TWI807262B - 用於製作在凹槽蝕刻內部包含超晶格之半導體元件之方法 - Google Patents

用於製作在凹槽蝕刻內部包含超晶格之半導體元件之方法 Download PDF

Info

Publication number
TWI807262B
TWI807262B TW110106979A TW110106979A TWI807262B TW I807262 B TWI807262 B TW I807262B TW 110106979 A TW110106979 A TW 110106979A TW 110106979 A TW110106979 A TW 110106979A TW I807262 B TWI807262 B TW I807262B
Authority
TW
Taiwan
Prior art keywords
etching
semiconductor
superlattice
silicon
active region
Prior art date
Application number
TW110106979A
Other languages
English (en)
Other versions
TW202135318A (zh
Inventor
奈爾斯溫 柯迪
凱斯多蘭 維克斯
羅勃約翰 史蒂芬生
理查 柏頓
陳宜安
迪米崔 霍烏托夫
竹內秀樹
永宣 楊
Original Assignee
美商安托梅拉公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商安托梅拉公司 filed Critical 美商安托梅拉公司
Publication of TW202135318A publication Critical patent/TW202135318A/zh
Application granted granted Critical
Publication of TWI807262B publication Critical patent/TWI807262B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一種用於製作半導體元件之方法,其可包括在一半導體底材中形成與一主動區相鄰之一隔離區,並選擇性蝕刻該主動區,以使該主動區的上表面在該隔離區之鄰接表面下方並與該鄰接表面界定出一階梯狀邊緣。此方法可更包括形成覆於該主動區上之一超晶格。該超晶格可包含堆疊之層群組,各層群組可包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰基底半導體部份之一晶格內之至少一非半導體單層。

