TWI809100B - 半導體裝置、及半導體裝置的製造方法 - Google Patents

半導體裝置、及半導體裝置的製造方法 Download PDF

Info

Publication number
TWI809100B
TWI809100B TW108116298A TW108116298A TWI809100B TW I809100 B TWI809100 B TW I809100B TW 108116298 A TW108116298 A TW 108116298A TW 108116298 A TW108116298 A TW 108116298A TW I809100 B TWI809100 B TW I809100B
Authority
TW
Taiwan
Prior art keywords
insulator
conductor
oxide
transistor
addition
Prior art date
Application number
TW108116298A
Other languages
English (en)
Other versions
TW202005059A (zh
Inventor
山崎舜平
伊藤大吾
方堂涼太
安藤善範
掛端哲彌
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW202005059A publication Critical patent/TW202005059A/zh
Application granted granted Critical
Publication of TWI809100B publication Critical patent/TWI809100B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Surgical Instruments (AREA)
  • Drying Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Abstract

提供一種能夠實現微型化或高積體化的半導體裝置。其包括第一導電體至第四導電體、第一絕緣體、第二絕緣體、第一氧化物、以及第二氧化物,其中,在第一導電體上配置第一絕緣體,在第一絕緣體上配置第一氧化物,在第一絕緣體及第一氧化物設置到達第一導電體的第一開口,在第一氧化物上配置彼此離開的第二導電體及第三導電體,第三導電體的至少一部分重疊於第一開口並接觸於第一導電體的頂面,在第一氧化物上以其至少一部分重疊於第二導電體和第三導電體之間的區域的方式配置第二氧化物,在第二氧化物上配置第二絕緣體,並且,在第二絕緣體上配置第四導電體。

