TWI806591B - Active device substrate - Google Patents

Active device substrate Download PDF

Info

Publication number
TWI806591B
TWI806591B TW111117040A TW111117040A TWI806591B TW I806591 B TWI806591 B TW I806591B TW 111117040 A TW111117040 A TW 111117040A TW 111117040 A TW111117040 A TW 111117040A TW I806591 B TWI806591 B TW I806591B
Authority
TW
Taiwan
Prior art keywords
metal oxide
oxide layer
electrode
substrate
gate
Prior art date
Application number
TW111117040A
Other languages
Chinese (zh)
Other versions
TW202324682A (en
Inventor
范揚順
李奎佑
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Publication of TW202324682A publication Critical patent/TW202324682A/en
Application granted granted Critical
Publication of TWI806591B publication Critical patent/TWI806591B/en

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Ceramic Capacitors (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Formation Of Insulating Films (AREA)
  • Bipolar Transistors (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Semiconductor Memories (AREA)
  • Confectionery (AREA)
  • Glass Compositions (AREA)
  • External Artificial Organs (AREA)

Abstract

An active device substrate includes a substrate, a switch device and a resistive random-access memory. The switch device includes a first metal oxide layer, a second metal oxide layer, a first gate, a source and a drain. The second metal oxide layer is in contact with the first metal oxide layer. The first gate is overlapping with the first metal oxide layer and the second metal oxide layer. The resistive random-access memory includes a first electrode, a third metal oxide layer, a fourth metal oxide layer, and a second electrode. The third metal oxide layer is electrically connected to the first electrode. The fourth metal oxide layer is in contact with the third metal oxide layer. The second electrode is electrically connected to the switch device and the fourth metal oxide layer.

Description

主動元件基板Active component substrate

本發明是有關於一種主動元件基板。 The invention relates to an active component substrate.

由於包含金屬氧化物半導體的薄膜電晶體易受到環境中的氧氣、氫氣和水的影響,使其在長時間使用之後,容易出現性能衰退,影響薄膜電晶體的電性。舉例來說,在包含薄膜電晶體陣列的顯示裝置中,若部分的薄膜電晶體的金屬氧化物半導體出現性能衰退,容易使顯示裝置所顯示的畫面產生不均勻(Mura)的問題。一般來說,為了減少這種不均勻的問題,會將畫素電路連接至外部晶片,並透過外部補償記憶體儲存大量的電流資訊。前述電流資訊經演算法演算以得到補償電流或電壓,再將補償電流或電壓回饋至回畫素電路中。然而,外部晶片的電路設計複雜,且成本高。 Since thin film transistors containing metal oxide semiconductors are easily affected by oxygen, hydrogen and water in the environment, they are prone to performance degradation after long-term use, which affects the electrical properties of thin film transistors. For example, in a display device including a thin film transistor array, if the performance of a part of the metal oxide semiconductor of the thin film transistor is degraded, it is easy to cause the problem of non-uniformity (Mura) in the picture displayed by the display device. Generally speaking, in order to reduce this uneven problem, the pixel circuit is connected to an external chip, and a large amount of current information is stored through an external compensation memory. The aforementioned current information is calculated by an algorithm to obtain a compensation current or voltage, and then the compensation current or voltage is fed back to the pixel circuit. However, the circuit design of the external chip is complicated and costly.

本發明提供一種主動元件基板,其可變電阻式記憶體具有優異的電阻切換性能。 The invention provides an active component substrate, the variable resistance memory of which has excellent resistance switching performance.

本發明提供一種主動元件基板,可以節省設置可變電阻式記憶體所需的面積。 The invention provides an active element substrate, which can save the area required for setting the variable resistance memory.

本發明的至少一實施例提供一種主動元件基板。主動元件基板包括基板、開關元件以及可變電阻式記憶體。開關元件設置於基板之上,且包括第一金屬氧化物層、第二金屬氧化物層、第一閘極、源極以及汲極。第二金屬氧化物層接觸第一金屬氧化物層。第一閘極在基板的頂面的法線方向上重疊於第一金屬氧化物層以及第二金屬氧化物層。源極以及汲極電性連接第二金屬氧化物層。可變電阻式記憶體設置於基板之上,且包括第一電極、第三金屬氧化物層、第四金屬氧化物層以及第二電極。第三金屬氧化物層電性連接該第一電極。第四金屬氧化物層接觸第三金屬氧化物層。第二電極電性連接開關元件以及第四金屬氧化物層,且第一電極、第三金屬氧化物層、第四金屬氧化物層以及第二電極在基板的頂面的法線方向上彼此重疊。 At least one embodiment of the present invention provides an active device substrate. The active element substrate includes a substrate, a switch element, and a variable resistance memory. The switch element is disposed on the substrate and includes a first metal oxide layer, a second metal oxide layer, a first gate, a source and a drain. The second metal oxide layer contacts the first metal oxide layer. The first gate overlaps the first metal oxide layer and the second metal oxide layer in a direction normal to the top surface of the substrate. The source and the drain are electrically connected to the second metal oxide layer. The variable resistance memory is disposed on the substrate and includes a first electrode, a third metal oxide layer, a fourth metal oxide layer and a second electrode. The third metal oxide layer is electrically connected to the first electrode. The fourth metal oxide layer contacts the third metal oxide layer. The second electrode is electrically connected to the switching element and the fourth metal oxide layer, and the first electrode, the third metal oxide layer, the fourth metal oxide layer and the second electrode overlap each other in the normal direction of the top surface of the substrate .

本發明的至少一實施例提供一種主動元件基板。主動元件基板包括基板、第一金屬氧化物層、第一閘極、層間介電層、第二金屬氧化物層、第一電極以及第二電極。第一金屬氧化物層具有源極區、汲極區以及位於源極區與汲極區之間的通道區。第一閘極在基板的頂面的法線方向上重疊於第一金屬氧化物層的通道區。層間介電層位於第一閘極之上。第一開口以及第二開口位於層間介電層中,且第一開口以及第二開口在基板的頂面的法線方向上分別重疊於源極區以及汲極區。第二金屬氧化物層位於第 一開口中,且接觸第一金屬氧化物層的源極區。第一電極位於第二金屬氧化物層上,且第一電極、第二金屬氧化物層以及第一金屬氧化物層的源極區在基板的頂面的法線方向上彼此重疊。第二電極位於第二開口中,且電性連接汲極區。 At least one embodiment of the present invention provides an active device substrate. The active device substrate includes a substrate, a first metal oxide layer, a first gate, an interlayer dielectric layer, a second metal oxide layer, a first electrode and a second electrode. The first metal oxide layer has a source region, a drain region, and a channel region between the source region and the drain region. The first gate overlaps the channel region of the first metal oxide layer in a direction normal to the top surface of the substrate. The interlayer dielectric layer is located on the first gate. The first opening and the second opening are located in the interlayer dielectric layer, and the first opening and the second opening respectively overlap the source region and the drain region in a direction normal to the top surface of the substrate. The second metal oxide layer is located at the an opening and contacts the source region of the first metal oxide layer. The first electrode is located on the second metal oxide layer, and the first electrode, the second metal oxide layer, and the source region of the first metal oxide layer overlap with each other in a direction normal to the top surface of the substrate. The second electrode is located in the second opening and is electrically connected to the drain region.

10A,10B,10C,10D:主動元件基板 10A, 10B, 10C, 10D: active component substrate

100:基板 100: Substrate

110:第一閘介電層 110: first gate dielectric layer

120:第二閘介電層 120: second gate dielectric layer

122:閘介電層 122: gate dielectric layer

130:層間介電層 130: interlayer dielectric layer

2DEG:二維電子氣 2DEG: two-dimensional electron gas

202,236:第一閘極 202,236: first gate

204,243:第一電極 204,243: first electrode

212,216,216’:第一金屬氧化物層 212,216,216': the first metal oxide layer

212a:第一摻雜區 212a: the first doped region

212c:第二摻雜區 212c: the second doped region

214:第三金屬氧化物層 214: the third metal oxide layer

222,222’,226:第二金屬氧化物層 222, 222', 226: second metal oxide layer

222a,216a:源極區 222a, 216a: source region

222b,216b:通道區 222b, 216b: passage area

222c,216c:汲極區 222c, 216c: drain area

224:第四金屬氧化物層 224: the fourth metal oxide layer

232,206:第二閘極 232,206: second gate

234,245:第二電極 234,245: Second electrode

242:源極 242: source

244:汲極 244: drain

a:第一節點 a: the first node

b:第二節點 b: the second node

c:第三節點 c: the third node

Cst:儲存電容 Cst: storage capacitor

EL:發光元件 EL: light emitting element

ND:法線方向 ND: normal direction

P:摻雜製程 P: doping process

PX:畫素電路 PX: pixel circuit

O1:第一開口 O1: first opening

O2:第二開口 O2: second opening

R1:可變電阻式記憶體 R1: variable resistance memory

Rc:補償記憶體 Rc: compensation memory

ST1,ST1’:第一堆疊結構 ST1, ST1': the first stack structure

ST2:第二堆疊結構 ST2: Second stack structure

T1:開關元件 T1: switching element

Tsw:開關電晶體 Tsw: switching transistor

Twr:寫入電晶體 Twr: write transistor

Tdr:驅動電晶體 Tdr: drive transistor

Tse:感測電晶體 Tse: sensing transistor

t1,t2:厚度 t1, t2: thickness

V1,V2,V3:開口 V1, V2, V3: opening

VS1,Vdata,VDD,VS2,Vsus,VSS:電壓 V S1 , V data , V DD , V S2 , V sus , V SS : Voltage

圖1是依照本發明的一實施例的一種主動元件基板的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention.

圖2A至圖2G是圖1的主動元件基板的製造方法的剖面示意圖。 2A to 2G are schematic cross-sectional views of the manufacturing method of the active device substrate shown in FIG. 1 .

圖3是依照本發明的一實施例的一種主動元件基板的剖面示意圖。 FIG. 3 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention.

圖4是依照本發明的一實施例的一種主動元件基板的剖面示意圖。 FIG. 4 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention.

圖5是依照本發明的一實施例的一種畫素電路的等效電路示意圖。 FIG. 5 is a schematic diagram of an equivalent circuit of a pixel circuit according to an embodiment of the present invention.

圖6是依照本發明的一實施例的一種顯示裝置在圖5的畫素電路設置下的畫素補償操作流程圖。 FIG. 6 is a flowchart of a pixel compensation operation of a display device under the pixel circuit setting of FIG. 5 according to an embodiment of the present invention.

圖7是依照本發明的一實施例的一種主動元件基板的剖面示意圖。 FIG. 7 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention.

圖8A至圖8F是圖7的主動元件基板的製造方法的剖面示意 圖。 8A to 8F are schematic cross-sectional views of the manufacturing method of the active device substrate of FIG. 7 picture.

圖9是依照本發明的一實施例的一種主動元件基板的剖面示意圖。 FIG. 9 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention.

圖10是依照本發明的一實施例的一種主動元件基板的剖面示意圖。 FIG. 10 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention.

圖11是依照本發明的一實施例的一種畫素電路的等效電路示意圖。 FIG. 11 is a schematic diagram of an equivalent circuit of a pixel circuit according to an embodiment of the present invention.

圖1是依照本發明的一實施例的一種主動元件基板的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention.

主動元件基板10A包括基板100、開關元件T1以及可變電阻式記憶體R1。 The active device substrate 10A includes a substrate 100 , a switch element T1 and a variable resistance memory R1 .

基板100之材質可為玻璃、石英、有機聚合物或是不透光/反射材料(例如:導電材料、金屬、晶圓、陶瓷或其他可適用的材料)或是其他可適用的材料。若使用導電材料或金屬時,則在基板100上覆蓋一層絕緣層(未繪示),以避免短路問題。在一些實施例中,基板100為軟性基板,且基板100的材料例如為聚乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚二甲酸乙二醇酯(polyethylene naphthalate,PEN)、聚酯(polyester,PES)、聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)、聚碳酸酯(polycarbonate,PC)、聚醯亞胺(polyimide,PI)或金屬軟板(Metal Foil)或其他可撓性材質。 The material of the substrate 100 can be glass, quartz, organic polymer or opaque/reflective material (eg conductive material, metal, wafer, ceramic or other applicable materials) or other applicable materials. If conductive materials or metals are used, an insulating layer (not shown) is covered on the substrate 100 to avoid short circuit problems. In some embodiments, the substrate 100 is a flexible substrate, and the material of the substrate 100 is, for example, polyethylene terephthalate (polyethylene terephthalate, PET), polyethylene glycol ester (polyethylene naphthalate, PEN), polyester (polyester, PES), polymethylmethacrylate (polymethylmethacrylate, PMMA), polycarbonate (polycarbonate, PC), polyimide (polyimide, PI) or metal soft board (Metal Foil) or other flexible materials.