Description

用於製作在凹槽蝕刻內部包含超晶格之半導體元件之方法
本發明一般而言與半導體元件有關,詳細而言,本發明涉及用於製作含先進半導體材料之半導體元件之方法。
利用諸如增強電荷載子之遷移率(mobility)增進半導體元件效能之相關結構及技術,已多有人提出。例如,Currie等人之美國專利申請案第2003/0057416號揭示了矽、矽-鍺及鬆弛矽之應變材料層,其亦包含原本會在其他方面導致效能劣退的無雜質區(impurity-free zones)。此等應變材料層在上部矽層中所造成的雙軸向應變(biaxial strain)會改變載子的遷移率,從而得以製作較高速與/或較低功率的元件。Fitzgerald等人的美國專利申請公告案第2003/0034529號則揭示了同樣以類似的應變矽技術為基礎的CMOS反向器。
授予Takagi的美國專利第6,472,685 B2號揭示了一半導體元件,其包含夾在矽層間的一層矽與碳層,以使其第二矽層的導帶及價帶承受伸張應變(tensile strain)。這樣,具有較小有效質量(effective mass)且已由施加於閘極上的電場所誘發的電子,便會被侷限在其第二矽層內,因此,即可認定其N型通道MOSFET具有較高的遷移率。
授予Ishibashi等人的美國專利第4,937,204號揭示了一超晶格,其中包含一複數層,該複數層少於八個單層(monolayer)且含有一部份(fractional)或雙元(binary)半導體層或一雙元化合物半導體層,該複數層係交替地以磊晶成長方式生長而成。其中的主電流方向係垂直於該超晶格之各層。
授予Wang等人的美國專利第5,357,119號揭示了一矽-鍺短週期超晶格,其經由減少超晶格中的合金散射(alloy scattering)而達成較高遷移率。依據類似的原理,授予Candelaria的美國專利第5,683,934號揭示了具較佳遷移率之MOSFET,其包含一通道層,該通道層包括矽與一第二材料之一合金,該第二材料以使該通道層處於伸張應力下的百分比替代性地存在於矽晶格中。
授予Tsu的美國專利第5,216,262號揭示了一量子井結構,其包括兩個阻障區(barrier region)及夾於其間的一磊晶生長半導體薄層。每一阻障區各係由厚度範圍大致在二至六個交替之SiO2/Si單層所構成。阻障區間則另夾有厚得多之一矽區段。
在2000年9月6日線上出版的應用物理及材料科學及製程(Applied Physics and Materials Science & Processing) pp. 391 – 402中,Tsu於一篇題為「矽質奈米結構元件中之現象」(Phenomena in silicon nanostructure devices)的文章中揭示了矽及氧之半導體-原子超晶格(semiconductor-atomic superlattice, SAS)。此矽/氧超晶格結構被揭露為對矽量子及發光元件有用。其中特別揭示如何製作並測試一綠色電輝光二極體(electroluminescence diode)結構。該二極體結構中的電流流動方向是垂直的,亦即,垂直於SAS之層。該文所揭示的SAS可包含由諸如氧原子等被吸附物種(adsorbed species) 及CO分子所分開的半導體層。在被吸附之氧單層以外所生長的矽,被描述為具有相當低缺陷密度之磊晶層。其中的一種SAS結構包含1.1 nm厚之一矽質部份,其約為八個原子層的矽,而另一結構的矽質部份厚度則有此厚度的兩倍。在物理評論通訊(Physics Review Letters),Vol. 89, No. 7 (2002年8月12日)中,Luo等人所發表的一篇題為「直接間隙發光矽之化學設計」(Chemical Design of Direct-Gap Light-Emitting Silicon)的文章,更進一步地討論了Tsu的發光SAS結構。
授予Wang等人之美國專利第7,105,895號揭示了薄的矽與氧、碳、氮、磷、銻、砷或氫的一阻障建構區塊,其可以將垂直流經晶格的電流減小超過四個十之次方冪次尺度(four orders of magnitude)。其絕緣層/阻障層容許低缺陷磊晶矽挨著絕緣層而沉積。
已公開之Mears等人的英國專利申請案第2,347,520號揭示,非週期性光子能帶間隙 (aperiodic photonic band-gap, APBG)結構可應用於電子能帶間隙工程(electronic bandgap engineering)中。詳細而言,該申請案揭示,材料參數(material parameters),例如能帶最小值的位置、有效質量等等,皆可加以調節,以獲致具有所要能帶結構特性之新非週期性材料。其他參數,諸如導電性、熱傳導性及介電係數(dielectric permittivity)或導磁係數(magnetic permeability),則被揭露亦有可能被設計於材料之中。
除此之外,授予Wang等人的美國專利第6,376,337號揭示一種用於製作半導體元件絕緣或阻障層之方法,其包括在矽底材上沉積一層矽及至少一另外元素,使該沉積層實質上沒有缺陷,如此實質上無缺陷的磊晶矽便能沉積於該沉積層上。作為替代方案,一或多個元素構成之一單層,較佳者為包括氧元素,在矽底材上被吸收。夾在磊晶矽之間的複數絕緣層,形成阻障複合體。
儘管已有上述方法存在,但為了實現半導體元件效能的改進,進一步強化先進半導體材料及處理技術的使用,是吾人所期望的。
一種用於製作半導體元件之方法,其可包括在一半導體底材中形成與一主動區相鄰之一隔離區,並選擇性蝕刻該主動區,以使該主動區的上表面在該隔離區之鄰接表面下方並與該鄰接表面界定出一階梯狀邊緣。此方法可更包括形成覆於該主動區上之一超晶格。該超晶格可包含複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層。
在一示例性實施例中,形成該超晶格可包括形成該超晶格至該階梯狀邊緣的高度,但在其他實施例中,該超晶格可形成至略高於或略低於該階梯狀邊緣的高度。舉例而言,所述蝕刻可包括以氫氯酸蝕刻劑進行之原位蝕刻。詳細而言,所述蝕刻可包括例如10到250秒的蝕刻時間。在一示例性實施例中,所述蝕刻可包括蝕刻至小於或等於400Å的深度。
根據另一示例性實施例,所述蝕刻可包括以含光阻顯影劑的濕式蝕刻進行之非原位蝕刻。舉例而言,該光阻顯影劑可包含四甲基氫氧化銨(TMAH)。在一示例性實施例中,所述蝕刻可包括在840-860°C的溫度範圍進行蝕刻。
本發明的方法可更包括在該半導體底材上形成隔開的源極區及汲極區並以該超晶格在該源極區與該汲極區之間界定出一通道,以及覆於該超晶格上之一閘極。作為示例,該些基底半導體單層可包含矽與鍺當中至少一者,而該至少一非半導體單層可包含氧、氮、氟、碳及碳氧當中至少一者。
茲參考說明書所附圖式詳細說明示例性實施例,圖式中所示者為示例性實施例。不過,實施例可以許多不同形式實施,且不應解釋為僅限於本說明書所提供之特定示例。相反的,這些實施例之提供,僅是為了使本發明所揭示之發明內容更為完整詳盡。在本說明書及圖式各處,相同圖式符號係指相同元件,而撇號(‘)及雙撇號(‘‘)則用以標示不同實施方式中之類似元件。
整體而言,本說明書涉及用於製作內部具強化半導體超晶格之半導體元件之方法。在本說明書及所附圖式中,該強化之半導體超晶格亦可稱為「MST」層或「MST技術」。
詳言之,MST技術涉及進階的半導體材料,例如下文將進一步說明之超晶格25。申請人之理論認為(但申請人並不欲受此理論所束縛),本說明書所述之超晶格結構可減少電荷載子之有效質量,並由此而帶來較高之電荷載子遷移率。有效質量之各種定義在本發明所屬技術領域之文獻中已有說明。為衡量有效質量之改善程度,申請人分別為電子及電洞使用了「導電性反有效質量張量」(conductivity reciprocal effective mass tensor) 為電子之定義,且: 為電洞之定義,其中f為費米-狄拉克分佈(Fermi-Dirac distribution),EF為費米能量(Fermi energy),T為溫度,E(k,n)為電子在對應於波向量k及第n個能帶狀態中的能量,下標i及j係指直交座標x,y及z,積分係在布里羅因區(Brillouin zone,B.Z.)內進行,而加總則是在電子及電洞的能帶分別高於及低於費米能量之能帶中進行。
申請人對導電性反有效質量張量之定義為,一材料之導電性反有效質量張量之對應分量之值較大者,其導電性之張量分量 (tensorial component)亦較大。申請人再度提出理論(但並不欲受此理論所束縛)認為,本說明書所述之超晶格可設定導電性反有效質量張量之值,以增進材料之導電性,例如電荷載子傳輸之典型較佳方向。適當張量項數之倒數,在此稱為導電性有效質量(conductivity effective mass)。換句話說,若要描述半導體材料結構的特性,如上文所述,在載子預定傳輸方向上計算出電子/電洞之導電性有效質量,便可用於分辨出較佳之材料。