Description

半導體裝置、及半導體裝置的製造方法
本發明的一個實施方式係關於一種半導體裝置及半導體裝置的製造方法。此外,本發明的一個實施方式係關於一種半導體晶圓、模組以及電子裝置。
注意,在本說明書等中,半導體裝置是指能夠藉由利用半導體特性而工作的所有裝置。除了電晶體等的半導體元件之外,半導體電路、運算裝置或記憶體裝置也是半導體裝置的一個實施方式。顯示裝置(液晶顯示裝置、發光顯示裝置等)、投影裝置、照明設備、電光裝置、蓄電裝置、記憶體裝置、半導體電路、成像裝置及電子裝置等有時包括半導體裝置。
注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的一個實施方式係關於一種物體、方法或製造方法。另外,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或者組合物(composition of matter)。
作為可以應用於電晶體的半導體薄膜,矽類半導體材料被廣泛地周知。另外,作為其他材料,氧化物半導體受到關注。作為氧化物半導體, 例如,已知除了如氧化銦、氧化鋅等單元金屬氧化物之外還有多元金屬氧化物。在多元金屬氧化物中,有關In-Ga-Zn氧化物(以下也稱為IGZO)的研究尤為火熱。
藉由對IGZO的研究,在氧化物半導體中,發現了既不是單晶也不是非晶的CAAC(c-axis aligned crystalline:c軸配向結晶)結構及nc(nanocrystalline:奈米晶)結構(參照非專利文獻1至非專利文獻3)。非專利文獻1及非專利文獻2中公開了一種使用具有CAAC結構的氧化物半導體製造電晶體的技術。非專利文獻4及非專利文獻5中公開了一種比CAAC結構及nc結構的結晶性更低的氧化物半導體中也具有微小的結晶。
將JGZO用於活性層的電晶體具有極低的關態電流(參照非專利文獻6),已知有利用了該特性的LSI及顯示器(非專利文獻7及非專利文獻8)。
[非專利文獻1]S. Yamazaki et al.,“SID Symposium Digest of Technical Papers”,2012,volume 43,issue 1,p.183-186
[非專利文獻2]S. Yamazaki et al.,“Japanese Journal of Applied Physics”,2014,volume 53,Number 4S,p.04ED18-1-04ED18-10
[非專利文獻3]S. Ito et al.,“The Proceedings of AM-FPD’ 13 Digest of Technical Papers”,2013,p.151-154
[非專利文獻4]S. Yamazaki et al.,“ECS Journal of Solid State Science and Technology”,2014,volume 3,issue 9,p.Q3012-Q3022
[非專利文獻5]S. Yamazaki,“ECS Transactions”,2014,volume 64,issue 10,p.155-164
[非專利文獻6]K. Kato et al.,“Japanese Journal of Applied Physics”,2012,volume 51,p.021201-1-021201-7
[非專利文獻7]S. Matsuda et al.,“2015 Symposium on VLSI Technology Digest of Technical Papers”,2015,p.T216-T217
[非專利文獻8]S. Amano et al.,“SID Symposium Digest of Technical Papers”,2010,volume 41,issue 1,p.626-629
本發明的一個實施方式的目的之一是提供一種能夠實現微型化或高積體化的半導體裝置。本發明的一個實施方式的目的之一是提供一種具有良好的電特性的半導體裝置。本發明的一個實施方式目的之一是提供一種通態電流大的半導體裝置。本發明的一個實施方式的目的之一是提供一種具有高頻率特性的半導體裝置。本發明的一個實施方式的目的之一是提供一種可靠性良好的半導體裝置。本發明的一個實施方式的目的之一是提供一種生產率高的半導體裝置。
本發明的一個實施方式的目的之一是提供一種能夠長期間保持資料的半導體裝置。本發明的一個實施方式的目的之一是提供一種資料的寫入速度快的半導體裝置。本發明的一個實施方式的目的之一是提供一種設計彈性高的半導體裝置。本發明的一個實施方式的目的之一是提供一種能夠抑制功耗的半導體裝置。本發明的一個實施方式的目的之一是提供一種新穎的半導體裝置。
注意,上述目的的記載不妨礙其他目的的存在。此外,本發明的一個 實施方式並不需要實現所有上述目的。另外,這些目的之外的目的根據說明書、圖式、申請專利範圍等的記載來看是自然明瞭的,可以從說明書、圖式、申請專利範圍等的記載得出上述以外的目的。
本發明的一個實施方式是一種半導體裝置,包括:第一導電體至第四導電體、第一絕緣體、第二絕緣體、第一氧化物以及第二氧化物,其中,在第一導電體上配置第一絕緣體,在第一絕緣體上配置第一氧化物,在第一絕緣體及第一氧化物中設置到達第一導電體的第一開口,在第一氧化物上配置彼此離開的第二導電體及第三導電體,第三導電體的至少一部分重疊於第一開口並接觸於第一導電體的頂面,在第一氧化物上以其至少一部分重疊於第二導電體和第三導電體之間的區域的方式配置第二氧化物,在第二氧化物上配置第二絕緣體,並且,在第二絕緣體上配置第四導電體。
本發明的另一個實施方式是一種半導體裝置,包括:第一導電體至第五導電體、第一絕緣體、第二絕緣體、第一氧化物以及第二氧化物,其中,在第一導電體上配置第一絕緣體,在第一絕緣體上配置第一氧化物,在第一絕緣體及第一氧化物中設置到達第一導電體的第一開口,在第一氧化物上配置彼此離開的第二導電體及第三導電體,第三導電體的至少一部分重疊於第一開口並接觸於第一導電體的頂面,在第一氧化物上以其至少一部分重疊於第二導電體和第三導電體之間的區域的方式配置第二氧化物,在第二氧化物上配置第二絕緣體,在第二絕緣體上配置第四導電體,並且,在第三導電體上以其至少一部分重疊於第一開口及第一導電體的方式配置第五導電體。
在上述結構中,也可以包括:配置在第一絕緣體、第二導電體及第三導電體上的第三絕緣體、以及以接觸於第三絕緣體的頂面、第二氧化物的頂面、第二絕緣體的頂面及第四導電體的頂面的方式配置的第四絕緣體,其中,第二氧化物、第二絕緣體及第四導電體較佳為配置在第二導電體和第三導電體之間。
在上述結構中,第三導電體較佳為在第一開口中接觸於第一氧化物的側面。此外,在上述結構中,第三導電體的接觸於第一氧化物的側面的部分的厚度也可以薄於第三導電體的接觸於第一氧化物的頂面的部分的厚度。此外,在上述結構中,第五導電體的頂面的高度較佳為與第三導電體的頂面的高度大致相同。
在上述結構中,也可以包括配置在第二導電體及第三導電體和第三絕緣體之間的第五絕緣體。此外,在上述結構中,也可以在第三絕緣體及第五絕緣體中設置重疊於第一開口的第二開口,並且以填充第一開口及第二開口的方式配置第五導電體。
在上述結構中,第五導電體較佳為氮化鈦與該氮化鈦上的鎢的疊層膜。
在上述結構中,也可以包括在第一絕緣體下以其至少一部分重疊於第四導電體的方式配置的第六導電體。
在上述結構中,第二導電體及第三導電體較佳為在第一開口以外的部分不接觸於第一氧化物的側面。
在上述結構中,第一氧化物及第二氧化物較佳為包含In、元素M(M為Al、Ga、Y或Sn)及Zn。
在上述結構中,也可以在第一導電體下設置電容器,並且電容器的一個電極較佳為與第一導電體電連接。
在上述結構中,也可以在電容器下設置形成在矽基板的電晶體。
本發明的另一個實施方式是一種包括第一導電體至第四導電體、第一絕緣體至第三絕緣體、第一氧化物以及第二氧化物的半導體裝置的製造方法,包括如下步驟:形成第一導電體;在第一導電體上依次形成第一絕緣體和第一氧化膜;在第一絕緣體及第一氧化膜中形成到達第一導電體的第一開口;利用濺射法在第一氧化膜上形成第一導電膜;將第一氧化膜及第一導電膜加工為島狀而形成第一氧化物及島狀第一導電膜;在第一絕緣體、第一氧化物及島狀第一導電膜上形成第三絕緣體;在第三絕緣體中形成到達島狀第一導電膜的第二開口;去除島狀第一導電膜的重疊於第二開口的區域來形成第二導電體及第三導電體;在第一氧化物及第三絕緣體上依次形成第二氧化膜、第一絕緣膜和第三導電膜;以及直到露出第三絕緣體的頂面為止去除第二氧化膜的一部分、第一絕緣膜的一部分及第三導電膜的一部分,來形成第二氧化物、第二絕緣體及第四導電體。
本發明的另一個實施方式是一種包括第一導電體至第五導電體、第一絕緣體至第三絕緣體、第一氧化物以及第二氧化物的半導體裝置的製造方 法,包括如下步驟:形成第一導電體;在第一導電體上依次形成第一絕緣體和第一氧化膜;在第一絕緣體及第一氧化膜中形成到達第一導電體的第一開口;利用濺射法在第一氧化膜上形成第一導電膜;利用ALD法或CVD法在第一導電膜上形成第二導電膜;直到露出第一導電膜的頂面為止去除第二導電膜的一部分,來形成第五導電體;將第一氧化膜及第一導電膜加工為島狀而形成第一氧化物及島狀第一導電膜;在第一絕緣體、第一氧化物及島狀第一導電膜上形成第三絕緣體;在第三絕緣體中形成到達島狀第一導電膜的第二開口;去除島狀第一導電膜的重疊於第二開口的區域來形成第二導電體及第三導電體;在第一氧化物及第三絕緣體上依次形成第二氧化膜、第一絕緣膜和第三導電膜;以及直到露出第三絕緣體的頂面為止去除第二氧化膜的一部分、第一絕緣膜的一部分及第三導電膜的一部分,來形成第二氧化物、第二絕緣體及第四導電體。
在上述結構中,作為第二導電膜較佳為利用ALD法形成氮化鈦,並且利用CVD法形成鎢。另外,在上述結構中,較佳的是,在去除第二導電膜的一部分時,進行乾蝕刻處理,並且進行CMP(Chemical Mechanical Polishing:化學機械拋光)處理。
根據本發明的一個實施方式,可以提供一種能夠實現微型化或高積體化的半導體裝置。另外,根據本發明的一個實施方式,可以提供一種具有良好的電特性的半導體裝置。另外,根據本發明的一個實施方式,可以提供一種通態電流大的半導體裝置。另外,根據本發明的一個實施方式,可以提供一種具有高頻率特性的半導體裝置。另外,根據本發明的一個實施方式,可以提供一種可靠性良好的半導體裝置。另外,根據本發明的一個 實施方式,可以提供一種生產率高的半導體裝置。
或者,可以提供一種能夠長期間保持資料的半導體裝置。或者,可以提供一種資料的寫入速度快的半導體裝置。或者,可以提供一種設計彈性高的半導體裝置。或者,可以提供一種能夠抑制功耗的半導體裝置。或者,可以提供一種新穎的半導體裝置。
注意,這些效果的記載不妨礙其他效果的存在。此外,本發明的一個實施方式並不需要具有所有上述效果。另外,這些效果之外的效果根據說明書、圖式、申請專利範圍等的記載來看是自然明瞭的,可以從說明書、圖式、申請專利範圍等的記載得出上述以外的效果。
200‧‧‧電晶體
205‧‧‧導電體
210‧‧‧絕緣體
212‧‧‧絕緣體
214‧‧‧絕緣體
216‧‧‧絕緣體
222‧‧‧絕緣體
224‧‧‧絕緣體
230‧‧‧氧化物
231‧‧‧區域
232‧‧‧區域
234‧‧‧區域
240‧‧‧導電體
241‧‧‧絕緣體
242‧‧‧導電體
243‧‧‧氧化物
245‧‧‧導電體
246‧‧‧導電體
247‧‧‧導電體
248‧‧‧開口
249‧‧‧區域
250‧‧‧絕緣體
252‧‧‧遮罩
256‧‧‧絕緣體
260‧‧‧導電體
274‧‧‧絕緣體
276‧‧‧絕緣體
280‧‧‧絕緣體
281‧‧‧絕緣體
282‧‧‧絕緣體
在圖式中:圖1A至圖1D是示出根據本發明的一個實施方式的半導體裝置的俯視圖及剖面圖;圖2是根據本發明的一個實施方式的半導體裝置的剖面圖;圖3A至圖3D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖4A至圖4D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖5A至圖5D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖6A至圖6D是示出根據本發明的一個實施方式的半導體裝置的製造方 法的俯視圖及剖面圖;圖7A至圖7D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖8A至圖8D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖9A至圖9D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖10A至圖10D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖11A至圖11D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖12A至圖12D是示出根據本發明的一個實施方式的半導體裝置的俯視圖及剖面圖;圖13A至圖13D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖14A至圖14D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖15A至圖15D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖16A至圖16D是示出根據本發明的一個實施方式的半導體裝置的俯視圖及剖面圖;圖17A至圖17D是示出根據本發明的一個實施方式的半導體裝置的俯視圖及剖面圖;圖18A至圖18D是示出根據本發明的一個實施方式的半導體裝置的製造 方法的俯視圖及剖面圖;圖19A至圖19D是示出根據本發明的一個實施方式的半導體裝置的製造方法的俯視圖及剖面圖;圖20是示出根據本發明的一個實施方式的記憶體裝置的結構的剖面圖;圖21是示出根據本發明的一個實施方式的記憶體裝置的結構的剖面圖;圖22是示出根據本發明的一個實施方式的記憶體裝置的結構的剖面圖;圖23是示出根據本發明的一個實施方式的記憶體裝置的結構的剖面圖;圖24是示出根據本發明的一個實施方式的記憶體裝置的結構的剖面圖;圖25是示出根據本發明的一個實施方式的記憶體裝置的結構的剖面圖;圖26是示出根據本發明的一個實施方式的記憶體裝置的結構的剖面圖;圖27是示出根據本發明的一個實施方式的記憶體裝置的結構的剖面圖;圖28是示出根據本發明的一個實施方式的記憶體裝置的結構的剖面圖;圖29是示出根據本發明的一個實施方式的記憶體裝置的結構的剖面圖;圖30是示出根據本發明的一個實施方式的記憶體裝置的結構的剖面 圖;圖31A和圖31B是示出根據本發明的一個實施方式的記憶體裝置的結構例子的方塊圖;圖32A至圖32H是示出根據本發明的一個實施方式的記憶體裝置的結構例子的電路圖;圖33A和圖33B是根據本發明的一個實施方式的半導體裝置的示意圖;圖34A至圖34E是根據本發明的一個實施方式的記憶體裝置的示意圖;圖35是說明可用於本發明的一個實施方式的半導體裝置的產品的概念的圖;圖36A至圖36H是示出根據本發明的一個實施方式的電子裝置的圖。
下面,參照圖式對實施方式進行說明。但是,所屬技術領域的通常知識者可以很容易地理解一個事實,就是實施方式可以以多個不同形式來實施,其方式和詳細內容可以在不脫離本發明的精神及其範圍的條件下被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在下面的實施方式所記載的內容中。
在圖式中,為便於清楚地說明,有時誇大表示大小、層的厚度或區域。因此,本發明並不一定限定於上述尺寸。此外,在圖式中,示意性地示出理想的例子,因此本發明不侷限於圖式所示的形狀或數值等。例如,在實際的製程中,有時由於蝕刻等處理而層或光阻遮罩等非意圖性地被減薄,但是為了便於理解有時不反映到圖式。另外,在圖式中,有時在不同的圖式之間共同使用相同的元件符號來表示相同的部分或具有相同功能的部 分,而省略其重複說明。此外,當表示具有相同功能的部分時有時使用相同的陰影線,而不特別附加元件符號。
另外,尤其在俯視圖(也稱為平面圖)或立體圖等中,為了便於對發明的理解,有時省略部分組件的記載。另外,有時省略部分隱藏線等的記載。
此外,在本說明書等中,為了方便起見,附加了第一、第二等序數詞,而其並不表示製程順序或疊層順序。因此,例如可以將“第一”適當地替換為“第二”或“第三”等來進行說明。此外,本說明書等所記載的序數詞與用於指定本發明的一個實施方式的序數詞有時不一致。
在本說明書等中,為方便起見,使用了“上”、“下”等表示配置的詞句,以參照圖式說明組件的位置關係。另外,組件的位置關係根據描述各組件的方向適當地改變。因此,不侷限於本說明書中所說明的詞句,可以根據情況適當地更換。
例如,在本說明書等中,當明確地記載為“X與Y連接”時,意味著如下情況:X與Y電連接;X與Y在功能上連接;X與Y直接連接。因此,不侷限於規定的連接關係(例如,圖式或文中所示的連接關係等),圖式或文中所示的連接關係以外的連接關係也包含於圖式或文中所記載的內容中。
這裡,X和Y為物件(例如,裝置、元件、電路、佈線、電極、端子、導電膜及層等)。
另外,在使用極性不同的電晶體的情況或電路工作中的電流方向變化的情況等下,源極及汲極的功能有時相互調換。因此,在本說明書等中,有時源極和汲極可以相互調換。
另外,在本說明書等中,根據電晶體的結構,有時形成通道的區域中的實際上的通道寬度(以下,也稱為“實效通道寬度”)和電晶體的俯視圖所示的通道寬度(以下,也稱為“外觀上的通道寬度”)不同。例如,在閘極電極覆蓋半導體的側面的情況下,有時因為實效通道寬度大於外觀上的通道寬度,所以不能忽略其影響。例如,在微型且閘極電極覆蓋半導體的側面的電晶體中,有時形成在半導體的側面的通道形成區域的比例增高。在此情況下,實效通道寬度大於外觀上的通道寬度。
在此情況下,有時難以藉由實測估計實效通道寬度。例如,要從設計值估算出實效通道寬度,需要假定半導體的形狀是已知的。因此,當半導體的形狀不清楚時,難以準確地測量實效通道寬度。
在本說明書中,在簡單地描述為“通道寬度”時,有時是指外觀上的通道寬度。或者,在本說明書中,在簡單地描述為“通道寬度”時,有時是指實效通道寬度。注意,藉由對剖面TEM影像等進行分析等,可以決定通道長度、通道寬度、實效通道寬度、外觀上的通道寬度等的值。
注意,半導體的雜質例如是指半導體的主要成分之外的元素。例如,濃度小於0.1原子%的元素可以說是雜質。有時由於包含雜質,例如造成半 導體的DOS(Density of States:態密度)變高,結晶性降低等。當半導體是氧化物半導體時,作為改變半導體的特性的雜質,例如有第1族元素、第2族元素、第13族元素、第14族元素、第15族元素以及除氧化物半導體的主要成分外的過渡金屬等。例如有氫、鋰、鈉、矽、硼、磷、碳、氮等。在半導體是氧化物半導體的情況下,有時水也作為雜質起作用。另外,在半導體是氧化物半導體時,有時例如由於雜質的進入導致氧空位(也稱為VO:oxygen vacancy)的產生。此外,在半導體是矽時,作為改變半導體特性的雜質,例如有氧、除氫之外的第1族元素、第2族元素、第13族元素、第15族元素等。
注意,在本說明書等中,氧氮化矽是指氧含量大於氮含量的物質。此外,氮氧化矽是指氮含量大於氧含量的物質。
另外,在本說明書等中,可以將“絕緣體”換稱為“絕緣膜”或“絕緣層”。另外,可以將“導電體”換稱為“導電膜”或“導電層”。另外,可以將“半導體”換稱為“半導體膜”或“半導體層”。
在本說明書等中,“平行”是指兩條直線形成的角度為-10°以上且10°以下的狀態。因此,也包括該角度為-5°以上且5°以下的狀態。“大致平行”是指兩條直線形成的角度為-30°以上且30°以下的狀態。另外,“垂直”是指兩條直線的角度為80°以上且100°以下的狀態。因此,也包括該角度為85°以上且95°以下的狀態。“大致垂直”是指兩條直線形成的角度為60°以上且120°以下的狀態。
注意,在本說明書中,障壁膜是指具有抑制水、氫等雜質及氧的透過的功能的膜,在該障壁膜具有導電性的情況下,有時被稱為導電障壁膜。
在本說明書等中,金屬氧化物(metal oxide)是指廣義上的金屬的氧化物。金屬氧化物被分類為氧化物絕緣體、氧化物導電體(包括透明氧化物導電體)和氧化物半導體(Oxide Semiconductor,也可以簡稱為OS)等。例如,在將金屬氧化物用於電晶體的半導體層的情況下,有時將該金屬氧化物稱為氧化物半導體。換言之,可以將OS FET或OS電晶體稱為包含氧化物或氧化物半導體的電晶體。
注意,在本說明書等中,常關閉是指:在不對閘極施加電位或者對閘極施加接地電位時流過電晶體的每通道寬度1μm的電流在室溫下為1×10-20A以下,在85℃下為1×10-18A以下,或在125℃下為1×10-16A以下。
實施方式1
下面說明包括根據本發明的一個實施方式的電晶體200的半導體裝置的一個例子。
〈半導體裝置的結構例子〉
圖1A、圖1B、圖1C及圖1D是根據本發明的一個實施方式的電晶體200及電晶體200的周圍的俯視圖及剖面圖。
圖1A是包括電晶體200的半導體裝置的俯視圖。圖1B、圖1C及圖1D是 該半導體裝置的剖面圖。圖1B是沿著圖1A中的點劃線A1-A2的部分的剖面圖,該剖面圖相當於電晶體200的通道長度方向上的剖面圖。另外,圖1C是沿著圖1A中的點劃線A3-A4的部分的剖面圖,該剖面圖相當於電晶體200的通道寬度方向上的剖面圖。另外,圖1D是沿著圖1A中的點劃線A5-A6的部分的剖面圖,該剖面圖相當於電晶體200的源極區域或汲極區域中的通道寬度方向上的剖面圖。為了明確起見,在圖1A的俯視圖中省略部分組件。
本發明的一個實施方式的半導體裝置包括:基板(未圖示)上的絕緣體214、絕緣體214上的電晶體200、電晶體200上的絕緣體280、絕緣體280上的絕緣體282、絕緣體282上的絕緣體274及絕緣體274上的絕緣體281。絕緣體214、絕緣體280、絕緣體282、絕緣體274及絕緣體281被用作層間膜。另外,以埋入於設置在絕緣體214上的絕緣體216中的方式設置導電體247。導電體247與電晶體200電連接,並被用作插頭。此外,設置與電晶體200電連接並被用作插頭的導電體240。注意,絕緣體241以接觸於被用作插頭的導電體240的側面的方式設置。
另外,絕緣體241以與絕緣體256(絕緣體256a及絕緣體256b)、絕緣體280、絕緣體282、絕緣體274及絕緣體281的開口的內壁接觸的方式設置,導電體240的第一導電體以與絕緣體241的側面接觸的方式設置,在其內側設置導電體240的第二導電體。在此,導電體240的頂面的高度與絕緣體281的頂面的高度可以大致相同。另外,在電晶體200中,層疊有導電體240的第一導電體與導電體240的第二導電體,但是本發明不侷限於此。例如,導電體240也可以具有單層結構或者三層以上的疊層結構。另外,在結構體具有疊層結構的情況下,有時按形成順序賦予序數以進行區別。
[電晶體200]
如圖1A至圖1D所示,電晶體200包括:絕緣體214上的絕緣體216;以絕緣體216中埋入的方式配置的導電體205(導電體205a及導電體205b);絕緣體216及導電體205上的絕緣體222;絕緣體222上的絕緣體224;絕緣體224上的氧化物230a;氧化物230a上的氧化物230b;氧化物230b上的導電體242a及導電體242b;氧化物230b上的氧化物230c;氧化物230c上的絕緣體250;位於絕緣體250上並重疊於氧化物230c的導電體260(導電體260a及導電體260b);接觸於絕緣體224的頂面的一部分、氧化物230a的側面、氧化物230b的側面、導電體242a的側面、導電體242a的頂面、導電體242b的側面及導電體242b的頂面的絕緣體256a及絕緣體256b。另外,氧化物230c接觸於導電體242a的側面及導電體242b的側面。導電體260包括導電體260a及導電體260b,並且以包圍導電體260b的底面及側面的方式配置導電體260a。在此,如圖1B所示那樣,以其頂面的高度與絕緣體250的頂面及氧化物230c的頂面的高度大致一致的方式配置導電體260。另外,絕緣體282與導電體260、氧化物230c、絕緣體250及絕緣體280的每一個的頂面接觸。
此外,絕緣體216中形成有開口,該開口中配置有上述導電體247。導電體247的頂面的至少一部分從絕緣體216露出,導電體247的頂面的高度和絕緣體216的頂面的高度較佳為大致相同。
在此,導電體247被用作設置在絕緣體214之下方的層的電路元件諸如開關、電晶體、電容器、電感器、電阻器及二極體等、佈線、電極或者端子與電晶體200電連接的插頭。例如,可以採用導電體247與設置在絕緣體214 之下方的層的電容器的一個電極電連接的結構。此外,可以採用例如導電體247與設置在絕緣體214之下方的層的電晶體的閘極電連接的結構。
此外,絕緣體222、絕緣體224、氧化物230a及氧化物230b中形成有使導電體247的至少一部分露出的開口248。
另外,導電體242b配置在氧化物230b上並經過開口248接觸於導電體247的頂面的至少一部分。如此,藉由連接導電體242b與導電體247,可以減少電晶體200的源極或汲極和導電體247之間的電阻。
藉由採用上述結構,可以提高包括電晶體200的半導體裝置的頻率特性及電特性。
此外,電連接於導電體247的電路元件諸如開關、電晶體、電容器、電感器、電阻器及二極體等、佈線、電極或端子之中的至少一部分較佳為重疊於氧化物230。由此,可以縮小電晶體200、上述電路元件、佈線、電極或端子的俯視時的佔有面積,因此可以實現根據本實施方式的半導體裝置的微型化或高積體化。
注意,導電體242b較佳為以在開口248中接觸於氧化物230a的側面及氧化物230b的側面的方式設置。
此外,雖然在圖1A及圖1B中採用在導電體242b下設置導電體247的結構,但是本實施方式所示的半導體裝置不侷限於此。例如,既可以採用在 導電體242a下設置導電體247的結構,又可以在導電體242a及導電體242b下都設置導電體247的結構。
此外,絕緣體222、絕緣體256(絕緣體256a及絕緣體256b)及絕緣體282較佳為具有抑制氫(例如,氫原子、氫分子等中的至少一個)的擴散的功能。此外,絕緣體222、絕緣體256及絕緣體282較佳為具有抑制氧(例如,氧原子、氧分子等中的至少一個)的擴散的功能。例如,絕緣體222、絕緣體256及絕緣體282各自的氧及氫中的一者或兩者的透過性較佳為比絕緣體224低。絕緣體222、絕緣體256及絕緣體282各自的氧及氫中的一者或兩者的透過性較佳為比絕緣體250低。絕緣體222、絕緣體256及絕緣體282各自的氧及氫中的一者或兩者的透過性較佳為比絕緣體280低。
如圖1B所示那樣,導電體242a及導電體242b設置在氧化物230b上,絕緣體256較佳為接觸於導電體242a的頂面及側面、導電體242b的頂面及側面、氧化物230b的側面、以及氧化物230a的側面及絕緣體224的頂面。此外,絕緣體256較佳為具有包括絕緣體256a及絕緣體256b的疊層結構。由此,在開口248以外的部分,亦即在外周的側面,氧化物230a及氧化物230b的側面不接觸於導電體242a及導電體242b,而絕緣體280由絕緣體256(絕緣體256a及絕緣體256b)與絕緣體224、氧化物230a及氧化物230b分開。
另外,氧化物230較佳為包括絕緣體224上的氧化物230a、氧化物230a上的氧化物230b、在氧化物230b上並其至少一部分接觸於氧化物230b的頂面的氧化物230c。
注意,在電晶體200中,在形成通道的區域(以下,也稱為通道形成區域)及其附近氧化物230具有氧化物230a、氧化物230b及氧化物230c的三層的疊層結構,但是本發明不侷限於此。例如,氧化物230也可以具有氧化物230b的單層結構、氧化物230b和氧化物230a的兩層結構、氧化物230b和氧化物230c的兩層結構、或者四層以上的疊層結構。此外,氧化物230a、氧化物230b及氧化物230c可以各自具有兩層以上的疊層結構。另外,在電晶體200中,導電體260具有兩層的疊層結構,但是本發明不侷限於此。例如,導電體260也可以具有單層結構或三層以上的疊層結構。
在此,導電體260被用作電晶體的閘極電極,導電體242a及導電體242b分別被用作源極電極或汲極電極。在電晶體200中,被用作閘極電極的導電體260以填充由絕緣體280等形成的開口的方式自對準地形成。藉由如此形成導電體260,可以在導電體242a和導電體242b之間的區域中,無需對準而確實地配置導電體260。
另外,較佳為在電晶體200中將被用作氧化物半導體的金屬氧化物(以下,有時稱為氧化物半導體)用於包含通道形成區域的氧化物230(氧化物230a、氧化物230b及氧化物230c)。
由於將氧化物半導體用於通道形成區域的電晶體200在非導通狀態下的洩漏電流(關態電流)極小,所以可以提供功耗低的半導體裝置。此外,由於氧化物半導體可以利用濺射法等形成,所以可以用於構成高集成型半導體裝置的電晶體200。
作為氧化物230較佳為使用In-M-Zn氧化物(元素M為選自鋁、鎵、釔、錫、銅、釩、鈹、硼、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種)等金屬氧化物。尤其是,元素M較佳為使用鋁、鎵、釔或錫。此外,作為氧化物230也可以使用In-Ga氧化物、In-Zn氧化物。
在此,在氧化物230中存在氫、氮或金屬元素等雜質的情況下,有時載子密度增大,電阻會降低。另外,在氧化物230的氧濃度降低的情況下,有時載子密度增大,電阻會降低。
在以與氧化物230b上接觸的方式設置的被用作源極電極或汲極電極的導電體242(導電體242a及導電體242b)具有吸收氧化物230的氧的功能的情況或者在對氧化物230供應氫、氮或金屬元素等雜質的功能的情況下,有時在氧化物230中部分地形成低電阻區域。導電體242形成在氧化物230b上,在開口248以外的部分,亦即在外周的側面,導電體242不接觸於氧化物230a及氧化物230b的側面或絕緣體224。由此,可以抑制氧化物230a、氧化物230b及絕緣體224中的至少一個所包含的氧使導電體242氧化。另外,可以抑制包含在氧化物230a及氧化物230b中的氧,尤其是包含在通道形成區域及其附近的氧從氧化物230a及氧化物230b的側面被導電體242吸收。
絕緣體256是為了不使氧化物230a及氧化物230b的側面直接接觸於絕緣體280而設置的。另外,絕緣體256是為了抑制導電體242的氧化而設置的。但是,在導電體242是耐氧化材料或者即使導電體242吸收氧也其導電性不會顯著降低的情況下,絕緣體256不必要具有抑制導電體242的氧化的效果。
藉由設置絕緣體256,可以抑制絕緣體280所包含的氧從氧化物230a及氧化物230b的側面注入。
在此,圖2示出圖1B中的通道形成區域附近的放大圖。
如圖2所示,以與氧化物230b上接觸的方式設置有導電體242,在氧化物230的與導電體242的介面及其附近作為低電阻區域形成有區域249(區域249a及區域249b)。氧化物230包括被用作電晶體200的通道形成區域的區域234、被用作源極區或汲極區的區域231(區域231a及區域231b)及區域234和區域231之間的區域232(區域232a及區域232b)。在此,區域231包括區域249。此外,作為圖2中的氧化物230c,示出具有氧化物230c1及氧化物230c2的疊層結構的例子,但是本實施方式不侷限於此。氧化物230c也可以具有單層結構或三層以上的疊層結構。
在被用作源極區或汲極區的區域231中,尤其是區域249是由於氧濃度低或者包含氫、氮或金屬元素等雜質,因此其載子濃度增加而其電阻降低的區域。換言之,區域231是與區域234相比載子密度高且電阻低的區域。另外,被用作通道形成區域的區域234是與區域231相比,尤其與區域249相比其氧濃度更高或者雜質濃度更低,所以載子密度低的高電阻區。另外,區域232的氧濃度較佳為等於或高於區域231的氧濃度,較佳為等於或低於區域234的氧濃度。或者,區域232的雜質濃度較佳為等於或低於區域231的雜質濃度,較佳為等於或高於區域234的雜質濃度。
就是說,區域232由於所包含的氧的濃度或雜質的濃度具有與區域234 相同程度的電阻值,因而區域232有時與區域234同樣地被用作通道形成區域、有時被用作具有與區域231相同程度的電阻值的低電阻區域、或者有時被用作其電阻高於區域231且低於區域234的低電阻區域。尤其是,在氧化物230的一部分具有後面說明的CAAC-OS的情況下,區域231所包含的雜質在a-b面方向上容易擴散,而區域232有時低電阻化。
另外,在作為低電阻區域的區域249包含金屬元素的情況下,區域249較佳為除了氧化物230所包含的金屬元素之外還包含鋁、鉻、銅、銀、金、鉑、鉭、鎳、鈦、鉬、鎢、鉿、釩、鈮、錳、鎂、鋯、鈹、銦、釕、銥、鍶和鑭等金屬元素中的一個或多個。
另外,在圖2中,區域249在氧化物230b的厚度方向上形成在氧化物230b的與導電體242的介面附近,但是不侷限於此。例如,區域249的厚度也可以與氧化物230b的厚度大致相同,區域249也可以形成在氧化物230a中。另外,在圖2中,區域249只形成在區域231中,但是本實施方式不侷限於此。如上所述那樣,在雜質a-b面方向上擴散的情況下,區域249可以形成在區域231及區域232中,也可以形成在區域231的一部分及區域232的一部分中,還可以形成在區域231的一部分、區域232的一部分和區域234的一部分中。
在氧化物230中,有時難以明確地觀察各區域的邊界。在各區域中檢測出的金屬元素和氫及氮等雜質元素的濃度不需要必須按每區域分階段地變化,也可以在各區域中逐漸地變化(也稱為漸變(gradation))。就是說,越接近通道形成區域,金屬元素和氫及氮等雜質元素的濃度越小即可。