開關元件T1以及可變電阻式記憶體R1設置於基板100之上。在一些實施例中,開關元件T1與基板100之間以及可變電阻式記憶體R1與基板100之間還設置有一層或多層緩衝層(未繪示),但本發明不以此為限。開關元件T1包括第一閘極202、第一堆疊結構ST1、第二閘極232、源極242以及汲極244。可變電阻式記憶體R1包括第一電極204、第二堆疊結構ST2以及第二電極234。 The switch element T1 and the variable resistance memory R1 are disposed on the substrate 100 . In some embodiments, one or more buffer layers (not shown) are disposed between the switch element T1 and the substrate 100 and between the variable resistance memory R1 and the substrate 100 , but the invention is not limited thereto. The switching element T1 includes a first gate 202 , a first stack structure ST1 , a second gate 232 , a source 242 and a drain 244 . The variable resistance memory R1 includes a first electrode 204 , a second stack structure ST2 and a second electrode 234 .

第一閘極202以及第一電極204設置於基板100之上。在一實施例中,第一閘極202以及第一電極204可以為不易氧化且具有較高功函數(work function)的非活性金屬,例如包括鎢、鉬、鉑、鈀、金、鉬/鋁/鉬或其組合。在一些實施例中,第一閘極202以及第一電極204包括成分相同或不同的材料。在一些實施例中,第一閘極202以及第一電極204包括相同或不同的厚度。在一些實施例中,第一閘極202以及第一電極204屬於同一圖案化層,且第一閘極202以及第一電極204彼此分離。 The first gate 202 and the first electrode 204 are disposed on the substrate 100 . In one embodiment, the first gate 202 and the first electrode 204 may be inactive metals that are not easily oxidized and have a relatively high work function, such as tungsten, molybdenum, platinum, palladium, gold, molybdenum/aluminum /molybdenum or combinations thereof. In some embodiments, the first gate 202 and the first electrode 204 include the same or different materials. In some embodiments, the first gate 202 and the first electrode 204 include the same or different thicknesses. In some embodiments, the first gate 202 and the first electrode 204 belong to the same patterned layer, and the first gate 202 and the first electrode 204 are separated from each other.

第一閘介電層110位於第一閘極202以及第一電極204上。第一閘介電層110覆蓋第一閘極202以及第一電極204,且第一閘介電層110具有重疊於第一電極204的第一開口。第一閘介電層110的材料例如為氧化矽、氮化矽、氮氧化矽、氧化鉿或其他合適的材料。 The first gate dielectric layer 110 is located on the first gate 202 and the first electrode 204 . The first gate dielectric layer 110 covers the first gate 202 and the first electrode 204 , and the first gate dielectric layer 110 has a first opening overlapping the first electrode 204 . The material of the first gate dielectric layer 110 is, for example, silicon oxide, silicon nitride, silicon oxynitride, hafnium oxide or other suitable materials.

第一堆疊結構ST1以及第二堆疊結構ST2位於第一閘介 電層110上。第一堆疊結構ST1包括互相重疊的第一金屬氧化物層212以及第二金屬氧化物層222,其中第二金屬氧化物層222接觸第一金屬氧化物層212的上表面。第二堆疊結構ST2包括互相重疊的第三金屬氧化物層214以及第四金屬氧化物層224,其中第四金屬氧化物層224接觸第三金屬氧化物層214的上表面。 The first stack structure ST1 and the second stack structure ST2 are located in the first gate on the electrical layer 110. The first stack structure ST1 includes a first metal oxide layer 212 and a second metal oxide layer 222 overlapping each other, wherein the second metal oxide layer 222 contacts the upper surface of the first metal oxide layer 212 . The second stack structure ST2 includes a third metal oxide layer 214 and a fourth metal oxide layer 224 overlapping each other, wherein the fourth metal oxide layer 224 contacts the upper surface of the third metal oxide layer 214 .

第一金屬氧化物層212在基板100的頂面的法線方向ND上重疊於第一閘極202,且第三金屬氧化物層214在基板100的頂面的法線方向ND上重疊於第一電極204。第三金屬氧化物層214填入第一閘介電層110中的第一開口並電性連接至第一電極204。在一些實施例中,第三金屬氧化物層214與第一電極204之間具有肖特基接觸。在一些實施例中,第一金屬氧化物層212以及第三金屬氧化物層214屬於同一圖案化層。 The first metal oxide layer 212 overlaps the first gate electrode 202 in the normal direction ND of the top surface of the substrate 100, and the third metal oxide layer 214 overlaps the first gate electrode 214 in the normal direction ND of the top surface of the substrate 100. An electrode 204 . The third metal oxide layer 214 fills the first opening in the first gate dielectric layer 110 and is electrically connected to the first electrode 204 . In some embodiments, there is a Schottky contact between the third metal oxide layer 214 and the first electrode 204 . In some embodiments, the first metal oxide layer 212 and the third metal oxide layer 214 belong to the same patterned layer.

第二金屬氧化物層222與第四金屬氧化物層224在基板100的頂面的法線方向ND上分別重疊並接觸於第一金屬氧化物層212以及第三金屬氧化物層214。第二金屬氧化物層222包括源極區222a、汲極區222c及位於源極區222a與汲極區222c之間的通道區222b,其中通道區222b在法線方向ND上重疊於第一閘極202。在一些實施例中,源極區222a與汲極區222c經摻雜而具有低於通道區222b的電阻率。在一些實施例中,第四金屬氧化物層224與第二金屬氧化物層222的通道區222b具有實質上相同的電阻率。在一些實施例中,第二金屬氧化物層222與第四金屬氧化物層224屬於同一圖案化層。 The second metal oxide layer 222 and the fourth metal oxide layer 224 respectively overlap and contact the first metal oxide layer 212 and the third metal oxide layer 214 in the normal direction ND of the top surface of the substrate 100 . The second metal oxide layer 222 includes a source region 222a, a drain region 222c, and a channel region 222b between the source region 222a and the drain region 222c, wherein the channel region 222b overlaps the first gate in the normal direction ND Pole 202. In some embodiments, the source region 222a and the drain region 222c are doped to have lower resistivity than the channel region 222b. In some embodiments, the fourth metal oxide layer 224 has substantially the same resistivity as the channel region 222 b of the second metal oxide layer 222 . In some embodiments, the second metal oxide layer 222 and the fourth metal oxide layer 224 belong to the same patterned layer.

第一金屬氧化物層212的載子濃度大於第二金屬氧化物層222的通道區222b的載子濃度。第一金屬氧化物層212的氧濃度小於第二金屬氧化物層222的通道區222b的氧濃度。在一些實施例中,第一金屬氧化物層212的氧濃度為10at%至50at%,且第二金屬氧化物層222的通道區222b的氧濃度為30at%至70at%。在一些實施例中,藉由調整氧濃度,使第一金屬氧化物層212的能隙(Band Gap)小於第二金屬氧化物層222的能隙,藉此於第一金屬氧化物層212以及第二金屬氧化物層222之間的界面形成二維電子氣2DEG。第二金屬氧化物層222的厚度t2小於或等於第一金屬氧化物層212的厚度t1,藉此使二維電子氣2DEG更容易的形成於前述界面。在一些實施例中,第一金屬氧化物層212的厚度t1為10奈米至50奈米,第二金屬氧化物層222的厚度t2為5奈米至50奈米。在一些實施例中,第一金屬氧化物層212以及第二金屬氧化物層222的材料包括銦鎵鋅氧化物、銦錫鋅氧化物、鋁鋅錫氧化物、銦鎢鋅氧化物等四元化合物或包含前述四元化合物中的其中兩種金屬元素以及氧元素的三元化合物。 The carrier concentration of the first metal oxide layer 212 is greater than the carrier concentration of the channel region 222 b of the second metal oxide layer 222 . The oxygen concentration of the first metal oxide layer 212 is smaller than the oxygen concentration of the channel region 222 b of the second metal oxide layer 222 . In some embodiments, the oxygen concentration of the first metal oxide layer 212 is 10 at % to 50 at %, and the oxygen concentration of the channel region 222 b of the second metal oxide layer 222 is 30 at % to 70 at %. In some embodiments, by adjusting the oxygen concentration, the energy gap (Band Gap) of the first metal oxide layer 212 is smaller than the energy gap of the second metal oxide layer 222, whereby the first metal oxide layer 212 and the The interface between the second metal oxide layers 222 forms a two-dimensional electron gas 2DEG. The thickness t2 of the second metal oxide layer 222 is smaller than or equal to the thickness t1 of the first metal oxide layer 212 , so that the two-dimensional electron gas 2DEG can be formed at the aforementioned interface more easily. In some embodiments, the thickness t1 of the first metal oxide layer 212 is 10 nm to 50 nm, and the thickness t2 of the second metal oxide layer 222 is 5 nm to 50 nm. In some embodiments, the materials of the first metal oxide layer 212 and the second metal oxide layer 222 include quaternary elements such as indium gallium zinc oxide, indium tin zinc oxide, aluminum zinc tin oxide, indium tungsten zinc oxide, etc. compound or a ternary compound containing two metal elements and oxygen in the aforementioned quaternary compounds.

第三金屬氧化物層214的載子濃度大於第四金屬氧化物層224的載子濃度。第三金屬氧化物層214的氧濃度小於第四金屬氧化物層224的氧濃度。在一些實施例中,第三金屬氧化物層214的氧濃度為10at%至50at%,且第四金屬氧化物層224的氧濃度為30at%至70at%。在一些實施例中,對第二堆疊結構ST2施加電壓可以使第二堆疊結構ST2在不同電阻率的狀態之間進行切 換,換句話說,第二堆疊結構ST2具有多個不同電阻率的狀態。由於第三金屬氧化物層214的載子濃度不同於第四金屬氧化物層224的載子濃度,第二堆疊結構ST2的不同狀態的電阻率為漸變的,換句話說,可變電阻式記憶體R1可以儲存單級單元、多級單元、三級單元、四級單元甚至為類比資訊。第四金屬氧化物層224的厚度t2小於或等於第三金屬氧化物層214的厚度t1。在一些實施例中,第三金屬氧化物層214的厚度t1為10奈米至50奈米,第四金屬氧化物層224的厚度t2為5奈米至50奈米。在一些實施例中,第三金屬氧化物層214以及第四金屬氧化物層224的材料包括銦鎵鋅氧化物、銦錫鋅氧化物、鋁鋅錫氧化物、銦鎢鋅氧化物等四元化合物或包含前述四元化合物中的其中兩種金屬元素以及氧元素的三元化合物。在一些實施例中,第三金屬氧化物層214以及第四金屬氧化物層224包括非晶質。 The carrier concentration of the third metal oxide layer 214 is greater than the carrier concentration of the fourth metal oxide layer 224 . The oxygen concentration of the third metal oxide layer 214 is smaller than the oxygen concentration of the fourth metal oxide layer 224 . In some embodiments, the oxygen concentration of the third metal oxide layer 214 is 10 at % to 50 at %, and the oxygen concentration of the fourth metal oxide layer 224 is 30 at % to 70 at %. In some embodiments, applying a voltage to the second stack ST2 can cause the second stack ST2 to switch between states of different resistivities. In other words, the second stack structure ST2 has a plurality of states with different resistivities. Since the carrier concentration of the third metal oxide layer 214 is different from that of the fourth metal oxide layer 224, the resistivity of the different states of the second stack structure ST2 changes gradually, in other words, the variable resistance memory The volume R1 can store single-level units, multi-level units, three-level units, four-level units and even analog information. The thickness t2 of the fourth metal oxide layer 224 is less than or equal to the thickness t1 of the third metal oxide layer 214 . In some embodiments, the thickness t1 of the third metal oxide layer 214 is 10 nm to 50 nm, and the thickness t2 of the fourth metal oxide layer 224 is 5 nm to 50 nm. In some embodiments, the materials of the third metal oxide layer 214 and the fourth metal oxide layer 224 include quaternary elements such as indium gallium zinc oxide, indium tin zinc oxide, aluminum zinc tin oxide, indium tungsten zinc oxide, etc. compound or a ternary compound containing two metal elements and oxygen in the aforementioned quaternary compounds. In some embodiments, the third metal oxide layer 214 and the fourth metal oxide layer 224 include amorphous.

