向地(例如,沿x/y方向)延伸的複數個臺階。儲存堆疊層406的圖案化製程可以包括重複的微影製程和凹陷蝕刻(例如,等向性蝕刻製程)。
返回參考第7圖,方法700進行到操作706,在操作706中,在基礎結構的上表面上形成第一接觸部分並且該第一接觸部分被間隔部結構包圍。第4B圖示出了對應的結構。
如第4B圖中所示,第一接觸部分416-1可以形成在絕緣結構418中並落在基礎結構404的上表面上。第一接觸部分416-1的下表面可以在多晶矽層408中的由間隔部結構420限定的封閉區中,使得第一接觸部分416-1橫向地被間隔部結構420包圍。在一些實施例中,第一接觸部分416-1的下表面在多晶矽層408的上表面下方延伸。在一些實施例中,第一接觸部分416-1通過與形成字元線觸點414相同的製程來形成,字元線觸點414落在相應的臺階上以與臺階中的導體層410形成導電連接。第一接觸部分416-1和字元線觸點414均可以包括適當的導電材料,例如鎢。
第一接觸部分416-1和字元線觸點414的形成可以包括圖案化製程和隨後適當的膜沉積製程。圖案化製程可以去除絕緣結構418的部分以形成與第一接觸部分416-1和字元線觸點414的位置和定位相對應的開口。在一些實施例中,用於第一接觸部分416-1的開口在絕緣結構418中延伸,並暴露多晶矽層408中的被圍繞的區。在一些實施例中,用於字元線觸點414的開口在絕緣結構418中延 伸,並在相對應的臺階中暴露導體層410。導電材料的沉積可以包括CVD、PVD、ALD、電鍍、化學鍍及其組合。
返回參考第7圖,方法700進行到操作708,在操作708中,形成從基礎結構的下表面延伸到第一接觸部分的孔,該孔被間隔部結構包圍。第4C圖示出了對應的結構。
如第4C圖中所示,可以形成從基礎結構404的下表面延伸到第一接觸部分416-1的孔415。孔415可以被間隔部結構420包圍。可以去除基礎結構404的一部分(即絕緣層402、停止層424、和多晶矽層408的一部分)以形成孔415,孔415從基礎結構404的下表面(例如,絕緣層402的下表面)延伸到第一接觸部分416-1。孔415可以與第一接觸部分416-1接觸並且暴露第一接觸部分416-1。如第4C圖中所示,孔415的在多晶矽層408中的部分可以位於由間隔部結構420限定的被圍繞的區中。孔415的橫向尺寸可以足夠大以完全接觸第一接觸部分416-1,並且可以足夠小以不超過由間隔部結構420包圍的被圍繞的區。在一些實施例中,孔415與間隔部結構420外部的多晶矽層408隔離。在一些實施例中,孔415的橫向尺寸可以小於或等於被圍繞的區的橫向尺寸。
在一些實施例中,可以在與形成孔415相同的圖案化製程中形成用於形成源極接觸結構的另一個孔425。孔425可以從基礎結構404的下表面(例如,絕緣層402)延伸到多晶矽層408。圖案化製程可以包括適當的蝕刻製程,例如乾式蝕刻製程或/及濕式蝕刻製程。
在各種實施例中,在形成孔415之前,去除在其上形成有基礎結構404的基底。可以在製造製程期間的任何適當時間通過研磨製程、CMP、凹陷蝕刻、或其組合來去除該基底。在一些實施例中,基礎結構404的下表面是絕緣層402的下表面。
返回參考第7圖,方法700進行到操作710,在操作710中,在孔中形 成與第一接觸部分接觸的第二接觸部分。第4D圖示出了對應的結構。
如第4D圖中所示,第二接觸部分416-2可以形成在孔415中,與第一接觸部分416-1接觸。可以沉積諸如鎢的導電材料以填充孔415和另一個孔425。可以執行任何適當的膜沉積方法以沉積導電材料。例如,沉積方法可以包括CVD、PVD、ALD、電鍍、化學鍍、或其組合。在一些實施例中,可以通過與形成第二接觸部分416-2相同的沉積製程來形成源極接觸結構426。可以形成具有彼此接觸的第一接觸部分416-1和第二接觸部分416-2的接觸結構,以延伸絕緣結構418和基礎結構404(例如,間隔部結構420),從而連接半導體裝置的週邊電路。同時,可以在基礎結構404中形成與多晶矽層408接觸並導電連接到多晶矽層408的源極接觸結構426。然後,通道結構可以通過多晶矽層408和源極接觸結構426導電連接到源極。
第5A圖至第5D圖示出了根據本公開的一些實施例的用於形成半導體裝置的製造製程。第8圖示出了根據本公開的一些實施例的用於形成半導體裝置的方法800的流程圖。第5A圖至第5D圖和第8圖中所描述的半導體裝置的示例包括第3A圖和第3B圖中所描述的半導體裝置。將一起描述第5A圖至第5D圖和第8圖。應當理解,方法800中示出的操作不是窮舉的,並且也可以在任何所示的操作之前、之後、或之間執行其他操作。此外,可以同時執行一些操作,或者以與第8圖中所示的不同順序來執行一些操作。為了便於說明,使用相同的圖式標記來描述第5A圖至第5B圖中的與第4A圖至第4D圖中的部分類似的部分,並且在本文中不再重複對這些部分的詳細描述。
參考第8圖,方法800開始於操作802和804,在操作802中,在基礎結構中形成第一孔,並且在操作804中,在第一孔中形成阱結構。第5A圖示出了對應的結構。
如第5A圖中所示,在製造製程的開始,可以在基礎結構404中形成第 一孔。第一孔的形狀和深度可以對應於隨後形成的間隔部結構的形狀和深度。在一些實施例中,第一孔的下表面可以暴露停止層424。在一些實施例中,第一孔的深度可以大於或等於多晶矽層408的厚度,使得隨後形成的間隔部結構可以使接觸結構與多晶矽層408絕緣。第一孔可以在製造製程期間的任何適當時間形成,並且可以與其他結構形成或以單獨的製程形成。可以執行適當的蝕刻製程(例如,濕式蝕刻或/及乾式蝕刻)作為圖案化製程以形成第一孔。形成第一孔的位置和時序的詳細描述可以參考第4A圖至第4D圖中描述的溝槽結構的位置和時序,並且在本文中不再重複。