為了選擇性地降低氧化物230的電阻,作為導電體242例如較佳為使用包含鋁、鉻、銅、銀、金、鉑、鉭、鎳、鈦、鉬、鎢、鉿、釩、鈮、錳、鎂、鋯、鈹、銦、釕、銥、鍶和鑭等提高導電性的金屬元素和雜質中的至少一個的材料。或者,在形成將成為導電體242的導電膜242A時,使用對氧化物230注入形成氧空位的元素或者被氧空位俘獲的元素等雜質的材料或成膜方法等即可。例如,作為該元素,可以舉出氫、硼、碳、氮、氟、磷、硫、氯和稀有氣體元素等。另外,作為稀有氣體元素的典型例子,可以舉出氦、氖、氬、氪及氙等。
在此,在使用氧化物半導體的電晶體中,如果氧化物半導體中的形成通道的區域存在雜質及氧空位,電特性則容易變動,有時降低可靠性。另外,在氧化物半導體中的形成通道的區域包含氧空位的情況下,電晶體趨於具有常開啟特性。因此,儘可能降低形成通道的區域234中的氧空位。
為了抑制電晶體的常開啟化,較佳為使與氧化物230接近的絕緣體250包含超過化學計量組成的氧(也稱為過量氧)。絕緣體250所包含的氧擴散到氧化物230,降低氧化物230的氧空位,由此可以抑制電晶體的常開啟化。
換言之,藉由將絕緣體250所包含的氧擴散到氧化物230的區域234,可以降低氧化物230的區域234中的氧空位。另外,藉由將絕緣體280所包含的氧經過氧化物230c擴散到氧化物230的區域234,可以降低氧化物230的區域234中的氧空位。此時,如圖2所示,也可以採用如下結構,亦即氧化物230c具有包括氧化物230c1及氧化物230c2的疊層結構,並且絕緣體280所包含的氧經過氧化物230c1擴散到氧化物230的區域234。再者,作為氧化物230c2使 用不容易透過氧的材料,可以抑制絕緣體280所包含的氧擴散到絕緣體250或導電體260,並且可以高效地對氧化物230的區域234供應絕緣體280的氧。
藉由採用上述結構,可以控制對氧化物230的氧的供應量,並且能夠得到高可靠性並被抑制常開啟化的電晶體。
在本發明的一個實施方式的電晶體200中,如圖1B和圖1C所示,絕緣體282與絕緣體250直接接觸。藉由採用這種結構,絕緣體280所包含的氧不容易被導電體260吸收。因此,經過氧化物230c對氧化物230a及氧化物230b高效地注入絕緣體280所包含的氧,因此能夠降低氧化物230a及氧化物230b中的氧空位,從而可以提高電晶體200的電特性及可靠性。此外,因為抑制絕緣體280所包含的氫等雜質混入絕緣體250,從而可以抑制給電晶體200的電特性及可靠性帶來的負面影響。作為絕緣體282,可以使用氮化矽、氮氧化矽、氧化鋁或氧化鉿。作為絕緣體282,較佳為使用氮化矽。該氮化矽可以適當地阻止有可能從外部進入的雜質(例如,氫、水等)。
絕緣體256較佳為具有抑制使氫或水等雜質及氧透過的功能。絕緣體256可以是單層,又可以是包括絕緣體256a及絕緣體256b的兩層以上的疊層結構。作為絕緣體256a或絕緣體256b,例如可以使用氧化鋁、氧化鉿、氧化矽膜、氮化矽膜或氮氧化矽膜。另外,作為絕緣體256a及絕緣體256b,既可以使用相同的材料,又可以使用不同的材料。在作為絕緣體256a及絕緣體256b使用相同的材料的情況下,也可以分別使用不同的成膜方法形成絕緣體256a及絕緣體256b。例如,可以使用濺射法形成絕緣體256a,並且可以使用ALD法形成絕緣體256b。另外,可以使用ALD法形成絕緣體256a,並且可以使用 濺射法形成絕緣體256b。另外,作為絕緣體256,也可以使用可用於氧化物230的材料。此時,作為絕緣體256,使用作為不容易使氧透過的氧化物的In:Ga:Zn=1:3:4[原子個數比]或1:1:0.5[原子個數比]的金屬氧化物即可。
圖1D是沿著圖1A中的點劃線A5-A6的部分的剖面圖,該剖面圖相當於電晶體200的源極區域或汲極區域的通道寬度方向的剖面圖。如圖1D所示那樣,因為導電體242b的頂面及導電體242b的側面由絕緣體256覆蓋,所以可以抑制從導電體242b的側面及導電體242b的頂面方向氫或水等雜質及氧擴散到導電體242b。因此,因為可以抑制氧從導電體242b的周圍對導電體242b擴散,從而能夠抑制導電體242b的氧化。注意,就導電體242a也具有同樣效果。另外,可以抑制氫或水等雜質從氧化物230a的側面及氧化物230b的側面方向對氧化物230a及氧化物230b擴散。
如圖1C所示那樣,以絕緣體224的底面為標準,氧化物230a及氧化物230b和導電體260不重疊的區域中的導電體260的底面的高度較佳為低於氧化物230b的底面的高度。此外,在氧化物230b和導電體260不重疊的區域中的導電體260的底面的高度和氧化物230b的底面的高度之間的差異為0nm以上且100nm以下,較佳為3nm以上且50nm以下,更佳為5nm以上且20nm以下。
如此,採用被用作閘極電極的導電體260隔著氧化物230c及絕緣體250覆蓋通道形成區域的氧化物230b的側面及頂面的結構,該結構容易使導電體260的電場作用於通道形成區域的氧化物230b整體。因此,可以增大電晶體200的通態電流並提高頻率特性。
如上所述,可以提供實現微型化或高積體化的半導體裝置。或者,可以提供包括通態電流大的電晶體的半導體裝置。另外,可以提供包括具有高頻率特性的電晶體的半導體裝置。另外,可以提供抑制電特性變動而實現具有穩定的電特性並提高了可靠性的半導體裝置。另外,可以提供包括關態電流小的電晶體的半導體裝置。
下面,說明包括本發明的一個實施方式的電晶體200的半導體裝置的詳細結構。
導電體205以與氧化物230及導電體260重疊的方式配置。另外,導電體205較佳為以填埋於絕緣體214及絕緣體216中的方式設置。
在此,導電體260有時被用作第一閘極(也稱為頂閘極)電極。此外,導電體205有時被用作第二閘極(也稱為底閘極)電極。在此情況下,藉由獨立地改變供應到導電體205的電位而不使其與供應到導電體260的電位聯動,可以控制電晶體200的Vth。尤其是,藉由對導電體205供應負電位,可以使電晶體200的Vth大於0V且可以減小關態電流。因此,與不對導電體205施加負電位時相比,在對導電體205施加負電位的情況下,可以減小對導電體260供應的電位為0V時的汲極電流。
另外,如圖1A所示,導電體205較佳為比氧化物230的不重疊於導電體242a及導電體242b中的區域大。尤其是,如圖1C所示,導電體205較佳為延伸到與通道寬度方向交叉的氧化物230的端部的外側的區域。就是說,較佳為在氧化物230的通道寬度方向的側面的外側,導電體205和導電體260隔著 絕緣體重疊。或者,藉由設置較大的導電體205,在形成導電體205以後的製程中的使用電漿的處理中,有時可以緩和局部帶電(也稱為電荷積聚(charge up))。注意,本發明的一個實施方式不侷限於此。導電體205至少與位於導電體242a與導電體242b之間的氧化物230重疊。
藉由具有上述結構,可以由被用作第一閘極電極的導電體260的電場和被用作第二閘極電極的導電體205的電場電圍繞通道形成區域。在本說明書中,將由第一閘極電極及第二閘極電極的電場電圍繞通道形成區域的電晶體的結構稱為surrounded channel(S-channel:圍繞通道)結構。
另外,作為導電體205a較佳為使用抑制水、氫等雜質及氧透過的導電體。例如,可以使用鈦、氮化鈦、鉭或氮化鉭。作為導電體205b,較佳為使用以鎢、銅或鋁為主要成分的導電材料。注意,在此導電體205為兩層,但是也可以採用三層以上的多層結構。
絕緣體214、絕緣體256、絕緣體282及絕緣體281較佳為被用作抑制水或氫等雜質從基板一側或從上方進入電晶體200的阻擋絕緣膜。因此,作為絕緣體214、絕緣體256、絕緣體282及絕緣體281較佳為使用具有抑制氫原子、氫分子、水分子、氮原子、氮分子、氧化氮分子(N2O、NO、NO2等)、銅原子等雜質的擴散的功能(不容易使上述雜質透過)的絕緣材料。另外,較佳為使用具有抑制氧(例如,氧原子、氧分子等中的至少一個)的擴散的功能(不容易使上述氧透過)的絕緣材料。
例如,較佳的是,作為絕緣體214、絕緣體256、絕緣體282及絕緣體281 使用氮化矽等。由此,可以抑制水或氫等雜質從與絕緣體214相比更靠近基板的一側擴散到電晶體200一側。此外,可以抑制包含在絕緣體224等中的氧擴散到與絕緣體214相比更靠近基板的一側。另外,可以抑制水或氫等雜質從配置在絕緣體256的上方的絕緣體280等擴散到電晶體200一側。
另外,有時較佳為降低絕緣體214、絕緣體256、絕緣體282及絕緣體281的電阻率。例如,藉由將絕緣體214、絕緣體256、絕緣體282及絕緣體281的電阻率設定為1×1013Ωcm左右,有時在半導體裝置製程中使用電漿等的處理中,絕緣體214、絕緣體256、絕緣體282及絕緣體281可以緩和導電體205、導電體242或導電體260的電荷積聚。絕緣體214、絕緣體256、絕緣體282及絕緣體281的電阻率較佳為1×1010Ωcm以上且1×1015Ωcm以下。
另外,絕緣體214也可以採用疊層結構。例如,較佳為將氧化鋁膜與氮化矽膜的疊層結構用於絕緣體214。氧化鋁膜可以向絕緣體214的下方供應氧。另外,氮化矽膜可以抑制氫、水等雜質從基板一側向電晶體200一側擴散。
此外,絕緣體216、絕緣體280及絕緣體274的介電常數較佳為比絕緣體214低。藉由將介電常數低的材料作為層間膜,可以減少產生在佈線之間的寄生電容。例如,作為絕緣體216、絕緣體280及絕緣體274,適當地使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、添加有氟的氧化矽、添加有碳的氧化矽、添加有碳及氮的氧化矽或具有空孔的氧化矽等。
絕緣體222及絕緣體224被用作閘極絕緣體。
在此,在與氧化物230接觸的絕緣體224中,較佳為藉由加熱使氧脫離。在本說明書中,有時將藉由加熱脫離的氧稱為過量氧。例如,作為絕緣體224適當地使用氧化矽或氧氮化矽等,即可。藉由以與氧化物230接觸的方式設置上述包含氧的絕緣體,可以減少氧化物230中的氧空位,從而可以提高電晶體200的可靠性。
明確而言,作為絕緣體224,較佳為使用藉由加熱使一部分的氧脫離的氧化物材料。藉由加熱使氧脫離的氧化物是指在TDS(Thermal Desorption Spectroscopy:熱脫附譜)分析中換算為氧分子的氧的脫離量為1.0×1018molecules/cm3以上,較佳為1.0×1019molecules/cm3以上,進一步較佳為2.0×1019molecules/cm3以上,或者3.0×1020molecules/cm3以上的氧化物膜。進行上述TDS分析時的膜的表面溫度較佳為在100℃以上且700℃以下,或者100℃以上且400℃以下的範圍內。
絕緣體222較佳為被用作抑制水或氫等雜質從基板一側混入電晶體200的阻擋絕緣膜。例如,絕緣體222的氧透過性較佳為比絕緣體224低。藉由由絕緣體222及絕緣體256圍繞絕緣體224及氧化物230等,可以抑制水或氫等雜質從外部侵入電晶體200。
再者,絕緣體222較佳為具有抑制氧(例如,氧原子、氧分子等中的至少一個)的擴散的功能(不容易使上述氧透過)。例如,絕緣體222的氧透過性較佳為比絕緣體224低。藉由使絕緣體222具有抑制氧或雜質的擴散的功能,可以減少氧化物230所包含的氧擴散到比絕緣體222下側,所以是較佳 的。此外,可以抑制導電體205與絕緣體224及氧化物230所具有的氧起反應。
絕緣體222較佳為使用作為絕緣材料的包含鋁和鉿中的一者或兩者的氧化物的絕緣體。作為包含鋁和鉿中的一者或兩者的氧化物的絕緣體,較佳為使用氧化鋁、氧化鉿、包含鋁及鉿的氧化物(鋁酸鉿)等。當使用這種材料形成絕緣體222時,絕緣體222被用作抑制氧從氧化物230釋放或氫等雜質從電晶體200的周圍部進入氧化物230的層。
或者,例如也可以對上述絕緣體添加氧化鋁、氧化鉍、氧化鍺、氧化鈮、氧化矽、氧化鈦、氧化鎢、氧化釔、氧化鋯。此外,也可以對上述絕緣體進行氮化處理。還可以在上述絕緣體上層疊氧化矽、氧氮化矽或氮化矽。
此外,作為絕緣體222,例如也可以以單層或疊層使用包含氧化鋁、氧化鉿、氧化鉭、氧化鋯、鋯鈦酸鉛(PZT)、鈦酸鍶(SrTiO3)或(Ba,Sr)TiO3(BST)等所謂的high-k材料的絕緣體。當進行電晶體的微型化及高積體化時,由於閘極絕緣體的薄膜化,有時發生洩漏電流等問題。藉由作為被用作閘極絕緣體的絕緣體使用high-k材料,可以在保持物理厚度的同時降低電晶體工作時的閘極電位。
另外,絕緣體222及絕緣體224也可以具有兩層以上的疊層結構。此時,不侷限於使用相同材料構成的疊層結構,也可以是使用不同材料構成的疊層結構。
與導電體205同樣,導電體247也可以採用包括第一導電層及配置在第一導電層內側的第二導電層的結構。作為導電體247的第一導電層較佳為使用抑制水或氫等的雜質及氧透過的導電體。例如,可以使用鈦、氮化鈦、鉭或氮化鉭。作為導電體247的第二導電層,較佳為使用以鎢、銅或鋁為主要成分的導電材料。注意,在此導電體247為兩層,但是也可以採用三層以上的多層結構。
另外,與導電體240同樣,也可以在導電體247的側面設置如絕緣體241那樣地抑制氫或水等雜質及氧擴散的絕緣體。
氧化物230包括氧化物230a、氧化物230a上的氧化物230b及氧化物230b上的氧化物230c。在此,氧化物230c配置為其至少一部分重疊於導電體242a和導電體242b之間的區域。當在氧化物230b下設置有氧化物230a時,可以抑制雜質從形成在氧化物230a下方的結構物擴散到氧化物230b。當在氧化物230b上設置有氧化物230c時,可以抑制雜質從形成在氧化物230c的上方的結構物擴散到氧化物230b。
另外,氧化物230較佳為具有各金屬原子的原子個數比互不相同的氧化物的疊層結構。明確而言,在用於氧化物230a的金屬氧化物中,構成元素中的元素M的原子個數比較佳為大於用於氧化物230b的金屬氧化物的構成元素中的元素M的原子個數比。另外,在用於氧化物230a的金屬氧化物中,相對於In的元素M的原子個數比較佳為大於用於氧化物230b的金屬氧化物中的相對於In的元素M的原子個數比。另外,在用於氧化物230b的金屬氧化物中,相對於元素M的In的原子個數比較佳為大於用於氧化物230a的金屬氧化 物中的相對於元素M的In的原子個數比。另外,氧化物230c可以使用可用於氧化物230a或氧化物230b的金屬氧化物。
另外,氧化物230b較佳為具有結晶性。例如,較佳為使用下述CAAC-OS(c-axis aligned crystalline oxide semiconductor)。CAAC-OS等的具有結晶性的氧化物具有雜質及缺陷(氧空位等)少的結晶性高且緻密的結構。因此,可以抑制源極電極或汲極電極從氧化物230b抽出氧。因此,即使進行加熱處理也可以減少從氧化物230b被抽出的氧,所以電晶體200對製程中的高溫度(所謂熱積存;thermal budget)也很穩定。
較佳的是,使氧化物230a及氧化物230c的導帶底的能量高於氧化物230b的導帶底的能量。換言之,氧化物230a及氧化物230c的電子親和力較佳為小於氧化物230b的電子親和力。
在此,在氧化物230a、氧化物230b及氧化物230c的接合部中,導帶底的能階平緩地變化。換言之,也可以將上述情況表達為氧化物230a、氧化物230b及氧化物230c的接合部的導帶底的能階連續地變化或者連續地接合。為此,較佳為降低形成在氧化物230a與氧化物230b的介面以及氧化物230b與氧化物230c的介面的混合層的缺陷態密度。
明確而言,作為氧化物230a使用In:Ga:Zn=1:3:4[原子個數比]或1:1:0.5[原子個數比]的金屬氧化物,即可。此外,作為氧化物230b使用In:Ga:Zn=4:2:3[原子個數比]或1:1:1[原子個數比]的金屬氧化物,即可。此外,作為氧化物230c使用In:Ga:Zn=1:3:4[原子個數比]、In:Ga:Zn=4: 2:3[原子個數比]、Ga:Zn=2:1[原子個數比]或Ga:Zn=2:5[原子個數比]的金屬氧化物,即可。此外,作為氧化物230c具有疊層結構的情況下的具體例子,可以舉出氧化物230c1的In:Ga:Zn=4:2:3[原子個數比]和作為氧化物230c2的In:Ga:Zn=1:3:4[原子個數比]的疊層結構、作為氧化物230c1的In:Ga:Zn=4:2:3[原子個數比]和作為氧化物230c2的Ga:Zn=2:1[原子個數比]的疊層結構、作為氧化物230c1的In:Ga:Zn=4:2:3[原子個數比]和作為氧化物230c2的Ga:Zn=2:5[原子個數比]的疊層結構、作為氧化物230c1的In:Ga:Zn=4:2:3[原子個數比]和作為氧化物230c2的氧化鎵的疊層結構等。
此時,載子的主要路徑為氧化物230b。藉由使氧化物230a及氧化物230c具有上述結構,可以降低氧化物230a與氧化物230b的介面及氧化物230b與氧化物230c的介面的缺陷態密度。因此,介面散射對載子傳導的影響減少,從而電晶體200可以得到高通態電流及高頻率特性。另外,在氧化物230c具有疊層結構時,被期待降低上述氧化物230b和氧化物230c的介面的缺陷態密度的效果及抑制氧化物230c所具有的構成元素擴散到絕緣體250一側的效果。更明確而言,在氧化物230c具有疊層結構時,因為使不包含In或降低In的濃度的氧化物位於疊層結構的上方,所以可以抑制會擴散到絕緣體250一側的In。由於絕緣體250被用作閘極絕緣體,因此在In擴散在其中的情況下導致電晶體的特性不良。由此,藉由使氧化物230c具有疊層結構,可以提供可靠性高的半導體裝置。
此外,藉由氧化物230c具有疊層結構,有時載子的主要路徑為氧化物230b及氧化物230c1的介面及其附近。
另外,因為氧化物230c1與絕緣體280的側面接觸,由此可以將絕緣體280所包含的氧經過氧化物230c1供應給電晶體200的通道形成區域。另外,作為氧化物230c2較佳為使用不容易透過氧的材料。藉由採用上述材料,可以抑制絕緣體280所包含的氧透過氧化物230c2並被絕緣體250或導電體260吸收,因此能夠高效地對通道形成區域供應氧。
另外,氧化物230包括區域231及區域234。注意,區域231的至少一部分與導電體242的區域接觸。
注意,當電晶體200成為開啟狀態時,區域231a及區域231b中的一個被用作源極區域,另一個被用作汲極區域。另一方面,區域234的至少一部分被用作形成通道的區域。
因此,藉由適當地選擇各區域的範圍,可以根據電路設計容易提供具有符合要求的電特性的電晶體。
作為氧化物230較佳為使用被用作氧化物半導體的金屬氧化物。例如,較佳為使用其能隙為2eV以上,較佳為2.5eV以上的金屬氧化物。如此,藉由使用能隙較寬的金屬氧化物,可以減小電晶體的關態電流。藉由採用這種電晶體,可以提供低功耗的半導體裝置。
如圖31A及圖31B所示,電子親和力或導帶底能階Ec可以從真空能階與價帶頂的能階Ev之間的差異的游離電位Ip、以及能隙Eg而計算出。游離電位 Ip例如可以利用紫外線光電子能譜(UPS:Ultraviolet Photoelectron Spectroscopy)裝置測量。能隙Eg例如可以利用光譜橢圓偏光計測量。
在氧化物230b上設置被用作源極電極及汲極電極的導電體242(導電體242a及導電體242b)。導電體242的厚度例如為1nm以上且50nm以下,較佳為2nm以上且25nm以下,即可。
作為導電體242,較佳為使用選自鋁、鉻、銅、銀、金、鉑、鉭、鎳、鈦、鉬、鎢、鉿、釩、鈮、錳、鎂、鋯、鈹、銦、釕、銥、鍶和鑭中的金屬元素、以上述金屬元素為成分的合金或者組合上述金屬元素的合金等。例如,較佳為使用氮化鉭、氮化鈦、鎢、包含鈦和鋁的氮化物、包含鉭和鋁的氮化物、氧化釕、氮化釕、包含鍶和釕的氧化物、包含鑭和鎳的氧化物等。另外,氮化鉭、氮化鈦、包含鈦和鋁的氮化物、包含鉭和鋁的氮化物、氧化釕、氮化釕、包含鍶和釕的氧化物、包含鑭和鎳的氧化物是不容易氧化的導電材料或者吸收氧也維持導電性的材料,所以是較佳的。
絕緣體250被用作閘極絕緣體。絕緣體250較佳為與氧化物230c的頂面接觸地配置。絕緣體250可以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、添加有氟的氧化矽、添加有碳的氧化矽、添加有碳及氮的氧化矽、具有空孔的氧化矽。尤其是,氧化矽及氧氮化矽具有熱穩定性,所以是較佳的。
與絕緣體224同樣地,絕緣體250較佳為使用藉由加熱釋放氧的絕緣體形成。藉由作為絕緣體250以與氧化物230c的頂面接觸的方式設置藉由加熱釋放氧的絕緣體,可以高效地對氧化物230b的通道形成區域供應氧。與絕緣體 224同樣,較佳為降低絕緣體250中的水或氫等雜質的濃度。絕緣體250的厚度較佳為1nm以上且20nm以下。
另外,也可以在絕緣體250與導電體260之間設置金屬氧化物。該金屬氧化物較佳為抑制從絕緣體250擴散到導電體260的氧。藉由設置抑制氧的擴散的金屬氧化物,從絕緣體250擴散到導電體260的氧被抑制。換言之,可以抑制供應到氧化物230的氧量的減少。另外,可以抑制因絕緣體250中的氧所導致的導電體260的氧化。
另外,該金屬氧化物有時被用作閘極絕緣體的一部分。因此,在將氧化矽或氧氮化矽等用於絕緣體250的情況下,作為該金屬氧化物較佳為使用作為相對介電常數高的high-k材料的金屬氧化物。藉由使閘極絕緣體具有絕緣體250與該金屬氧化物的疊層結構,可以形成具有熱穩定性且相對介電常數高的疊層結構。因此,可以在保持閘極絕緣體的物理厚度的同時降低在電晶體工作時施加的閘極電位。另外,可以減少被用作閘極絕緣體的絕緣體的等效氧化物厚度(EOT)。
明確而言,可以使用包含選自鉿、鋁、鎵、釔、鋯、鎢、鈦、鉭、鎳、鍺和鎂等中的一種或兩種以上的金屬氧化物。特別是,較佳為使用作為包含鋁及鉿中的一者或兩者的氧化物的絕緣體的氧化鋁、氧化鉿、包含鋁及鉿的氧化物(鋁酸鉿)等。
另外,該金屬氧化物有時被用作閘極電極的一部分。在此情況下,較佳為將包含氧的導電材料設置在通道形成區域一側。藉由將包含氧的導電 材料設置在通道形成區域一側,從該導電材料脫離的氧容易被供應到通道形成區域。
尤其是,作為被用作閘極電極的導電體,較佳為使用含有包含在形成通道的金屬氧化物中的金屬元素及氧的導電材料。此外,也可以使用含有上述金屬元素及氮的導電材料。此外,可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加有矽的銦錫氧化物。此外,也可以使用包含氮的銦鎵鋅氧化物。藉由使用上述材料,有時可以俘獲形成通道的金屬氧化物所包含的氫。或者,有時可以俘獲從外方的絕緣體等進入的氫。
雖然在圖1A至圖1D中,導電體260具有兩層結構,但是也可以具有單層結構或三層以上的疊層結構。
作為導電體260a較佳為使用具有抑制氫原子、氫分子、水分子、氮原子、氮分子、氧化氮分子(N2O、NO、NO2等)、銅原子等雜質的擴散的功能的導電材料。另外,較佳為使用具有抑制氧(例如,氧原子、氧分子等中的至少一個)的擴散的功能的導電材料。
此外,當導電體260a具有抑制氧的擴散的功能時,可以抑制絕緣體250所包含的氧使導電體260b氧化而導致導電率的下降。作為具有抑制氧的擴散的功能的導電材料,例如,較佳為使用鉭、氮化鉭、釕或氧化釕等。
此外,作為導電體260b較佳為使用以鎢、銅或鋁為主要成分的導電材料。另外,由於導電體260還被用作佈線,所以較佳為使用導電性高的導電體。例如,可以使用以鎢、銅或鋁為主要成分的導電材料。另外,導電體260b可以具有疊層結構,例如可以具有鈦、氮化鈦與上述導電材料的疊層結構。
例如,絕緣體280較佳為具有氧化矽、氧氮化矽、氮氧化矽、添加有氟的氧化矽、添加有碳的氧化矽、添加有碳及氮的氧化矽或具有空孔的氧化矽等。尤其是,由於氧化矽及氧氮化矽具有熱穩定性,所以是較佳的。特別是,因為氧化矽、氧氮化矽、具有空孔的氧化矽等的材料容易形成包含藉由加熱脫離的氧的區域,所以是較佳的。為了對氧化物230b經過氧化物230c或氧化物230c1供應絕緣體280所包含的氧,絕緣體280較佳為包含進一步多的氧,例如絕緣體280較佳為包含比化學計量比多的氧。為了增加絕緣體280所包含的氧濃度,用於絕緣體280的形成的沉積氣體較佳為包含氧。
絕緣體280中的水或氫等的雜質濃度較佳為得到降低。尤其是,藉由利用濺射法形成絕緣體280,可以得到減少水或氫等的雜質濃度的絕緣體280,所以是較佳的。例如,與利用包含氫的沉積氣體藉由CVD法形成的氧化矽及氧氮化矽相比,利用包含矽或氧化矽的靶材及包含氬或氧的氣體藉由濺射法形成的氧化矽的膜中的氫濃度更低,所以作為絕緣體280是較佳的。此外,考慮到形成絕緣體280時的成膜速率及因氧化物230a、氧化物230b及開口248等形成的步階部的覆蓋性,可以藉由CVD法形成絕緣體280。此外,雖然未圖示,但是絕緣體280可以具有兩層以上的疊層結構,可以作為第一層包括利用濺射法形成的氧化矽且作為第二層包括利用CVD法形成的氧氮化 矽。此外,絕緣體280的頂面也可以被平坦化。
絕緣體282較佳為被用作抑制水或氫等雜質從上方混入到絕緣體280的阻擋絕緣膜。作為絕緣體282,例如可以使用氧化鋁、氮化矽、或氮氧化矽等絕緣體等的絕緣體。
另外,較佳為在絕緣體282上設置被用作層間膜的絕緣體274。與絕緣體224等同樣,較佳為絕緣體274中的水或氫等雜質的濃度得到降低。
導電體240較佳為使用以鎢、銅或鋁為主要成分的導電材料。此外,導電體240也可以具有疊層結構。
當作為導電體240採用疊層結構時,作為與絕緣體281、絕緣體274、絕緣體282、絕緣體280、絕緣體256接觸的導電體較佳為使用具有抑制水或氫等雜質的透過的功能的導電材料。例如,較佳為使用鉭、氮化鉭、鈦、氮化鈦、釕或氧化釕等。可以以單層或疊層使用具有抑制水或氫等雜質的透過的功能的導電材料。藉由使用該導電材料,可以防止添加到絕緣體280的氧被吸收到導電體240。此外,可以防止水或氫等雜質從絕緣體281的上方的層藉由導電體240進入氧化物230。
作為絕緣體241,例如使用氧化鋁、氮化矽或氮氧化矽等的絕緣體,即可。因為絕緣體241與絕緣體256接觸地設置,所以可以抑制從絕緣體280等水或氫等雜質經過導電體240混入氧化物230。此外,可以防止絕緣體280所包含的氧被導電體240吸收。
此外,可以以與導電體240的頂面接觸的方式配置被用作佈線的導電體。被用作佈線的導電體較佳為使用以鎢、銅或鋁為主要成分的導電材料。另外,該導電體可以具有疊層結構,例如,可以具有鈦、氮化鈦與上述導電材料的疊層結構。另外,該導電體可以填埋於絕緣體的開口中。
〈半導體裝置的構成材料〉
以下,說明可用於半導體裝置的構成材料。
〈基板〉
作為形成電晶體200的基板例如可以使用絕緣體基板、半導體基板或導電體基板。作為絕緣體基板,例如可以舉出玻璃基板、石英基板、藍寶石基板、穩定氧化鋯基板(釔安定氧化鋯基板等)、樹脂基板等。另外,作為半導體基板,例如可以舉出以矽或鍺等為材料的半導體基板、或者碳化矽、矽鍺、砷化鎵、磷化銦、氧化鋅或氧化鎵等的化合物半導體基板等。再者,還可以舉出在上述半導體基板內部具有絕緣體區域的半導體基板,例如有SOI(Silicon On Insulator;絕緣層上覆矽)基板等。作為導電體基板,可以舉出石墨基板、金屬基板、合金基板、導電樹脂基板等。或者,可以舉出包含金屬氮化物的基板、包含金屬氧化物的基板等。再者,還可以舉出設置有導電體或半導體的絕緣體基板、設置有導電體或絕緣體的半導體基板、設置有半導體或絕緣體的導電體基板等。或者,也可以使用在這些基板上設置有元件的基板。作為設置在基板上的元件,可以舉出電容器、電阻器、切換元件、發光元件、記憶元件等。
〈絕緣體〉
作為絕緣體,有具有絕緣性的氧化物、氮化物、氧氮化物、氮氧化物、金屬氧化物、金屬氧氮化物以及金屬氮氧化物等。
例如,當進行電晶體的微型化及高積體化時,由於閘極絕緣體的薄膜化,有時發生洩漏電流等的問題。藉由作為被用作閘極絕緣體的絕緣體使用high-k材料,可以在保持物理厚度的同時實現電晶體工作時的低電壓化。另一方面,藉由將相對介電常數較低的材料用於被用作層間膜的絕緣體,可以減少產生在佈線之間的寄生電容。因此,較佳為根據絕緣體的功能選擇材料。
此外,作為相對介電常數較高的絕緣體,可以舉出氧化鎵、氧化鉿、氧化鋯、含有鋁及鉿的氧化物、含有鋁及鉿的氧氮化物、含有矽及鉿的氧化物、含有矽及鉿的氧氮化物或者含有矽及鉿的氮化物等。
另外,作為相對介電常數較低的絕緣體,可以舉出氧化矽、氧氮化矽、氮氧化矽、添加有氟的氧化矽、添加有碳的氧化矽、添加有碳及氮的氧化矽、具有空孔的氧化矽或樹脂等。
此外,藉由由具有抑制氫等雜質及氧的透過的功能的絕緣體圍繞使用氧化物半導體的電晶體,可以使電晶體的電特性穩定。作為具有抑制氫等雜質及氧的透過的功能的絕緣體,例如可以以單層或疊層使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體。明確而言,作為具有抑制氫等雜質及氧的透過的功能的絕緣 體,可以使用氧化鋁、氧化鎂、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或氧化鉭等金屬氧化物、氮化鋁、氮化鋁鈦、氮化鈦、氮氧化矽或氮化矽等金屬氮化物。
此外,被用作閘極絕緣體的絕緣體較佳為具有包含藉由加熱脫離的氧的區域的絕緣體。例如,藉由採用將具有包含藉由加熱脫離的氧的區域的氧化矽或者氧氮化矽接觸於氧化物230的結構,可以填補氧化物230所包含的氧空位。
〈導電體〉
作為導電體,較佳為使用選自鋁、鉻、銅、銀、金、鉑、鉭、鎳、鈦、鉬、鎢、鉿、釩、鈮、錳、鎂、鋯、鈹、銦、釕、銥、鍶和鑭等中的金屬元素、以上述金屬元素為成分的合金或者組合上述金屬元素的合金等。例如,較佳為使用氮化鉭、氮化鈦、鎢、包含鈦和鋁的氮化物、包含鉭和鋁的氮化物、氧化釕、氮化釕、包含鍶和釕的氧化物、包含鑭和鎳的氧化物等。另外,氮化鉭、氮化鈦、包含鈦和鋁的氮化物、包含鉭和鋁的氮化物、氧化釕、氮化釕、包含鍶和釕的氧化物、包含鑭和鎳的氧化物是不容易氧化的導電材料或者吸收氧也維持導電性的材料,所以是較佳的。另外,也可以使用以包含磷等雜質元素的多晶矽為代表的導電率高的半導體以及鎳矽化物等矽化物。
另外,也可以層疊多個由上述材料形成的導電層。例如,也可以採用組合包含上述金屬元素的材料和包含氧的導電材料的疊層結構。另外,也可以採用組合包含上述金屬元素的材料和包含氮的導電材料的疊層結構。 另外,也可以採用組合包含上述金屬元素的材料、包含氧的導電材料和包含氮的導電材料的疊層結構。
此外,在將氧化物用於電晶體的通道形成區域的情況下,作為被用作閘極電極的導電體較佳為採用組合包含上述金屬元素的材料和包含氧的導電材料的疊層結構。在此情況下,較佳為將包含氧的導電材料設置在通道形成區域一側。藉由將包含氧的導電材料設置在通道形成區域一側,從該導電材料脫離的氧容易被供應到通道形成區域。
尤其是,作為被用作閘極電極的導電體,較佳為使用含有包含在形成通道的金屬氧化物中的金屬元素及氧的導電材料。此外,也可以使用含有上述金屬元素及氮的導電材料。例如,也可以使用氮化鈦、氮化鉭等包含氮的導電材料。此外,可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦鋅氧化物、添加有矽的銦錫氧化物。此外,也可以使用包含氮的銦鎵鋅氧化物。藉由使用上述材料,有時可以俘獲形成通道的金屬氧化物所包含的氫。或者,有時可以俘獲從外方的絕緣體等進入的氫。
〈金屬氧化物〉
作為氧化物230,較佳為使用被用作氧化物半導體的金屬氧化物。以下,將說明可用於根據本發明的氧化物230的金屬氧化物。
金屬氧化物較佳為至少包含銦或鋅。尤其較佳為包含銦及鋅。另外,除此之外,較佳為還包含鋁、鎵、釔或錫等。或者,也可以包含硼、鈦、 鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢或鎂等中的一種或多種。
在此,考慮金屬氧化物是包含銦、元素M及鋅的In-M-Zn氧化物的情況。注意,元素M為鋁、鎵、釔或錫等。作為可用作元素M的其他元素,有硼、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢、鎂等。注意,作為元素M有時也可以組合多個上述元素。
注意,在本說明書等中,有時將包含氮的金屬氧化物也稱為金屬氧化物(metal oxide)。此外,也可以將包含氮的金屬氧化物稱為金屬氧氮化物(metal oxynitride)。
[金屬氧化物的結構]
氧化物半導體(金屬氧化物)被分為單晶氧化物半導體和非單晶氧化物半導體。作為非單晶氧化物半導體例如有CAAC-OS(c-axis aligned crystalline oxide semiconductor)、多晶氧化物半導體、nc-OS(nanocrystalline oxide semiconductor)、a-like OS(amorphous-like oxide semiconductor)及非晶氧化物半導體等。
CAAC-OS具有c軸配向性,其多個奈米晶在a-b面方向上連結而結晶結構具有畸變。注意,畸變是指在多個奈米晶連結的區域中晶格排列一致的區域與其他晶格排列一致的區域之間的晶格排列的方向變化的部分。
雖然奈米晶基本上是六角形,但是並不侷限於正六角形,有不是正六角形的情況。此外,在畸變中有時具有五角形或七角形等晶格排列。另外, 在CAAC-OS中,即使在畸變附近也觀察不到明確的晶界(也稱為grain boundary)。亦即,可知由於晶格排列畸變,可抑制晶界的形成。這是由於CAAC-OS因為a-b面方向上的氧原子排列的低密度或因金屬元素被取代而使原子間的鍵合距離產生變化等而能夠包容畸變。
此外,CAAC-OS趨向於具有層疊有包含銦及氧的層(下面稱為In層)和包含元素M、鋅及氧的層(下面稱為(M,Zn)層)的層狀結晶結構(也稱為層狀結構)。另外,銦和元素M彼此可以取代,在用銦取代(M,Zn)層中的元素M的情況下,也可以將該層表示為(In,M,Zn)層。另外,在用元素M取代In層中的銦的情況下,也可以將該層表示為(In,M)層。