申請人已辨識出可用於半導體元件之改進材料或結構。更具體而言,申請人所辨識出之材料或結構所具有之能帶結構,其電子及/或電洞之適當導電性有效質量之值,實質上小於對應於矽之值。這些結構除了有較佳遷移率之特點外,其形成或使用之方式,亦使其得以提供有利於各種不同元件類型應用之壓電、焦電及/或鐵電特性,下文將進一步討論之。
參考圖1及圖2,所述材料或結構是超晶格25的形式,其結構在原子或分子等級上受到控制,且可應用原子或分子層沉積之已知技術加以形成。超晶格25包含複數個堆疊排列之層群組45a~45n,如圖1之概要剖視圖所示。
如圖所示,超晶格25之每一層群組45a~45n包含複數個堆疊之基底半導體單層46,其界定出各別之基底半導體部份46a~46n與其上之一能帶修改層50。為清楚呈現起見,該能帶修改層50於圖1中以雜點表示。
如圖所示,該能帶修改層50包含一非半導體單層,其係被拘束在相鄰之基底半導體部份之一晶格內。「被拘束在相鄰之基底半導體部份之一晶格內」一語,係指來自相對之基底半導體部份46a~46n之至少一些半導體原子,透過該些相對基底半導體部份間之非半導體單層50,以化學方式鍵結在一起,如圖2所示。一般而言,此一組構可經由控制以原子層沉積技術沉積在半導體部份46a~46n上面之非半導體材料之量而成為可能,這樣,可用之半導體鍵結位置便不會全部(亦即非完全或低於100%之涵蓋範圍)被連結至非半導體原子之鍵結佔滿,下文將進一步討論之。因此,當更多半導體材料單層46被沉積在一非半導體單層50上面或上方時,新沉積之半導體原子便可填入該非半導體單層下方其餘未被佔用之半導體原子鍵結位置。
在其他實施方式中,使用超過一個此種非半導體單層是可能的。應注意的是,本說明書提及非半導體單層或半導體單層時,係指該單層所用材料若形成於主體,會是非半導體或半導體。亦即,一種材料(例如矽)之單一單層所顯現之特性,並不必然與形成於主體或相對較厚層時所顯現之特性相同,熟習本發明所屬技術領域者當可理解。
申請人之理論認為(但申請人並不欲受此理論所束縛),能帶修改層50與相鄰之基底半導體部份46a~46n,可使超晶格25在平行層之方向上,具有較原本為低之電荷載子適當導電性有效質量。換一種方向思考,此平行方向即正交於堆疊方向。該能帶修改層50亦可使超晶格25具有一般之能帶結構,同時有利地發揮作為該超晶格垂直上下方之多個層或區域間之絕緣體之作用。
再者,此超晶格結構亦可有利地作為超晶格25垂直上下方多個層之間之摻雜物及/或材料擴散之阻擋。因此,這些特性可有利地允許超晶格25為高K值介電質提供一界面,其不僅可減少高K值材料擴散進入通道區,還可有利地減少不需要之散射效應,並改進裝置行動性,熟習本發明所屬技術領域者當可理解。
本發明之理論亦認為,包含超晶格25之半導體元件可因為較原本為低之導電性有效質量,而享有較高之電荷載子遷移率。在某些實施方式中,因為本發明而實現之能帶工程,超晶格25可進一步具有對諸如光電元件等尤其有利之實質上之直接能帶間隙。
超晶格25亦可在一上部層群組45n上方包含一頂蓋層52。該頂蓋層52可包含複數個基底半導體單層46。該頂蓋層52可包含基底半導體的2個至100個單層之間,且較佳者為10至50個單層之間。
每一基底半導體部份46a~46n可包含由 IV 族半導體、 III-V 族半導體及 II-VI 族半導體所組成之群組中選定之一基底半導體。當然, IV 族半導體亦包含 IV-IV 族半導體,熟習本發明所屬技術領域者當可理解。更詳細而言,該基底半導體可包含,舉例而言,矽及鍺當中至少一者。
每一能帶修改層50可包含由,舉例而言,氧、氮、氟、碳及碳-氧所組成之群組中選定之一非半導體。該非半導體亦最好具有在沈積下一層期間保持熱穩定之特性,以從而有利於製作。在其他實施方式中,該非半導體可為相容於給定半導體製程之另一種無機或有機元素或化合物,熟習本發明所屬技術領域者當能理解。更詳細而言,該基底半導體可包含,舉例而言,矽及鍺當中至少一者。
應注意的是,「單層(monolayer)」一詞在此係指包含一單一原子層,亦指包含一單一分子層。亦應注意的是,經由單一單層所提供之能帶修改層50,亦應包含層中所有可能位置未完全被佔據之單層(亦即非完全或低於100%之涵蓋範圍)。舉例來說,參照圖2之原子圖,其呈現以矽作為基底半導體材料並以氧作為能帶修改材料之一4/1重複結構。氧原子之可能位置僅有一半被佔據。
在其他實施方式及/或使用不同材料的情況中,則不必然是二分之一的佔據情形,熟習本發明所屬技術領域者當能理解。事實上,熟習原子沈積技術領域者當能理解,即便在此示意圖中亦可看出,在一給定單層中,個別的氧原子並非精確地沿著一平坦平面排列。舉例來說,較佳之佔據範圍是氧的可能位置有八分之一至二分之一被填滿,但在特定實施方式中其他佔據範圍亦可使用。
由於矽及氧目前廣泛應用於一般半導體製程中,故製造商將能夠立即應用本說明書所述之材質。原子沉積或單層沉積亦是目前廣泛使用之技術。因此,依照本發明之結合超晶格25之半導體元件,可立即加以採用並實施,熟習本發明所屬技術領域者當能理解。
申請人之理論認為(但申請人並不欲受此理論所束縛),對一超晶格而言,例如所述矽/氧超晶格,矽單層之數目理想應為七層或更少,以使該超晶格之能帶在各處皆為共同或相對均勻,以實現所欲之優點。圖1及圖2所示之矽/氧 4/1重複結構,已經過模型化以表示電子及電洞在X方向上之較佳遷移率。舉例而言,電子(就主體矽而言具等向性)之計算後導電性有效質量為0.26,而X方向上的4/1 矽/氧超晶格之計算後導電性有效質量則為0.12,兩者之比為0.46。同樣的,在電洞之計算結果方面,主體矽之值為0.36,該4/1 矽/氧超晶格之值則為0.16,兩者之比為0.44。
雖然此種方向上優先(directionally preferential)之特點可有利於某些半導體元件,其他半導體元件亦可得益於遷移率在平行於層群組之任何方向上更均勻之增加。電子及電洞兩者之遷移率同時增加,或僅其中一種電荷載子遷移率之增加,亦皆可有其好處,熟習本發明所屬技術領域者當可理解。
超晶格25之4/1 矽/氧實施方式之較低導電性有效質量,可不到非超晶格25者之導電性有效質量之三分之二,且此情形就電子及電洞而言皆然。當然,超晶格25可更包括至少一種類型之導電性摻雜物在其中,熟習本發明所屬技術領域者當能理解。
茲另參考圖3說明依照本發明之具有不同特性之超晶格25’之另一實施方式。在此實施方式中,其重複模式為3/1/5/1。更詳細而言,最底下的基底半導體部份46a’有三個單層,第二底下的基底半導體部份46b’則有五個單層。此模式在整個超晶格25’重複。每一能帶修改層50’可包含一單一單層。就包含矽/氧之此種超晶格25’ 而言,其電荷載子遷移率之增進,係獨立於該些層之平面之定向。圖3中其他元件在此未提及者,係與前文參考圖1所討論者類似,故不再重複討論。
在某些元件實施方式中,其超晶格之每一基底半導體部份可為相同數目之單層之厚度。在其他實施方式中,其超晶格之至少某些基底半導體部份可為相異數目之單層之厚度。在另外的實施方式中,其超晶格之每一基底半導體部份可為相異數目之單層之厚度。
圖4A-4C呈現使用密度功能理論(Density Functional Theory, DFT)計算出之能帶結構。在本發明所屬技術領域中廣為習知的是,DFT通常會低估能帶間隙之絕對值。因此,間隙以上的所有能帶可利用適當之「剪刀形更正」(scissors correction)加以偏移。不過,能帶的形狀則是公認遠較為可靠。縱軸之能量應從此一角度解釋之。
圖4A呈現主體矽 (以實線表示)及圖1之4/1 矽/氧超晶格25 (以虛線表示)兩者由迦碼點(G)計算出之能帶結構。圖中該些方向係指該4/1 矽/氧結構之單位晶格(unit cell)而非指矽之一般單位晶格,雖然圖中之方向(001)確實對應於一般矽單位晶格之方向(001),並因此而顯示出矽導帶最小值之預期位置。圖中方向(100)及方向(010)係對應於一般矽單位晶格之方向(110)及方向(-110)。熟習本發明所屬技術領域者當可理解,圖中之矽能帶係被摺疊收攏,以便在該4/1 矽/氧結構之適當反晶格方向(reciprocal lattice directions)上表示。
由圖中可見,與主體矽相較,該4/1 矽/氧結構之導帶最小值係位於G點,而其價帶最小值則出現在方向(001)上布里羅因區之邊緣,吾人稱為Z點之處。吾人亦可注意到,與矽之導帶最小值曲率比較下,該4/1 矽/氧結構之導帶最小值之曲率較大,此係因額外氧層引入之微擾(perturbation)造成能帶分裂(band splitting)之故。