通過用介電材料填充第一孔,可以在基礎結構404中形成阱結構519。阱結構519的下表面可以與停止層424接觸。在一些實施例中,阱結構519的下表面可以在停止層424的頂表面上或下方。為了便於說明,可以將阱結構519的上表面定義為與多晶矽層408的上表面共面的表面。在一些實施例中,介電材料包括氧化矽,並且可以以諸如CVD、PVD、ALD、或其組合的適當的膜沉積方法來形成。形成阱結構519的位置和時序的詳細描述可以參考第4A圖至第4D圖中描述的間隔部結構420的位置和時序,並且在本文中不再重複。
返回參考第8圖,方法800進行到操作806,在操作806中,在阱結構中形成第一接觸部分。第5B圖示出了對應的結構。
如第5B圖中所示,可以在阱結構519中形成第一接觸部分516-1。第一接觸部分516-1可以形成在絕緣結構418中,並且落在阱結構519的下表面上。第一接觸部分516-1可以被阱結構519包圍。在一些實施例中,第一接觸部分516-1通過與形成字元線觸點414相同的製程來形成,字元線觸點414落在相應的臺階上以與臺階中的導體層410形成導電連接。第一接觸部分516-1和字元線觸點414均可以包括適當的導電材料,例如鎢。在一些實施例中,第一接觸部分516-1的下表面未到達阱結構519的下表面,但是在多晶矽層408的上表面下方,使得當 形成第二接觸部分時,可以減少從基礎結構404的下表面的蝕刻。即,形成第二接觸部分的第二孔不需要從基礎結構404(即,絕緣層402)的下表面到達多晶矽層408的上表面。
第一接觸部分516-1和字元線觸點414的形成可以包括圖案化製程和隨後適當的膜沉積製程。圖案化製程可以去除絕緣結構418的部分以在期望的深度處形成與第一接觸部分516-1和字元線觸點414的位置和定位相對應的開口。在一些實施例中,用於第一接觸部分516-的開口在絕緣結構418中延伸並且暴露多晶矽層408中的被圍繞的區。在一些實施例中,用於字元線觸點414的開口在絕緣結構418中延伸並且在相對應的臺階中暴露導體層410。導電材料的沉積可以包括CVD、PVD、ALD、電鍍、化學鍍、及其組合。
返回參考第8圖,方法800進行到操作808,在操作808中,形成從基礎結構的下表面延伸到第一接觸部分的第二孔。形成間隔部結構。第5C圖示出了對應的結構。
如第5C圖中所示,可以形成從基礎結構404的下表面延伸到第一接觸部分516-1的第二孔515。間隔部結構520可以由阱結構519的剩餘部分形成。第二孔515可以由多晶矽層408中的間隔部結構520包圍。可以去除基礎結構404的一部分(即,絕緣層402、停止層424、和多晶矽層408(如果有的話)的一部分)以形成第二孔515,第二孔515從基礎結構404的下表面(例如,絕緣層402的下表面)延伸到第一接觸部分516-1。第二孔515可以與第一接觸部分516-1接觸並且暴露第一接觸部分516-1。在各種實施例中,第二孔515的上表面可以與停止層424的上表面共面或在停止層424的上表面上方,以確保第一接觸部分516和第二孔515(或隨後形成的第二接觸部分)之間的充分接觸。如第5C圖中所示,第二孔515的橫向尺寸可以足夠大以完全接觸第一接觸部分516-1,並且可以足夠小以不超過間隔部結構420。在一些實施例中,第二孔515與間隔部結構520外部的多 晶矽層408隔離。在一些實施例中,第二孔515的橫向尺寸可以小於或等於阱結構519(或間隔部結構520)的橫向尺寸。在一些實施例中,可以在與形成第二孔515相同的圖案化製程中形成用於形成源極接觸結構426的另一個孔425。圖案化製程可以包括適當的蝕刻製程,例如乾式蝕刻製程或/及濕式蝕刻製程。
返回參考第8圖,方法800進行到操作810,在操作810中,在第二孔中形成第二接觸部分,並且第二接觸部分與第一接觸部分接觸。第5D圖示出了對應的結構。
如第5D圖中所示,第二接觸部分516-2可以形成在第二孔515中,與第一接觸部分516-1接觸。可以沉積諸如鎢的導電材料以填充第二孔515和另一個孔425。可以執行任何適當的膜沉積方法以沉積導電材料。例如,沉積方法可以包括CVD、PVD、ALD、電鍍、化學鍍、或其組合。在一些實施例中,可以通過與形成第二接觸部分516-2相同的沉積製程來形成源極接觸結構426。可以形成具有彼此接觸的第一接觸部分516-1和第二接觸部分516-2的接觸結構516,以延伸絕緣結構418和基礎結構404(例如,間隔部結構520),從而連接半導體裝置的週邊電路。第一導體部分516-1的下表面可以在間隔部結構520的上表面下方。第二導體部分516-2的上表面可以是平坦/水平的表面。
本公開的實施例提供了半導體裝置。該半導體裝置包括絕緣層、絕緣層之上的導電層、以及在導電層中並與絕緣層接觸的間隔部結構。半導體裝置還包括在間隔部結構中並垂直地延伸穿過絕緣層的第一接觸結構。第一接觸結構包括彼此接觸的第一接觸部分和第二接觸部分。第二接觸部分的上表面與導電層的上表面共面。
在一些實施例中,導電層包括多晶矽。
在一些實施例中,第二接觸部分的橫向截面面積大於或等於第一接觸部分的橫向截面面積。
在一些實施例中,半導體裝置還包括儲存堆疊層,該儲存堆疊層包括在導電層之上並與接觸結構分開的交錯的導電層和介電層。在一些實施例中,半導體裝置還包括在儲存堆疊層中並進入導電層中的通道結構。通道結構包括半導體通道。半導體通道的下部部分與導電層接觸。第二接觸結構在絕緣層中垂直地延伸並與導電層接觸。