第二閘介電層120設置於第一堆疊結構ST1以及第二堆疊結構ST2之上,且覆蓋第一堆疊結構ST1以及第二堆疊結構ST2,且第二閘介電層120具有重疊於第二堆疊結構ST2的第二開口。第二閘介電層120的材料例如為氧化矽、氮化矽、氮氧化矽、氧化鉿或其他合適的材料。 The second gate dielectric layer 120 is disposed on the first stack structure ST1 and the second stack structure ST2, and covers the first stack structure ST1 and the second stack structure ST2, and the second gate dielectric layer 120 has a layer overlapping the second stack structure ST2. The second opening of the stack structure ST2. The material of the second gate dielectric layer 120 is, for example, silicon oxide, silicon nitride, silicon oxynitride, hafnium oxide or other suitable materials.

第二閘極232以及第二電極234設置於第二閘介電層120之上。第二閘極232在基板100的頂面的法線方向ND上重疊於第二金屬氧化物層222的通道區222b。在本實施例中,開關元件T1為雙閘極型薄膜電晶體,且第一金屬氧化物層212以及第二金 屬氧化物層222位於第一閘極202與第二閘極232之間。第一閘極202在圖式未繪出的區域中電性連接至第二閘極232。舉例來說,第二閘極232填入貫穿第二閘介電層120以及第一閘介電層110的開口(未繪出)而連接至第一閘極202。第二電極234在基板100的頂面的法線方向ND上重疊於第四金屬氧化物層224。第二電極234填入第二閘介電層120的第二開口並電性連接至第四金屬氧化物層224,其中第一電極204、第三金屬氧化物層214、第四金屬氧化物層224以及第二電極234在基板100的頂面的法線方向ND上彼此重疊。在一些實施例中,第二電極234與第四金屬氧化物層224之間具有肖特基接觸。第二堆疊結構ST2位於第一電極204與第二電極234之間,且連接第一電極204與第二電極234。 The second gate 232 and the second electrode 234 are disposed on the second gate dielectric layer 120 . The second gate 232 overlaps the channel region 222 b of the second metal oxide layer 222 in the normal direction ND of the top surface of the substrate 100 . In this embodiment, the switching element T1 is a double-gate thin film transistor, and the first metal oxide layer 212 and the second gold The metal oxide layer 222 is located between the first gate 202 and the second gate 232 . The first gate 202 is electrically connected to the second gate 232 in a region not shown in the figure. For example, the second gate 232 fills an opening (not shown) penetrating through the second gate dielectric layer 120 and the first gate dielectric layer 110 to be connected to the first gate 202 . The second electrode 234 overlaps the fourth metal oxide layer 224 in the normal direction ND of the top surface of the substrate 100 . The second electrode 234 fills the second opening of the second gate dielectric layer 120 and is electrically connected to the fourth metal oxide layer 224, wherein the first electrode 204, the third metal oxide layer 214, the fourth metal oxide layer 224 and the second electrode 234 overlap each other in the normal direction ND of the top surface of the substrate 100 . In some embodiments, there is a Schottky contact between the second electrode 234 and the fourth metal oxide layer 224 . The second stack structure ST2 is located between the first electrode 204 and the second electrode 234 and is connected to the first electrode 204 and the second electrode 234 .

在一實施例中,第二閘極232以及第二電極234可以為不易氧化且具有較高功函數的非活性金屬,例如包括鎢、鉬、鉑、鈀、金、鉬/鋁/鉬或其組合。在一些實施例中,第二閘極232以及第二電極234包括成分相同或不同的材料。在一些實施例中,第二閘極232以及第二電極234包括相同或不同的厚度。在一些實施例中,第二閘極232以及第二電極234屬於同一圖案化層,第二閘極232以及第二電極234彼此分離。 In one embodiment, the second gate 232 and the second electrode 234 can be inactive metals that are not easily oxidized and have a relatively high work function, such as tungsten, molybdenum, platinum, palladium, gold, molybdenum/aluminum/molybdenum, or combination. In some embodiments, the second gate 232 and the second electrode 234 include the same or different materials. In some embodiments, the second gate 232 and the second electrode 234 include the same or different thicknesses. In some embodiments, the second gate 232 and the second electrode 234 belong to the same patterned layer, and the second gate 232 and the second electrode 234 are separated from each other.

層間介電層130設置於第二閘極232以及第二電極234之上,且覆蓋第二閘極232以及第二電極234。層間介電層130的材料例如為氧化矽、氮化矽、氮氧化矽或其他合適的材料。 The interlayer dielectric layer 130 is disposed on the second gate 232 and the second electrode 234 and covers the second gate 232 and the second electrode 234 . The material of the interlayer dielectric layer 130 is, for example, silicon oxide, silicon nitride, silicon oxynitride or other suitable materials.

源極242以及汲極244位於層間介電層130上,且分別填入貫穿層間介電層130以及第二閘介電層120的開口而電性連接至第一堆疊結構ST1。在一些實施例中,源極242以及汲極244分別電性連接至第二金屬氧化物層222的源極區222a及汲極區222c。另外,開關元件T1的源極242還填入貫穿層間介電層130的開口而電性連接至第二電極234。 The source electrode 242 and the drain electrode 244 are located on the interlayer dielectric layer 130 , and respectively fill in openings penetrating the interlayer dielectric layer 130 and the second gate dielectric layer 120 to be electrically connected to the first stack structure ST1 . In some embodiments, the source 242 and the drain 244 are electrically connected to the source region 222 a and the drain region 222 c of the second metal oxide layer 222 , respectively. In addition, the source 242 of the switching element T1 also fills the opening penetrating through the interlayer dielectric layer 130 and is electrically connected to the second electrode 234 .

基於上述,主動元件基板10A的開關元件T1中具有二維電子氣2DEG,因此可以提升開關元件T1的輸出電流大小。另外,可變電阻式記憶體R1包括載子濃度不同的第三金屬氧化物層214以及第四金屬氧化物層224,因此可變電阻式記憶體R1可以儲存類比資訊。 Based on the above, the switching element T1 of the active element substrate 10A has a two-dimensional electron gas 2DEG, so the output current of the switching element T1 can be increased. In addition, the variable resistance memory R1 includes the third metal oxide layer 214 and the fourth metal oxide layer 224 with different carrier concentrations, so the variable resistance memory R1 can store analog information.

圖2A至圖2H是圖1的主動元件基板的製造方法的剖面示意圖。 2A to 2H are schematic cross-sectional views of the manufacturing method of the active device substrate shown in FIG. 1 .

請參考圖2A,形成第一閘極202以及第一電極204於基板100之上。在一些實施例中,形成第一閘極202以及第一電極204的方法包括以下步驟:首先,在基板100上形成毯覆的導電材料層(未繪示);接著,利用微影製程,在導電材料層上形成圖案化光阻(未繪示);繼之,利用圖案化光阻作為罩幕,來對導電材料層進行濕式或乾式蝕刻製程,以形成第一閘極202以及第一電極204;之後,移除圖案化光阻。換句話說,第一閘極202以及第一電極204例如為同時形成。 Referring to FIG. 2A , a first gate 202 and a first electrode 204 are formed on the substrate 100 . In some embodiments, the method for forming the first gate 202 and the first electrode 204 includes the following steps: firstly, forming a blanket conductive material layer (not shown) on the substrate 100; A patterned photoresist (not shown) is formed on the conductive material layer; then, the conductive material layer is subjected to a wet or dry etching process using the patterned photoresist as a mask to form the first gate 202 and the first electrode 204; after that, remove the patterned photoresist. In other words, for example, the first gate 202 and the first electrode 204 are formed simultaneously.

請參考圖2B,形成第一閘介電層110於第一閘極202以 及第一電極204之上。第一閘介電層110具有暴露出第一電極204的第一開口O1。 Please refer to FIG. 2B , forming a first gate dielectric layer 110 on the first gate 202 and and above the first electrode 204 . The first gate dielectric layer 110 has a first opening O1 exposing the first electrode 204 .

請參考圖2C,形成第一堆疊結構ST1’以及第二堆疊結構ST2於第一閘介電層110之上。第一堆疊結構ST1’包括互相重疊的第一金屬氧化物層212以及第二金屬氧化物層222’,且第二堆疊結構ST2包括互相重疊的第三金屬氧化物層214以及第四金屬氧化物層224。 Referring to FIG. 2C , a first stack structure ST1' and a second stack structure ST2 are formed on the first gate dielectric layer 110. Referring to FIG. The first stack structure ST1' includes a first metal oxide layer 212 and a second metal oxide layer 222' overlapping each other, and the second stack structure ST2 includes a third metal oxide layer 214 and a fourth metal oxide layer overlapping each other. Layer 224.

形成第一堆疊結構ST1’以及第二堆疊結構ST2的方法包括:首先,在第一閘介電層110上形成毯覆的兩層半導體材料層(未繪示);接著,利用微影製程,在上層半導體材料層上形成圖案化光阻(未繪示);繼之,利用圖案化光阻作為罩幕,來對兩層半導體材料層進行濕式或乾式蝕刻製程,以形成第一堆疊結構ST1’以及第二堆疊結構ST2;之後,移除圖案化光阻。換句話說,第一金屬氧化物層212以及第三金屬氧化物層214例如為同時形成,且第二金屬氧化物層222’以及第四金屬氧化物層224例如為同時形成。 The method for forming the first stack structure ST1' and the second stack structure ST2 includes: firstly, forming a blanket of two semiconductor material layers (not shown) on the first gate dielectric layer 110; then, using a lithography process, Forming a patterned photoresist (not shown) on the upper semiconductor material layer; then, using the patterned photoresist as a mask to perform a wet or dry etching process on the two semiconductor material layers to form a first stack structure ST1' and the second stack structure ST2; after that, remove the patterned photoresist. In other words, the first metal oxide layer 212 and the third metal oxide layer 214 are, for example, formed simultaneously, and the second metal oxide layer 222' and the fourth metal oxide layer 224 are, for example, formed simultaneously.

在本實施例中,第一堆疊結構ST1’以及第二堆疊結構ST2是透過一次微影蝕刻製程形成,其中第一金屬氧化物層212的側壁對齊第二金屬氧化物層222’的側壁,且第三金屬氧化物層214的側壁對齊第四金屬氧化物層224的側壁。在其他實施例中,第一堆疊結構ST1’以及第二堆疊結構ST2是透過兩次微影蝕刻製程形成,其中第一金屬氧化物層212以及第三金屬氧化物層214 透過同一次微影蝕刻製程形成,且第二金屬氧化物層222’以及第四金屬氧化物層224透過另一次微影蝕刻製程形成。換句話說,第一金屬氧化物層212的側壁可以不對齊第二金屬氧化物層222’的側壁,且第三金屬氧化物層214的側壁可以不對齊第四金屬氧化物層224的側壁 In this embodiment, the first stacked structure ST1' and the second stacked structure ST2 are formed through a lithographic etching process, wherein the sidewalls of the first metal oxide layer 212 are aligned with the sidewalls of the second metal oxide layer 222', and Sidewalls of the third metal oxide layer 214 are aligned with sidewalls of the fourth metal oxide layer 224 . In other embodiments, the first stack structure ST1' and the second stack structure ST2 are formed through two photolithographic etching processes, wherein the first metal oxide layer 212 and the third metal oxide layer 214 Formed through the same lithographic etching process, and the second metal oxide layer 222' and the fourth metal oxide layer 224 are formed through another lithographic etching process. In other words, the sidewalls of the first metal oxide layer 212 may not be aligned with the sidewalls of the second metal oxide layer 222', and the sidewalls of the third metal oxide layer 214 may not be aligned with the sidewalls of the fourth metal oxide layer 224.

請參考圖2D,形成第二閘介電層120於第一堆疊結構ST1’以及第二堆疊結構ST2之上,第二閘介電層120具有暴露出第四金屬氧化物層224的第二開口O2。 2D, a second gate dielectric layer 120 is formed on the first stack structure ST1' and the second stack structure ST2, the second gate dielectric layer 120 has a second opening exposing the fourth metal oxide layer 224 O2.