CAAC-OS是結晶性高的金屬氧化物。另一方面,在CAAC-OS中不容易觀察明確的晶界,因此可以說不容易發生起因於晶界的電子移動率的下降。此外,金屬氧化物的結晶性有時因雜質的進入或缺陷的生成等而降低,因此可以說CAAC-OS是雜質或缺陷(氧空位等)少的金屬氧化物。因此,包含CAAC-OS的金屬氧化物的物理性質穩定。因此,包含CAAC-OS的金屬氧化物具有高耐熱性及高可靠性。
在nc-OS中,微小的區域(例如1nm以上且10nm以下的區域,特別是1nm以上且3nm以下的區域)中的原子排列具有週期性。另外,nc-OS在不同的奈米晶之間觀察不到結晶定向的規律性。因此,在膜整體中觀察不到配向性。所以,有時nc-OS在某些分析方法中與a-like OS或非晶氧化物半導體沒有差別。
另外,在包含銦、鎵和鋅的金屬氧化物的一種的銦-鎵-鋅氧化物(以下,IGZO)是上述奈米晶時可能具有穩定的結構。尤其是,IGZO有在大氣中不容易進行晶體生長的傾向,所以與在IGZO是大結晶(在此,幾mm的結晶或者幾cm的結晶)時相比在IGZO是小結晶(例如,上述奈米結晶)時可能在結構上穩定。
a-like OS是具有介於nc-OS與非晶氧化物半導體之間的結構的金屬氧化物。a-like OS包含空洞或低密度區域。也就是說,a-like OS的結晶性比nc-OS及CAAC-OS的結晶性低。
氧化物半導體(金屬氧化物)具有各種結構及各種特性。本發明的一個實施方式的氧化物半導體也可以包括非晶氧化物半導體、多晶氧化物半導體、a-like OS、nc-OS、CAAC-OS中的兩種以上。
注意,在本發明的一個實施方式的半導體裝置中,對氧化物半導體(金屬氧化物)的結構沒有特別的限定,氧化物半導體較佳為具有結晶性。例如,可以將氧化物230的結構具有CAAC-OS結構。藉由作為氧化物230的結構採用上述的結晶結構,可以得到高可靠性的半導體裝置。
[雜質]
在此,說明金屬氧化物中的各雜質的影響。
另外,當金屬氧化物包含鹼金屬或鹼土金屬時,有時形成缺陷態而形成載子。因此,作為通道形成區域使用包含鹼金屬或鹼土金屬的金屬氧化 物的電晶體容易具有常開啟特性。由此,較佳為減少金屬氧化物中的鹼金屬或鹼土金屬的濃度。明確而言,使藉由SIMS測得的金屬氧化物中的鹼金屬或鹼土金屬的濃度(藉由二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)測得的濃度)為1×1018atoms/cm3以下,較佳為2×1016atoms/cm3以下。
包含在金屬氧化物中的氫與鍵合於金屬原子的氧起反應生成水,因此有時形成氧空位。當氫進入該氧空位時,有時產生作為載子的電子。另外,有時由於氫的一部分與鍵合於金屬原子的氧鍵合,產生作為載子的電子。因此,使用包含氫的金屬氧化物的電晶體容易具有常開啟特性。
由此,較佳為儘可能減少金屬氧化物中的氫。明確而言,在金屬氧化物中,將利用SIMS測得的氫濃度設定為低於1×1020atoms/cm3,較佳為低於1×1019atoms/cm3,更佳為低於5×1018atoms/cm3,進一步較佳為低於1×1018atoms/cm3。藉由將雜質被充分降低的金屬氧化物用於電晶體的通道形成區域,可以使電晶體具有穩定的電特性。
作為用於電晶體的半導體的金屬氧化物,較佳為使用結晶性高的薄膜。藉由使用該薄膜可以提高電晶體的穩定性或可靠性。作為該薄膜,例如,可以舉出單晶金屬氧化物薄膜或多晶金屬氧化物薄膜。但是,在基板上形成單晶金屬氧化物薄膜或多晶金屬氧化物薄膜需要進行高溫或雷射加熱的製程。因此,製程的成本變高且處理量下降。
非專利文獻1及非專利文獻2中報告了2009年發現了具有CAAC結構的 In-Ga-Zn氧化物(也稱為CAAC-IGZO)。在非專利文獻1及非專利文獻2中,報告了CAAC-IGZO具有c軸配向性、晶界不明確、可以低溫形成在基板上。另外,還報告了使用CAAC-IGZO的電晶體具有優良的電特性及可靠性。
另外,2013年發現了具有nc結構的In-Ga-Zn氧化物(稱為nc-IGZO)(參照非專利文獻3)。在此報告了nc-IGZO在微小的區域(例如,1nm以上且3nm以下的區域)中的原子排列具有週期性,在不同區域間觀察不到結晶定向的規律性。
非專利文獻4及非專利文獻5示出分別對上述CAAC-IGZO、nc-IGZO及結晶性低的IGZO的薄膜照射電子束時的平均結晶尺寸的推移。在結晶性低的IGZO薄膜中,在對其照射電子束之前就能夠觀察到1nm左右的結晶性IGZO。因此,在此報告了在IGZO中沒能確認到完全的非晶結構(completely amorphous structure)的存在。再者,公開了與結晶性低的IGZO薄膜相比CAAC-IGZO薄膜及nc-IGZO薄膜的相對於電子束照射的穩定性較高。因此,作為電晶體的半導體較佳為使用CAAC-IGZO薄膜或nc-IGZO薄膜。
非專利文獻6公開了使用金屬氧化物的電晶體在非導通狀態下的洩漏電流極低,明確而言,電晶體的每通道寬度1μm的關態電流為yA/μm(10-24A/μm)等級(order)。例如,已公開了一種應用了使用金屬氧化物的電晶體的洩漏電流低這一特性的低功耗CPU(Central Processing Unit;中央處理器)等(參照非專利文獻7)。
另外,還有利用使用金屬氧化物的電晶體的洩漏電流低這一特性將該 電晶體應用於顯示裝置的報告(參照非專利文獻8)。在顯示裝置中,顯示影像在1秒間被切換數十次。每1秒鐘的影像切換次數被稱為更新頻率。另外,更新頻率有時被稱為驅動頻率。這樣的人眼難以識別的高速畫面切換被認為是導致眼睛疲勞的原因。於是,提出了降低顯示裝置的更新頻率以減少影像改寫次數的技術。另外,更新頻率得到降低的驅動可以降低顯示裝置的功耗。將該驅動方法稱為空轉停止(IDS)驅動。
CAAC結構及nc結構的發現有助於使用CAAC結構或具有nc結構的金屬氧化物的電晶體的電特性及可靠性的提高、製程的成本的降低以及處理量的提高。另外,已進行利用上述電晶體的洩漏電流低這一特性將該電晶體應用於顯示裝置及LSI的研究。
〈半導體裝置的製造方法〉
接著,參照圖3A至圖11D說明圖1A至圖1D所示的包括根據本發明的電晶體200的半導體裝置的製造方法。在圖3A至圖11D中,每個圖式中的A示出俯視圖。另外,每個圖式中的B示出沿著A中的點劃線A1-A2的部分的剖面圖,該剖面圖相當於電晶體200的通道長度方向上的剖面圖。每個圖式中的C示出沿著A中的點劃線A3-A4的部分的剖面圖,該剖面圖相當於電晶體200的通道寬度方向上的剖面圖。另外,每個圖式中的D示出沿著A中的點劃線A5-A6的部分的剖面圖,該剖面圖相當於電晶體200的源極區域或汲極區域中的通道寬度方向的剖面圖。為了明確起見,在每個圖式中的A的俯視圖中省略部分組件。
首先,準備基板(未圖示),在該基板上形成絕緣體214。絕緣體214可 以利用濺射法、化學氣相沉積(CVD:Chemical Vapor Deposition)法、分子束磊晶(MBE:Molecular Beam Epitaxy)法、脈衝雷射沉積(PLD:Pulsed Laser Deposition)法或ALD(原子層沉積:Atomic Layer Deposition)法等形成。
注意,CVD法可以分為利用電漿的電漿增強CVD(PECVD:Plasma Enhanced CVD)法、利用熱的熱CVD(TCVD:Thermal CVD)法、利用光的光CVD(Photo CVD)法等。再者,CVD法可以根據使用的源氣體分為金屬CVD(MCVD:Metal CVD)法及有機金屬CVD(MOCVD:Metal Organic CVD)法。
藉由利用電漿CVD法,可以以較低的溫度得到高品質的膜。另外,因為不使用電漿,熱CVD法是能夠減少對被處理物造成的電漿損傷的成膜方法。例如,包括在半導體裝置中的佈線、電極、元件(電晶體、電容器等)等有時因從電漿接收電荷而會產生電荷積聚。此時,有時由於所累積的電荷而使包括在半導體裝置中的佈線、電極、元件等受損傷。另一方面,因為在不使用電漿的熱CVD法的情況下不產生上述電漿損傷,所以能夠提高半導體裝置的良率。另外,在熱CVD法中,不產生成膜時的電漿損傷,因此能夠得到缺陷較少的膜。
另外,ALD法可以利用作為原子的性質的自調節性來沉積每一層的原子,從而發揮能夠形成極薄的膜、能夠對縱橫比高的結構形成膜、能夠以針孔等的缺陷少的方式形成膜、能夠形成覆蓋性優良的膜及能夠在低溫下形成膜等的效果。此外,ALD法還包括利用電漿的成膜方法(PEALD(Plasma Enhanced ALD;電漿增強原子層沉積)法)。藉由利用電漿,可以在更低 溫下進行成膜,所以有時是較佳的。注意,ALD法中使用的前驅物有時包含碳等雜質。因此,利用ALD法形成的膜有時與利用其他的成膜方法形成的膜相比包含更多的碳等雜質。另外,雜質的定量可以利用X射線光電子能譜(XPS:X-ray Photoelectron Spectroscopy)進行。
不同於使從靶材等中被釋放的粒子沉積的成膜方法,CVD法及ALD法是因被處理物表面的反應而形成膜的成膜方法。因此,藉由CVD法及ALD法形成的膜不易受被處理物的形狀的影響而具有良好的步階覆蓋性。尤其是,利用ALD法形成的膜具有良好的步階覆蓋性和厚度均勻性,所以ALD法適合用於要覆蓋縱橫比高的開口的表面的情況等。注意,ALD法的沉積速度比較慢,所以有時較佳為與CVD法等沉積速度快的其他成膜方法組合而使用。
CVD法及ALD法可以藉由調整源氣體的流量比控制所得到的膜的組成。例如,當使用CVD法或ALD法時,可以藉由調整源氣體的流量比形成任意組成的膜。此外,例如,當使用CVD法及ALD法時,可以藉由一邊形成膜一邊改變源氣體的流量比來形成其組成連續變化的膜。在一邊改變源氣體的流量比一邊形成膜時,因為不需要傳送及調整壓力所需的時間,所以與使用多個成膜室進行成膜的情況相比可以縮短成膜時間。因此,有時可以提高半導體裝置的生產率。
在本實施方式中,作為絕緣體214利用CVD法形成氮化矽。如此,藉由作為絕緣體214使用氮化矽等不容易使銅透過的絕緣體,即使作為絕緣體214的下方的層(未圖示)的導電體使用銅等容易擴散的金屬,也可以抑制該 金屬擴散到絕緣體214的上方的層。
接著,在絕緣體214上形成絕緣體216。可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成絕緣體216。
接著,在絕緣體216中形成到達絕緣體214的開口。開口例如包括槽或狹縫等。此外,有時將形成有開口的區域稱為開口部。在形成該開口時,可以使用濕蝕刻法,但是對微型加工來說乾蝕刻法是較佳的。作為絕緣體214,較佳為選擇在對絕緣體216進行蝕刻以形成槽時用作蝕刻停止膜的絕緣體。例如,當作為形成槽的絕緣體216使用氧化矽膜時,絕緣體214較佳為使用氮化矽膜、氧化鋁膜、氧化鉿膜。
在形成開口後,形成成為導電體205及導電體247的導電膜。該導電膜較佳為包含具有抑制氧的透過的功能的導電體。例如,可以使用氮化鉭、氮化鎢、氮化鈦等。或者,可以使用與鉭、鎢、鈦、鉬、鋁、銅或鉬鎢合金的疊層膜。成為導電體205的導電膜可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成。
在本實施方式中,作為成為導電體205及導電體247的導電膜,採用多層結構。首先,作為成為導電體205a導電體247a的導電膜利用濺射法形成氮化鉭,作為成為導電體205b導電體247b的導電膜在該氮化鉭上層疊氮化鈦。藉由將這種金屬氮化物用作成為導電體205的導電膜的下方的層,即使作為後面說明的成為導電體205c及導電體247c的導電膜使用銅等容易擴散的金屬,也可以抑制該金屬從導電體205擴散到外部。
接著,形成成為導電體205c及導電體247c的導電膜。該導電膜可以使用電鍍法、濺射法、CVD法、MBE法、PLD法或ALD法等形成。在本實施方式中,作為成為導電體205c及導電體247c的導電膜,形成鎢或銅等低電阻導電材料。
接著,藉由進行CMP處理,去除成為導電體205及導電體247的導電膜的一部分,使絕緣體216露出。其結果是,只在開口殘留成為導電體205的導電膜及成為導電體247的導電膜。由此,可以形成其頂面平坦的導電體205及導電體247。注意,有時由於該CMP處理而絕緣體216的一部分被去除(參照圖3A至圖3D)。
以下,將說明與上述內容不同的導電體205及導電體247的形成方法。
在絕緣體214上形成成為導電體205及導電體247的導電膜。該導電膜的成膜使用濺射法、CVD法、MBE法、PLD法或ALD法等進行。此外,該導電膜可以為多層膜。在本實施方式中,作為該導電膜,形成鎢。
接著,使用光微影法對該導電膜進行加工來形成導電體205及導電體247。
另外,在光微影法中,首先藉由遮罩對光阻劑進行曝光。接著,使用顯影液去除或留下所曝光的區域而形成光阻遮罩。接著,隔著該光阻遮罩進行蝕刻處理來將導電體、半導體或絕緣體等加工為所希望的形狀。例如, 使用KrF準分子雷射、ArF準分子雷射、EUV(Extreme Ultraviolet:極紫外)光等對光阻劑進行曝光來形成光阻遮罩,即可。此外,也可以利用在基板和投影透鏡之間填滿液體(例如,水)的狀態下進行曝光的液浸技術。另外,也可以使用電子束或離子束代替上述光。注意,當使用電子束或離子束時不需要遮罩。另外,在去除光阻遮罩時,可以進行灰化處理等乾蝕刻處理或濕蝕刻處理,也可以在進行乾蝕刻處理之後進行濕蝕刻處理,又可以在進行濕蝕刻處理之後進行乾蝕刻處理。
或者,可以使用由絕緣體或導電體構成的硬遮罩代替光阻遮罩。當使用硬遮罩時,可以在成為導電體205及導電體247的導電膜上形成成為硬遮罩材料的絕緣膜或導電膜且在其上形成光阻遮罩,然後對硬遮罩材料進行蝕刻來形成所希望的形狀的硬遮罩。對成為導電體205及導電體247的導電膜進行的蝕刻既可以在去除光阻遮罩後進行,又可以不去除光阻遮罩進行。在採用後者的情況下,進行蝕刻時有時光阻遮罩消失。另外,也可以在該導電膜的蝕刻之後,藉由蝕刻去除硬遮罩。另一方面,在硬遮罩材料沒有影響到後製程或者可以在後製程中使用的情況下,不一定要去除硬遮罩。
作為乾蝕刻裝置,可以使用包括平行平板型電極的電容耦合型電漿(CCP:Capacitively Coupled Plasma)蝕刻裝置。包括平行平板型電極的電容耦合型電漿蝕刻裝置也可以採用對平行平板型電極中的一個施加高頻電源的結構。或者,也可以採用對平行平板型電極中的一個施加不同的多個高頻電源的結構。或者,也可以採用對平行平板型電極的各個施加頻率相同的高頻電源的結構。或者,也可以採用對平行平板型電極的各個施加頻率不同的高頻電源的結構。或者,也可以利用具有高密度電漿源的乾蝕刻 裝置。例如,作為具有高密度電漿源的乾蝕刻裝置,可以使用感應耦合電漿(ICP:Inductively Coupled Plasma)蝕刻裝置等。
接著,在絕緣體214、導電體205及導電體247上形成成為絕緣體216的絕緣膜。絕緣體216可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成。在本實施方式中,作為成為絕緣體216的絕緣膜利用CVD法形成氧化矽。
在此,成為絕緣體216的絕緣膜的厚度較佳為導電體205及導電體247的厚度以上。例如,當導電體205及導電體247厚度為1時,成為絕緣體216的絕緣膜的厚度為1以上且3以下。在本實施方式中,導電體205及導電體247的厚度為150nm,成為絕緣體216的絕緣膜的厚度為350nm。
接著,藉由對成為絕緣體216的絕緣膜進行CMP處理去除成為絕緣體216的絕緣膜的一部分,使導電體205及導電體247的表面露出。由此,可以形成其頂面平坦的導電體205、導電體247及絕緣體216。上述內容是導電體205及導電體247的不同的形成方法。
接著,在絕緣體216、導電體205及導電體247上形成絕緣體222。作為絕緣體222,較佳為形成包含鋁和鉿中的一者或兩者的氧化物的絕緣體。另外,作為包含鋁和鉿中的一者或兩者的氧化物的絕緣體,較佳為使用氧化鋁、氧化鉿、包含鋁及鉿的氧化物(鋁酸鉿)等。包含鋁和鉿中的一者或兩者的氧化物的絕緣體對氧、氫及水具有阻擋性。當絕緣體222對氫及水具有阻擋性時,可以抑制電晶體200的周圍的結構體所包含的氫及水藉由絕緣體222擴散到電晶體200的內側,從而可以抑制氧化物230中的氧空位的生成。
絕緣體222可以藉由濺射法、CVD法、MBE法、PLD法或ALD法等形成。
接著,在絕緣體222上形成絕緣體224。絕緣體224可以藉由濺射法、CVD法、MBE法、PLD法或ALD法等形成。
接著,較佳為進行加熱處理。加熱處理以250℃以上且650℃以下,較佳為以300℃以上且500℃以下,更佳為以320℃以上且450℃以下進行即可。加熱處理在氮或惰性氣體氛圍或者包含10ppm以上、1%以上或10%以上的氧化性氣體的氛圍下進行。加熱處理也可以在減壓狀態下進行。或者,加熱處理也可以在氮或惰性氣體氛圍下進行加熱處理,然後為了填補脫離了的氧在包含10ppm以上、1%以上或10%以上的氧化性氣體的氛圍下進行加熱處理。
在本實施方式中,在氮氛圍下以400℃的溫度進行1小時的處理,接下來連續地在氧氛圍下以400℃的溫度進行1小時的處理。藉由進行該加熱處理,可以去除絕緣體224所包含的水、氫等雜質。
另外,也可以在形成絕緣體222之後進行加熱處理。該加熱處理可以採用上述加熱處理的條件。
在此,為了在絕緣體224中形成過量氧區域,也可以在減壓狀態下進行包含氧的電漿處理。包含氧的電漿處理例如較佳為採用包括用來產生使用微波的高密度電漿的電源的裝置。或者,也可以包括對基板一側施加RF (Radio Frequency:射頻)的電源。藉由使用高密度電漿可以生成高密度氧自由基,且藉由對基板一側施加RF可以將由高密度電漿生成的氧自由基高效地導入絕緣體224中。或者,也可以在使用這種裝置進行包含惰性氣體的電漿處理之後,為填補脫離的氧而進行包含氧的電漿處理。另外,藉由適當地選擇該電漿處理的條件,可以去除絕緣體224所包含的水、氫等雜質。此時,也可以不進行加熱處理。
在此,也可以在絕緣體224上例如藉由濺射法進行氧化鋁的成膜,直到該氧化鋁到達絕緣體224為止進行CMP。藉由進行該CMP,可以進行絕緣體224表面的平坦化及絕緣體224表面的平滑化。藉由將該氧化鋁配置於絕緣體224上進行CMP,容易檢測出CMP的終點。此外,有時由於絕緣體224的一部分藉由CMP被拋光而絕緣體224的厚度變薄,但是在絕緣體224的成膜時調整厚度,即可。藉由進行絕緣體224表面的平坦化及平滑化,有時可以防止下面進行成膜的氧化物的覆蓋率的降低並防止半導體裝置的良率的降低。此外,藉由在絕緣體224上利用濺射法進行氧化鋁的成膜,可以對絕緣體224添加氧,所以是較佳的。
接著,在絕緣體224上依次形成氧化膜230A及氧化膜230B(參照圖3A至圖3C)。較佳為在不暴露於大氣環境的情況下連續地形成上述氧化膜。藉由以不暴露於大氣的方式形成氧化膜,可以防止來自大氣環境的雜質或水分附著於氧化膜230A及氧化膜230B,所以可以保持氧化膜230A與氧化膜230B的介面附近的清潔。
氧化膜230A及氧化膜230B可以利用濺射法、CVD法、MBE法、PLD法 或ALD法等形成。
例如,在利用濺射法形成氧化膜230A以及氧化膜230B的情況下,作為濺射氣體使用氧或者氧和稀有氣體的混合氣體。藉由增高濺射氣體所包含的氧的比率,可以增加在形成的氧化膜中的過量氧。另外,在利用濺射法形成上述氧化膜的情況下,例如可以使用上述In-M-Zn氧化物靶材。
尤其是,在形成氧化膜230A時,有時濺射氣體所包含的氧的一部分供應給絕緣體224。因此,氧化膜230A的濺射氣體所包含的氧的比率可以為70%以上,較佳為80%以上,更佳為100%。
此外,在利用濺射法形成氧化膜230B的情況下,當在濺射氣體所包含的氧的比率設定為1%以上且30%以下,較佳為5%以上且20%以下的狀態下進行成膜時,形成氧缺乏型氧化物半導體。將氧缺乏型氧化物半導體用於通道形成區域的電晶體可以具有較高的場效移動率。
在本實施方式中,利用濺射法使用In:Ga:Zn=1:1:0.5[原子個數比](2:2:1[原子個數比])或1:3:4[原子個數比]或1:1:1[原子個數比]的靶材形成氧化膜230A。另外,利用濺射法使用In:Ga:Zn=4:2:4.1[原子個數比]的靶材形成氧化膜230B。上述氧化膜可以根據氧化物230所需的特性適當地選擇成膜條件及原子個數比來形成。
接著,也可以進行加熱處理。作為加熱處理的條件,可以利用上述加熱處理條件。藉由進行加熱處理,可以去除氧化膜230A以及氧化膜230B中 的水、氫等雜質。在本實施方式中,在氮氛圍下以400℃的溫度進行1小時的處理,接下來連續地在氧氛圍下以400℃的溫度進行1小時的處理。
接著,在氧化膜230B上形成遮罩252(參照圖3A至圖3D)。作為遮罩252,可以使用光阻遮罩及硬遮罩。
接著,使用遮罩252,在氧化膜230B、氧化膜230A、絕緣體224及絕緣體222中形成使導電體247的至少一部分露出的開口248(參照圖4A至圖4D)。當形成開口248時可以使用濕蝕刻,然而對微型加工來說較佳為使用乾蝕刻。
接著,去除遮罩252,並且在氧化膜230B上形成導電膜242A。導電膜242A在開口248的內部與導電體247接觸。在此可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成導電膜242A(參照圖5A至圖5C)。
接著,將氧化膜230A、氧化膜230B及導電膜242A加工為島狀,來形成氧化物230a、氧化物230b及導電體層242B(參照圖6A至圖6D)。另外,在該製程中,有時絕緣體224中的不與氧化物230a重疊的區域的厚度變薄。
注意,氧化物230a、氧化物230b及導電體層242B以其至少一部分與導電體205重疊的方式形成。此外,氧化物230a、氧化物230b及導電體層242B的側面較佳為對絕緣體222的頂面大致垂直。在氧化物230a、氧化物230b及導電體層242B的側面對絕緣體222的頂面大致垂直時,當設置多個電晶體200時能夠實現小面積化、高密度化。或者,也可以採用氧化物230a、氧化物230b 及導電體層242B與絕緣體222的頂面所形成的角度較低的結構。在此情況下,氧化物230a、氧化物230b及導電體層242B的側面與絕緣體222的頂面所形成的角度較佳為60°以上且低於70°。藉由採用這種形狀,在下面的製程中提高絕緣體256等的覆蓋性,並可以減少空洞等缺陷。
另外,該氧化膜及導電膜的加工可以利用光微影法進行。另外,作為該加工可以利用乾蝕刻法或濕蝕刻法。利用乾蝕刻法的加工適用於微型加工。
此外,在導電體層242B的側面與導電體層242B的頂面之間較佳為具有彎曲面。就是說,側面的端部和頂面的端部較佳為彎曲(以下,也稱為圓形)。例如,在導電體層242B的端部,該彎曲面具有3nm以上且10nm以下,更佳為5nm以上且6nm以下的曲率半徑。當端部不具有角部時,可以提高後面的成膜製程中的膜的覆蓋性。
另外,該導電膜的加工可以利用光微影法進行。另外,作為該加工可以利用乾蝕刻法或濕蝕刻法。利用乾蝕刻法的加工適用於微型加工。
接著,在絕緣體224、氧化物230a、氧化物230b及導電體層242B上形成絕緣體256(參照圖7A至圖7D)。
另外,可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成絕緣體256。作為絕緣體256,較佳為使用具有抑制氧的透過的功能的絕緣膜。例如,藉由濺射法形成氮化矽、氧化矽或氧化鋁。另外,作為絕緣體256,可 以使用可用於氧化物230a及氧化物230b的材料。例如,作為絕緣體256,較佳為使用In:Ga:Zn=1:3:4[原子個數比]或1:1:0.5[原子個數比]的金屬氧化物。
絕緣體256可以具有包括絕緣體256a及絕緣體256b的疊層結構。絕緣體256a及絕緣體256b的成膜可以採用上述方法,既可以使用相同方法形成絕緣體256a及絕緣體256b,又可以使用彼此不同的方法形成絕緣體256a及絕緣體256b。另外,作為絕緣體256a及絕緣體256b可以使用上述材料,絕緣體256a及絕緣體256b既可以使用相同材料,又可以使用彼此不同的材料。例如,較佳的是,作為絕緣體256a利用濺射法形成氧化鋁膜,並且作為絕緣體256b利用ALD法形成氧化鋁膜。另外,也可以作為絕緣體256a利用濺射法形成氧化鋁膜,並且作為絕緣體256b利用ALD法形成氮化矽膜(參照圖7A至圖7D)。
接著,在絕緣體256上形成成為絕緣體280的絕緣膜。成為絕緣體280的絕緣膜可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成。為了使絕緣體280包含進一步多的氧,較佳為用於絕緣體280的形成的沉積氣體包含氧。另外,為了降低絕緣體280的氫濃度,較佳為用於絕緣體280的形成的沉積氣體不包含氫或者將氫包含得極低。例如,較佳為使用包含矽或氧化矽的靶材及包含氬或氧的氣體形成氧化矽。另外,絕緣體280可以具有兩層以上的疊層結構,可以作為第一層包括利用濺射法形成的氧化矽且作為第二層包括利用CVD法形成的氧氮化矽。接著,對成為絕緣體280的絕緣膜進行CMP處理來形成頂面平坦的絕緣體280(參照圖7A至圖7D)。
接著,對絕緣體280的一部分、絕緣體256的一部分及導電體層242B的一 部分進行加工來形成露出氧化物230b的開口。該開口較佳為以與導電體205重疊的方式形成。由於該開口的形成,而形成導電體242a及導電體242b。另外,由於該開口的形成,而有時絕緣體224的一部分的厚度減薄(參照圖8A至圖8D)。此外,有時去除從導電體242a和導電體242b之間處露出的氧化物230b的頂面的一部分。
此外,也可以以不同的條件對絕緣體280的一部分、絕緣體256的一部分及導電體層242B的一部分進行加工。例如,也可以藉由乾蝕刻法對絕緣體280的一部分進行加工,藉由濕蝕刻法對絕緣體256的一部分進行加工,並藉由乾蝕刻法對導電體層242B的一部分進行加工。
此時,形成在絕緣體280中的開口與導電體242a和導電體242b之間的區域重疊。由此,可以在之後的製程中在導電體242a和導電體242b之間的區域中自對準地配置導電體260。
藉由進行上述乾蝕刻等的處理,有時起因於蝕刻氣體等的雜質附著於或擴散於氧化物230a及氧化物230b等的表面或內部。作為雜質,例如有氟或氯等。
為了去除上述雜質等,進行洗滌。作為洗滌方法,有使用洗滌液等的濕式洗滌、使用電漿的等離子處理以及使用加熱處理的洗滌等,也可以適當地組合上述洗滌。
作為濕式洗滌,可以使用用碳酸水或純水稀釋草酸、磷酸、氨水或氫 氟酸等而成的水溶液進行洗滌處理。或者,可以使用純水或碳酸水進行超聲波洗滌。
接著,也可以進行加熱處理。加熱處理也可以在減壓下進行,並其中以不暴露於大氣的方式連續地形成氧化膜230C。藉由進行這種處理,可以去除附著於氧化物230b的表面等的水分及氫,而且減少氧化物230a及氧化物230b中的水分濃度及氫濃度。加熱處理的溫度較佳為100℃以上且400℃以下。在本實施方式中,加熱處理的溫度為200℃(參照圖9A至圖9D)。
在此,氧化膜230C較佳為以至少與氧化物230a的側面的一部分、氧化物230b的側面的一部分、氧化物230b的頂面的一部分、導電體242的側面的一部分、絕緣體256的側面及絕緣體280的側面接觸的方式設置。導電體242由絕緣體256及氧化膜230C圍繞,因此在後面的製程中,可以抑制因導電體242的氧化導致的導電率的下降。
氧化膜230C可以使用濺射法、CVD法、MBE法、PLD法或ALD法等形成。 氧化膜230C可以根據氧化膜230C所需的特性利用與氧化膜230A或氧化膜230B相同的成膜方法形成。在本實施方式中,利用濺射法使用In:Ga:Zn=1:3:4[原子個數比]或4:2:4.1[原子個數比]的靶材形成氧化膜230C。
另外,氧化膜230C也可以為疊層。例如,也可以利用濺射法使用In:Ga:Zn=4:2:4.1[原子個數比]的靶材進行成膜,接著連續地使用In:Ga:Zn=1:3:4[原子個數比]的靶材進行成膜。
尤其是,在形成氧化膜230C時,有時濺射氣體所包含的氧的一部分供應給氧化物230a及氧化物230b。因此,氧化膜230C的濺射氣體所包含的氧的比率可以為70%以上,較佳為80%以上,更佳為100%。
接著,也可以進行加熱處理。加熱處理也可以在減壓下進行,並其中以不暴露於大氣的方式連續地形成絕緣膜250A。藉由進行這種處理,可以去除附著於氧化膜230C的表面等的水分及氫,而且減少氧化物230a、氧化物230b及氧化膜230C中的水分濃度及氫濃度。加熱處理的溫度較佳為100℃以上且400℃以下(參照圖9A至圖9D)。
絕緣膜250A可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成。作為絕緣膜250A,較佳為利用CVD法形成氧氮化矽。形成絕緣膜250A時的成膜溫度較佳為350℃以上且低於450℃,尤其較佳為400℃左右。藉由以400℃的溫度形成絕緣膜250A,可以形成雜質少的絕緣體。
接著,形成導電膜260A及導電膜260B。可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成導電膜260A及導電膜260B。例如,較佳為利用CVD法。在本實施方式中,利用ALD法形成導電膜260A,利用CVD法形成導電膜260B(參照圖9A至圖9D)。
接著,藉由利用CMP處理直到絕緣體280露出為止對氧化膜230C、絕緣膜250A、導電膜260A及導電膜260B進行拋光,形成氧化物230c、絕緣體250及導電體260(導電體260a及導電體260b)(參照圖10A至圖10D)。
在此,導電體242以由絕緣體256及氧化物230c圍繞的方式設置,因此可以抑制因導電體242的氧化導致的導電率的下降。
接著,也可以進行加熱處理。在本實施方式中,在氮氛圍下以400℃的溫度進行1小時的處理。藉由該加熱處理,可以減少絕緣體250及絕緣體280中的水分濃度及氫濃度。
接著,也可以在導電體260上、氧化物230c上、絕緣體250上及絕緣體280上形成成為絕緣體282的絕緣膜。可以利用濺射法、CVD法、MBE法、PLD法、或ALD法等形成成為絕緣體282的絕緣膜。作為成為絕緣體282的絕緣膜,例如,較佳為藉由濺射法形成氧化鋁膜。如此,藉由以接觸於導電體260的頂面的方式形成絕緣體282,在後面的加熱處理中可以抑制絕緣體280所包含的氧被導電體260吸收,所以是較佳的(參照圖11A至圖11D)。
接著,也可以進行加熱處理。在本實施方式中,在氮氛圍下以400℃的溫度進行1小時的處理。藉由進行該加熱處理,可以將藉由絕緣體282的成膜添加的氧注入到絕緣體280中。另外,該氧可以經過氧化物230c注入到氧化物230a及氧化物230b中。
接著,也可以在絕緣體282上形成成為絕緣體274的絕緣體。可以藉由濺射法、CVD法、MBE法、PLD法或ALD法等形成成為絕緣體274的絕緣膜(參照圖11A至圖11D)。
接著,也可以在絕緣體274上形成成為絕緣體281的絕緣體。可以藉由濺 射法、CVD法、MBE法、PLD法或ALD法等形成成為絕緣體281的絕緣膜(參照圖11A至圖11C)。作為成為絕緣體281的絕緣膜,例如,較佳為使用濺射法形成氮化矽。(參照圖11A至圖11D)。
接著,在絕緣體256、絕緣體280、絕緣體282、絕緣體274及絕緣體281中形成到達導電體242a的開口。使用光微影法形成該開口,即可。
接著,形成成為絕緣體241的絕緣膜,並對該絕緣膜進行各向異性蝕刻來形成絕緣體241。可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成該絕緣膜。作為成為絕緣體241的絕緣膜,較佳為使用具有抑制氧的透過的功能的絕緣膜。例如,較佳為藉由ALD法形成氧化鋁膜或氮化矽膜。此外,作為各向異性蝕刻,例如進行乾蝕刻法等,即可。藉由使開口的側壁部具有這種結構,可以抑制來自外部的氧的透過,並防止接下來要形成的導電體240的氧化。此外,可以防止水、氫等雜質從導電體240擴散到外部。
接著,形成成為導電體240的導電膜。成為導電體240的導電膜較佳為包含具有抑制水、氫等雜質的透過的功能的導電體的疊層結構。例如,可以是氮化鉭、氮化鈦等和鎢、鉬、銅等的疊層。成為導電體240的導電膜可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成。
接著,藉由進行CMP處理,去除成為導電體240的導電膜的一部分,使絕緣體281露出。其結果是,只在上述開口殘留該導電膜,由此可以形成其頂面平坦的導電體240(參照圖1A至圖1D)。注意,有時由於該CMP處理而絕緣體281的一部分被去除。
另外,可以形成與導電體240電連接的導電體。在利用濺射法、CVD法、MBE法、PLD法或ALD法等形成導電膜之後,藉由光微影法對該導電膜進行加工,可以形成接觸於導電體240的頂面的導電體。
藉由上述製程,可以製造包括圖1A至圖1D所示的電晶體200的半導體裝置。如圖3A至圖11D所示,藉由使用本實施方式所示的半導體裝置的製造方法可以製造電晶體200。
根據本發明的一個實施方式,可以提供一種能夠實現微型化或高積體化的半導體裝置。另外,根據本發明的一個實施方式,可以提供一種具有良好的電特性的半導體裝置。另外,根據本發明的一個實施方式,可以提供一種通態電流大的半導體裝置。另外,根據本發明的一個實施方式,可以提供一種具有高頻率特性的半導體裝置。另外,根據本發明的一個實施方式,可以提供一種可靠性良好的半導體裝置。另外,根據本發明的一個實施方式,可以提供一種關態電流小的半導體裝置。藉由本發明的一個實施方式,能夠提供一種功耗得到降低的半導體裝置。另外,根據本發明的一個實施方式,可以提供一種生產率高的半導體裝置。