在一些實施例中,通道結構還包括與半導體通道接觸並包圍半導體通道的儲存層。在一些實施例中,儲存層的下部部分被斷開以暴露半導體通道,使得半導體通道與導電層接觸。
在一些實施例中,間隔部結構包括介電材料。
在一些實施例中,第一接觸結構在絕緣層和導電層的相對側上電性連接週邊電路和接觸墊。
在一些實施例中,第一接觸結構電性連接到第二接觸結構。
本公開的實施例提供了半導體裝置。該半導體裝置包括絕緣層、絕緣層之上的導電層、以及在導電層中並與絕緣層接觸的間隔部結構。半導體裝置還包括在間隔部結構中並垂直地延伸穿過絕緣層的第一接觸結構。第一接觸結構包括彼此接觸的第一接觸部分和第二接觸部分。接觸結構也包括第一接觸部分的下表面在導電層的上表面下方的接觸介面處與第二接觸部分的上表面接觸。
在一些實施例中,接觸介面與導電層的下表面共面。
在一些實施例中,導電層包括多晶矽。
在一些實施例中,第二接觸部分的橫向截面面積大於或等於第一接觸部分的橫向截面面積。
在一些實施例中,半導體裝置還包括儲存堆疊層,該儲存堆疊層包括在導電層之上並與接觸結構分開的交錯的導電層和介電層、以及在儲存堆疊 層中並進入導電層中的通道結構。通道結構包括半導體通道。半導體通道的下部部分與導電層接觸。第二接觸結構在絕緣層中垂直地延伸並與導電層接觸。
在一些實施例中,通道結構還包括與半導體通道接觸並包圍半導體通道的儲存層。在一些實施例中,儲存層的下部部分被斷開以暴露半導體通道,使得半導體通道與導電層接觸。
在一些實施例中,間隔部結構包括介電材料。
在一些實施例中,第一接觸結構在絕緣層和導電層的相對側上電性連接週邊電路和接觸墊。
在一些實施例中,第一接觸結構電性連接到第二接觸結構。
本公開的實施例提供了用於形成半導體裝置的方法。該方法包括:形成從基礎結構的第一表面進入基礎結構中的間隔部結構;形成由間隔部結構包圍的第一接觸部分;以及形成與第一接觸部分接觸的第二接觸部分。第二接觸部分從基礎結構的第二表面延伸到基礎結構中。
在一些實施例中,形成間隔部結構包括在第一表面上去除基礎結構的一部分以形成從第一表面延伸到基礎結構中的開口結構。在一些實施例中,形成間隔部結構包括用絕緣材料填充開口結構。
在一些實施例中,開口結構的下表面在基礎結構的第一表面和第二表面之間。
在一些實施例中,基礎結構包括絕緣層和絕緣層之上的導電層。在一些實施例中,形成開口結構包括在導電層中形成溝槽結構以形成由溝槽結構圍繞的導電層的第一部分和溝槽結構外部的導電層的第二部分。
在一些實施例中,導電層的第一部分通過溝槽結構與導電層的第二部分隔離,並且溝槽結構的下表面與絕緣層接觸。
在一些實施例中,形成被間隔部結構包圍的第一接觸部分包括形成 與導電層的第一部分接觸並且被絕緣材料包圍的第一接觸部分。
在一些實施例中,形成第二接觸部分包括形成從基礎結構的第二表面延伸到基礎結構中並與第一接觸部分接觸的孔。該孔通過間隔部結構與導電層的第二部分絕緣。在一些實施例中,形成第二接觸部分包括用導電材料填充孔。
在一些實施例中,基礎結構包括絕緣層和絕緣層之上的導電層。在一些實施例中,形成開口結構包括在導電層中形成孔,該孔的下表面與絕緣層接觸。
在一些實施例中,形成被間隔部結構包圍的第一接觸部分包括形成在絕緣材料中延伸的第一接觸部分。第一接觸部分的下表面在間隔部結構的上表面下方。
在一些實施例中,第一接觸部分的下表面與絕緣層接觸。
在一些實施例中,形成第二接觸部分包括形成從基礎結構的第二表面延伸到基礎結構中並與第一接觸部分接觸的另一個孔。該孔通過絕緣材料與導電層絕緣。在一些實施例中,形成第二接觸部分包括用導電材料填充孔。
在一些實施例中,基礎結構包括絕緣層、絕緣層之上的蝕刻停止層、以及蝕刻停止層之上的導電層。在一些實施例中,形成開口結構包括去除導電層的一部分,直到開口結構的下表面停止在蝕刻停止層上。
在一些實施例中,該方法還包括在基礎結構上的遠離接觸結構處形成儲存堆疊層。在形成儲存堆疊層之前沉積絕緣材料。
在一些實施例中,該方法還包括在基礎結構上的遠離接觸結構處形成儲存堆疊層。在形成儲存堆疊層之後沉積絕緣材料。
在一些實施例中,該方法還包括在儲存堆疊層中形成包括半導體通道的通道結構。半導體通道的下部部分與導電層接觸。在一些實施例中,形成 從基礎結構的第二表面延伸到基礎結構中並與導電層接觸的接觸結構。接觸結構以與形成第二接觸部分相同的製程來形成。
特定實施例的前述描述將因此揭示本公開的一般性質,以使得其他人在不脫離本公開的一般概念的情況下,可以通過應用本領域技術內的知識來容易地修改或/及適應於各種應用(例如特定實施例),而無需過度實驗。因此,基於本文提出的教導和指導,這樣的改編和修改旨在落在所公開的實施例的等同物的含義和範圍內。應當理解,本文中的措詞或術語是出於描述而非限制性的目的,使得本說明書的術語或措辭將由技術人員根據教導和指導進行解釋。
上面已經藉由示出特定功能及其關係的實施方式的功能構建塊描述了本公開的實施例。為了方便描述,本文已經任意定義了這些功能構建塊的邊界。只要適當地執行特定功能及其關係,就可以定義交替的邊界。
發明內容部分和摘要部分可以闡述(一個或複數個)發明人所設想的本公開的一個或複數個但不是全部示例性實施例,並且因此,不旨在以任何方式限制本公開和所附發明申請專利範圍。
本公開的廣度和範圍不應當由任何上述示例性實施例限制,而應當僅根據所附發明申請專利範圍及其等同物來定義。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
200:半導體裝置
202:絕緣層
204:基礎結構