請參考圖2E,形成第二閘極232以及第二電極234於第二閘介電層120上。第二電極234填入第二閘介電層120的第二開口O2中,以接觸第四金屬氧化物層224。 Referring to FIG. 2E , a second gate 232 and a second electrode 234 are formed on the second gate dielectric layer 120 . The second electrode 234 is filled into the second opening O2 of the second gate dielectric layer 120 to contact the fourth metal oxide layer 224 .

接著,以第二閘極232以及第二電極234為遮罩,對第二金屬氧化物層222’進行摻雜製程P,以形成包括源極區222a、通道區222b與汲極區222c的第二金屬氧化物層222。在一些實施例中,摻雜製程P包括氫電漿製程或離子植入製程。在本實施例中,由於第四金屬氧化物層224被第二電極234所覆蓋,摻雜製程P不會對第四金屬氧化物層224進行摻雜。 Next, using the second gate 232 and the second electrode 234 as a mask, the doping process P is performed on the second metal oxide layer 222 ′ to form a first region including the source region 222 a , the channel region 222 b and the drain region 222 c. Two metal oxide layers 222 . In some embodiments, the doping process P includes a hydrogen plasma process or an ion implantation process. In this embodiment, since the fourth metal oxide layer 224 is covered by the second electrode 234 , the doping process P does not dope the fourth metal oxide layer 224 .

請參考圖2F,形成層間介電層130於第二閘介電層120、第二閘極232以及第二電極234之上。在一些實施例中,層間介電層130為不含氫的絕緣層,藉此避免層間介電層130中的氫原子擴散至第一堆疊結構ST1以及第二堆疊結構ST2,但本發明不以此為限。在一些實施例中,層間介電層130中含有氫原子,因 此,可以藉由熱處理使氫原子擴散至第一堆疊結構ST1中,以調整第一堆疊結構ST1的電阻率。在一些實施例中,當使用層間介電層130中的氫原子進行第一堆疊結構ST1的摻雜時,可以省略圖2F的摻雜製程P。 Referring to FIG. 2F , an interlayer dielectric layer 130 is formed on the second gate dielectric layer 120 , the second gate electrode 232 and the second electrode 234 . In some embodiments, the interlayer dielectric layer 130 is an insulating layer that does not contain hydrogen, thereby preventing the hydrogen atoms in the interlayer dielectric layer 130 from diffusing into the first stack structure ST1 and the second stack structure ST2, but the present invention does not rely on This is the limit. In some embodiments, the interlayer dielectric layer 130 contains hydrogen atoms, so Therefore, hydrogen atoms can be diffused into the first stacked structure ST1 through heat treatment, so as to adjust the resistivity of the first stacked structure ST1. In some embodiments, when hydrogen atoms in the interlayer dielectric layer 130 are used for doping the first stacked structure ST1, the doping process P of FIG. 2F may be omitted.

請參考圖2G,形成開口V1、V2、V3,方法包括以下步驟:首先,利用微影製程,在層間介電層130上形成圖案化光阻(未繪示);繼之,利用圖案化光阻作為罩幕,來進行濕式或乾式蝕刻製程,以於層間介電層130以及第二閘介電層120中形成開口V1、V2,同時於層間介電層130中形成開口V3;之後,移除圖案化光阻。開口V1、V2分別暴露出第二金屬氧化物層222的汲極區222c以及源極區222a,開口V3暴露出第二電極234。 Please refer to FIG. 2G , forming openings V1, V2, V3, the method includes the following steps: first, using a lithography process, forming a patterned photoresist (not shown) on the interlayer dielectric layer 130; The resist is used as a mask to carry out a wet or dry etching process to form openings V1, V2 in the interlayer dielectric layer 130 and the second gate dielectric layer 120, and simultaneously form an opening V3 in the interlayer dielectric layer 130; after that, Remove the patterned photoresist. The openings V1 and V2 respectively expose the drain region 222 c and the source region 222 a of the second metal oxide layer 222 , and the opening V3 exposes the second electrode 234 .

最後請回到圖1,形成汲極244以及源極242於層間介電層130上。汲極244以及源極242分別填入開口V1、V2以電性連接汲極區222c以及源極區222a。此外,源極242還填入開口V3中以電性連接第二電極234。在一些實施例中,形成汲極244以及源極242的方法包括以下步驟:首先,在層間介電層130上形成毯覆的導電材料層(未繪示);接著,利用微影製程,在導電材料層上形成圖案化光阻(未繪示);繼之,利用圖案化光阻作為罩幕,來對導電材料層進行濕式或乾式蝕刻製程,以形成汲極244以及源極242;之後,移除圖案化光阻。換句話說,汲極244以及源極242例如為同時形成。 Finally, please return to FIG. 1 , forming the drain 244 and the source 242 on the interlayer dielectric layer 130 . The drain 244 and the source 242 respectively fill the openings V1 and V2 to electrically connect the drain region 222c and the source region 222a. In addition, the source electrode 242 is also filled into the opening V3 to be electrically connected to the second electrode 234 . In some embodiments, the method for forming the drain electrode 244 and the source electrode 242 includes the following steps: first, forming a blanket conductive material layer (not shown) on the interlayer dielectric layer 130; Forming a patterned photoresist (not shown) on the conductive material layer; then, using the patterned photoresist as a mask to perform a wet or dry etching process on the conductive material layer to form the drain electrode 244 and the source electrode 242; Afterwards, the patterned photoresist is removed. In other words, the drain 244 and the source 242 are formed simultaneously, for example.

經過上述製程後可大致上完成主動元件基板10A的製 作。 After the above-mentioned manufacturing process, the manufacturing of the active element substrate 10A can be substantially completed. do.

圖3是依照本發明的一實施例的一種主動元件基板的剖面示意圖。在此必須說明的是,圖3的實施例沿用圖1的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG. 3 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention. It must be noted here that the embodiment in FIG. 3 uses the component numbers and parts of the content in the embodiment in FIG. 1 , wherein the same or similar numbers are used to denote the same or similar components, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, and details are not repeated here.

圖3的主動元件基板10B與圖1的主動元件基板10A的主要差異在於:主動元件基板10B的汲極244與源極242延伸穿過第二金屬氧化物層222。 The main difference between the active device substrate 10B of FIG. 3 and the active device substrate 10A of FIG. 1 is that the drain 244 and the source 242 of the active device substrate 10B extend through the second metal oxide layer 222 .

請參考圖3,汲極244與源極242延伸穿過第二金屬氧化物層222,並接觸第一金屬氧化物層212以及第二金屬氧化物層222的界面。換句話說,汲極244與源極242直接接觸二維電子氣2DEG,藉此提升開關元件T1的輸出電流大小。 Referring to FIG. 3 , the drain 244 and the source 242 extend through the second metal oxide layer 222 and contact the interface of the first metal oxide layer 212 and the second metal oxide layer 222 . In other words, the drain 244 and the source 242 directly contact the two-dimensional electron gas 2DEG, thereby increasing the output current of the switching element T1.

圖4是依照本發明的一實施例的一種主動元件基板的剖面示意圖。在此必須說明的是,圖4的實施例沿用圖1的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG. 4 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention. It must be noted here that the embodiment in FIG. 4 follows the component numbers and part of the content of the embodiment in FIG. 1 , where the same or similar numbers are used to denote the same or similar components, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, and details are not repeated here.

圖4的主動元件基板10C與圖1的主動元件基板10A的主要差異在於:主動元件基板10C的第一金屬氧化物層212包括第一摻雜區212a以及第二摻雜區212c。 The main difference between the active device substrate 10C of FIG. 4 and the active device substrate 10A of FIG. 1 is that the first metal oxide layer 212 of the active device substrate 10C includes a first doped region 212 a and a second doped region 212 c.

在本實施例中,執行摻雜製程以於第二金屬氧化物層222 中形成源極區222a以及汲極區222c,且摻雜製程於第一金屬氧化物層212中形成第一摻雜區212a以及第二摻雜區212c。換句話說,摻雜製程中的摻子(例如氫原子)穿過第二金屬氧化物層222後抵達第一金屬氧化物層212,並於第一金屬氧化物層212中形成第一摻雜區212a以及第二摻雜區212c。第一摻雜區212a以及第二摻雜區212c分別接觸汲極區222c以及源極區222a的底部。 In the present embodiment, a doping process is performed to form the second metal oxide layer 222 A source region 222 a and a drain region 222 c are formed in the first metal oxide layer 212 , and a first doped region 212 a and a second doped region 212 c are formed in the first metal oxide layer 212 by a doping process. In other words, the dopants (such as hydrogen atoms) in the doping process pass through the second metal oxide layer 222 and reach the first metal oxide layer 212, and form the first dopant in the first metal oxide layer 212. region 212a and the second doped region 212c. The first doped region 212a and the second doped region 212c are in contact with bottoms of the drain region 222c and the source region 222a respectively.

在一些實施例中,第一摻雜區212a的厚度以及第二摻雜區212c的厚度小於第一金屬氧化物層212的厚度。 In some embodiments, the thickness of the first doped region 212 a and the thickness of the second doped region 212 c are smaller than the thickness of the first metal oxide layer 212 .

在一些實施例中,源極區222a、汲極區222c、第一摻雜區212a以及第二摻雜區212c的寬度隨著靠近基板100而逐漸縮小。源極區222a以及汲極區222c朝向通道區222b的面為弧面。 In some embodiments, the widths of the source region 222 a , the drain region 222 c , the first doped region 212 a and the second doped region 212 c gradually shrink as they approach the substrate 100 . The surfaces of the source region 222a and the drain region 222c facing the channel region 222b are arc surfaces.

圖5是依照本發明的一實施例的一種畫素電路PX的等效電路示意圖。圖5的畫素電路PX例如是前述任一實施例中的主動元件基板10A~10C上的畫素電路PX。 FIG. 5 is a schematic diagram of an equivalent circuit of a pixel circuit PX according to an embodiment of the present invention. The pixel circuit PX in FIG. 5 is, for example, the pixel circuit PX on the active device substrates 10A˜10C in any of the aforementioned embodiments.

請參考圖5,畫素電路PX可包括開關電晶體Tsw、補償記憶體Rc、寫入電晶體Twr、儲存電容Cst、驅動電晶體Tdr、感測電晶體Tse及發光元件EL,其中開關電晶體Tsw例如為圖1至圖4中任一實施例中的開關元件T1,且補償記憶體Rc例如為圖1至圖4中任一實施例中的可變電阻式記憶體R1。 Please refer to FIG. 5, the pixel circuit PX may include a switching transistor Tsw, a compensation memory Rc, a writing transistor Twr, a storage capacitor Cst, a driving transistor Tdr, a sensing transistor Tse and a light emitting element EL, wherein the switching transistor Tsw is, for example, the switch element T1 in any one of the embodiments in FIGS. 1 to 4 , and the compensation memory Rc is, for example, the variable resistance memory R1 in any one of the embodiments in FIGS. 1 to 4 .

開關電晶體Tsw的閘極(例如為圖1至圖4中的第一閘極202以及第二閘極232)電性連接於電壓VS1(例如為掃描線電壓),開關電晶體Tsw的汲極(例如為圖1至圖4中的汲極244)電性連接 於電壓Vdata(例如為資料線電壓),開關電晶體Tsw的源極(例如為圖1至圖4中的源極242電性連接於補償記憶體Rc的一端(例如圖1至圖4中的第二電極234),補償記憶體Rc的另一端(例如圖1至圖4中的第一電極204)可電性連接於第一節點a。電壓VS1用於控制開關電晶體Tsw的開關,補償記憶體Rc用於補償驅動電晶體Tdr在長時間的操作下產生的電壓偏移。 The gate of the switching transistor Tsw (for example, the first gate 202 and the second gate 232 in FIGS . The electrode (such as the drain 244 in FIGS. 1 to 4 ) is electrically connected to the voltage V data (such as the data line voltage), and the source of the switching transistor Tsw (such as the source 242 in FIGS. 1 to 4 Electrically connected to one end of the compensation memory Rc (such as the second electrode 234 in FIGS. 1 to 4 ), the other end of the compensation memory Rc (such as the first electrode 204 in FIGS. 1 to 4 ) can be electrically connected to At the first node a, the voltage V S1 is used to control the switching of the switching transistor Tsw, and the compensation memory Rc is used to compensate the voltage offset generated by the driving transistor Tdr under long-time operation.