〈半導體裝置的變形例子〉
下面,參照圖12A至圖19D對與上述〈半導體裝置的結構例子〉不同的包括根據本發明的一個實施方式的電晶體200的半導體裝置的一個例子進行說明。
在圖12A至圖19D中,每個圖式中的A示出俯視圖。另外,每個圖式中的B示出沿著A中的點劃線A1-A2的部分的剖面圖,該剖面圖相當於電晶體200的通道長度方向上的剖面圖。每個圖式中的C示出沿著A中的點劃線A3-A4的部分的剖面圖,該剖面圖相當於電晶體200的通道寬度方向上的剖面圖。另外,每個圖式中的D示出沿著A中的點劃線A5-A6的部分的剖面圖,該剖面圖相當於電晶體200的源極區域或汲極區域中的通道寬度方向的剖面圖。為了明確起見,在每個圖式中的A的俯視圖中省略部分組件。
注意,在圖12A至圖19D所示的半導體裝置中,對具有與〈半導體裝置的結構例子〉所示的半導體裝置(參照圖12A至圖12D)的組件相同的功能的組件附加相同的元件符號。注意,在本節中,作為電晶體200的構成材料可以使用在<半導體裝置的結構例子>中進行了詳細說明的材料。
〈半導體裝置的變形例子1〉
圖12A至圖12D所示的半導體裝置包括:基板(未圖示)上的絕緣體214、絕緣體214上的電晶體200、電晶體200上的絕緣體280、絕緣體280上的絕緣體282、絕緣體282上的絕緣體274、絕緣體274上的絕緣體281。絕緣體214、絕緣體280、絕緣體282、絕緣體274及絕緣體281被用作層間膜。另外,以埋入於設置在絕緣體214上的絕緣體216中的方式設置導電體247。導電體247與電晶體200電連接並被用作插頭。此外,設置與電晶體200電連接並被用作插頭的導電體240。注意,絕緣體241以接觸於被用作插頭的導電體240的側面的方式設置。
如圖12A至圖12D所示,電晶體200包括:絕緣體214上的絕緣體216;以 絕緣體216中埋入的方式配置的導電體205(導電體205a及導電體205b);絕緣體216及導電體205上的絕緣體222;絕緣體222上的絕緣體224;絕緣體224上的氧化物230a;氧化物230a上的氧化物230b;氧化物230b上的導電體242a及導電體242b;氧化物230b上的氧化物230c;氧化物230c上的絕緣體250;位於絕緣體250上並重疊於氧化物230c的導電體260(導電體260a及導電體260b);接觸於絕緣體224的頂面的一部分、氧化物230a的側面、氧化物230b的側面、導電體242a的側面、導電體242a的頂面、導電體242b的側面及導電體242b的頂面的絕緣體256a及絕緣體256b。另外,氧化物230c接觸於導電體242a的側面及導電體242b的側面。導電體260包括導電體260a及導電體260b,並且以包圍導電體260b的底面及側面的方式配置導電體260a。在此,如圖12B所示那樣,以其頂面的高度與絕緣體250的頂面及氧化物230c的頂面的高度大致一致的方式配置導電體260。另外,絕緣體282與導電體260、氧化物230c、絕緣體250及絕緣體280的每一個的頂面接觸。
此外,在絕緣體216形成有開口,在該開口中配置有上述的導電體247。導電體247的頂面的至少一部分從絕緣體216露出,導電體247的頂面的高度和絕緣體216的頂面的高度較佳為大致相同。
此外,在絕緣體222、絕緣體224、氧化物230a及氧化物230b形成有使導電體247的至少一部分露出的開口248。
另外,導電體242b配置在氧化物230b上並藉由開口248接觸於導電體247的頂面的至少一部分。如此,藉由導電體242b與導電體247連接,可以減少電晶體200的源極或汲極和導電體247之間的電阻。
注意,導電體242b較佳為以在開口248內部接觸於氧化物230a的側面及氧化物230b的側面的方式設置。
在此,導電體242b的重疊於開口248的部分形成有與開口248的形狀對準的凹部。在導電體242b的開口248的內部與氧化物230a或氧化物230b的側面接觸的部分的厚度T2有時比導電體242b的與氧化物230b的頂面接觸的部分的厚度T1小。尤其是,當開口248的徑小時,厚度T2顯著小,而有時在開口248的內部,導電體242b沒有形成在氧化物230a的側面或氧化物230b的側面。
如此,在導電體242b的開口248的側面出的厚度薄時,在導電體242b的厚度薄的部分增高電阻率,導致電晶體200的通態電流的降低等。
由此,在本變形例子中,在導電體242b上,以其至少一部分與開口248及導電體247重疊的方式設置導電體244。這一點上圖12A至圖12D所示的電晶體200與圖1A至圖1D所示的電晶體200不同。關於圖12A至圖12D所示的半導體裝置的其他結構,可以參照圖1A至圖1D所示的結構。
在此,導電體244較佳為以與導電體242b的凹部的側面及底面接觸的方式設置。因此,導電體244較佳為利用高埋入性的CVD法或ALD法形成。
另外,如圖12B及圖12D所示那樣,作為導電體244可以為疊層膜,在此情況下,作為下一側的層使用密接性高的導電材料,即可。例如,作為導電體244採用依次層疊氮化鈦和鎢的導電膜。
如此,藉由使用導電體244填埋導電體242b的凹部可以使被用作電晶體200的源極電極或汲極電極的導電體242b及導電體244的厚度充分厚。
因此,可以防止本實施方式所示的半導體裝置的通態電流的降低,而可以提供良好的電特性。另外,即使不使開口248的徑過大,也可以使電晶體200與導電體247接觸,因此可以實現根據本實施方式的半導體裝置的微型化或高積體化。
首先,導電體244的頂面的高度較佳為與導電體242b的頂面的高度大致相同。藉由採用這種結構,即使作為導電體244使用較易氧化的金屬,也可以使導電體244的從導電體242b露出的面積為最小限度,因此可以減少從周圍的氧化物吸收的氧量。
作為導電體244可以使用可用於導電體242的上述導電材料。作為導電體244,較佳為使用對導電體242b的凹部的高埋入性的CVD法或ALD法形成,例如使用鎢、鈦、鋁或鈷等即可。另外,導電體244可以為疊層膜。作為導電體244的上一側的層使用上述的金屬膜,作為下一側的層使用與金屬膜密接性高的金屬氮化物,即可。作為金屬氮化物,例如可以使用氮化鈦等。藉由採用這種疊層結構,可以在導電體242b的凹部高埋入性地形成導電體244,並且防止導電體244從導電體242b剝離。注意,導電體244的結構不侷限於兩層結構,也可以採用三層以上的疊層膜。
如圖12D所示那樣,因為導電體244的頂面、導電體242b的頂面及導電 體242b的側面由絕緣體256覆蓋,所以可以抑制從導電體244的頂面、導電體242b的側面及導電體242b的頂面方向氫或水等雜質及氧擴散到導電體244及導電體242b。因此,因為可以抑制從周圍氧擴散到導電體244及導電體242b,從而能夠抑制導電體244及導電體242b的氧化。注意,就導電體242a也具有同樣效果。
接著,參照圖13A至圖15D說明圖12A至圖12D所示的包括電晶體200的半導體裝置的製造方法。在圖13A至圖15D中,每個圖式中的A示出俯視圖。另外,每個圖式中的B示出沿著A中的點劃線A1-A2的部分的剖面圖,該剖面圖相當於電晶體200的通道長度方向上的剖面圖。每個圖式中的C示出沿著A中的點劃線A3-A4的部分的剖面圖,該剖面圖相當於電晶體200的通道寬度方向上的剖面圖。另外,每個圖式中的D示出沿著A中的點劃線A5-A6的部分的剖面圖,該剖面圖相當於電晶體200的源極區域或汲極區域中的通道寬度方向的剖面圖。為了明確起見,在每個圖式中的A的俯視圖中省略部分組件。
首先,如上面所示,使用圖3A至圖4D所示的方法進行半導體裝置的製程。
接著,去除遮罩252,並且在氧化膜230B上形成導電膜242A。導電膜242A在開口248的內部與導電體247接觸。在此可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成導電膜242A(參照圖13A至圖13D)。在此,如圖13C及圖13D所示那樣,在導電膜242A中形成有與開口248的形狀對準的凹部。導電膜242A的開口248的側壁處的厚度有時比氧化膜230B上的厚度小。
接著,在導電膜242A上依次層疊導電膜244A和導電膜244B(參照圖14A至圖14D)。可以利用濺射法、CVD法、MBE法、PLD法或ALD法等形成導電膜244A及導電膜244B。
在此,較佳為利用高埋入性的成膜方法來形成導電膜244A及導電膜244B,較佳為利用CVD法(例如,金屬CVD法或有機金屬CVD(MOCVD)法)或ALD法。
作為導電膜244A較佳的是對導電膜242A及導電膜244B密接性良好的導電膜。例如,作為導電膜244A利用ALD法形成氮化鈦即可。
另外,較佳的是,導電膜244B的厚度比導電膜244A厚,藉由沉積速度比導電膜244A快的方法形成導電膜244B。例如,作為導電膜244B,利用CVD法形成鎢即可。
如此,藉由形成導電膜244A及導電膜244B,可以使用導電膜242A、導電膜244A及導電膜244B填埋開口248。
雖然在圖14A至圖14D所示的製程中形成導電膜244A及導電膜244B,但是本實施方式不侷限於此。例如,在導電膜244B具有對於導電膜242A充分高的密接性的情況下,也可以不形成導電膜244A。另外,也可以不採用導電膜244A和導電膜244B的兩層結構,而採用三層以上的結構。
接著,直到導電膜242A的頂面露出為止去除導電膜244A及導電膜244B的一部分,來形成導電體244a及導電體244a上的導電體244b(參照圖15A至圖15D)。注意,以下將導電體244a及導電體244b總稱為導電體244。
作為去除導電膜244A及導電膜244B的一部分的方法,較佳為使用乾蝕刻處理及CMP處理中的一者或兩者。例如,首先進行乾蝕刻處理,然後進行CMP處理即可。
藉由對導電膜244A或導電膜244B的頂面進行乾蝕刻處理,可以去除導電膜244A或導電膜244B的上部,與此同時可以減少導電膜244A或導電膜244B的頂面的凹凸。
再者,對減少凹凸的導電膜244A或導電膜244B的頂面進行CMP處理,可以去除導電膜244A及導電膜244B的比導電膜242A高的部分。另外,可以提高導電膜242A、導電體244a及導電體244b的頂面的平坦性。
此時,以導電膜242A的頂面為指標,檢測出進行CMP處理的終點即可。或者,也可以去除導電膜242A的頂面的一部分進行CMP處理。如此,藉由進行導電膜244A及導電膜244B的CMP處理,可以使導電體244的頂面的高度和導電體242b的頂面的高度大致相同。藉由採用這種結構,即使作為導電體244使用較易氧化的金屬,也可以使導電體244的從導電體242b露出的面積為最小限度,因此可以減少從周圍的氧化物吸收的氧量。
作為使用CMP處理去除導電膜244A及導電膜244B的一部分的方法,較 佳為採用光學式檢測出終點的方法或檢測電機電流式(扭矩式)的檢測出終點的方法。在使用光學式檢測出終點的方法的情況下,以設在終點檢測器的感測器檢測出被研磨面上的雷射或白色光的反射的變化,來決定結束研磨的時刻。另外,在使用檢測電機電流式檢測出終點的方法的情況下,終點檢測器可以檢測出由於研磨布和被研磨面之間發生的摩擦而生的阻力變化,來決定結束研磨的時刻。
注意,在圖15A至圖15D所示的製程中,使導電膜242A的頂面露出,但是本實施方式不侷限於此。例如,在導電體244的耐氧化性充分高的情況下,也可以採用不使導電膜242A露出且導電體244的一部分覆蓋導電膜242A的結構。
下面,如上所述那樣,使用圖6A至圖11D所示的方法進行半導體裝置的製造即可。如此,可以製造圖12A至圖12D所示的半導體裝置。
〈半導體裝置的變形例子2〉
圖16A至圖16D所示的電晶體200的與圖12A至圖12D所示的電晶體200不同之處是導電體242b只在氧化物230b上形成且導電體242c在開口248的底部形成。此外,在圖16A至圖16D所示的電晶體200中,以填埋開口248的方式設置導電體244,並且導電體244的側面的一部分接觸於氧化物230a的側面及氧化物230b的側面中的至少一個,這點上也與圖12A至圖12D所示的電晶體200不同。
在重疊於開口248的區域中,導電體244的側面的一部分與導電體242b 的側面接觸,導電體244的底面與導電體242c的頂面接觸。另外,導電體242c的底面與導電體247的頂面接觸。就是說,導電體242b隔著導電體244及導電體242c與導電體247電連接。
在此,導電體242c由與導電體242b相同的導電材料構成。在上述圖4A至圖4D所示的製程中,由於導電膜242A在開口248中發生斷開,所以導電體242c形成在開口248的底部。尤其在利用濺射法形成導電膜242A時,不容易在開口248的側面上形成導電膜242A,因此有時形成導電體242c。
如此,即使在開口248的側面上沒有形成導電膜242A的情況下也將導電體244埋入於開口248,可以使被用作電晶體200的源極電極或汲極電極的導電體242b及導電體244的厚度充分厚。由此,可以防止本實施方式所示的半導體裝置的通態電流的降低,而可以提供良好的電特性。
〈半導體裝置的變形例子3〉
圖17A至圖17D所示的電晶體200與圖12A至圖12D所示的電晶體200不同之點是,不設置導電體244,在絕緣體256a、絕緣體256b、絕緣體280、絕緣體282、絕緣體274及絕緣體281中形成重疊於開口248的開口251b,並且以填埋開口248及開口251b的方式設置導電體240b。導電體240b以填埋導電體242b的凹部的方式與導電體242b的頂面及側面接觸。
此外,在絕緣體256a、絕緣體256b、絕緣體280、絕緣體282、絕緣體274及絕緣體281中形成到達導電體242a的開口251a,以填埋開口251a的方式設置導電體240a。在此,導電體240a及導電體240b具有與上述導電體240相同的 結構。導電體240a的頂面與佈線、電極或端子等連接,然而導電體240b的頂面並不一定需要與佈線、電極或端子等連接。
此外,導電體240a及導電體240b可以是疊層膜。在此情況下,作為下一側的層使用密接性高的導電性材料即可。例如,作為導電體240a及導電體240b採用依次層疊有氮化鈦和鎢的導電膜。
另外,與圖12A至圖12D所示的電晶體200不同,圖17A至圖17D所示的電晶體200較佳為不設置接觸於導電體240a及導電體240b的側面的上述絕緣體241。由此,可以實現導電體240b和導電體242b的良好的接觸。
在此,對圖17A至圖17D所示的電晶體200的製造方法參照圖18A至圖19D進行說明。
首先,不進行圖14A至圖14D所示的導電膜244A及導電膜244B的形成製程及圖15A至圖15D所示的導電體244的形成製程,而進行與上面圖12A至圖12D所示的電晶體200的製程相同的製程(參照圖18A至圖18D)。此時,如圖18B及圖18D所示那樣,以與開口248的形狀對準的方式在導電體242b中形成凹部,該凹部被絕緣體256a、絕緣體256b及絕緣體280埋入。
接著,在絕緣體256a、絕緣體256b、絕緣體280、絕緣體282、絕緣體274及絕緣體281中形成到達導電體242a的頂面的開口251a及重疊於開口248並到達導電體242b的頂面的開口251b(參照圖19A至圖19D)。藉由使用光微影法形成開口251a及開口251b即可。
下面,與上述製造方法所示的導電體240的形成製程同樣,在開口251a中形成導電體240a,並且在開口251b中形成導電體240b。
注意,藉由如本變形例子所示的方法製造電晶體200,即使沒有導電體244的形成製程,也能夠製造電晶體200。因此,可以高生產率地製造本實施方式所示的半導體裝置。
如此,即使在開口248中沒有埋入導電體244的情況下也與導電體240a的形成同時將導電體240b埋入於開口248,可以使被用作電晶體200的源極電極或汲極電極的導電體242b及導電體240b的厚度充分厚。由此,可以防止本實施方式所示的半導體裝置的通態電流的降低,而可以提供良好的電特性。
本實施方式所示的結構、方法等可以與其他實施方式所示的結構、方法等適當地組合而實施。
實施方式2
在本實施方式中,對半導體裝置的一個實施方式參照圖20至圖30進行說明。
[記憶體裝置1]
圖20示出使用作為本發明的一個實施方式的電容器的半導體裝置(記憶體裝置)的一個例子。在本發明的一個實施方式的半導體裝置中,電晶 體200設置在電容器100及電晶體300的上方,電容器100設置在電晶體300的上方。電容器100或電晶體300的至少一部分較佳為重疊於電晶體200。由此,可以減少電容器100、電晶體200及電晶體300的俯視時的佔有面積,可以實現根據本實施方式的半導體裝置的微型化或高積體化。
注意,作為電晶體200,可以使用上述實施方式所說明的電晶體200。因此,關於電晶體200及包括電晶體200的層,可以參考上面的實施方式的記載。
電晶體200是其通道形成在包含氧化物半導體的半導體層中的電晶體。因為電晶體200的關態電流小,所以藉由將該電晶體用於記憶體裝置,可以長期保持存儲內容。換言之,因為不需要更新工作或更新工作的頻率極低,所以可以充分降低記憶體裝置的功耗。
在圖20所示的半導體裝置中,佈線1001與電晶體300的源極電連接,佈線1002與電晶體300的汲極電連接,佈線1007與電晶體300的閘極電連接。此外,佈線1003與電晶體200的源極和汲極中的一個電連接,佈線1004與電晶體200的第一閘極電連接,佈線1006與電晶體200的第二閘極電連接。再者,電晶體200的源極和汲極中的另一個與電容器100的一個電極電連接,佈線1005與電容器100的另一個電極電連接。
圖20所示的半導體裝置具有藉由電晶體200的開關能夠保持充電於電容器100的一個電極中的電荷的特性,因此可以進行資料的寫入、保持及讀出。
此外,藉由將圖20所示的半導體裝置配置為矩陣狀,可以構成記憶單 元陣列。此時,可以將電晶體300被用作連接於該記憶單元陣列的讀出電路或驅動電路等。
〈電晶體300〉
電晶體300設置在基板311上,並包括:被用作閘極電極的導電體316、被用作閘極絕緣體的絕緣體315、由基板311的一部分構成的半導體區域313;以及用作源極區域或汲極區域的低電阻區域314a及低電阻區域314b。
在此,在半導體區域313上配置絕緣體315,在絕緣體315上配置導電體316。另外,在同一層中形成的各電晶體300由被用作元件隔離絕緣層的絕緣體312電分離。作為絕緣體312可以使用與後面說明的絕緣體326等相同的絕緣體。電晶體300可以是p通道型或n通道型。
在基板311中,半導體區域313的形成通道的區域或其附近的區域、被用作源極區域或汲極區域的低電阻區域314a及低電阻區域314b等較佳為包含矽類半導體等半導體,更佳為包含單晶矽。另外,也可以使用包含Ge(鍺)、SiGe(矽鍺)、GaAs(砷化鎵)、GaAlAs(鎵鋁砷)等的材料形成。可以使用對晶格施加應力,改變晶面間距而控制有效質量的矽。此外,電晶體300也可以是使用GaAs和GaAlAs等的HEMT(High Electron Mobility Transistor:高電子移動率電晶體)。
在低電阻區域314a及低電阻區域314b中,除了應用於半導體區域313的半導體材料之外,還包含砷、磷等賦予n型導電性的元素或硼等賦予p型導電性的元素。
作為被用作閘極電極的導電體316,可以使用包含砷、磷等賦予n型導電性的元素或硼等賦予p型導電性的元素的矽等半導體材料、金屬材料、合金材料或金屬氧化物材料等導電材料。
另外,由於根據導電體的材料決定功函數,所以藉由改變導電體的材料,可以調整臨界電壓。明確而言,作為導電體較佳為使用氮化鈦或氮化鉭等材料。為了兼具導電性和埋入性,作為導電體較佳為使用鎢或鋁等金屬材料的疊層,尤其在耐熱性方面上較佳為使用鎢。
在此,在圖20所示的電晶體300中,形成通道的半導體區域313(基板311的一部分)具有凸形狀。另外,以隔著絕緣體315覆蓋半導體區域313的側面及頂面的方式設置導電體316。因為利用半導體基板的凸部,所以這種電晶體300也被稱為FIN型電晶體。另外,也可以以與凸部的上表面接觸的方式具有用作用來形成凸部的遮罩的絕緣體。此外,雖然在此示出對半導體基板的一部分進行加工來形成凸部的情況,但是也可以對SOI基板進行加工來形成具有凸部的半導體膜。
注意,圖20所示的電晶體300的結構只是一個例子,不侷限於上述結構,根據電路結構或驅動方法使用適當的電晶體即可。
〈電容器〉
電容器100包括絕緣體364上的絕緣體114、絕緣體114上的絕緣體140、在形成於絕緣體114及絕緣體140中的開口中配置的導電體110、導電體110 及絕緣體140上的絕緣體130、絕緣體130上的導電體120、以及導電體120及絕緣體130上的絕緣體150。在此,在形成於絕緣體114及絕緣體140中的開口中配置導電體110、絕緣體130、及導電體120的至少一部分。
導電體110被用作電容器100的下電極,導電體120被用作電容器100的上電極,絕緣體130被用作電容器100的介電質。電容器100具有在絕緣體114及絕緣體140的開口中不僅在底面上而且在側面上上電極與下電極隔著介電質對置的結構,因此可以增加每單位面積的靜電電容。開口的深度越深,電容器100的靜電電容越大。如此,藉由增加電容器100的每單位面積的靜電電容,可以推進半導體裝置的微型化或高積體化。
作為絕緣體114及絕緣體150,可以使用能夠用作絕緣體280的絕緣體。另外,作為絕緣體140,較佳為使用被用作形成絕緣體114的開口時的蝕刻停止層並可以用於絕緣體214的絕緣體。
另外,形成在絕緣體114及絕緣體140中的開口的俯視時的形狀可以為四角形、四角形以外的多角形狀、其角部呈弧形的多角形狀或橢圓等圓形形狀。在此,在俯視時較佳為該開口與電晶體200重疊的面積大。藉由採用這種結構,可以縮減包括電容器100及電晶體200的半導體裝置的佔有面積。
導電體110以與形成在絕緣體140及絕緣體114中的開口接觸的方式配置。導電體110的頂面的高度較佳為與絕緣體140的頂面的高度大致相同。另外,導電體110的底面與埋入於絕緣體364的開口中的導電體366接觸。導電體110較佳為藉由ALD法或CVD法等形成,例如使用可用於導電體205的導電 體即可。
絕緣體130以覆蓋導電體110及絕緣體140的方式配置。例如,較佳為藉由ALD法或CVD法等形成絕緣體130。作為絕緣體130,例如使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋯、氧化鋁、氧氮化鋁、氮氧化鋁、氮化鋁、氧化鉿、氧氮化鉿、氮氧化鉿、氮化鉿等,並且可以採用疊層結構或單層結構。例如,作為絕緣體130,可以使用依次層疊有氧化鋯、氧化鋁及氧化鋯的絕緣膜。
例如,絕緣體130較佳為使用氧氮化矽等介電強度高的材料或高介電常數(high-k)材料。另外,也可以使用介電強度高的材料或高介電常數(high-k)材料的疊層結構。
注意,作為高介電常數(high-k)材料(相對介電常數高的材料)的絕緣體,有氧化鎵、氧化鉿、氧化鋯、具有鋁及鉿的氧化物、具有鋁及鉿的氧氮化物、具有矽及鉿的氧化物、具有矽及鉿的氧氮化物或具有矽及鉿的氮化物等。藉由使用這種high-k材料,即使增厚絕緣體130,也可以充分確保電容器100的靜電電容。藉由增厚絕緣體130,可以抑制在導電體110與導電體120之間產生的洩漏電流。
另一方面,作為介電強度高的材料,有氧化矽、氧氮化矽、氮氧化矽、氮化矽、添加有氟的氧化矽、添加有碳的氧化矽、添加有碳及氮的氧化矽、具有空孔的氧化矽或樹脂等。例如,可以使用依次層疊有藉由ALD法形成的SiNx、藉由PEALD法形成的SiOx、藉由ALD法形成的SiNx的絕緣膜。藉由 採用這種介電強度高的絕緣體,可以提高介電強度而能夠抑制電容器100的靜電破壞。
導電體120以填埋形成在絕緣體140及絕緣體114中的開口的方式配置。另外,導電體120的頂面經過絕緣體150的開口與導電體247接觸。導電體120較佳為藉由ALD法或CVD法等形成,例如使用可用於導電體205的導電體即可。
在上述電容器100的製程中,有時需要超過700℃的高溫的熱處理。在形成電晶體200的之後進行這種高溫的熱處理時,氫或水等的雜質或者氧的擴散給氧化物230帶來影響,有時導致電晶體200的電特性的劣化。
然而,如本變形例子所示那樣,藉由在電容器100上形成電晶體200,電容器100的製程中的熱履歷沒有影響到電晶體200。由此,可以防止電晶體200的電特性的劣化且可以提供具有穩定的電特性的半導體裝置。
〈佈線層〉
在各個結構體之間也可以設置包括層間膜、佈線及插頭等的佈線層。另外,佈線層可以根據設計而設置為多個層。在此,在具有插頭或佈線的功能的導電體中,有時使用同一元件符號表示多個結構。此外,在本說明書等中,佈線、與佈線電連接的插頭也可以是一個組件。就是說,導電體的一部分有時被用作佈線,並且導電體的一部分有時被用作插頭。
例如,在電晶體300上,作為層間膜依次層疊地設置有絕緣體320、絕緣 體322、絕緣體324及絕緣體326。另外,與被用作端子的導電體152電連接的導電體328、導電體330等填埋於絕緣體320、絕緣體322、絕緣體324及絕緣體326中。另外,導電體328及導電體330被用作插頭或佈線。
此外,用作層間膜的絕緣體可以被用作覆蓋其下方的凹凸形狀的平坦化膜。例如,為了提高絕緣體322的頂面的平坦性,其頂面也可以藉由利用化學機械拋光(CMP)法等的平坦化處理被平坦化。
此外,也可以在絕緣體326及導電體330上形成佈線層。例如,在圖20中,依次層疊有絕緣體350、絕緣體352及絕緣體354。另外,在絕緣體350、絕緣體352及絕緣體354中形成有導電體356。導電體356被用作插頭或佈線。
在絕緣體354上配置絕緣體360,在絕緣體360上配置絕緣體362,在絕緣體362上配置絕緣體364,並且在絕緣體364上配置絕緣體114。
在絕緣體364中形成有開口,在該開口中配置導電體366。導電體366接觸於導電體110的底面。就是說,導電體366被用作連接於電容器100的電極的另一個的佈線。作為導電體366,使用可用於導電體356等的絕緣體即可。
另外,將構成導電體112及電容器100的導電體(導電體120、導電體110)等埋入於絕緣體360、絕緣體362、絕緣體364、絕緣體114、絕緣體140、絕緣體130及絕緣體150中。注意,導電體112具有使電晶體300與被用作端子的導電體152電連接的插頭或佈線的功能。
同樣地,將導電體247及構成電晶體200的導電體(導電體205)等埋入於絕緣體212、絕緣體214及絕緣體216中。此外,導電體247被用作與電容器100、電晶體200或電晶體300電連接的插頭或佈線。例如,導電體247的一部分與被用作電容器100的上電極的導電體120電連接。例如,導電體247的其他部分具有使電晶體300與被用作端子的導電體152電連接的插頭或佈線的功能。
另外,在絕緣體281上設置有導電體152,導電體152被絕緣體156覆蓋。在此,導電體152與導電體245的頂面接觸並被用作電晶體200或電晶體300的端子。
注意,作為可用作層間膜的絕緣體,有具有絕緣性的氧化物、氮化物、氧氮化物、氮氧化物、金屬氧化物、金屬氧氮化物及金屬氮氧化物等。例如,藉由將相對介電常數低的材料用於用作層間膜的絕緣體,可以減少產生在佈線之間的寄生電容。因此,較佳為根據絕緣體的功能選擇材料。
例如,作為絕緣體320、絕緣體322、絕緣體326、絕緣體352、絕緣體354、絕緣體362、絕緣體364、絕緣體114、絕緣體150、絕緣體212及絕緣體156等,較佳為具有相對介電常數低的絕緣體。例如,該絕緣體較佳為包含氧化矽、氧氮化矽、氮氧化矽、氮化矽、添加有氟的氧化矽、添加有碳的氧化矽、添加有碳及氮的氧化矽、具有空孔的氧化矽或樹脂等。或者,該絕緣體較佳為具有氧化矽、氧氮化矽、氮氧化矽、氮化矽、添加有氟的氧化矽、添加有碳的氧化矽、添加有碳及氮的氧化矽或具有空孔的氧化矽和樹脂的疊層結構。因為氧化矽及氧氮化矽對熱穩定,所以藉由與樹脂組合,可以實 現熱穩定且相對介電常數低的疊層結構。作為樹脂,例如可以舉出聚酯、聚烯烴、聚醯胺(尼龍、芳族聚醯胺等)、聚醯亞胺、聚碳酸酯或丙烯酸樹脂等。
另外,設置在導電體152上或下的絕緣體的電阻率為1.0×1012Ωcm以上且1.0×1015Ωcm以下,較佳為5.0×1012Ωcm以上且1.0×1014Ωcm以下,更佳為1.0×1013Ωcm以上且5.0×1013Ωcm以下。藉由將設置在導電體152上或下的絕緣體的電阻率設定為上述範圍內,該絕緣體可以維持絕緣性並使積累在電晶體200、電晶體300、電容器100及導電體152等的佈線之間的電荷分散,而能夠抑制該電荷給電晶體及包括該電晶體的半導體裝置帶來的特性不良或靜電破壞。作為這種絕緣體,可以使用氮化矽或氮氧化矽。例如,將絕緣體281的電阻率設定為上述範圍內即可。
藉由使用具有抑制氫等雜質及氧透過的功能的絕緣體圍繞使用氧化物半導體的電晶體,能夠使電晶體的電特性穩定。因此,作為絕緣體324、絕緣體350及絕緣體360等,使用具有抑制氫等雜質及氧的透過的功能的絕緣體,即可。
作為具有抑制氫等雜質及氧透過的功能的絕緣體,例如可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。明確而言,作為具有抑制氫等雜質及氧透過的功能的絕緣體,可以使用氧化鋁、氧化鎂、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或氧化鉭等金屬氧化物、氮氧化矽或氮化矽等。
作為能夠用於佈線、插頭的導電體較佳為使用包含選自鋁、鉻、銅、銀、金、鉑、鉭、鎳、鈦、鉬、鎢、鉿、釩、鈮、錳、鎂、鋯、鈹、銦以及釕等的金屬元素中的一種以上的材料。此外,也可以使用以包含磷等雜質元素的多晶矽為代表的導電率高的半導體以及鎳矽化物等矽化物。
例如,作為導電體328、導電體330、導電體356、導電體112、導電體247及導電體152等,可以以單層或疊層使用由上述材料形成的金屬材料、合金材料、金屬氮化物材料或金屬氧化物材料等的導電材料。明確而言,較佳為使用兼具耐熱性和導電性的鎢或鉬等高熔點材料,尤其較佳為使用鎢。或者,較佳為使用鋁或銅等低電阻導電材料。藉由使用低電阻導電材料可以降低佈線電阻。
〈設置有氧化物半導體的層的佈線或插頭〉
注意,在將氧化物半導體用於電晶體200時,有時在氧化物半導體附近設置具有過量氧區域的絕緣體。在此情況下,較佳為在該具有過量氧區域的絕緣體和設置於該具有過量氧區域的絕緣體的導電體之間設置具有阻擋性的絕緣體。
例如,在圖20中,較佳為在包含過量氧的絕緣體280和導電體245之間設置絕緣體276。在此,導電體245對應於上述實施方式所示的導電體240,絕緣體276對應於上述實施方式所示的絕緣體241。因為以絕緣體276與絕緣體256接觸的方式設置,所以導電體245及電晶體200可以為由具有阻擋性的絕緣體密封的結構。
也就是說,藉由設置絕緣體276,可以抑制絕緣體280所包含的過量氧被導電體245吸收。此外,藉由具有絕緣體276,可以抑制作為雜質的氫經過導電體245擴散到電晶體200。
在此,導電體245具有與電晶體200或電晶體300電連接的插頭或佈線的功能。
以上是結構實例的說明。藉由採用本結構,可以實現使用包含氧化物半導體的電晶體的半導體裝置的微型化或高積體化。另外,在使用包含氧化物半導體的電晶體的半導體裝置中可以抑制電特性變動且提高可靠性。另外,可以提供一種包含通態電流大的氧化物半導體的電晶體。另外,可以提供一種包含氧化物半導體的關態電流小的電晶體。另外,可以提供一種功耗得到降低的半導體裝置。
注意,在圖20中示出將電容器100設置在電晶體200下的例子,但是本實施方式所示的半導體裝置不侷限於此。例如,如圖21所示,在鄰接的記憶單元中,可以採用電容器100a設置在電晶體200a上,並且電容器100b設置在電晶體200b下的結構。除了電容器100a設置在電晶體200上之外,圖21所示的半導體裝置具有與圖20所示的半導體裝置相同的結構。
在圖21所示的記憶體裝置中,佈線1001與電晶體300的源極電連接,佈線1002與電晶體300的汲極電連接。另外,佈線1003a與電晶體200a的源極及汲極中的一個電連接。此外,電晶體200a的源極及汲極中的另一個與電容器 100a的電極的一個電連接,佈線1005a與電容器100a的電極的另一個電連接。另外,佈線1003b與電晶體200b的源極及汲極中的一個電連接。另外,電晶體200b的源極及汲極中的另一個與電容器100b的電極的一個電連接,佈線1005b與電容器100b的電極的另一個電連接。
在圖21中,示出彼此鄰接的記憶單元所包括的電晶體200a及電容器100a、以及電晶體200b及電容器100b。電晶體200a及電晶體200b具有與電晶體200相同的結構。然而,電晶體200a與設置在電晶體200a上的電容器100a連接,因此在電晶體200a下不設置導電體247。
另外,電容器100a及電容器100b具有與電容器100相同的結構。換言之,電容器100a包括導電體110a、絕緣體130a及導電體120a,電容器100b包括導電體110b、絕緣體130b及導電體120b。導電體110a及導電體110b具有與導電體110相同的結構。絕緣體130a及絕緣體130b具有與絕緣體130相同的結構。導電體120a及導電體120b具有與導電體120相同的結構。
在此,電容器100a較佳為與電晶體200a及電晶體200b重疊,例如,電容器100a較佳為與電晶體200a的通道形成區域及電晶體200b的通道形成區域重疊。另外,電容器100b較佳為與電晶體200a及電晶體200b重疊,例如,電容器100b較佳為與電晶體200a的通道形成區域及電晶體200b的通道形成區域重疊。
如此,藉由配置電容器100a及電容器100b,可以不增加電容器100a、電容器100b、電晶體200a及電晶體200b的俯視時的佔有面積而使電容器100a及 電容器100b的靜電電容增大。由此,可以實現根據本實施方式的半導體裝置的微型化或高積體化。