圖4B呈現主體矽(實線)及該4/1 矽/氧超晶格25 (虛線)兩者由Z點計算出之能帶結構。此圖描繪出價帶在方向(100)上之增加曲率。
圖4C呈現主體矽(實線)及圖3之5/1/3/1 矽/氧超晶格25’ (虛線)兩者由迦碼點及Z點計算出之能帶結構之曲線圖。由於該5/1/3/1 矽/氧結構之對稱性,在 方向(100)及方向(010)上計算出之能帶結構是相當的。因此,在平行於各層之平面中,亦即垂直於堆疊方向(001)上,導電性有效質量及遷移率可預期為等向性。請注意,在該5/1/3/1 矽/氧之實施例中,導帶最小值及價帶最大值兩者皆位於或接近Z點。
雖然曲率增加是有效質量減少的一個指標,但適當的比較及判別可經由導電性反有效質量張量之計算而進行。此使得本案申請人進一步推論,該5/1/3/1超晶格25’實質上應為直接能帶間隙。熟習本發明所屬技術領域者當可理解,光躍遷(optical transition)之適當矩陣元素(matrix element)是區別直接及間接能帶間隙行為之另一指標。
前文已說明示例性超晶格結構及製作技術,茲另參考圖5之流程圖100及圖16,說明用於製作半導體元件200之一示例性方法。在圖示之實施例中,該半導體元件200為平面型MOSFET,但在其他實施例中亦可使用本說明書所述之技術及MST超晶格結構製作其他元件。
如圖所示,從方框101開始,本發明的方法包括在半導體底材201中形成與一主動區相鄰之一隔離區202(方框102)。如圖所示,該方法接著包括選擇性蝕刻該主動區,以使該主動區的上表面位於該隔離區202之鄰接表面下方,並與該隔離區202之鄰接表面界定出一階梯狀邊緣(方框103),及形成覆於該主動區上之一超晶格(例如前述之MST超晶格結構) (方框104),此將在下文進一步討論。圖5之方法概要結束於方框105。
茲另參考圖6之製程流程圖260及圖7至圖15,說明用於製作元件200之一示例性製程流程。隔離區202之形成可透過STI製程261進行,其對應於圖7至圖13所示之製作步驟。詳細而言,一墊氧化物層203將形成於半導體(例如矽、鍺、矽鍺等)底材201上(圖8),接著為一氮化物層204(圖9)。形成溝槽205使之穿過氮化物層204、墊氧化物層203,至底材201中(圖10),接著,氧化物層206可在該氮化物層204之剩餘部分上方形成並填充該些溝槽205 (圖11)。在一示例性實施例中,該氧化物層206可為四乙氧基矽烷(tetraethyl orthosilicate, TEOS)層,但在不同實施例中亦可使用其他適合的氧化物。所述氧化物層206可經過平坦化(例如透過化學機械研磨法) (圖12),而氮化物層204及墊氧化物層203可接著被蝕刻掉,以在界定出內部包含隔離區202之底材201(圖13)。蝕刻該墊氧化物層203亦可減少隔離區202之高度,其在圖示之實施例中與底材201的上表面齊平,但應理解的是,在某些實施例中該隔離區亦可高於底材的上表面。
接著可在隔離區202內,亦即半導體元件200的主動區中,進行一蝕刻製程262,以在底材201中蝕刻出溝槽207 (圖14)。一般而言,溝槽207的深度對應於後續待形成於該溝槽207中的超晶格薄膜225之所需厚度。取決於所使用的特定隔離方法,該所需厚度可有所不同。舉例而言,對於某些組構可進行相對較淺的蝕刻(例如約25Å或更淺,詳言之約15Å或更淺)。舉例而言,可透過以氫氯酸蝕刻在850°C的溫度及40 Torr的壓力下持續10秒的方式,在矽製底材201中定義出深度約15Å之溝槽207。一般而言,所述蝕刻可在範圍700°C至850°C的溫度下、在範圍30 Torr至1氣壓(詳言之從40 Torr至300 Torr)的壓力下,以每秒1至5埃的蝕刻速率持續長達300秒,但在不同組構中可使用不同的數值與蝕刻時間,此將在下文進一步討論。
根據另一示例性實施例,可使用深凹槽蝕刻(deep recess etching)法。在一示例性實施例中,可透過氫氯酸蝕刻在850°C的溫度下及40 Torr的壓力下持續218秒的方式,在矽製底材中蝕刻出約400Å之深度。一般而言,該蝕刻之深度係受到控制,以相對於隔離區202製作出所需的階梯或側壁高度,從而使該階梯作為限制超晶格225形成時的橫向生長之阻礙。此可有利地協助界定出所需的主動邊緣剖面(active edge profile),其對適當的元件效能來說非常重要,熟習本發明所屬技術領域者當可理解。主動邊緣剖面對於避免銳角來說非常重要,因為銳角會導致電場增強及後續的閘極漏電。凹坑(divot)的形成可能導致非理想的I-V電晶體曲線(扭結效應)及效能下降之並行(寄生)元件。
雖然本示例係以STI製程進行說明,但在某些實施例中亦可使用其他方法形成隔離區202,例如矽局部氧化(Local Oxidation of Silicon, LOCOS)方法。使用LOCOS方法時,淺凹槽蝕刻及深凹槽蝕刻二者皆可進行,其類似於前文有關STI所討論。在使用LOCOS方法之一示例性實施例中,深約200Å之溝槽係在850°C的溫度及40 Torr的壓力下持續218秒,以在矽底材中蝕刻出來。
應注意的是,除了原位氫氯酸蝕刻之外,亦可使用其他蝕刻方法及蝕刻劑。例如利用濕式蝕刻光阻顯影劑的非原位蝕刻即為一種方法。舉例而言,此種光阻顯影劑可包含四甲基氫氧化銨(tetramethylammonium hydroxide, TMAH)。四甲基氫氧化銨在溫度範圍10°C至90°C時以液體形式使用,詳細而言,其在室溫下或溫度升至65°C時會加快反應。在一示例性實施例中,所使用之光阻顯影劑包含2.5%四甲基氫氧化銨及表面活性劑,而本案申請人發現該光阻顯影劑可提供相對平坦的蝕刻表面,尤其在隔離區202所定義的階梯附近。此方法亦可以類似於前文所述之方式使用,以提供所需的淺蝕刻或深蝕刻之深度。
在蝕刻製程262結束時,可接著在MST製程263中形成超晶格層225,以界定出如前文所述之超晶格材料層(圖15)。在這之後可進行元件製程264,以產生最終半導體元件200(在此例中為MOSFET)。該元件製程264可包括在超晶格層225上方形成閘極,該閘極如圖所示包括一閘極絕緣體208(例如二氧化矽)及一閘電極209(例如多晶矽、金屬等)。在此示例中,側壁間隔件210毗鄰閘極而形成,源極區/汲極區220、221被形成且二者間以超晶格層225定義出一通道(但在某些實施例中,部分或全部的通道可在該超晶格層外)。接著形成相應的源極接點、汲極接點與閘極接點211、212、213(例如矽化物),熟習本發明所屬技術領域者當可理解。如前所述,在不同實施例中,前述凹槽蝕刻方法亦可用於形成其他半導體元件。
本說明書所提供之凹槽蝕刻方法可有助於限制溝槽207之階梯狀邊緣內部之超晶格225之橫向生長,從而防止超晶格225溢出至隔離區上而劣化主動邊緣幾何形狀(active edge geometry)並導致效能問題。在某些實施例中,可在超晶格層225形成後進行一熱處理以使超晶格材料收縮,但在熱處理時必須小心,因為過度加熱可能使MST薄膜劣化,並導致非半導體材料從相鄰半導體原子之晶格內發生不樂見之脫位(dislocation)。
熟習本發明所屬技術領域者將受益於本說明書揭示之內容及所附圖式而構思出各種修改及其他實施方式。因此,應了解的是,本發明不限於本說明書所述之特定實施方式,且相關修改及實施方式均落入以下申請專利範圍所界定之範疇。
21, 21’:底材 25, 25’:超晶格 45a~45n, 45a’~45n’:層群組 46, 46’:基底半導體單層 46a~46n, 46a’~46n’:基底半導體部份 50, 50’:能帶修改層 52, 52’:頂蓋層 100:流程圖 200:半導體元件 201:半導體底材 202:隔離區 203:墊氧化物層 204:氮化物層 205:溝槽 206:氧化物層 207:溝槽 208:閘極絕緣體 209:閘電極 210:側壁間隔件 211:源極接點 212:汲極接點 213:閘極接點 220:源極區 221:汲極區 225:超晶格層 260:流程圖
圖1為依照一示例實施例之半導體元件用超晶格之放大概要剖視圖。
圖2為圖1所示超晶格之一部份之透視示意原子圖。
圖3為依照另一示例實施例之超晶格放大概要剖視圖。
圖4A為習知技術之主體矽及圖1-2所示之4/1 矽/氧超晶格兩者從迦碼點(G)計算所得能帶結構之圖。
圖4B為習知技術之主體矽及圖1-2所示之4/1 矽/氧超晶格兩者從Z點計算所得能帶結構之圖。
圖4C為習知技術之主體矽及圖3所示之5/1/3/1 矽/氧超晶格兩者從G點與Z點計算所得能帶結構之圖。
圖5繪示根據一示例性實施例製作包含使用凹部蝕刻方法之超晶格之半導體元件之方法之流程圖。
圖6繪示根據圖5所示製作方法之示例性製程流程圖。
圖7至圖16繪示對應於圖6製程流程圖之示例製作步驟之一系列概要剖視圖。
如圖所示