寫入電晶體Twr的閘極電性連接於電壓VR,寫入電晶體Twr的汲極電性連接於第一節點a,寫入電晶體Twr的源極連接於電壓Vcom。寫入電晶體Twr可用於畫素補償資訊的寫入,電壓VR用於控制寫入電晶體Twr的開關。 The gate of the writing transistor Twr is electrically connected to the voltage V R , the drain of the writing transistor Twr is electrically connected to the first node a, and the source of the writing transistor Twr is connected to the voltage V com . The writing transistor Twr can be used for writing pixel compensation information, and the voltage VR is used to control the switching of the writing transistor Twr.

儲存電容Cst的一端電性連接於第二節點b,儲存電容Cst的另一端電性連接於第三節點c。第一節點a與第二節點b電性相連。 One end of the storage capacitor Cst is electrically connected to the second node b, and the other end of the storage capacitor Cst is electrically connected to the third node c. The first node a is electrically connected to the second node b.

驅動電晶體Tdr的閘極電性連接於第二節點b,驅動電晶體Tdr的汲極電性連接於電壓VDD,驅動電晶體Tdr的源極電性連接於第三節點c。由於驅動電晶體Tdr的閘極電性連接至儲存電容Cst,即使關閉開關電晶體Tsw,驅動電晶體Tdr仍可持續導通一小段時間。 The gate of the driving transistor Tdr is electrically connected to the second node b, the drain of the driving transistor Tdr is electrically connected to the voltage V DD , and the source of the driving transistor Tdr is electrically connected to the third node c. Since the gate of the driving transistor Tdr is electrically connected to the storage capacitor Cst, even if the switching transistor Tsw is turned off, the driving transistor Tdr can still be turned on for a short period of time.

感測電晶體Tse的閘極電性連接於電壓VS2,感測電晶體Tse的汲極電性連接於第三節點c,感測電晶體Tse的源極電性連接於電壓Vsus。電壓VS2用於控制感測電晶體Tse的開關,以透過感測電晶體Tse將驅動電流的資訊傳送給外部晶片(未繪示)。 The gate of the sensing transistor Tse is electrically connected to the voltage V S2 , the drain of the sensing transistor Tse is electrically connected to the third node c, and the source of the sensing transistor Tse is electrically connected to the voltage V sus . The voltage V S2 is used to control the switch of the sensing transistor Tse, so as to transmit the driving current information to an external chip (not shown) through the sensing transistor Tse.

發光元件EL的一端電性連接於第三節點c,發光元件EL的另一端電性連接於電壓VSS。發光元件EL的亮度會因為通過驅動電晶體Tdr之驅動電流的大小不同而改變。發光元件EL例如是微型發光二極體、有機發光二極體或其他發光元件。 One end of the light emitting element EL is electrically connected to the third node c, and the other end of the light emitting element EL is electrically connected to the voltage V SS . The brightness of the light emitting element EL will vary due to the magnitude of the driving current passing through the driving transistor Tdr. The light emitting element EL is, for example, a micro light emitting diode, an organic light emitting diode or other light emitting elements.

圖6是依照本發明的一實施例的一種顯示裝置在圖5的畫素電路設置下的畫素補償操作流程圖。 FIG. 6 is a flowchart of a pixel compensation operation of a display device under the pixel circuit setting of FIG. 5 according to an embodiment of the present invention.

以下簡述顯示裝置在畫素電路PX的設置下,畫素補償的操作方式,請同時參考圖5及圖6。首先,顯示裝置為關閉狀態,使畫素電路PX在背景執行灰階(grey level)感測。灰階感測的方式例如是將驅動電晶體Tdr及感測電晶體Tse開啟,以使通過驅動電晶體Tdr的驅動電流可以透過感測電晶體Tse傳送給外部晶片。在一些實施例中,在灰階感測的過程中,寫入電晶體Twr為關斷狀態。 The following briefly describes the operation mode of the pixel compensation of the display device under the setting of the pixel circuit PX, please refer to FIG. 5 and FIG. 6 at the same time. First, the display device is turned off, so that the pixel circuit PX performs gray level sensing in the background. The way of grayscale sensing is, for example, to turn on the driving transistor Tdr and the sensing transistor Tse, so that the driving current passing through the driving transistor Tdr can be transmitted to the external chip through the sensing transistor Tse. In some embodiments, during the grayscale sensing process, the write transistor Twr is turned off.

接著,外部晶片透過訊號處理及演算,建立出對應模型,進而計算出對應的補償資訊。之後,再將補償資訊寫入畫素電路PX中。舉例來說,開啟寫入電晶體Twr及開關電晶體Tsw,以將外部晶片計算出的補償資訊透過控制開關電晶體Tsw與寫入電晶體Twr寫入畫素電路PX中的補償記憶體Rc。具體地說,補償記憶體Rc的電阻會因為第一電極與第二電極之間的電壓差而改變。當第一電極與第二電極之間的電壓差很大時,第一電極與第二電極之間的第一金屬氧化物層以及第二金屬氧化物層中會產生較多的載子通道,使補償記憶體Rc處於低電阻狀態。補償記憶體 Rc的第一電極與第二電極之間的電壓差很小時,第一電極與第二電極之間的第一金屬氧化物層以及第二金屬氧化物層中會產生較少的載子通道,使補償記憶體Rc處於高電阻狀態。在一些實施例中,補償記憶體Rc中包括載子濃度不同的第一金屬氧化物層以及第二金屬氧化物層的堆疊,因此,補償記憶體Rc可以包括漸變的電阻狀態。透過調整補償記憶體Rc的第一電極與第二電極之間的電壓差來改變補償記憶體Rc的電阻。在一些實施例中,在將補償資訊寫入畫素電路PX時,感測電晶體Tse為關斷狀態。 Then, the external chip establishes a corresponding model through signal processing and calculation, and then calculates the corresponding compensation information. Afterwards, the compensation information is written into the pixel circuit PX. For example, the write transistor Twr and the switch transistor Tsw are turned on to write the compensation information calculated by the external chip into the compensation memory Rc in the pixel circuit PX by controlling the switch transistor Tsw and the write transistor Twr. Specifically, the resistance of the compensation memory Rc will change due to the voltage difference between the first electrode and the second electrode. When the voltage difference between the first electrode and the second electrode is large, more carrier channels will be generated in the first metal oxide layer and the second metal oxide layer between the first electrode and the second electrode, Make the compensation memory Rc in a low resistance state. compensation memory When the voltage difference between the first electrode and the second electrode of Rc is small, fewer carrier channels will be generated in the first metal oxide layer and the second metal oxide layer between the first electrode and the second electrode, Make the compensation memory Rc in a high resistance state. In some embodiments, the compensation memory Rc includes a stack of the first metal oxide layer and the second metal oxide layer with different carrier concentrations, so the compensation memory Rc may include a gradually changing resistance state. The resistance of the compensation memory Rc is changed by adjusting the voltage difference between the first electrode and the second electrode of the compensation memory Rc. In some embodiments, when the compensation information is written into the pixel circuit PX, the sensing transistor Tse is turned off.

接著,開啟顯示裝置。由於補償資料已經寫入補償記憶體Rc,通過補償記憶體Rc而抵達驅動電晶體Tdr的閘極的電流得以被改變,進而調整了通過驅動電晶體Tdr的驅動電流的大小,達成畫素補償的功能。在一些實施例中,在開啟顯示裝置時,寫入電晶體Twr以及感測電晶體Tse為關斷狀態。本發明透過將補償記憶體Rc設置於畫素電路PX中,因而不需要在外部晶片中設置補償記憶體,使整體系統簡化、成本降低。 Next, turn on the display device. Since the compensation data has been written into the compensation memory Rc, the current reaching the gate of the driving transistor Tdr can be changed through the compensation memory Rc, thereby adjusting the magnitude of the driving current passing through the driving transistor Tdr to achieve pixel compensation Function. In some embodiments, when the display device is turned on, the writing transistor Twr and the sensing transistor Tse are turned off. The present invention disposes the compensation memory Rc in the pixel circuit PX, so it does not need to arrange the compensation memory in the external chip, so that the overall system is simplified and the cost is reduced.

圖7是依照本發明的一實施例的一種主動元件基板的剖面示意圖。 FIG. 7 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention.

主動元件基板10D包括基板100、第一金屬氧化物層216、第一閘極236、層間介電層130、第二金屬氧化物層226、第一電極243以及第二電極245。 The active device substrate 10D includes a substrate 100 , a first metal oxide layer 216 , a first gate 236 , an interlayer dielectric layer 130 , a second metal oxide layer 226 , a first electrode 243 and a second electrode 245 .

第一金屬氧化物層216位於基板100之上。在本實施例中,第一金屬氧化物層216與基板100之間還包括緩衝層102。緩 衝層102的材料例如為氧化矽、氮化矽、氮氧化矽或上述材料的組合。 The first metal oxide layer 216 is located on the substrate 100 . In this embodiment, a buffer layer 102 is further included between the first metal oxide layer 216 and the substrate 100 . slow The material of the punching layer 102 is, for example, silicon oxide, silicon nitride, silicon oxynitride or a combination of the above materials.

第一金屬氧化物層216包括源極區216a、汲極區216c及位於源極區216a與汲極區216c之間的通道區216b。在一些實施例中,源極區216a與汲極區216c經摻雜而具有低於通道區216b的電阻率。 The first metal oxide layer 216 includes a source region 216a, a drain region 216c, and a channel region 216b between the source region 216a and the drain region 216c. In some embodiments, the source region 216a and the drain region 216c are doped to have a lower resistivity than the channel region 216b.

在一些實施例中,第一金屬氧化物層216的厚度t1為10奈米至50奈米。在一些實施例中,第一金屬氧化物層216的材料包括銦鎵鋅氧化物、銦錫鋅氧化物、鋁鋅錫氧化物、銦鎢鋅氧化物等四元化合物或包含前述四元化合物中的其中兩種金屬元素以及氧元素的三元化合物。閘介電層122設置於之上,且閘介電層122覆蓋第一金屬氧化物層216。 In some embodiments, the thickness t1 of the first metal oxide layer 216 is 10 nm to 50 nm. In some embodiments, the material of the first metal oxide layer 216 includes quaternary compounds such as indium gallium zinc oxide, indium tin zinc oxide, aluminum zinc tin oxide, indium tungsten zinc oxide or the like A ternary compound of two of the metal elements and oxygen. The gate dielectric layer 122 is disposed thereon, and the gate dielectric layer 122 covers the first metal oxide layer 216 .

第一閘極236設置於閘介電層122之上。第一閘極236在基板100的頂面的法線方向ND上重疊於第一金屬氧化物層216的通道區216b。 The first gate 236 is disposed on the gate dielectric layer 122 . The first gate 236 overlaps the channel region 216 b of the first metal oxide layer 216 in the normal direction ND of the top surface of the substrate 100 .

在一實施例中,第一閘極236可以為不易氧化且具有較高功函數的非活性金屬,例如包括鎢、鉬、鉑、鈀、金、鉬/鋁/鉬或其組合。層間介電層130設置於第一閘極236之上,且覆蓋第一閘極236。 In one embodiment, the first gate 236 may be an inactive metal that is not easily oxidized and has a relatively high work function, such as tungsten, molybdenum, platinum, palladium, gold, molybdenum/aluminum/molybdenum or combinations thereof. The interlayer dielectric layer 130 is disposed on the first gate 236 and covers the first gate 236 .

層間介電層130位於第一閘極236之上,且覆蓋第一閘極236。層間介電層130的材料例如為氧化矽、氮化矽、氮氧化矽或其他合適的材料。開口V1以及開口V2位於層間介電層130以 及閘介電層122中,且開口V1以及開口V2在基板100的頂面的法線方向ND上分別重疊於第一金屬氧化物層216的汲極區216c及源極區216a。 The interlayer dielectric layer 130 is located on the first gate 236 and covers the first gate 236 . The material of the interlayer dielectric layer 130 is, for example, silicon oxide, silicon nitride, silicon oxynitride or other suitable materials. The opening V1 and the opening V2 are located between the interlayer dielectric layer 130 and and the gate dielectric layer 122 , and the opening V1 and the opening V2 overlap the drain region 216 c and the source region 216 a of the first metal oxide layer 216 in the normal direction ND of the top surface of the substrate 100 .