另外,如圖22所示,也可以設置設置電容器100a及電容器100b的多個開口。在此,可以在每個開口分開地設置導電體110a。與此同樣,在每個開口分開地設置導電體110b。由此,可以在每個開口的側面上形成電容器100a及電容器100b。因此在其佔有面積為圖21所示的電容器100a及電容器100b相同程度的情況下,圖22所示的電容器100a及電容器100b的靜電電容更大。
注意,在圖20至圖22所示的半導體裝置中,示出使用圖1A至圖1D所示的電晶體200的例子,然而本實施方式所示的半導體裝置不侷限於此。在圖20至圖22所示的半導體裝置中,也可以使用圖12A至圖12D所示的電晶體200、圖16A至圖16D所示的電晶體200、或者圖17A至圖17D所示的電晶體200等。例如,如圖23所示那樣,可以採用如下結構:作為圖20所示的半導體裝置的電晶體200使用圖12A至圖12D所示的電晶體200,使用導電體244填埋導電體242b的凹部。另外,例如,如圖24所示那樣,可以採用如下結構:作為圖21所示的半導體裝置的電晶體200b使用圖17A至圖17D所示的電晶體200,使用導電體245填埋導電體242b的凹部。此時,與圖20等所示的結構不同,較佳為採用在導電體245的側面上不設置絕緣體276的結構。此外,例如,如圖25所示那樣,可以採用如下結構:作為圖22所示的半導體裝置的電晶體200b,使用圖12A至圖12D所示的電晶體200,使用導電體244填埋導電體242b的凹部。如此,可以適當地設定電晶體200的結構。
[記憶體裝置2]
圖26示出使用作為本發明的一個實施方式的半導體裝置的半導體裝置(記憶體裝置)的一個例子。與圖20所示的半導體裝置相同,圖26所示的半導體裝置包括電晶體200、電晶體300及電容器100。然而,圖26所示的半導體裝置的與圖20所示的半導體裝置不同之點是如下:在電晶體200上配置電容器100;電容器100為平面型;以及電晶體200與電晶體300經過導電體247電連接。
在本發明的一個實施方式的半導體裝置中,電晶體200設置在電晶體300的上方,電容器100設置在電晶體300及電晶體200的上方。電容器100或電晶體300的至少一部分較佳為重疊於電晶體200。由此,可以減少電容器100、電晶體200及電晶體300的俯視時的佔有面積,可以實現根據本實施方式的半導體裝置的微型化或高積體化。
注意,作為電晶體200及電晶體300可以使用上述的電晶體200及電晶體300。因此,關於電晶體200、電晶體300及包括它們的層可以參考上面的記載。
在圖26所示的半導體裝置中,佈線2001與電晶體300的源極電連接,佈線2002與電晶體300的汲極電連接。另外,佈線2003與電晶體200的源極及汲極中的一個電連接,佈線2004與電晶體200的第一閘極電連接,佈線2006與電晶體200的第二閘極電連接。再者,電晶體300的閘極及電晶體200的源極及汲極中的另一個與電容器100的電極的一個電連接,佈線2005與電容器100的電極的另一個電連接。注意,以下有時將與電晶體300的閘極、電晶體200的源極及汲極中的另一個、電容器100的電極的一個連接的節點稱為節點 FG。
圖26所示的半導體裝置具有藉由電晶體200的開關能夠保持電晶體300的閘極(節點FG)的電位的特性,因此可以進行資料的寫入、保持及讀出。
此外,藉由將圖26所示的半導體裝置配置為矩陣狀,可以構成記憶單元陣列。
包括電晶體300的層具有與圖20所示的半導體裝置相同的結構,因此關於比絕緣體354下方的結構可以參考上面的記載。
在絕緣體354上配置絕緣體210、絕緣體212、絕緣體214及絕緣體216。因此,與絕緣體350等相同,作為絕緣體210使用具有抑制氫等的雜質及氧的透過的功能的絕緣體,即可。
將導電體247埋入於絕緣體210、絕緣體212、絕緣體214及絕緣體216中。導電體247被用作與電容器100、電晶體200或電晶體300電連接的插頭或佈線。例如,導電體247與電晶體300的被用作閘極電極的導電體316電連接。
另外,導電體245被用作與電晶體200或電晶體300電連接的插頭或佈線。例如,導電體245使被用作電晶體200的源極及汲極中的另一個的導電體242b和被用作電容器100的電極的一個的導電體110電連接。
另外,平面型的電容器100可以設置在電晶體200的上方。電容器100包 括用作第一電極的導電體110、用作第二電極的導電體120及用作介電質的絕緣體130。注意,關於導電體110、導電體120及絕緣體130可以使用上述的記憶體裝置1中記載的組件。
以與導電體245的頂面接觸的方式設置導電體152及導電體110。導電體152與導電體245的頂面接觸並被用作電晶體200或電晶體300的端子。
導電體152及導電體110被絕緣體130覆蓋,以隔著絕緣體130重疊於導電體110的方式配置導電體120。再者,導電體120及絕緣體130上設置有絕緣體114。
注意,在圖26所示的半導體裝置中,示出圖1A至圖1D所示的電晶體200的例子,然而本實施方式所示的半導體裝置不侷限於此。在圖26所示的半導體裝置中,也可以使用圖12A至圖12D所示的電晶體200、圖16A至圖16D所示的電晶體200、或者圖17A至圖17D所示的電晶體200等。例如,如圖27所示那樣,可以採用如下結構:作為圖26所示的記憶體裝置的電晶體200使用圖12A至圖12D所示的電晶體200,使用導電體244填埋導電體242b的凹部。此時,導電體245較佳為與導電體244接觸。此外,例如,如圖28所示那樣,可以採用如下結構:作為圖26所示的半導體裝置的電晶體200使用圖17A至圖17D所示的電晶體200,使用導電體245填埋導電體242b的凹部。此時,與圖26所示的結構不同,較佳為採用在導電體245的側面上不設置絕緣體276的結構。如此,可以適當地設定電晶體200的結構。
另外,在圖26中,示出作為電容器100使用平面型電容器的例子,然而 本實施方式所示的半導體裝置不侷限於此。例如,如圖29所示,作為電容器100可以使用圖20所示的缸型的電容器100。
在此,關於電容器100的詳細內容,可以參考根據圖20的記載。然而,如圖29所示那樣,較佳為在導電體245上配置導電體152,在導電體152上配置導電體112。藉由採用這種結構,可以使導電體245和導電體112的電連接更確實。
另外,較佳為在絕緣體150上配置絕緣體154。作為絕緣體154使用可用於絕緣體281的絕緣體即可。另外,以與導電體112的頂面接觸的方式設置導電體153。導電體153與導電體112的頂面接觸並被用作電容器100、電晶體200或電晶體300的端子。再者,在導電體153及絕緣體154上配置絕緣體156。
注意,在圖29所示的半導體裝置中,示出圖1A至圖1D所示的電晶體200的例子,然而本實施方式所示的半導體裝置不侷限於此。在圖29所示的半導體裝置中,也可以使用圖12A至圖12D所示的電晶體200、圖16A至圖16D所示的電晶體200、或者圖17A至圖17D所示的電晶體200等。例如,如圖30所示那樣,可以採用如下結構:作為圖29所示的記憶體裝置的電晶體200使用圖12A至圖12D所示的電晶體200,使用導電體244填埋導電體242b的凹部。此時,導電體245較佳為與導電體244接觸。如此,可以適當地設定電晶體200的結構。
本實施方式可以與其他實施方式等所記載的結構適當地組合而實施。
實施方式3
在本實施方式中,參照圖31A至圖32H,對根據本發明的一個實施方式的使用將氧化物用於半導體的電晶體(以下有時稱為OS電晶體)及電容器的記憶體裝置(以下有時稱為OS記憶體裝置)進行說明。OS記憶體裝置是至少包括電容器和控制該電容器的充放電的OS電晶體的記憶體裝置。因OS電晶體的關態電流極小所以OS記憶體裝置具有優良的保持特性,從而可以被用作非揮發性記憶體。
<記憶體裝置的結構例子>
圖31A示出OS記憶體裝置的結構的一個例子。記憶體裝置1400包括週邊電路1411及記憶單元陣列1470。週邊電路1411包括行電路1420、列電路1430、輸出電路1440、控制邏輯電路1460。
列電路1430例如包括列解碼器、預充電電路、感測放大器及寫入電路等。預充電電路具有對佈線進行預充電的功能。感測放大器具有放大從記憶單元讀出的資料信號的功能。注意,上述佈線是連接到記憶單元陣列1470所包括的記憶單元的佈線,下面描述其詳細內容。被放大的資料信號作為資料信號RDATA藉由輸出電路1440輸出到記憶體裝置1400的外部。此外,行電路1420例如包括行解碼器、字線驅動器電路等,並可以選擇要存取的行。
對記憶體裝置1400從外部供應作為電源電壓的低電源電壓(VSS)、週邊電路1411用高電源電壓(VDD)及記憶單元陣列1470用高電源電壓(VIL)。此外,對記憶體裝置1400從外部輸入控制信號(CE、WE、RE)、位址信號 ADDR及資料信號WDATA。位址信號ADDR被輸入到行解碼器及列解碼器,WDATA被輸入到寫入電路。
控制邏輯電路1460對來自外部的輸入信號(CE、WE、RE)進行處理來生成行解碼器及列解碼器的控制信號。CE是晶片賦能信號,WE是寫入賦能信號,並且RE是讀出賦能信號。控制邏輯電路1460所處理的信號不侷限於此,根據需要而輸入其他控制信號即可。
記憶單元陣列1470包括配置為行列狀的多個記憶單元MC及多個佈線。注意,連接記憶單元陣列1470和行電路1420的佈線的數量取決於記憶單元MC的結構、包括在一個列中的記憶單元MC的數量等。此外,連接記憶單元陣列1470和列電路1430的佈線的數量取決於記憶單元MC的結構、包括在一個行中的記憶單元MC的數量等。
此外,雖然在圖31A中示出在同一平面上形成週邊電路1411和記憶單元陣列1470的例子,但是本實施方式不侷限於此。例如,如圖31B所示,也可以以重疊於週邊電路1411的一部分上的方式設置記憶單元陣列1470。例如,也可以採用以重疊於記憶單元陣列1470下的方式設置感測放大器的結構。
在圖32A至圖32H中說明能夠適合用於上述記憶單元MC的記憶單元的結構例子。
[DOSRAM]
圖32A至圖32C示出DRAM的記憶單元的電路結構例子。在本說明書等 中,有時將使用1OS電晶體1電容器型記憶單元的DRAM稱為DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)。圖32A所示的記憶單元1471包括電晶體M1及電容器CA。此外,電晶體M1包括閘極(有時稱為前閘極)及背閘極。
電晶體M1的第一端子與電容器CA的第一端子連接,電晶體M1的第二端子與佈線BIL連接,電晶體M1的閘極與佈線WOL連接,電晶體M1的背閘極與佈線BGL連接。電容器CA的第二端子與佈線CAL連接。
佈線BIL被用作位元線,佈線WOL被用作字線。佈線CAL被用作用來對電容器CA的第二端子施加指定的電位的佈線。在資料的寫入及讀出時,較佳為對佈線CAL施加低位準電位。佈線BGL被用作用來對電晶體M1的背閘極施加電位的佈線。藉由對佈線BGL施加任意電位,可以增加或減少電晶體M1的臨界電壓。
在此,圖32A所示的記憶單元1471對應於圖20所示的記憶體裝置。就是說,電晶體M1對應於電晶體200,電容器CA對應於電容器100,佈線BIL對應於佈線1003,佈線WOL對應於佈線1004,佈線BGL對應於佈線1006,佈線CAL對應於佈線1005。注意,圖20所記載的電晶體300對應於設置在圖31B所示的記憶體裝置1400的週邊電路1411的電晶體。
此外,記憶單元MC不侷限於記憶單元1471,而可以改變其電路結構。例如,記憶單元MC也可以採用如圖32B所示的記憶單元1472那樣的電晶體M1的背閘極不與佈線BGL連接,而與佈線WOL連接的結構。此外,例如, 記憶單元MC也可以是如圖32C所示的記憶單元1473那樣的由單閘極結構的電晶體,亦即不包括背閘極的電晶體M1構成的記憶單元。
在將上述實施方式所示的半導體裝置用於記憶單元1471等的情況下,作為電晶體M1可以使用電晶體200,作為電容器CA可以使用電容器100。藉由作為電晶體M1使用OS電晶體,可以使電晶體M1的洩漏電流為極低。換言之,因為可以由電晶體M1長時間保持寫入的資料,所以可以降低記憶單元的更新頻率。此外,還可以不進行記憶單元的更新工作。此外,由於洩漏電流極低,因此可以將多值資料或類比資料保持在記憶單元1471、記憶單元1472、記憶單元1473中。
此外,在DOSRAM中,在如上所述那樣地採用以重疊於記憶單元陣列1470下的方式設置感測放大器的結構時,可以縮短位元線。由此,位元線電容減小,從而可以減少記憶單元的存儲電容。
[NOSRAM]
圖32D至圖32H示出2電晶體1電容器的增益單元型記憶單元的電路結構例子。圖32D所示的記憶單元1474包括電晶體M2、電晶體M3、電容器CB。此外,電晶體M2包括前閘極(有時簡稱為閘極)及背閘極。在本說明書等中,有時將包括將OS電晶體用於電晶體M2的增益單元型記憶單元的記憶體裝置稱為NOSRAM(Nonvolatile Oxide Semiconductor RAM)。
電晶體M2的第一端子與電容器CB的第一端子連接,電晶體M2的第二端子與佈線WBL連接,電晶體M2的閘極與佈線WOL連接,電晶體M2的背閘極 與佈線BGL連接。電容器CB的第二端子與佈線CAL連接。電晶體M3的第一端子與佈線RBL連接,電晶體M3的第二端子與佈線SL連接,電晶體M3的閘極與電容器CB的第一端子連接。
佈線WBL被用作寫入位元線,佈線RBL被用作讀出位元線,佈線WOL被用作字線。佈線CAL被用作用來對電容器CB的第二端子施加指定的電位的佈線。在資料的寫入、保持及讀出時,較佳為對佈線CAL施加低位準電位。佈線BGL被用作用來對電晶體M2的背閘極施加電位的佈線。藉由對佈線BGL施加任意電位,可以增加或減少電晶體M2的臨界電壓。
在此,圖32D所示的記憶單元1474對應於圖26所示的記憶體裝置。就是說,電晶體M2對應於電晶體200,電容器CB對應於電容器100,電晶體M3對應於電晶體300,佈線WBL對應於佈線2003,佈線WOL對應於佈線2004,佈線BGL對應於佈線2006,佈線CAL對應於佈線2005,佈線RBL對應於佈線2002,佈線SL對應於佈線2001。
此外,記憶單元MC不侷限於記憶單元1474,而可以適當地改變其電路結構。例如,記憶單元MC也可以採用如圖32E所示的記憶單元1475那樣的電晶體M2的背閘極不與佈線BGL連接,而與佈線WOL連接的結構。此外,例如,記憶單元MC也可以是如圖32F所示的記憶單元1476那樣的由單閘極結構的電晶體,亦即不包括背閘極的電晶體M2構成的記憶單元。此外,例如,記憶單元MC也可以具有如圖32G所示的記憶單元1477那樣的將佈線WBL和佈線RBL組合為一個佈線BIL的結構。
在將上述實施方式所示的半導體裝置用於記憶單元1474等的情況下,作為電晶體M2可以使用電晶體200,作為電晶體M3可以使用電晶體300,作為電容器CB可以使用電容器100。藉由作為電晶體M2使用OS電晶體,可以使電晶體M2的洩漏電流為極低。由此,因為可以由電晶體M2長時間保持寫入的資料,所以可以降低記憶單元的更新頻率。此外,還可以不進行記憶單元的更新工作。此外,由於洩漏電流極低,因此可以將多值資料或類比資料保持在記憶單元1474中。記憶單元1475至1477也是同樣的。
此外,電晶體M3也可以是在通道形成區域中包含矽的電晶體(以下有時稱為Si電晶體)。Si電晶體的導電型可以是n通道型或p通道型。Si電晶體的場效移動率有時比OS電晶體高。因此,作為用作讀出電晶體的電晶體M3,也可以使用Si電晶體。此外,藉由將Si電晶體用於電晶體M3,可以層疊於電晶體M3上地設置電晶體M2,從而可以減少記憶單元的佔有面積,並可以實現記憶體裝置的高積體化。
此外,電晶體M3也可以是OS電晶體。在將OS電晶體用於電晶體M2、M3時,在記憶單元陣列1470中可以只使用n型電晶體構成電路。
此外,圖32H示出3電晶體1電容器的增益單元型記憶單元的一個例子。圖32H所示的記憶單元1478包括電晶體M4至M6及電容器CC。電容器CC可以適當地設置。記憶單元1478與佈線BIL、RWL、WWL、BGL及GNDL電連接。佈線GNDL是供應低位準電位的佈線。此外,也可以將記憶單元1478電連接到佈線RBL、WBL,而不與佈線BIL電連接。
電晶體M4是包括背閘極的OS電晶體,該背閘極與佈線BGL電連接。此外,也可以使電晶體M4的背閘極和閘極互相電連接。或者,電晶體M4也可以不包括背閘極。
此外,電晶體M5、M6各自可以是n通道型Si電晶體或p通道型Si電晶體。或者,電晶體M4至M6都是OS電晶體。在此情況下,可以在記憶單元陣列1470中只使用n型電晶體構成電路。
在將上述實施方式所示的半導體裝置用於記憶單元1478時,作為電晶體M4可以使用電晶體200,作為電晶體M5、M6可以使用電晶體300,作為電容器CC可以使用電容器100。藉由作為電晶體M4使用OS電晶體,可以使電晶體M4的洩漏電流為極低。
注意,本實施方式所示的週邊電路1411及記憶單元陣列1470等的結構不侷限於上述結構。另外,也可以根據需要改變,去除或追加這些電路及連接到該電路的佈線、電路元件等的配置或功能。
本實施方式可以與其他實施方式等所記載的結構適當地組合而實施。
實施方式4
在本實施方式中,參照圖33A和圖33B說明安裝有本發明的半導體裝置的晶片1200的一個例子。在晶片1200上安裝有多個電路(系統)。如此,在一個晶片上集成有多個電路(系統)的技術有時被稱為系統晶片(System on Chip:SoC)。
如圖33A所示,晶片1200包括中央處理器(CPU)1211、圖形處理器(GPU:Graphics Processing Unit))1212、一個或多個運算部1213、一個或多個記憶體控制器1214、一個或多個介面1215、一個或多個網路電路1216等。
在晶片1200上設置有凸塊(未圖示),該凸塊如圖33B所示那樣與印刷線路板(PCB(Printed Circuit Board))1201的第一面連接。此外,在PCB1201的第一面的背面設置有多個凸塊1202,該凸塊1202與主機板1203連接。
此外,也可以在主機板1203上設置有DRAM1221、快閃記憶體1222等的記憶體裝置。例如,可以將上述實施方式所示的DOSRAM應用於DRAM1221。此外,例如,可以將上述實施方式所示的NOSRAM應用於快閃記憶體1222。
CPU1211較佳為具有多個CPU核。此外,GPU1212較佳為具有多個GPU核。此外,CPU1211和GPU1212可以分別具有暫時儲存資料的記憶體。或者,也可以在晶片1200上設置有CPU1211和GPU1212共同使用的記憶體。可以將上述NOSRAM或DOSRAM應用於該記憶體。此外,GPU1212適合用於多個資料的平行計算,其可以用於影像處理或積和運算。藉由作為GPU1212設置使用本發明的氧化物半導體的影像處理電路或積和運算電路,可以以低功耗執行影像處理及積和運算。
此外,因為在同一晶片上設置有CPU1211和GPU1212,所以可以縮短 CPU1211和GPU1212之間的佈線,並可以以高速進行從CPU1211到GPU1212的資料傳送、CPU1211及GPU1212所具有記憶體之間的資料傳送以及GPU1212中的運算結束之後的從GPU1212到CPU1211的運算結果傳送。
類比運算部1213具有類比/數位(A/D)轉換電路和數位/類比(D/A)轉換電路中的一者或兩者。此外,也可以在類比運算部1213中設置上述積和運算電路。
記憶體控制器1214具有用作DRAM1221的控制器的電路及用作快閃記憶體1222的介面的電路。
介面1215具有與如顯示裝置、揚聲器、麥克風、影像拍攝裝置、控制器等外部連接設備之間的介面電路。控制器包括滑鼠、鍵盤、遊戲機用控制器等。作為上述介面,可以使用通用序列匯流排(USB(Universal Serial Bus))、高清晰度多媒體介面(HDMI(High-Definition Multimedia Interface))(註冊商標)等。
網路電路1216具有區域網路(LAN(Local Area Network))等網路電路。此外,還可以具有網路安全用電路。
上述電路(系統)可以經同一製程形成在晶片1200上。由此,即使晶片1200所需的電路個數增多,也不需要增加製程,可以以低成本製造晶片1200。
可以將包括設置有具有GPU1212的晶片1200的PCB1201、DRAM1221以及快閃記憶體1222的主機板1203稱為GPU模組1204。
GPU模組1204因具有使用SoC技術的晶片1200而可以減少其尺寸。此外,GPU模組1204因具有高影像處理能力而適合用於智慧手機、平板終端、膝上型個人電腦、可攜式(可攜帶)遊戲機等可攜式電子裝置。此外,藉由利用使用GPU1212的積和運算電路,可以執行深度神經網路(DNN)、卷積神經網路(CNN)、遞迴神經網路(RNN)、自編碼器、深度波茲曼機(DBM)、深度置信網路(DBN)等運算,由此可以將晶片1200用作AI晶片,或者,可以將GPU模組用作AI系統模組。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式5
在本實施方式中,說明使用上述實施方式所示的半導體裝置的記憶體裝置的應用例子。上述實施方式所示的半導體裝置例如可以應用於各種電子裝置(例如,資訊終端、電腦、智慧手機、電子書閱讀器終端、數位相機(也包括攝影機)、錄影再現裝置、導航系統等)的記憶體裝置。注意,在此,電腦包括平板電腦、筆記型電腦、桌上型電腦以及大型電腦諸如伺服器系統。或者,上述實施方式所示的半導體裝置應用於記憶體卡(例如,SD卡)、USB記憶體、SSD(固態硬碟)等各種卸除式存放裝置。圖34A至圖34E示意性地示出卸除式存放裝置的幾個結構例子。例如,上述實施方式所 示的半導體裝置加工為被封裝的記憶體晶片並用於各種記憶體裝置或卸除式記憶體。
圖34A是USB記憶體的示意圖。USB記憶體1100包括外殼1101、蓋子1102、USB連接器1103及基板1104。基板1104被容納在外殼1101中。例如,基板1104上安裝有記憶體晶片1105及控制器晶片1106。可以將上述實施方式所示的半導體裝置組裝於基板1104上的記憶體晶片1105等。
圖34B是SD卡的外觀示意圖,圖34C是SD卡的內部結構的示意圖。SD卡1110包括外殼1111、連接器1112及基板1113。基板1113被容納在外殼1111中。例如,基板1113上安裝有記憶體晶片1114及控制器晶片1115。藉由在基板1113的背面一側也設置記憶體晶片1114,可以增大SD卡1110的容量。此外,也可以將具有無線通訊功能的無線晶片設置於基板1113。由此,藉由主機裝置與SD卡1110之間的無線通訊,可以進行記憶體晶片1114的資料的讀出及寫入。可以將上述實施方式所示的半導體裝置組裝於基板1113上的記憶體晶片1114等。
圖34D是SSD的外觀示意圖,圖34E是SSD的內部結構的示意圖。SSD1150包括外殼1151、連接器1152及基板1153。基板1153被容納在外殼1151中。例如,基板1153上安裝有記憶體晶片1154、記憶體晶片1155及控制器晶片1156。記憶體晶片1155為控制器晶片1156的工作記憶體,例如,可以使用DOSRAM晶片。藉由在基板1153的背面一側也設置記憶體晶片1154,可以增大SSD1150的容量。可以將上述實施方式所示的半導體裝置組裝於基板1153上的記憶體晶片1154等。
本實施方式可以與其他的實施方式等所記載的結構適當地組合而實施。
實施方式6
在本實施方式中,對可用於本發明的一個實施方式的半導體裝置的商品的概念及電子裝置的具體例子參照圖35及圖36A至圖36H進行說明。
首先,圖35示出可用於本發明的一個實施方式的半導體裝置的商品的概念。圖35所示的區域501表示高溫度特性(High T operate),區域502表示高頻率特性(High f operate),區域503表示低關閉特性(Ioff),並且區域504表示區域501、區域502以及區域503重疊的區域。
當要滿足區域501時,只要將碳化矽或氮化鎵等碳化物或氮化物用於半導體裝置的通道形成區域,就大致滿足。此外,當要滿足區域502時,只要將單晶矽或結晶矽等矽化物用於半導體裝置的通道形成區域,就大致滿足。此外,當要滿足區域503時,只要將氧化物半導體或金屬氧化物用於半導體裝置的通道形成區域,就大致滿足。
本發明的一個實施方式的半導體裝置例如可以應用於區域504所示的範圍內的商品。
現有商品難以滿足區域501、區域502以及區域503的全部。但是,本發 明的一個實施方式的半導體裝置在通道形成區域中含有結晶OS。當在通道形成區域中含有結晶OS的情況下,可以提供滿足高溫度特性、高頻率特性以及低關閉特性的半導體裝置及電子裝置。
注意,作為區域504所示的範圍內的商品,例如可以舉出具有低功耗及高性能的CPU等的電子裝置、被要求高溫環境下的高可靠性的車載電子裝置等。
更明確而言,根據本發明的一個實施方式的半導體裝置可以應用於如CPU、GPU等處理器或晶片。圖36A至圖36H示出具有根據本發明的一個實施方式的如CPU、GPU等處理器或晶片的電子裝置的具體例子。
〈電子裝置及系統〉
根據本發明的一個實施方式的GPU或晶片可以安裝在各種各樣的電子裝置。作為電子裝置的例子,例如除了電視機、用於筆記本式資訊終端等的顯示器、數位看板(Digital Signage)、彈珠機等大型遊戲機等具有較大的螢幕的電子裝置以外,還可以舉出數位相機、數位攝影機、數位相框、電子書閱讀器、行動電話機、可攜式遊戲機、可攜式資訊終端、音頻再生裝置等。此外,藉由將根據本發明的一個實施方式的GPU或晶片設置在電子裝置中,可以使電子裝置具備人工智慧。
本發明的一個實施方式的電子裝置也可以包括天線。藉由由天線接收信號,可以在顯示部上顯示影像或資訊等。此外,在電子裝置包括天線及二次電池時,可以將天線用於非接觸電力傳送。
本發明的一個實施方式的電子裝置也可以包括感測器(該感測器具有測定如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)。
本發明的一個實施方式的電子裝置可以具有各種功能。例如,可以具有如下功能:將各種資訊(靜態影像、動態圖片、文字影像等)顯示在顯示部上的功能;觸控面板的功能;顯示日曆、日期或時間等的功能;執行各種軟體(程式)的功能;進行無線通訊的功能;讀出儲存在存儲介質中的程式或資料的功能;等。圖36A至圖36H示出電子裝置的例子。
[資訊終端]
圖36A示出資訊終端之一的行動電話機(智慧手機)。資訊終端5100包括外殼5101及顯示部5102,作為輸入介面在顯示部5102中具備觸控面板,並且在外殼5101上設置有按鈕。
藉由將本發明的一個實施方式的晶片應用於資訊終端5100,可以執行利用人工智慧的應用程式。作為利用人工智慧的應用程式,例如,可以舉出識別會話來將該會話的內容顯示在顯示部5102上的應用程式、識別由使用者輸入到顯示部5102所具備的觸控面板的文字或圖形等來將該文字或該圖形顯示在顯示部5102上的應用程式、執行指紋或聲紋等的生物識別的應用程式等。
圖36B示出筆記本式資訊終端5200。筆記本式資訊終端5200包括資訊終端主體5201、顯示部5202及鍵盤5203。
與上述資訊終端5100同樣,藉由將本發明的一個實施方式的晶片應用於筆記本式資訊終端5200,可以執行利用人工智慧的應用程式。作為利用人工智慧的應用程式,例如,可以舉出設計支持軟體、文章校對軟體、功能表自動生成軟體等。此外,藉由使用筆記本式資訊終端5200,可以研發新穎的人工智慧。
注意,在上述例子中,圖36A及圖36B分別示出智慧手機及筆記本式資訊終端作為電子裝置的例子,但是也可以應用智慧手機及筆記本式資訊終端以外的資訊終端。作為智慧手機及筆記本式資訊終端以外的資訊終端,例如可以舉出PDA(Personal Digital Assistant:個人數位助理)、桌上型資訊終端、工作站等。
[遊戲機]
圖36C示出作為遊戲機的一個例子的可攜式遊戲機5300。可攜式遊戲機5300包括外殼5301、外殼5302、外殼5303、顯示部5304、連接部5305及操作鍵5306等。可以將外殼5302及外殼5303從外殼5301拆卸。藉由將設在外殼5301中的連接部5305安裝到其他外殼(未圖示),可以將輸出到顯示部5304的影像輸出到其他視頻顯示裝置(未圖示)。此時,外殼5302及外殼5303分別可以被用作控制器。由此,多個遊戲玩者可以同時玩遊戲。可以將上述實施方式所示的晶片嵌入到設置在外殼5301、外殼5302及外殼5303的基板的晶片等。
另外,圖36D示出遊戲機之一的固定式遊戲機5400。固定式遊戲機5400以無線或有線連接有控制器5402。
藉由將本發明的一個實施方式的GPU或晶片應用於可攜式遊戲機5300及固定式遊戲機5400等遊戲機,可以實現低功耗的遊戲機。此外,借助於低功耗,可以降低來自電路的發熱,由此可以減少因發熱而給電路本身、週邊電路以及模組帶來的負面影響。
再者,藉由將本發明的一個實施方式的GPU或晶片應用於可攜式遊戲機5300,可以實現具備人工智慧的可攜式遊戲機5300。
遊戲的進展、遊戲中出現的生物的言行、遊戲上發生的現象等的表現本來是由該遊戲所具有的程式規定的,但是藉由將人工智慧應用於可攜式遊戲機5300,可以實現不侷限於遊戲的程式的表現。例如,可以實現遊戲玩者提問的內容、遊戲的進展情況、時間、遊戲上出現的人物的言行變化等的表現。
此外,當使用可攜式遊戲機5300玩需要多個遊戲玩者的遊戲時,可以利用人工智慧構成擬人的遊戲玩者,由此可以將人工智慧的遊戲玩者當作對手,一個人也可以玩多個人玩的遊戲。
雖然圖36C及圖36D示出可攜式遊戲機及固定式遊戲機作為遊戲機的一個例子,但是應用本發明的一個實施方式的GPU或晶片的遊戲機不侷限於 此。作為應用本發明的一個實施方式的GPU或晶片的遊戲機,例如可以舉出設置在娛樂設施(遊戲中心,遊樂園等)的街機遊戲機、設置在體育設施的擊球練習用投球機等。
[大型電腦]
將本發明的一個實施方式的GPU或晶片可以應用於大型電腦。
圖36E示出作為大型電腦的一個例子的超級電腦5500。圖36F示出超級電腦5500所包括的機架(rack mount)式電腦5502。
超級電腦5500包括機架5501及多個機架式電腦5502。注意,多個電腦5502容納在機架5501中。另外,電腦5502設有多個基板5504,在該基板上可以安裝上述實施方式所說明的GPU或晶片。
超級電腦5500主要是適合於科學計算的大型電腦。科學計算需要以高速進行龐大的運算,因此功耗大且晶片的發熱高。藉由將本發明的一個實施方式的GPU或晶片應用於超級電腦5500,可以實現低功耗的超級電腦。此外,借助於低功耗,可以降低來自電路的發熱,由此可以減少因發熱而給電路本身、週邊電路及模組帶來的負面影響。
在圖36E及圖36F中,作為大型電腦的一個例子示出超級電腦,然而應用本發明的一個實施方式的GPU或晶片的大型電腦不侷限於此。作為應用本發明的一個實施方式的GPU或晶片的大型電腦,例如可以舉出提供服務的電腦(伺服器)、大型通用電腦(主機)等。
[移動體]
本發明的一個實施方式的GPU或晶片可以應用於作為移動體的汽車及汽車的駕駛席周邊。
圖36G是示出移動體的一個例子的汽車室內的前擋風玻璃周邊的圖。圖36G示出安裝在儀表板的顯示面板5701、顯示面板5702、顯示面板5703以及安裝在支柱的顯示面板5704。
藉由顯示速度表、轉速計、行駛距離、燃料表、排檔狀態、空調的設定,顯示面板5701至顯示面板5703可以提供各種資訊。此外,使用者可以根據喜好適當地改變顯示面板所顯示的顯示內容及佈局等,可以提高設計性。顯示面板5701至顯示面板5703還可以用作照明設備。
藉由將由設置在汽車的攝像裝置(未圖示)拍攝的影像顯示在顯示面板5704上,可以補充被支柱遮擋的視野(死角)。也就是說,藉由顯示由設置在汽車外側的攝像裝置拍攝的影像,可以補充死角,從而可以提高安全性。此外,藉由顯示補充看不到的部分的影像,可以更自然、更舒適地確認安全。顯示面板5704還可以用作照明設備。
因為可以將本發明的一個實施方式的GPU或晶片用作人工智慧的組件,例如可以將該晶片用於汽車的自動駕駛系統。該晶片也可以用於進行導航、危險預測等的系統。此外,可以在顯示面板5701至顯示面板5704上顯示導航、危險預測等資訊。
雖然在上述例子中作為移動體的一個例子說明了汽車,但是移動體不侷限於汽車。例如,作為移動體,也可以舉出電車、單軌鐵路、船舶、飛行物(直升機、無人駕駛飛機(無人機)、飛機、火箭)等,可以對這些移動體應用本發明的一個實施方式的晶片,以提供利用人工智慧的系統。
[電器產品]
圖36H示出電器產品的一個例子的電冷藏冷凍箱5800。電冷藏冷凍箱5800包括外殼5801、冷藏室門5802及冷凍室門5803等。
藉由將本發明的一個實施方式的晶片應用於電冷藏冷凍箱5800,可以實現具備人工智慧的電冷藏冷凍箱5800。藉由利用人工智慧,可以使電冷藏冷凍箱5800具有基於儲存在電冷藏冷凍箱5800中的食品或該食品的消費期限等自動生成功能表的功能、根據所儲存的食品自動調整電冷藏冷凍箱5800的溫度的功能。
作為電器產品的一個例子說明了電冷藏冷凍箱,但是作為其他電器產品,例如可以舉出吸塵器、微波爐、電烤箱、電鍋、熱水器、IH炊具、飲水機、包括空氣調節器的冷暖空調機、洗衣機、乾衣機、視聽設備等。
在本實施方式中說明的電子裝置、該電子裝置的功能、人工智慧的應用例子以及其效果等可以與其他的電子裝置的記載適當地組合而實施。
本實施方式可以與其他的實施方式等所記載的結構適當地組合而實 施。
200‧‧‧電晶體
205‧‧‧導電體
230a、230b、230c‧‧‧氧化物
240‧‧‧導電體
242a、242b‧‧‧導電體
247‧‧‧導電體
250‧‧‧絕緣體
260‧‧‧導電體