Claims (16)

  1. 一種用於製作一半導體元件之方法,該方法包括:在一半導體底材中形成與一主動區相鄰之一隔離區;選擇性蝕刻該主動區,以使該主動區的上表面在該隔離區之鄰接表面下方並與該鄰接表面界定出一階梯狀邊緣;及形成覆於該主動區上之一超晶格至該階梯狀邊緣的高度,該超晶格包括複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層。
  2. 如請求項1之方法,其中所述蝕刻包括以氫氯酸蝕刻劑進行之原位蝕刻。
  3. 如請求項1之方法,其中所述蝕刻包括10到250秒的蝕刻時間。
  4. 如請求項1之方法,其中所述蝕刻包括蝕刻至小於或等於400Å的深度。
  5. 如請求項1之方法,其中所述蝕刻包括以含一光阻顯影劑的濕式蝕刻進行之非原位蝕刻。
  6. 如請求項5之方法,其中該光阻顯影劑包含四甲基氫氧化銨(TMAH)。
  7. 如請求項1之方法,其中所述蝕刻包括在840-860℃的溫度範圍進行蝕刻。
  8. 如請求項1之方法,其更包括在該半導體底材上形成隔開的源極區及汲極區並以該超晶格在該源極區與該汲極區之間界定出一通道,以及覆於該超晶格上之一閘極。
  9. 如請求項1之方法,其中所述基底半導體單層包含矽單層。
  10. 如請求項1之方法,其中所述至少一非半導體單層包含氧。
  11. 如請求項1之方法,其中所述基底半導體單層包含鍺。
  12. 如請求項1之方法,其中所述至少一非半導體單層包含氧、氮、氟、碳和碳氧當中至少一者。
  13. 一種用於製作一半導體元件之方法,該方法包括:在一半導體底材中形成與一主動區相鄰之一隔離區;選擇性蝕刻該主動區,以使該主動區的上表面在該隔離區之鄰接表面下方並與該鄰接表面界定出一階梯狀邊緣;及形成覆於該主動區上之一超晶格至該階梯狀邊緣的高度,該超晶格包括複數個堆疊之層群組,各層群組包含複數個堆疊之基底矽單層,其界定出一基底矽部份,以及被拘束在相鄰的基底矽部份之一晶格內之至少一氧單層。
  14. 如請求項13之方法,其中所述蝕刻包括以氫氯酸蝕刻劑進行之原位蝕刻。
  15. 如請求項13之方法,其中所述蝕刻包括蝕刻至小於或等於400Å的深度。
  16. 如請求項13之方法,其中所述蝕刻包括以含光阻顯影劑的濕式蝕刻進行之非原位蝕刻。
TW110106979A 2020-03-06 2021-02-26 用於製作在凹槽蝕刻內部包含超晶格之半導體元件之方法 TWI807262B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/810,957 US11075078B1 (en) 2020-03-06 2020-03-06 Method for making a semiconductor device including a superlattice within a recessed etch
US16/810,957 2020-03-06