206:儲存堆疊層
208:多晶矽層
208-1:多晶矽子層
210:導體層
212:介電層
214:字元線觸點
216:接觸結構
216-1:第一接觸部分
216-2:第二接觸部分
218:絕緣結構
220:間隔部結構
224:停止層
226:源極接觸結構

Claims (19)

  1. 一種半導體裝置,包括:絕緣層;該絕緣層之上的導電層;間隔部結構,該間隔部結構在該導電層中並與該絕緣層接觸;第一接觸結構,該第一接觸結構在該間隔部結構中,並垂直地延伸穿過該絕緣層;以及儲存堆疊層,該儲存堆疊層在該導電層之上,該儲存堆疊層包括交錯的導體層和介電層,且該導電層位在該儲存堆疊層與該絕緣層之間,其中,該第一接觸結構包括彼此接觸的第一接觸部分和第二接觸部分,以及該第二接觸部分的上表面與該導電層的上表面共面,且該第二接觸部分貫穿該絕緣層。
  2. 如請求項1所述的半導體裝置,其中,該導電層包括多晶矽。
  3. 如請求項1所述的半導體裝置,其中,該第二接觸部分的橫向截面面積大於或等於該第一接觸部分的橫向截面面積。
  4. 如請求項1所述的半導體裝置,還包括:通道結構,該通道結構在該儲存堆疊層中並進入該導電層中,該通道結構包括半導體通道,其中,該半導體通道的下部部分與該導電層接觸;以及第二接觸結構,該第二接觸結構在該絕緣層中垂直地延伸並與該導電層接觸,其中該交錯的導體層和介電層與該第一接觸結構分開。
  5. 如請求項4所述的半導體裝置,其中,該通道結構還包括與該半導體通道接觸並包圍該半導體通道的儲存層;並且該儲存層的下部部分被斷開以暴露該半導體通道,使得該半導體通道與該導電層接觸。
  6. 如請求項1所述的半導體裝置,其中,該間隔部結構包括介電材料。
  7. 如請求項1所述的半導體裝置,其中,該第一接觸結構在該絕緣層和該導電層的相對側上電性連接週邊電路和接觸墊。
  8. 如請求項4所述的半導體裝置,其中,該第一接觸結構電性連接到該第二接觸結構。
  9. 一種半導體裝置,包括:絕緣層;該絕緣層之上的導電層;間隔部結構,該間隔部結構在該導電層中並與該絕緣層接觸;以及第一接觸結構,該第一接觸結構在該間隔部結構中,並垂直地延伸穿過該絕緣層,其中,該第一接觸結構包括彼此接觸的第一接觸部分和第二接觸部分,並且該第一接觸部分的下表面在該導電層的上表面下方的接觸介面處與該第二接觸部分的上表面接觸,且該第二接觸部分與該導電層絕緣,且該第二接觸部分貫穿該絕緣層。
  10. 如請求項9所述的半導體裝置,其中,該接觸介面與該導電層的下表面共面。
  11. 如請求項9所述的半導體裝置,其中,該導電層包括多晶矽。
  12. 如請求項9所述的半導體裝置,其中,該第二接觸部分的橫向截面面積大於或等於該第一接觸部分的橫向截面面積。
  13. 如請求項9所述的半導體裝置,還包括:儲存堆疊層,該儲存堆疊層包括在該導電層之上並與該第一接觸結構分開的交錯的導體層和介電層;通道結構,該通道結構在該儲存堆疊層中並進入該導電層中,該通道結構包括半導體通道,其中,該半導體通道的下部部分與該導電層接觸;以及第二接觸結構,該第二接觸結構在該絕緣層中垂直地延伸並與該導電層接觸。
  14. 如請求項13所述的半導體裝置,其中,該通道結構還包括與該半導體通道接觸並包圍該半導體通道的儲存層;並且該儲存層的下部部分被斷開以暴露該半導體通道,使得該半導體通道與該導電層接觸。
  15. 一種用於形成半導體裝置的方法,包括:形成從基礎結構的第一表面進入該基礎結構中的間隔部結構;形成被該間隔部結構包圍的第一接觸部分;以及形成與該第一接觸部分接觸的第二接觸部分,該第二接觸部分從該基礎結構 的第二表面延伸到該基礎結構中,該基礎結構包括絕緣層,且該第二接觸部分貫穿該絕緣層,其中,形成該間隔部結構包括:在該第一表面上去除該基礎結構的一部分以形成從該第一表面延伸到該基礎結構中的開口結構;以及用絕緣材料填充該開口結構。
  16. 如請求項15所述的方法,其中,該開口結構的下表面在該基礎結構的該第一表面和該第二表面之間。
  17. 如請求項15所述的方法,其中,形成該第二接觸部分包括:形成從該基礎結構的該第二表面延伸到該基礎結構中並與該第一接觸部分接觸的孔,該基礎結構還包括導電層,該孔通過該間隔部結構與該導電層絕緣;以及用導電材料填充該孔。
  18. 如請求項15所述的方法,其中,形成該第二接觸部分包括:形成另一個孔,該另一個孔從該基礎結構的該第二表面延伸到該基礎結構中並與該第一接觸部分接觸,該基礎結構還包括導電層,該另一個孔通過絕緣材料與該導電層絕緣;以及用導電材料填充該另一個孔。
  19. 如請求項15所述的方法,其中,該基礎結構還包括該絕緣層之上的蝕刻停止層、以及該蝕刻停止層之上的導電層;以及 形成該開口結構包括去除該導電層的一部分直到該開口結構的下表面停止在該蝕刻停止層上。
TW109132251A 2020-07-31 2020-09-18 半導體裝置及用於形成半導體裝置的方法 TWI809312B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2020/106068 2020-07-31
PCT/CN2020/106068 WO2022021269A1 (en) 2020-07-31 2020-07-31 Methods for forming contact structures and semiconductor devices thereof

Publications (2)

Publication Number Publication Date