Claims (6)

  1. 一種半導體裝置,包括:第一導電體至第六導電體、第一絕緣體至第三絕緣體、包含通道形成區域的第一氧化物以及第二氧化物,其中,該第一導電體及該第六導電體配置為與該第三絕緣體的頂面接觸,該第六導電體配置為不與該第三絕緣體的側面接觸,在該第一導電體及該第六導電體上配置該第一絕緣體,在該第一絕緣體上配置該第一氧化物,在該第一絕緣體及該第一氧化物中設置到達該第一導電體的第一開口,在該第一氧化物上配置彼此離開的該第二導電體及該第三導電體,該第三導電體的至少一部分重疊於該第一開口並接觸於該第一導電體的頂面,在該第一氧化物上以其至少一部分重疊於該第二導電體和該第三導電體之間的區域的方式配置該第二氧化物,在該第二氧化物上配置該第二絕緣體,在該第二絕緣體上配置該第四導電體,該第三導電體的該至少一部分具有凹部,並且,該第五導電體配置於該凹部中。
  2. 根據申請專利範圍第1項之半導體裝置,其中該第五導電體的頂面的高度與該第三導電體的頂面的高度大致相同。
  3. 根據申請專利範圍第1或2項之半導體裝置, 其中該第五導電體是氮化鈦和該氮化鈦上的鎢的疊層膜。
  4. 根據申請專利範圍第1或2項之半導體裝置,其中該第三導電體在該第一開口中接觸於該第一氧化物的側面。
  5. 根據申請專利範圍第4項之半導體裝置,其中該第三導電體的接觸於該第一氧化物的側面的部分的厚度薄於該第三導電體的接觸於該第一氧化物的頂面的部分的厚度。
  6. 根據申請專利範圍第1或2項之半導體裝置,其中該第一氧化物及該第二氧化物包含In、元素M(M為Al、Ga、Y或Sn)及Zn。
TW108116298A 2018-05-18 2019-05-10 半導體裝置、及半導體裝置的製造方法 TWI809100B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-095917 2018-05-18
JP2018095850 2018-05-18
JP2018095917 2018-05-18
JP2018-095850 2018-05-18