Publications (2)

Publication Number Publication Date
TW202135318A TW202135318A (zh) 2021-09-16
TWI807262B true TWI807262B (zh) 2023-07-01

Family

ID=75143776

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110106979A TWI807262B (zh) 2020-03-06 2021-02-26 用於製作在凹槽蝕刻內部包含超晶格之半導體元件之方法

Country Status (5)

Country Link
US (1) US11075078B1 (zh)
EP (1) EP4115451A1 (zh)
CN (1) CN115362559A (zh)
TW (1) TWI807262B (zh)
WO (1) WO2021178367A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11837634B2 (en) 2020-07-02 2023-12-05 Atomera Incorporated Semiconductor device including superlattice with oxygen and carbon monolayers
CN112382657B (zh) * 2020-11-16 2022-03-18 中国科学院物理研究所 图形硅衬底-硅锗薄膜复合结构及其制备方法和应用
WO2022187462A1 (en) 2021-03-03 2022-09-09 Atomera Incorporated Radio frequency (rf) semiconductor devices including a ground plane layer having a superlattice and associated methods
US11721546B2 (en) 2021-10-28 2023-08-08 Atomera Incorporated Method for making semiconductor device with selective etching of superlattice to accumulate non-semiconductor atoms
US11631584B1 (en) 2021-10-28 2023-04-18 Atomera Incorporated Method for making semiconductor device with selective etching of superlattice to define etch stop layer
WO2024192097A1 (en) * 2023-03-14 2024-09-19 Atomera Incorporated Method for making a radio frequency silicon-on-insulator (rfsoi) wafer including a superlattice