TW202207430A TW202207430A (zh) 2022-02-16
TWI809312B true TWI809312B (zh) 2023-07-21

Family

ID=73527420

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109132251A TWI809312B (zh) 2020-07-31 2020-09-18 半導體裝置及用於形成半導體裝置的方法

Country Status (7)

Country Link
US (3) US11562945B2 (zh)
EP (1) EP4128351A4 (zh)
JP (1) JP2023526476A (zh)
KR (1) KR20230002798A (zh)
CN (2) CN117042458A (zh)
TW (1) TWI809312B (zh)
WO (1) WO2022021269A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023526476A (ja) * 2020-07-31 2023-06-21 長江存儲科技有限責任公司 コンタクト構造体を形成するための方法およびその半導体デバイス
CN112349726B (zh) * 2020-10-15 2022-01-25 长江存储科技有限责任公司 一种半导体结构及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208589444U (zh) * 2018-07-04 2019-03-08 长江存储科技有限责任公司 三维存储器件
US20190280002A1 (en) * 2018-03-08 2019-09-12 Sandisk Technologies Llc Concurrent formation of memory openings and contact openings for a three-dimensional memory device
TW201939716A (zh) * 2018-03-16 2019-10-01 日商東芝記憶體股份有限公司 記憶裝置
TW201939724A (zh) * 2018-03-09 2019-10-01 日商東芝記憶體股份有限公司 半導體裝置及半導體裝置之製造方法
CN111146202A (zh) * 2018-11-06 2020-05-12 三星电子株式会社 半导体器件
US20200203329A1 (en) * 2018-12-21 2020-06-25 Samsung Electronics Co., Ltd. Semiconductor device

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078404A (ja) * 2006-09-21 2008-04-03 Toshiba Corp 半導体メモリ及びその製造方法
JP5142692B2 (ja) * 2007-12-11 2013-02-13 株式会社東芝 不揮発性半導体記憶装置
US8541832B2 (en) * 2009-07-23 2013-09-24 Samsung Electronics Co., Ltd. Integrated circuit memory devices having vertical transistor arrays therein and methods of forming same
US10651315B2 (en) * 2012-12-17 2020-05-12 Micron Technology, Inc. Three dimensional memory
US9230987B2 (en) * 2014-02-20 2016-01-05 Sandisk Technologies Inc. Multilevel memory stack structure and methods of manufacturing the same
US9548313B2 (en) * 2014-05-30 2017-01-17 Sandisk Technologies Llc Method of making a monolithic three dimensional NAND string using a select gate etch stop layer
US9455263B2 (en) * 2014-06-27 2016-09-27 Sandisk Technologies Llc Three dimensional NAND device with channel contacting conductive source line and method of making thereof
US9305937B1 (en) * 2014-10-21 2016-04-05 Sandisk Technologies Inc. Bottom recess process for an outer blocking dielectric layer inside a memory opening