Publications (2)

Publication Number Publication Date
TW202005059A TW202005059A (zh) 2020-01-16
TWI809100B true TWI809100B (zh) 2023-07-21

Family

ID=68539860

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108116298A TWI809100B (zh) 2018-05-18 2019-05-10 半導體裝置、及半導體裝置的製造方法

Country Status (4)

Country Link
US (1) US20210242207A1 (zh)
JP (1) JP7235418B2 (zh)
TW (1) TWI809100B (zh)
WO (1) WO2019220266A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734419B2 (en) 2018-10-31 2020-08-04 Taiwan Semiconductor Manufacturing Co., Ltd. Imaging device with uniform photosensitive region array
US11721767B2 (en) * 2020-06-29 2023-08-08 Taiwan Semiconductor Manufacturing Company Limited Oxide semiconductor transistor structure in 3-D device and methods of forming the same
WO2023237961A1 (ja) * 2022-06-10 2023-12-14 株式会社半導体エネルギー研究所 半導体装置、記憶装置、及び半導体装置の作製方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011613A1 (en) * 2000-07-11 2002-01-31 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US20150187814A1 (en) * 2013-12-26 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20170033111A1 (en) * 2015-07-29 2017-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device, Circuit Board, and Electronic Device
TW201742175A (zh) * 2016-04-08 2017-12-01 半導體能源硏究所股份有限公司 半導體裝置及半導體裝置的製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4190612B2 (ja) * 1998-04-09 2008-12-03 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4748967B2 (ja) * 2003-11-04 2011-08-17 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP6231735B2 (ja) * 2011-06-01 2017-11-15 株式会社半導体エネルギー研究所 半導体装置
JP6310194B2 (ja) * 2012-07-06 2018-04-11 株式会社半導体エネルギー研究所 半導体装置
KR102244460B1 (ko) * 2013-10-22 2021-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP2015149414A (ja) * 2014-02-06 2015-08-20 株式会社東芝 半導体装置及び撮像装置
US9443872B2 (en) * 2014-03-07 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2015181997A1 (en) * 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6853663B2 (ja) * 2015-12-28 2021-03-31 株式会社半導体エネルギー研究所 半導体装置
US9905657B2 (en) * 2016-01-20 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN115799342A (zh) * 2016-07-26 2023-03-14 株式会社半导体能源研究所 半导体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011613A1 (en) * 2000-07-11 2002-01-31 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US20150187814A1 (en) * 2013-12-26 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20170033111A1 (en) * 2015-07-29 2017-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device, Circuit Board, and Electronic Device
TW201742175A (zh) * 2016-04-08 2017-12-01 半導體能源硏究所股份有限公司 半導體裝置及半導體裝置的製造方法

Also Published As

Publication number Publication date
JPWO2019220266A1 (ja) 2021-06-10
US20210242207A1 (en) 2021-08-05
JP7235418B2 (ja) 2023-03-08
TW202005059A (zh) 2020-01-16
WO2019220266A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
JP7264894B2 (ja) 半導体装置
TWI794340B (zh) 半導體裝置以及半導體裝置的製造方法
JP7483606B2 (ja) 半導体装置
US11031506B2 (en) Semiconductor device including transistor using oxide semiconductor
TWI809100B (zh) 半導體裝置、及半導體裝置的製造方法
WO2021053473A1 (ja) 半導体装置、および半導体装置の作製方法
WO2019197946A1 (ja) 半導体装置、および半導体装置の作製方法
CN111819670B (zh) 叠层体及半导体装置
CN111656531B (zh) 半导体装置及半导体装置的制造方法
JPWO2020074999A1 (ja) 半導体装置、および半導体装置の作製方法
JP2019201062A (ja) 半導体装置、および半導体装置の作製方法
JP7391875B2 (ja) 半導体装置
JP7371201B2 (ja) 半導体装置
CN111742414B (zh) 半导体装置以及半导体装置的制造方法
JPWO2020053697A1 (ja) 半導体装置、および半導体装置の作製方法
TW202025447A (zh) 半導體裝置
JP7322008B2 (ja) 半導体装置
TWI798368B (zh) 半導體裝置以及半導體裝置的製造方法
TW201937571A (zh) 半導體裝置及半導體裝置的製造方法
WO2020075022A1 (ja) トランジスタ、半導体装置、および電子機器
CN111656530A (zh) 半导体装置及半导体装置的制造方法