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW541577B (en) * 2001-07-16 2003-07-11 Motorola Inc Process for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate for materials used to form the same and including an etch stop layer used for back side processing
TW200717794A (en) * 2005-05-25 2007-05-01 Mears R J Llc Semiconductor device including a superlattice having at least one group of substantially undoped layers
US20130099283A1 (en) * 2011-10-21 2013-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. III-V Multi-Channel FinFETs
US20190189665A1 (en) * 2017-12-15 2019-06-20 Atomera Incorporated Cmos image sensor including stacked semiconductor chips and readout circuitry including a superlattice
US20190279869A1 (en) * 2018-03-09 2019-09-12 Atomera Incorporated Method for making a semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210679A (ja) 1985-03-15 1986-09-18 Sony Corp 半導体装置
US4914743A (en) * 1987-08-27 1990-04-03 The United States Of America As Represented By The Secretary Of The Navy Yoked orthogonally distributed equal reactance non-coplanar traveling wave amplifier
US5216262A (en) 1992-03-02 1993-06-01 Raphael Tsu Quantum well structures useful for semiconductor devices
US5357119A (en) 1993-02-19 1994-10-18 Board Of Regents Of The University Of California Field effect devices having short period superlattice structures using Si and Ge
US5796119A (en) 1993-10-29 1998-08-18 Texas Instruments Incorporated Silicon resonant tunneling
US5561302A (en) 1994-09-26 1996-10-01 Motorola, Inc. Enhanced mobility MOSFET device and method
GB9419757D0 (en) 1994-09-30 1994-11-16 Lynxvale Ltd Wavelength selective filter and laser including it
US6376337B1 (en) 1997-11-10 2002-04-23 Nanodynamics, Inc. Epitaxial SiOx barrier/insulation layer
JP3443343B2 (ja) 1997-12-03 2003-09-02 松下電器産業株式会社 半導体装置
GB9905196D0 (en) 1999-03-05 1999-04-28 Fujitsu Telecommunications Eur Aperiodic gratings
US6993222B2 (en) 1999-03-05 2006-01-31 Rj Mears, Llc Optical filter device with aperiodically arranged grating elements
GB2385945B (en) 1999-03-05 2003-11-05 Nanovis Llc Two and three dimensional aperiodic gratings
US20020100942A1 (en) 2000-12-04 2002-08-01 Fitzgerald Eugene A. CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
EP1428262A2 (en) 2001-09-21 2004-06-16 Amberwave Systems Corporation Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
US7045813B2 (en) 2003-06-26 2006-05-16 Rj Mears, Llc Semiconductor device including a superlattice with regions defining a semiconductor junction
US7586116B2 (en) 2003-06-26 2009-09-08 Mears Technologies, Inc. Semiconductor device having a semiconductor-on-insulator configuration and a superlattice
US7612366B2 (en) 2003-06-26 2009-11-03 Mears Technologies, Inc. Semiconductor device including a strained superlattice layer above a stress layer
US20070020833A1 (en) 2003-06-26 2007-01-25 Rj Mears, Llc Method for Making a Semiconductor Device Including a Channel with a Non-Semiconductor Layer Monolayer
US7153763B2 (en) 2003-06-26 2006-12-26 Rj Mears, Llc Method for making a semiconductor device including band-engineered superlattice using intermediate annealing
US7531850B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a memory cell with a negative differential resistance (NDR) device
US7598515B2 (en) 2003-06-26 2009-10-06 Mears Technologies, Inc. Semiconductor device including a strained superlattice and overlying stress layer and related methods
US20060267130A1 (en) 2003-06-26 2006-11-30 Rj Mears, Llc Semiconductor Device Including Shallow Trench Isolation (STI) Regions with a Superlattice Therebetween
US7514328B2 (en) 2003-06-26 2009-04-07 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with a superlattice therebetween
US20070012910A1 (en) 2003-06-26 2007-01-18 Rj Mears, Llc Semiconductor Device Including a Channel with a Non-Semiconductor Layer Monolayer
US7586165B2 (en) 2003-06-26 2009-09-08 Mears Technologies, Inc. Microelectromechanical systems (MEMS) device including a superlattice
US7531828B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a strained superlattice between at least one pair of spaced apart stress regions
US20060220118A1 (en) 2003-06-26 2006-10-05 Rj Mears, Llc Semiconductor device including a dopant blocking superlattice
US7045377B2 (en) 2003-06-26 2006-05-16 Rj Mears, Llc Method for making a semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US7531829B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including regions of band-engineered semiconductor superlattice to reduce device-on resistance
US7491587B2 (en) 2003-06-26 2009-02-17 Mears Technologies, Inc. Method for making a semiconductor device having a semiconductor-on-insulator (SOI) configuration and including a superlattice on a thin semiconductor layer
US6830964B1 (en) 2003-06-26 2004-12-14 Rj Mears, Llc Method for making semiconductor device including band-engineered superlattice
US7229902B2 (en) 2003-06-26 2007-06-12 Rj Mears, Llc Method for making a semiconductor device including a superlattice with regions defining a semiconductor junction
US7227174B2 (en) 2003-06-26 2007-06-05 Rj Mears, Llc Semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US6833294B1 (en) 2003-06-26 2004-12-21 Rj Mears, Llc Method for making semiconductor device including band-engineered superlattice
US7202494B2 (en) 2003-06-26 2007-04-10 Rj Mears, Llc FINFET including a superlattice
US7446002B2 (en) 2003-06-26 2008-11-04 Mears Technologies, Inc. Method for making a semiconductor device comprising a superlattice dielectric interface layer
AU2004300982B2 (en) 2003-06-26 2007-10-25 Mears Technologies, Inc. Semiconductor device including MOSFET having band-engineered superlattice
US7659539B2 (en) 2003-06-26 2010-02-09 Mears Technologies, Inc. Semiconductor device including a floating gate memory cell with a superlattice channel
US20050282330A1 (en) 2003-06-26 2005-12-22 Rj Mears, Llc Method for making a semiconductor device including a superlattice having at least one group of substantially undoped layers
US7148712B1 (en) 2005-06-24 2006-12-12 Oxford Instruments Measurement Systems Llc Probe for use in determining an attribute of a coating on a substrate
US7517702B2 (en) 2005-12-22 2009-04-14 Mears Technologies, Inc. Method for making an electronic device including a poled superlattice having a net electrical dipole moment
US7700447B2 (en) 2006-02-21 2010-04-20 Mears Technologies, Inc. Method for making a semiconductor device comprising a lattice matching layer
US7625767B2 (en) 2006-03-17 2009-12-01 Mears Technologies, Inc. Methods of making spintronic devices with constrained spintronic dopant
US20080012004A1 (en) 2006-03-17 2008-01-17 Mears Technologies, Inc. Spintronic devices with constrained spintronic dopant
US7781827B2 (en) 2007-01-24 2010-08-24 Mears Technologies, Inc. Semiconductor device with a vertical MOSFET including a superlattice and related methods
US7928425B2 (en) 2007-01-25 2011-04-19 Mears Technologies, Inc. Semiconductor device including a metal-to-semiconductor superlattice interface layer and related methods
US7880161B2 (en) 2007-02-16 2011-02-01 Mears Technologies, Inc. Multiple-wavelength opto-electronic device including a superlattice
US7863066B2 (en) 2007-02-16 2011-01-04 Mears Technologies, Inc. Method for making a multiple-wavelength opto-electronic device including a superlattice
US7812339B2 (en) 2007-04-23 2010-10-12 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with maskless superlattice deposition following STI formation and related structures
WO2011112574A1 (en) 2010-03-08 2011-09-15 Mears Technologies, Inc Semiconductor device including a superlattice and dopant diffusion retarding implants and related methods
US9224734B2 (en) * 2013-09-13 2015-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS devices with reduced leakage and methods of forming the same
CN112420816A (zh) * 2013-09-23 2021-02-26 量子半导体有限公司 超晶格材料和应用
CN105900241B (zh) 2013-11-22 2020-07-24 阿托梅拉公司 包括超晶格耗尽层堆叠的半导体装置和相关方法
CN106104805B (zh) 2013-11-22 2020-06-16 阿托梅拉公司 包括超晶格穿通停止层堆叠的垂直半导体装置和相关方法
US9281196B2 (en) * 2013-12-31 2016-03-08 Taiwan Semiconductor Manufacturing Co., Ltd. Method to reduce etch variation using ion implantation
WO2015191561A1 (en) 2014-06-09 2015-12-17 Mears Technologies, Inc. Semiconductor devices with enhanced deterministic doping and related methods
US9722046B2 (en) 2014-11-25 2017-08-01 Atomera Incorporated Semiconductor device including a superlattice and replacement metal gate structure and related methods
US9941359B2 (en) 2015-05-15 2018-04-10 Atomera Incorporated Semiconductor devices with superlattice and punch-through stop (PTS) layers at different depths and related methods
US9721790B2 (en) 2015-06-02 2017-08-01 Atomera Incorporated Method for making enhanced semiconductor structures in single wafer processing chamber with desired uniformity control
US9558939B1 (en) 2016-01-15 2017-01-31 Atomera Incorporated Methods for making a semiconductor device including atomic layer structures using N2O as an oxygen source
WO2017197108A1 (en) 2016-05-11 2017-11-16 Atomera Incorporated Dram architecture to reduce row activation circuitry power and peripheral leakage and related methods
US10170604B2 (en) 2016-08-08 2019-01-01 Atomera Incorporated Method for making a semiconductor device including a resonant tunneling diode with electron mean free path control layers
US10191105B2 (en) 2016-08-17 2019-01-29 Atomera Incorporated Method for making a semiconductor device including threshold voltage measurement circuitry
CN110832641B (zh) 2017-05-16 2023-05-30 阿托梅拉公司 包括作为吸收层的超晶格的半导体装置和方法
CN110998843B (zh) 2017-06-13 2023-11-03 阿托梅拉公司 具有含超晶格的凹陷的沟道阵列晶体管(rcat)的半导体器件及相关方法
US10109479B1 (en) 2017-07-31 2018-10-23 Atomera Incorporated Method of making a semiconductor device with a buried insulating layer formed by annealing a superlattice
EP3669401B1 (en) 2017-08-18 2023-08-02 Atomera Incorporated Manufacturing method for a semiconductor device including the removal of non-monocrystalline stringer adjacent a superlattice-sti interface
US10355151B2 (en) 2017-12-15 2019-07-16 Atomera Incorporated CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10304881B1 (en) 2017-12-15 2019-05-28 Atomera Incorporated CMOS image sensor with buried superlattice layer to reduce crosstalk
US10396223B2 (en) 2017-12-15 2019-08-27 Atomera Incorporated Method for making CMOS image sensor with buried superlattice layer to reduce crosstalk
US10361243B2 (en) 2017-12-15 2019-07-23 Atomera Incorporated Method for making CMOS image sensor including superlattice to enhance infrared light absorption
US10529757B2 (en) 2017-12-15 2020-01-07 Atomera Incorporated CMOS image sensor including pixels with read circuitry having a superlattice
US10367028B2 (en) 2017-12-15 2019-07-30 Atomera Incorporated CMOS image sensor including stacked semiconductor chips and image processing circuitry including a superlattice
US10608043B2 (en) 2017-12-15 2020-03-31 Atomera Incorporation Method for making CMOS image sensor including stacked semiconductor chips and readout circuitry including a superlattice
US10608027B2 (en) 2017-12-15 2020-03-31 Atomera Incorporated Method for making CMOS image sensor including stacked semiconductor chips and image processing circuitry including a superlattice
US10529768B2 (en) 2017-12-15 2020-01-07 Atomera Incorporated Method for making CMOS image sensor including pixels with read circuitry having a superlattice
US10276625B1 (en) 2017-12-15 2019-04-30 Atomera Incorporated CMOS image sensor including superlattice to enhance infrared light absorption
US10461118B2 (en) 2017-12-15 2019-10-29 Atomera Incorporated Method for making CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10879356B2 (en) 2018-03-08 2020-12-29 Atomera Incorporated Method for making a semiconductor device including enhanced contact structures having a superlattice
US10468245B2 (en) 2018-03-09 2019-11-05 Atomera Incorporated Semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
CN112074959B (zh) 2018-04-12 2024-08-13 阿托梅拉公司 用于制造包括超晶格的倒t形沟道场效应晶体管(itfet)的器件和方法
EP3776073A1 (en) 2018-04-12 2021-02-17 Atomera Incorporated Semiconductor device and method including vertically integrated optical and electronic devices and comprising a superlattice
US10811498B2 (en) 2018-08-30 2020-10-20 Atomera Incorporated Method for making superlattice structures with reduced defect densities
US10566191B1 (en) 2018-08-30 2020-02-18 Atomera Incorporated Semiconductor device including superlattice structures with reduced defect densities
US10580867B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated FINFET including source and drain regions with dopant diffusion blocking superlattice layers to reduce contact resistance
US10593761B1 (en) 2018-11-16 2020-03-17 Atomera Incorporated Method for making a semiconductor device having reduced contact resistance
US10580866B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated Semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW541577B (en) * 2001-07-16 2003-07-11 Motorola Inc Process for fabricating semiconductor structures and devices utilizing the formation of a compliant substrate for materials used to form the same and including an etch stop layer used for back side processing
TW200717794A (en) * 2005-05-25 2007-05-01 Mears R J Llc Semiconductor device including a superlattice having at least one group of substantially undoped layers
US20130099283A1 (en) * 2011-10-21 2013-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. III-V Multi-Channel FinFETs
US20190189665A1 (en) * 2017-12-15 2019-06-20 Atomera Incorporated Cmos image sensor including stacked semiconductor chips and readout circuitry including a superlattice
US20190279869A1 (en) * 2018-03-09 2019-09-12 Atomera Incorporated Method for making a semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice

Also Published As

Publication number Publication date
TW202135318A (zh) 2021-09-16
US11075078B1 (en) 2021-07-27
WO2021178367A1 (en) 2021-09-10
EP4115451A1 (en) 2023-01-11
CN115362559A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
TWI694613B (zh) 包含垂直集成的光學與電子元件且包含超晶格之半導體元件及方法
TWI722398B (zh) 包含具有超晶格之改良接觸結構之半導體元件及相關方法
TWI807262B (zh) 用於製作在凹槽蝕刻內部包含超晶格之半導體元件之方法
TWI679708B (zh) 製作具有以回火超晶格方式形成埋置絕緣層之半導體元件之方法
TWI616937B (zh) 利用一氧化二氮作為氧氣來源,製作一個包括原子層結構之半導體裝置之方法
TWI734093B (zh) 用於製作包含超晶格之倒t型通道場效電晶體(itfet)之元件及方法
TWI543362B (zh) 包含超晶格貫穿中止層之垂直式半導體元件及其相關方法
US7279701B2 (en) Semiconductor device comprising a superlattice with upper portions extending above adjacent upper portions of source and drain regions
CN110998843A (zh) 具有含超晶格的凹陷的沟道阵列晶体管(rcat)的半导体器件及相关方法
US11569368B2 (en) Method for making semiconductor device including a superlattice and providing reduced gate leakage
US11469302B2 (en) Semiconductor device including a superlattice and providing reduced gate leakage
TWI819857B (zh) 對超晶格進行選擇性刻蝕以定義蝕刻停止層之半導體元件製作方法
TWI832494B (zh) 對超晶格進行選擇性刻蝕以累積非半導體原子之半導體元件製作方法
TWI816399B (zh) 含提供金屬功函數調諧之超晶格之半導體元件及相關方法
TWI720587B (zh) 用於製作具較低缺陷密度超晶格結構之方法及元件
TWI789780B (zh) 包含超晶格且提供低閘極漏電之半導體元件及相關方法
TWI852792B (zh) 含提供金屬功函數調諧之超晶格之半導體元件及相關方法
TWI806553B (zh) 包含超晶格及富集矽28磊晶層之半導體元件及相關方法
TW201939749A (zh) 包含化合物半導體材料及雜質與點缺陷阻擋超晶格之半導體元件及方法