US9711524B2 (en) * 2015-01-13 2017-07-18 Sandisk Technologies Llc Three-dimensional memory device containing plural select gate transistors having different characteristics and method of making thereof
KR20170011394A (ko) * 2015-07-22 2017-02-02 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
KR102378820B1 (ko) * 2015-08-07 2022-03-28 삼성전자주식회사 메모리 장치
KR102378821B1 (ko) * 2015-08-10 2022-03-28 삼성전자주식회사 반도체 장치
US9911748B2 (en) * 2015-09-28 2018-03-06 Sandisk Technologies Llc Epitaxial source region for uniform threshold voltage of vertical transistors in 3D memory devices
KR102452826B1 (ko) * 2015-11-10 2022-10-12 삼성전자주식회사 메모리 장치
US10396090B2 (en) * 2016-05-23 2019-08-27 SK Hynix Inc. Semiconductor device and manufacturing method thereof
US10008570B2 (en) * 2016-11-03 2018-06-26 Sandisk Technologies Llc Bulb-shaped memory stack structures for direct source contact in three-dimensional memory device
US10381373B2 (en) * 2017-06-16 2019-08-13 Sandisk Technologies Llc Three-dimensional memory device having a buried source line extending to scribe line and method of making thereof
US10283452B2 (en) * 2017-09-15 2019-05-07 Yangtze Memory Technology Co., Ltd. Three-dimensional memory devices having a plurality of NAND strings
KR102549967B1 (ko) * 2017-11-21 2023-06-30 삼성전자주식회사 수직형 메모리 장치 및 그 제조 방법
US10756102B2 (en) * 2017-11-23 2020-08-25 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory structure and manufacturing method thereof
US10283493B1 (en) * 2018-01-17 2019-05-07 Sandisk Technologies Llc Three-dimensional memory device containing bonded memory die and peripheral logic die and method of making thereof
US10903230B2 (en) * 2018-02-15 2021-01-26 Sandisk Technologies Llc Three-dimensional memory device containing through-memory-level contact via structures and method of making the same
US10354987B1 (en) * 2018-03-22 2019-07-16 Sandisk Technologies Llc Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same
US10354980B1 (en) * 2018-03-22 2019-07-16 Sandisk Technologies Llc Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same
WO2019182657A1 (en) * 2018-03-22 2019-09-26 Sandisk Technologies Llc Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same
KR20190118751A (ko) 2018-04-11 2019-10-21 삼성전자주식회사 반도체 장치
US10381322B1 (en) * 2018-04-23 2019-08-13 Sandisk Technologies Llc Three-dimensional memory device containing self-aligned interlocking bonded structure and method of making the same