第二金屬氧化物層226位於層間介電層130上,且位於開口V2中。第二金屬氧化物層226接觸第一金屬氧化物層216的源極區216a。 The second metal oxide layer 226 is located on the interlayer dielectric layer 130 and located in the opening V2. The second metal oxide layer 226 contacts the source region 216 a of the first metal oxide layer 216 .

在一些實施例中,第二金屬氧化物層226的厚度t2為5奈米至50奈米。在一些實施例中,第二金屬氧化物層226的材料包括銦鎵鋅氧化物、銦錫鋅氧化物、鋁鋅錫氧化物、銦鎢鋅氧化物等四元化合物或包含前述四元化合物中的其中兩種金屬元素以及氧元素的三元化合物。在一些實施例中,第二金屬氧化物層226包括非晶質。 In some embodiments, the thickness t2 of the second metal oxide layer 226 is 5 nm to 50 nm. In some embodiments, the material of the second metal oxide layer 226 includes quaternary compounds such as indium gallium zinc oxide, indium tin zinc oxide, aluminum zinc tin oxide, indium tungsten zinc oxide, etc. A ternary compound of two of the metal elements and oxygen. In some embodiments, the second metal oxide layer 226 includes amorphous.

在一些實施例中,第一金屬氧化物層216的通道區216b載子濃度大於第二金屬氧化物層226的的載子濃度。第一金屬氧化物層216的通道區216b的氧濃度小於第二金屬氧化物層226的氧濃度。在一些實施例中,第一金屬氧化物層212的氧濃度為10at%至50at%,且第二金屬氧化物層222的氧濃度為30at%至70at%。 In some embodiments, the carrier concentration of the channel region 216 b of the first metal oxide layer 216 is greater than that of the second metal oxide layer 226 . The oxygen concentration of the channel region 216 b of the first metal oxide layer 216 is smaller than the oxygen concentration of the second metal oxide layer 226 . In some embodiments, the oxygen concentration of the first metal oxide layer 212 is 10 at % to 50 at %, and the oxygen concentration of the second metal oxide layer 222 is 30 at % to 70 at %.

第一電極243位於層間介電層130以及第二金屬氧化物層226上,且第一電極243、第二金屬氧化物層226以及第一金屬氧化物層216的源極區216a在基板100的頂面的法線方向ND上彼此重疊,使第一電極243、第二金屬氧化物層226以及第一金屬 氧化物層216的源極區216a具有可變電阻式記憶體的功能。 The first electrode 243 is located on the interlayer dielectric layer 130 and the second metal oxide layer 226, and the source region 216a of the first electrode 243, the second metal oxide layer 226 and the first metal oxide layer 216 is on the substrate 100. overlap each other in the normal direction ND of the top surface, so that the first electrode 243, the second metal oxide layer 226 and the first metal oxide layer The source region 216a of the oxide layer 216 has the function of a variable resistance memory.

第二電極245位於層間介電層130上以及開口V1中,且電性連接第一金屬氧化物層216的汲極區216c。 The second electrode 245 is located on the interlayer dielectric layer 130 and in the opening V1 , and is electrically connected to the drain region 216 c of the first metal oxide layer 216 .

在一些實施例中,第一電極243以及第二電極245的材料可以為不易氧化且具有較高功函數的非活性金屬,例如包括鎢、鉬、鉑、鈀、金、鉬/鋁/鉬或其組合。 In some embodiments, the material of the first electrode 243 and the second electrode 245 can be an inactive metal that is not easily oxidized and has a relatively high work function, such as tungsten, molybdenum, platinum, palladium, gold, molybdenum/aluminum/molybdenum or its combination.

基於上述,主動元件基板10D的第一電極243、第二金屬氧化物層226以及第一金屬氧化物層216的源極區216a彼此重疊,因此可以將薄膜電晶體與可變電阻式記憶體整合在一起,藉此節省設置可變電阻式記憶體所需的面積。 Based on the above, the first electrode 243 of the active device substrate 10D, the second metal oxide layer 226 and the source region 216a of the first metal oxide layer 216 overlap with each other, so the thin film transistor and the variable resistance memory can be integrated Together, thereby saving the area required for setting the variable resistive memory.

圖8A至圖8F是圖7的主動元件基板的製造方法的剖面示意圖。 8A to 8F are schematic cross-sectional views of the manufacturing method of the active device substrate shown in FIG. 7 .

請參考圖8A,形成第一金屬氧化物層216’於基板100以及緩衝層102之上。在一些實施例中,形成第一金屬氧化物層216’的方法包括以下步驟:首先,在緩衝層102上形成毯覆的半導體材料層(未繪示);接著,利用微影製程,在半導體材料層上形成圖案化光阻(未繪示);繼之,利用圖案化光阻作為罩幕,來對半導體材料層進行濕式或乾式蝕刻製程,以形成第一金屬氧化物層216’;之後,移除圖案化光阻。 Referring to FIG. 8A , a first metal oxide layer 216' is formed on the substrate 100 and the buffer layer 102. Referring to FIG. In some embodiments, the method for forming the first metal oxide layer 216' includes the following steps: firstly, forming a blanket semiconductor material layer (not shown) on the buffer layer 102; forming a patterned photoresist (not shown) on the material layer; then, using the patterned photoresist as a mask to perform a wet or dry etching process on the semiconductor material layer to form the first metal oxide layer 216'; Afterwards, the patterned photoresist is removed.

請參考圖8B,形成閘介電層122於第一金屬氧化物層216’之上。 Referring to FIG. 8B, a gate dielectric layer 122 is formed on the first metal oxide layer 216'.

請參考圖8C,形成第一閘極236於閘介電層122上。 Referring to FIG. 8C , a first gate 236 is formed on the gate dielectric layer 122 .

接著,以第一閘極236為遮罩,對第一金屬氧化物層216’進行摻雜製程P,以形成包括源極區216a、通道區216b與汲極區216c的第一金屬氧化物層216。在一些實施例中,摻雜製程P包括氫電漿製程或離子植入製程。 Next, using the first gate 236 as a mask, the doping process P is performed on the first metal oxide layer 216 ′ to form the first metal oxide layer including the source region 216 a , the channel region 216 b and the drain region 216 c 216. In some embodiments, the doping process P includes a hydrogen plasma process or an ion implantation process.

請參考圖8D,形成層間介電層130於閘介電層122、第一閘極236之上。在一些實施例中,層間介電層130為不含氫的絕緣層,藉此避免層間介電層130中的氫原子擴散至第一金屬氧化物層216,但本發明不以此為限。在一些實施例中,層間介電層130中含有氫原子,因此,可以藉由熱處理使氫原子擴散至第一金屬氧化物層216中,以調整第一金屬氧化物層216的電阻率。在一些實施例中,當使用層間介電層130中的氫原子進行第一金屬氧化物層216的摻雜時,可以省略圖8C的摻雜製程P。 Referring to FIG. 8D , an interlayer dielectric layer 130 is formed on the gate dielectric layer 122 and the first gate electrode 236 . In some embodiments, the interlayer dielectric layer 130 is an insulating layer without hydrogen, thereby preventing the hydrogen atoms in the interlayer dielectric layer 130 from diffusing to the first metal oxide layer 216 , but the invention is not limited thereto. In some embodiments, the interlayer dielectric layer 130 contains hydrogen atoms, so the hydrogen atoms can be diffused into the first metal oxide layer 216 by heat treatment, so as to adjust the resistivity of the first metal oxide layer 216 . In some embodiments, when hydrogen atoms in the interlayer dielectric layer 130 are used for doping the first metal oxide layer 216 , the doping process P of FIG. 8C may be omitted.

請參考圖8E,形成開口V1、V2,方法包括以下步驟:首先,利用微影製程,在層間介電層130上形成圖案化光阻(未繪示);繼之,利用圖案化光阻作為罩幕,來進行濕式或乾式蝕刻製程,以於層間介電層130以及閘介電層122中形成開口V1、V2;之後,移除圖案化光阻。開口V1、V2分別暴露出第一金屬氧化物層216的汲極區216c以及源極區216a。 Please refer to FIG. 8E , forming the openings V1, V2, the method includes the following steps: first, using a lithography process, forming a patterned photoresist (not shown) on the interlayer dielectric layer 130; then, using the patterned photoresist as A mask is used to perform a wet or dry etching process to form openings V1 and V2 in the interlayer dielectric layer 130 and the gate dielectric layer 122; after that, the patterned photoresist is removed. The openings V1 and V2 respectively expose the drain region 216 c and the source region 216 a of the first metal oxide layer 216 .

請參考圖8F,形成第二金屬氧化物層226於層間介電層130上以及開口V2中。第二金屬氧化物層226透過開口V2而接觸源極區216a。在一些實施例中,源極區216a與第二金屬氧化物層226接觸,並出現氧的擴散轉移,使源極區216a的氧濃度上升。 Referring to FIG. 8F , a second metal oxide layer 226 is formed on the interlayer dielectric layer 130 and in the opening V2 . The second metal oxide layer 226 contacts the source region 216a through the opening V2. In some embodiments, the source region 216 a is in contact with the second metal oxide layer 226 , and the diffusion and transfer of oxygen occurs, so that the oxygen concentration in the source region 216 a increases.

最後請回到圖7,形成第一電極243以及第二電極245。於層間介電層130上。第一電極243覆蓋第二金屬氧化物層226。第二電極245填入開口V1以電性連接汲極區222c。在一些實施例中,形成第一電極243以及第二電極245的方法包括以下步驟:首先,在層間介電層130以及第二金屬氧化物層226上形成毯覆的導電材料層(未繪示);接著,利用微影製程,在導電材料層上形成圖案化光阻(未繪示);繼之,利用圖案化光阻作為罩幕,來對導電材料層進行濕式或乾式蝕刻製程,以形成第一電極243以及第二電極245;之後,移除圖案化光阻。換句話說,第一電極243以及第二電極245例如為同時形成。 Finally, please return to FIG. 7 to form the first electrode 243 and the second electrode 245 . on the interlayer dielectric layer 130 . The first electrode 243 covers the second metal oxide layer 226 . The second electrode 245 fills the opening V1 to be electrically connected to the drain region 222c. In some embodiments, the method for forming the first electrode 243 and the second electrode 245 includes the following steps: first, forming a blanket conductive material layer (not shown) on the interlayer dielectric layer 130 and the second metal oxide layer 226 ); then, using a lithography process to form a patterned photoresist (not shown) on the conductive material layer; then, using the patterned photoresist as a mask to perform a wet or dry etching process on the conductive material layer, to form the first electrode 243 and the second electrode 245; after that, remove the patterned photoresist. In other words, for example, the first electrode 243 and the second electrode 245 are formed simultaneously.

經過上述製程後可大致上完成主動元件基板10D的製作。 After the above process, the fabrication of the active device substrate 10D can be substantially completed.

圖9是依照本發明的一實施例的一種主動元件基板的剖面示意圖。在此必須說明的是,圖9的實施例沿用圖7的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG. 9 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention. It must be noted here that the embodiment in FIG. 9 uses the component numbers and partial content of the embodiment in FIG. 7 , wherein the same or similar numbers are used to denote the same or similar components, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, and details are not repeated here.

圖9的主動元件基板10E與圖7的主動元件基板10A的主要差異在於:主動元件基板10E的第一閘極236位於基板100與第一金屬氧化物層216之間。 The main difference between the active device substrate 10E in FIG. 9 and the active device substrate 10A in FIG. 7 is that the first gate 236 of the active device substrate 10E is located between the substrate 100 and the first metal oxide layer 216 .

圖10是依照本發明的一實施例的一種主動元件基板的剖面示意圖。在此必須說明的是,圖10的實施例沿用圖7的實施例 的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG. 10 is a schematic cross-sectional view of an active device substrate according to an embodiment of the present invention. It must be noted here that the embodiment of FIG. 10 follows the embodiment of FIG. 7 The same or similar numbers are used to denote the same or similar components, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, and details are not repeated here.

圖10的主動元件基板10F與圖7的主動元件基板10A的主要差異在於:主動元件基板10F更包括第二閘極206,其中第一金屬氧化物層216位於第一閘極236與第二閘極206之間。 The main difference between the active device substrate 10F shown in FIG. 10 and the active device substrate 10A shown in FIG. between poles 206 .