US10586803B2 (en) * 2018-04-24 2020-03-10 Sandisk Technologies Llc Three-dimensional memory device and methods of making the same using replacement drain select gate electrodes
US10566059B2 (en) * 2018-04-30 2020-02-18 Sandisk Technologies Llc Three dimensional NAND memory device with drain select gate electrode shared between multiple strings
US10381362B1 (en) * 2018-05-15 2019-08-13 Sandisk Technologies Llc Three-dimensional memory device including inverted memory stack structures and methods of making the same
US10622367B1 (en) * 2018-09-26 2020-04-14 Sandisk Technologies Llc Three-dimensional memory device including three-dimensional bit line discharge transistors and method of making the same
US10923502B2 (en) * 2019-01-16 2021-02-16 Sandisk Technologies Llc Three-dimensional ferroelectric memory devices including a backside gate electrode and methods of making same
US10748894B2 (en) 2019-01-18 2020-08-18 Sandisk Technologies Llc Three-dimensional memory device containing bond pad-based power supply network for a source line and methods of making the same
US10727215B1 (en) * 2019-01-30 2020-07-28 Sandisk Technologies Llc Three-dimensional memory device with logic signal routing through a memory die and methods of making the same
US10879262B2 (en) * 2019-03-27 2020-12-29 Sandisk Technologies Llc Three-dimensional memory device containing eye-shaped contact via structures located in laterally-undulating trenches and method of making the same
WO2020198943A1 (en) * 2019-03-29 2020-10-08 Yangtze Memory Technologies Co., Ltd. Memory stacks having silicon oxynitride gate-to-gate dielectric layers and methods for forming the same
US11004773B2 (en) * 2019-04-23 2021-05-11 Sandisk Technologies Llc Porous barrier layer for improving reliability of through-substrate via structures and methods of forming the same
US10727276B1 (en) * 2019-05-24 2020-07-28 Sandisk Technologies Llc Three-dimensional NAND memory device containing two terminal selector and methods of using and making thereof
JP7254956B2 (ja) * 2019-08-02 2023-04-10 長江存儲科技有限責任公司 三次元メモリデバイスおよびその製作方法
CN110692138B (zh) * 2019-08-02 2021-04-27 长江存储科技有限责任公司 三维存储器器件及其制造方法
WO2021051383A1 (en) * 2019-09-20 2021-03-25 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device having multi-deck structure and methods for forming the same
US11342244B2 (en) * 2020-01-21 2022-05-24 Sandisk Technologies Llc Bonded assembly of semiconductor dies containing pad level across-die metal wiring and method of forming the same
CN111788687B (zh) * 2020-04-14 2021-09-14 长江存储科技有限责任公司 用于形成三维存储器件的方法
CN111566815B (zh) * 2020-04-14 2021-09-14 长江存储科技有限责任公司 具有背面源极触点的三维存储器件
JP2023526476A (ja) * 2020-07-31 2023-06-21 長江存儲科技有限責任公司 コンタクト構造体を形成するための方法およびその半導体デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190280002A1 (en) * 2018-03-08 2019-09-12 Sandisk Technologies Llc Concurrent formation of memory openings and contact openings for a three-dimensional memory device
TW201939724A (zh) * 2018-03-09 2019-10-01 日商東芝記憶體股份有限公司 半導體裝置及半導體裝置之製造方法
TW201939716A (zh) * 2018-03-16 2019-10-01 日商東芝記憶體股份有限公司 記憶裝置
CN208589444U (zh) * 2018-07-04 2019-03-08 长江存储科技有限责任公司 三维存储器件
CN111146202A (zh) * 2018-11-06 2020-05-12 三星电子株式会社 半导体器件
US20200203329A1 (en) * 2018-12-21 2020-06-25 Samsung Electronics Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
KR20230002798A (ko) 2023-01-05
US20220037234A1 (en) 2022-02-03
TW202207430A (zh) 2022-02-16
EP4128351A4 (en) 2023-11-15
US20220102247A1 (en) 2022-03-31
JP2023526476A (ja) 2023-06-21
EP4128351A1 (en) 2023-02-08
US11562945B2 (en) 2023-01-24
WO2022021269A1 (en) 2022-02-03
CN112020774B (zh) 2023-09-08
US20230118742A1 (en) 2023-04-20
CN117042458A (zh) 2023-11-10
CN112020774A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
TWI738381B (zh) 具有背面源極接觸的立體記憶體元件
TWI805929B (zh) 用於形成具有背面源極觸點的三維記憶體元件的方法
TWI756737B (zh) 用於形成立體記憶體元件的方法
JP2022538954A (ja) 3次元メモリデバイス及び方法
TW202008568A (zh) 三維記憶體裝置
US11393844B2 (en) Methods for forming three-dimensional memory devices
TW202145517A (zh) 三維記憶體裝置及其製作方法
TWI753488B (zh) 用於形成三維記憶體元件的方法
TWI740571B (zh) 立體記憶體元件
US20230118742A1 (en) Methods for forming contact structures and semiconductor devices thereof
US20210320120A1 (en) Three-dimensional memory devices
TWI762227B (zh) 具有用於階梯區的支撐結構和用於接觸結構的間隔體結構的三維記憶體元件及其形成方法
TWI773086B (zh) 用於形成立體(3d)記憶體元件的方法
TWI756745B (zh) 用於形成三維(3d)記憶體裝置的方法
US11488977B2 (en) Three-dimensional memory devices and methods for forming the same
WO2021208418A1 (en) Three-dimensional memory devices and methods for forming the same
TWI779318B (zh) 三維記憶體元件及其製作方法
TWI746228B (zh) 三維記憶體元件和用於形成三維記憶體元件的方法
US20210320115A1 (en) Three-dimensional memory devices and methods for forming the same
WO2021208337A1 (en) Three-dimensional memory devices and methods for forming the same
TW202145528A (zh) 3d記憶體裝置