圖11是依照本發明的一實施例的一種畫素電路PX的等效電路示意圖。圖11的畫素電路PX例如是前述任一實施例中的主動元件基板10D~10F上的畫素電路PX。 FIG. 11 is a schematic diagram of an equivalent circuit of a pixel circuit PX according to an embodiment of the present invention. The pixel circuit PX in FIG. 11 is, for example, the pixel circuit PX on the active device substrates 10D˜10F in any of the aforementioned embodiments.

請參考圖11,畫素電路PX可包括開關電晶體Tsw、補償記憶體Rc、儲存電容Cst、驅動電晶體Tdr、感測電晶體Tse及發光元件EL,其中開關電晶體Tsw與補償記憶體Rc的結構為圖7所示的整合了薄膜電晶體與可變電阻式記憶體的半導體裝置。 Please refer to FIG. 11, the pixel circuit PX may include a switching transistor Tsw, a compensation memory Rc, a storage capacitor Cst, a driving transistor Tdr, a sensing transistor Tse, and a light emitting element EL, wherein the switching transistor Tsw and the compensation memory Rc The structure of FIG. 7 is a semiconductor device integrating a thin film transistor and a variable resistance memory.

開關電晶體Tsw的閘極電性連接於電壓VS1(例如為掃描線電壓),開關電晶體Tsw的汲極電性連接於電壓Vdata(例如為資料線電壓),開關電晶體Tsw的源極電性連接於第一節點a。 The gate of the switching transistor Tsw is electrically connected to the voltage V S1 (such as the scan line voltage), the drain of the switching transistor Tsw is electrically connected to the voltage V data (such as the data line voltage), and the source of the switching transistor Tsw The pole is electrically connected to the first node a.

驅動電晶體Tdr的閘極(例如為圖7至圖10的第一閘極236)電性連接於第一節點a。驅動電晶體Tdr的汲極(例如為圖7至圖10的第二電極245)電性連接於電壓VDD,驅動電晶體Tdr的源極電性連接於補償記憶體Rc的一端。舉例來說,驅動電晶體Tdr的源極與補償記憶體Rc的一端共用相同的導電結構,例如圖7至圖10的第一金屬氧化物層216的源極區216a。 The gate of the driving transistor Tdr (for example, the first gate 236 in FIGS. 7 to 10 ) is electrically connected to the first node a. The drain of the driving transistor Tdr (for example, the second electrode 245 in FIGS. 7 to 10 ) is electrically connected to the voltage V DD , and the source of the driving transistor Tdr is electrically connected to one end of the compensation memory Rc. For example, the source of the driving transistor Tdr and one end of the compensation memory Rc share the same conductive structure, such as the source region 216 a of the first metal oxide layer 216 in FIGS. 7 to 10 .

感測電晶體Tse的閘極電性連接於電壓VS2,感測電晶體Tse的汲極電性連接於第三節點c,感測電晶體Tse的源極電性連接於電壓Vsus。電壓VS2用於控制感測電晶體Tse的開關,以透過感測電晶體Tse將驅動電流的資訊傳送給外部晶片。 The gate of the sensing transistor Tse is electrically connected to the voltage V S2 , the drain of the sensing transistor Tse is electrically connected to the third node c, and the source of the sensing transistor Tse is electrically connected to the voltage V sus . The voltage V S2 is used to control the switch of the sensing transistor Tse, so as to transmit the driving current information to the external chip through the sensing transistor Tse.

儲存電容Cst的一端電性連接於第一節點a,儲存電容Cst的另一端電性連接於第三節點c。第二節點b與第三節點c電性相連。由於驅動電晶體Tdr的閘極電性連接至儲存電容Cst,即使關閉開關電晶體Tsw,驅動電晶體Tdr仍可持續導通一小段時間。 One end of the storage capacitor Cst is electrically connected to the first node a, and the other end of the storage capacitor Cst is electrically connected to the third node c. The second node b is electrically connected to the third node c. Since the gate of the driving transistor Tdr is electrically connected to the storage capacitor Cst, even if the switching transistor Tsw is turned off, the driving transistor Tdr can still be turned on for a short period of time.

發光元件EL的一端電性連接於第二節點b,發光元件EL的另一端電性連接於電壓VSS。發光元件EL的亮度會因為通過驅動電晶體Tdr以及補償記憶體Rc之驅動電流的大小不同而改變。發光元件EL例如是微型發光二極體、有機發光二極體或其他發光元件。 One end of the light emitting element EL is electrically connected to the second node b, and the other end of the light emitting element EL is electrically connected to the voltage V SS . The luminance of the light emitting element EL will be changed due to the difference in magnitude of the driving current passing through the driving transistor Tdr and the compensating memory Rc. The light emitting element EL is, for example, a micro light emitting diode, an organic light emitting diode or other light emitting elements.

在本實施例中,在第一節點a處,開關電晶體Tsw的源極、驅動電晶體Tdr的閘極以及儲存電容Cst的一端彼此電性連接。在第二節點b處,補償記憶體Rc的另一端(例如為圖7至圖10的第一電極243)以及發光元件EL的一端彼此電性連接。在第三節點c處,感測電晶體Tse的汲極以及儲存電容Cst的另一端彼此電性連接。感測電晶體Tse的汲極透過第三節點c以及第二節點b而電性連接至補償記憶體Rc的另一端。 In this embodiment, at the first node a, the source of the switching transistor Tsw, the gate of the driving transistor Tdr, and one end of the storage capacitor Cst are electrically connected to each other. At the second node b, the other end of the compensation memory Rc (for example, the first electrode 243 in FIGS. 7 to 10 ) and one end of the light emitting element EL are electrically connected to each other. At the third node c, the drain of the sensing transistor Tse and the other end of the storage capacitor Cst are electrically connected to each other. The drain of the sensing transistor Tse is electrically connected to the other end of the compensation memory Rc through the third node c and the second node b.

以下簡述顯示裝置在畫素電路PX的設置下,畫素補償的 操作方式,請同時參考圖9及圖6。首先,顯示裝置為關閉狀態,使畫素電路PX在背景執行灰階(grey level)感測。灰階感測的方式例如是將開關電晶體Tsw、驅動電晶體Tdr及感測電晶體Tse開啟,以使通過開關電晶體Tsw的驅動電壓和通過驅動電晶體Tdr以及補償記憶體Rc的驅動電流可以透過感測電晶體Tse傳送給外部晶片。 The following briefly describes the pixel compensation of the display device under the setting of the pixel circuit PX For the operation method, please refer to Figure 9 and Figure 6 at the same time. First, the display device is turned off, so that the pixel circuit PX performs gray level sensing in the background. The way of grayscale sensing is, for example, to turn on the switching transistor Tsw, the driving transistor Tdr and the sensing transistor Tse, so that the driving voltage passing through the switching transistor Tsw and the driving current passing through the driving transistor Tdr and the compensation memory Rc It can be transmitted to the external chip through the sensing transistor Tse.

接著,外部晶片透過訊號處理及演算,建立出對應模型,進而計算出對應的補償資訊。之後,再將補償資訊寫入畫素電路PX中。舉例來說,開啟開關電晶體Tsw、驅動電晶體Tdr及感測電晶體Tse,以將外部晶片計算出的補償資訊寫入補償記憶體Rc。具體地說,補償記憶體Rc的電阻會因為兩端之間的電壓差(例如為圖7至圖10所示的第一電極243與源極區216a之間的電壓差)而改變。當補償記憶體Rc兩端之間的電壓差很大時,補償記憶體Rc兩端之間的第二金屬氧化物層中會產生較多的載子通道,使補償記憶體Rc處於低電阻狀態。補償記憶體Rc兩端之間的電壓差很小時,補償記憶體Rc兩端之間的第二金屬氧化物層中會產生較少的載子通道,使補償記憶體Rc處於高電阻狀態。在一些實施例中,補償記憶體Rc具有多種不同電阻的狀態(例如電阻為10E2 ohm的狀態、電阻為10E3 ohm的狀態、電阻為10E4 ohm的狀態、電阻為10E5 ohm的狀態),因此,可以透過調整補償記憶體Rc兩端之間的電壓差來改變補償記憶體Rc的電阻。在一些實施例中,在將補償資訊寫入畫素電路PX時,感測電晶體Tse為關斷狀態。 Then, the external chip establishes a corresponding model through signal processing and calculation, and then calculates the corresponding compensation information. Afterwards, the compensation information is written into the pixel circuit PX. For example, the switching transistor Tsw, the driving transistor Tdr and the sensing transistor Tse are turned on to write the compensation information calculated by the external chip into the compensation memory Rc. Specifically, the resistance of the compensating memory Rc will change due to the voltage difference between the two ends (for example, the voltage difference between the first electrode 243 and the source region 216 a shown in FIGS. 7 to 10 ). When the voltage difference between the two ends of the compensation memory Rc is large, more carrier channels will be generated in the second metal oxide layer between the two ends of the compensation memory Rc, so that the compensation memory Rc is in a low resistance state . When the voltage difference between the two ends of the compensation memory Rc is small, less carrier channels will be generated in the second metal oxide layer between the two ends of the compensation memory Rc, so that the compensation memory Rc is in a high resistance state. In some embodiments, the compensation memory Rc has a plurality of states of different resistances (such as a state with a resistance of 10E2 ohm, a state with a resistance of 10E3 ohm, a state with a resistance of 10E4 ohm, and a state with a resistance of 10E5 ohm), therefore, it can be The resistance of the compensation memory Rc is changed by adjusting the voltage difference between the two ends of the compensation memory Rc. In some embodiments, when the compensation information is written into the pixel circuit PX, the sensing transistor Tse is turned off.

接著,開啟顯示裝置。由於補償資訊已經寫入補償記憶體Rc,通過驅動電晶體Tdr以及補償記憶體Rc的驅動電流的大小可以被調整,進而達成畫素補償的功能。在一些實施例中,在開啟顯示裝置時,感測電晶體Tse為關斷狀態。 Next, turn on the display device. Since the compensation information has been written into the compensation memory Rc, the magnitude of the driving current through the driving transistor Tdr and the compensation memory Rc can be adjusted, thereby achieving the function of pixel compensation. In some embodiments, when the display device is turned on, the sensing transistor Tse is turned off.

綜上所述,本發明不需要在外部晶片中設置補償記憶體,使整體系統簡化、成本降低。 To sum up, the present invention does not need to set the compensation memory in the external chip, which simplifies the overall system and reduces the cost.

PX:畫素電路PX: pixel circuit

Claims (19)

一種主動元件基板,包括: 一基板; 一開關元件,設置於該基板之上,且包括: 一第一金屬氧化物層; 一第二金屬氧化物層,接觸該第一金屬氧化物層; 一第一閘極,在該基板的頂面的一法線方向上重疊於該第一金屬氧化物層以及該第二金屬氧化物層;以及 一源極以及一汲極,電性連接該第二金屬氧化物層;以及 一可變電阻式記憶體,設置於該基板之上,且包括: 一第一電極; 一第三金屬氧化物層,電性連接該第一電極; 一第四金屬氧化物層,接觸該第三金屬氧化物層;以及 一第二電極,電性連接該開關元件以及該第四金屬氧化物層,且該第一電極、該第三金屬氧化物層、該第四金屬氧化物層以及該第二電極在該基板的該頂面的該法線方向上彼此重疊。 An active component substrate, comprising: a substrate; A switch element is arranged on the substrate and includes: a first metal oxide layer; a second metal oxide layer contacting the first metal oxide layer; a first gate overlapping the first metal oxide layer and the second metal oxide layer in a direction normal to the top surface of the substrate; and a source and a drain electrically connected to the second metal oxide layer; and A variable resistance memory is arranged on the substrate and includes: a first electrode; a third metal oxide layer electrically connected to the first electrode; a fourth metal oxide layer contacting the third metal oxide layer; and a second electrode electrically connected to the switching element and the fourth metal oxide layer, and the first electrode, the third metal oxide layer, the fourth metal oxide layer and the second electrode are on the substrate The normal directions of the top surfaces overlap each other. 如請求項1所述的主動元件基板,其中該開關元件更包括一第二閘極,該第一金屬氧化物層以及該第二金屬氧化物層位於該第一閘極以及該第二閘極之間,且該第一閘極電性連接至該第二閘極。The active device substrate as claimed in item 1, wherein the switch element further includes a second gate, the first metal oxide layer and the second metal oxide layer are located on the first gate and the second gate between, and the first gate is electrically connected to the second gate. 如請求項2所述的主動元件基板,其中該第一電極、該第二電極、該第一閘極以及該第二閘極的材料包括鎢、鉬、鉑、鈀、金、鉬/鋁/鉬或其組合。The active element substrate as claimed in item 2, wherein the materials of the first electrode, the second electrode, the first gate and the second gate include tungsten, molybdenum, platinum, palladium, gold, molybdenum/aluminum/ Molybdenum or combinations thereof. 如請求項1所述的主動元件基板,其中該第二電極與該第四金屬氧化物層之間具有肖特基接觸。The active device substrate as claimed in claim 1, wherein there is a Schottky contact between the second electrode and the fourth metal oxide layer. 如請求項1所述的主動元件基板,其中該第一金屬氧化物層的載子濃度大於該第二金屬氧化物層的一通道區的載子濃度。The active device substrate as claimed in claim 1, wherein the carrier concentration of the first metal oxide layer is greater than the carrier concentration of a channel region of the second metal oxide layer. 如請求項5所述的主動元件基板,其中一二維電子氣位於該第一金屬氧化物層以及該第二金屬氧化物層之間的界面。The active device substrate as claimed in claim 5, wherein a two-dimensional electron gas is located at the interface between the first metal oxide layer and the second metal oxide layer. 如請求項5所述的主動元件基板,其中該第一金屬氧化物層的氧濃度小於該第二金屬氧化物層的該通道區的氧濃度,該第二金屬氧化物層的厚度小於或等於該第一金屬氧化物層的厚度。The active device substrate as claimed in item 5, wherein the oxygen concentration of the first metal oxide layer is less than the oxygen concentration of the channel region of the second metal oxide layer, and the thickness of the second metal oxide layer is less than or equal to The thickness of the first metal oxide layer. 如請求項1所述的主動元件基板,其中該第三金屬氧化物層的載子濃度大於該第四金屬氧化物層的載子濃度。The active device substrate as claimed in claim 1, wherein the carrier concentration of the third metal oxide layer is greater than the carrier concentration of the fourth metal oxide layer. 如請求項8所述的主動元件基板,其中該第三金屬氧化物層的氧濃度小於該第四金屬氧化物層的氧濃度,該第四金屬氧化物層的厚度小於或等於該第三金屬氧化物層的厚度。The active element substrate as claimed in claim 8, wherein the oxygen concentration of the third metal oxide layer is less than the oxygen concentration of the fourth metal oxide layer, and the thickness of the fourth metal oxide layer is less than or equal to that of the third metal oxide layer. The thickness of the oxide layer. 如請求項8所述的主動元件基板,其中該第一金屬氧化物層與該第三金屬氧化物層屬於同一圖案化層,且該第二金屬氧化物層與該第四金屬氧化物層屬於另外同一圖案化層。The active device substrate as claimed in item 8, wherein the first metal oxide layer and the third metal oxide layer belong to the same patterned layer, and the second metal oxide layer and the fourth metal oxide layer belong to Another same patterned layer. 如請求項1所述的主動元件基板,更包括: 一驅動元件,該驅動元件的閘極電性連接該第一電極;以及 一發光元件,電性連接該驅動元件的源極。 The active component substrate as described in claim 1, further comprising: a driving element, the gate of which is electrically connected to the first electrode; and A light emitting element is electrically connected to the source of the driving element. 如請求項1所述的主動元件基板,其中該第三金屬氧化物層以及該第四金屬氧化物層包括非晶質。The active device substrate as claimed in claim 1, wherein the third metal oxide layer and the fourth metal oxide layer comprise amorphous. 一種主動元件基板,包括: 一基板; 一第一金屬氧化物層,具有一源極區、一汲極區以及位於該源極區與該汲極區之間的一通道區; 一第一閘極,在該基板的頂面的一法線方向上重疊於該第一金屬氧化物層的該通道區; 一層間介電層,位於該第一閘極之上,其中一第一開口以及一第二開口位於該層間介電層中,且該第一開口以及該第二開口在該基板的該頂面的該法線方向上分別重疊於該源極區以及該汲極區; 一第二金屬氧化物層,位於該第一開口中,且接觸該第一金屬氧化物層的該源極區; 一第一電極,位於該第二金屬氧化物層上,且該第一電極、該第二金屬氧化物層以及該第一金屬氧化物層的該源極區在該基板的該頂面的該法線方向上彼此重疊;以及 一第二電極,位於該第二開口中,且電性連接該汲極區。 An active component substrate, comprising: a substrate; a first metal oxide layer having a source region, a drain region and a channel region between the source region and the drain region; a first gate overlapping the channel region of the first metal oxide layer in a direction normal to the top surface of the substrate; an interlayer dielectric layer located on the first gate, wherein a first opening and a second opening are located in the interlayer dielectric layer, and the first opening and the second opening are on the top surface of the substrate respectively overlap the source region and the drain region in the direction of the normal line; a second metal oxide layer located in the first opening and contacting the source region of the first metal oxide layer; a first electrode located on the second metal oxide layer, and the first electrode, the second metal oxide layer and the source region of the first metal oxide layer are on the top surface of the substrate overlap each other in the normal direction; and A second electrode is located in the second opening and electrically connected to the drain region. 如請求項13所述的主動元件基板,其中該第一電極以及該第二電極的材料包括鎢、鉬、鉑、鈀、金、鉬/鋁/鉬或其組合。The active device substrate as claimed in claim 13, wherein the materials of the first electrode and the second electrode include tungsten, molybdenum, platinum, palladium, gold, molybdenum/aluminum/molybdenum or combinations thereof. 如請求項13所述的主動元件基板,其中該第一電極與該第二金屬氧化物層之間具有肖特基接觸。The active device substrate as claimed in claim 13, wherein there is a Schottky contact between the first electrode and the second metal oxide layer. 如請求項13所述的主動元件基板,其中該第一金屬氧化物層的該通道區的載子濃度大於該第二金屬氧化物層的載子濃度。The active device substrate as claimed in claim 13, wherein the carrier concentration of the channel region of the first metal oxide layer is greater than the carrier concentration of the second metal oxide layer. 如請求項16所述的主動元件基板,其中該第一金屬氧化物層的該通道區的氧濃度小於該第二金屬氧化物層的氧濃度。The active device substrate as claimed in claim 16, wherein the oxygen concentration of the channel region of the first metal oxide layer is smaller than the oxygen concentration of the second metal oxide layer. 如請求項13所述的主動元件基板,更包括: 一開關元件,電性連接該第一閘極;以及 一發光元件,電性連接該第一電極。 The active component substrate as described in claim item 13, further comprising: a switching element electrically connected to the first gate; and A light emitting element is electrically connected to the first electrode. 如請求項13所述的主動元件基板,其中該第二金屬氧化物層包括非晶質。The active device substrate as claimed in claim 13, wherein the second metal oxide layer is amorphous.
TW111117040A 2021-12-09 2022-05-05 Active device substrate TWI806591B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163287695P 2021-12-09 2021-12-09
US63/287,695 2021-12-09

Publications (2)

Publication Number Publication Date
TW202324682A TW202324682A (en) 2023-06-16
TWI806591B true TWI806591B (en) 2023-06-21

Family

ID=83782380

Family Applications (28)

Application Number Title Priority Date Filing Date
TW111110923A TWI813217B (en) 2021-12-09 2022-03-23 Semiconductor device and manufacturing method thereof
TW111114109A TWI814340B (en) 2021-12-09 2022-04-13 Semiconductor device and manufacturing method thereof
TW111114336A TW202230615A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114337A TW202230798A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114880A TW202324758A (en) 2021-12-09 2022-04-19 Semiconductor device and manufacturing method thereof
TW111115009A TWI824495B (en) 2021-12-09 2022-04-20 Semiconductor device and manufacturing method thereof
TW111115197A TWI812181B (en) 2021-12-09 2022-04-21 Semiconductor device and manufacturing method thereof
TW111115389A TWI841954B (en) 2021-12-09 2022-04-22 Active device substrate and manufacturing method thereof
TW111116518A TWI804300B (en) 2021-12-09 2022-04-29 Thin film transistor and manufacturing method thereof
TW111116869A TWI799253B (en) 2021-12-09 2022-05-04 Semiconductor device and manufactoring method thereof
TW111116754A TWI819592B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof
TW111116874A TWI799254B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof
TW111117040A TWI806591B (en) 2021-12-09 2022-05-05 Active device substrate
TW111116903A TWI814369B (en) 2021-12-09 2022-05-05 Photosensitive device substrate and manufacturing method thereof
TW111117042A TWI804302B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111117041A TWI813276B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111117309A TWI803311B (en) 2021-12-09 2022-05-09 Semiconductor device and manufacturing method thereof
TW111117305A TWI828142B (en) 2021-12-09 2022-05-09 Semiconductor device
TW111118368A TWI805369B (en) 2021-12-09 2022-05-17 Semiconductor device and manufacturing method thereof
TW111118369A TWI803320B (en) 2021-12-09 2022-05-17 Inverter and pixel circuit
TW111119084A TWI829169B (en) 2021-12-09 2022-05-23 Semiconductor device and manufacturing method thereof
TW111120041A TWI793027B (en) 2021-12-09 2022-05-30 Inverter
TW111120152A TWI816413B (en) 2021-12-09 2022-05-31 Semiconductor device and manufacturing method thereof
TW111120547A TWI829183B (en) 2021-12-09 2022-06-02 Semiconductor device and manufacturing method thereof
TW111122489A TWI798110B (en) 2021-12-09 2022-06-16 Active device substrate, capacitive device, and manufacturing method of active device substrate
TW111122796A TWI822129B (en) 2021-12-09 2022-06-20 Semiconductor device and manufacturing method thereof
TW111126381A TWI813378B (en) 2021-12-09 2022-07-14 Memory device, memory circuit and manufacturing method of memory circuit
TW111142545A TWI814636B (en) 2021-12-09 2022-11-08 Active device substrate

Family Applications Before (12)

Application Number Title Priority Date Filing Date
TW111110923A TWI813217B (en) 2021-12-09 2022-03-23 Semiconductor device and manufacturing method thereof
TW111114109A TWI814340B (en) 2021-12-09 2022-04-13 Semiconductor device and manufacturing method thereof
TW111114336A TW202230615A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114337A TW202230798A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114880A TW202324758A (en) 2021-12-09 2022-04-19 Semiconductor device and manufacturing method thereof
TW111115009A TWI824495B (en) 2021-12-09 2022-04-20 Semiconductor device and manufacturing method thereof
TW111115197A TWI812181B (en) 2021-12-09 2022-04-21 Semiconductor device and manufacturing method thereof
TW111115389A TWI841954B (en) 2021-12-09 2022-04-22 Active device substrate and manufacturing method thereof
TW111116518A TWI804300B (en) 2021-12-09 2022-04-29 Thin film transistor and manufacturing method thereof
TW111116869A TWI799253B (en) 2021-12-09 2022-05-04 Semiconductor device and manufactoring method thereof
TW111116754A TWI819592B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof
TW111116874A TWI799254B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof

Family Applications After (15)

Application Number Title Priority Date Filing Date
TW111116903A TWI814369B (en) 2021-12-09 2022-05-05 Photosensitive device substrate and manufacturing method thereof
TW111117042A TWI804302B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111117041A TWI813276B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111117309A TWI803311B (en) 2021-12-09 2022-05-09 Semiconductor device and manufacturing method thereof
TW111117305A TWI828142B (en) 2021-12-09 2022-05-09 Semiconductor device
TW111118368A TWI805369B (en) 2021-12-09 2022-05-17 Semiconductor device and manufacturing method thereof
TW111118369A TWI803320B (en) 2021-12-09 2022-05-17 Inverter and pixel circuit
TW111119084A TWI829169B (en) 2021-12-09 2022-05-23 Semiconductor device and manufacturing method thereof
TW111120041A TWI793027B (en) 2021-12-09 2022-05-30 Inverter
TW111120152A TWI816413B (en) 2021-12-09 2022-05-31 Semiconductor device and manufacturing method thereof
TW111120547A TWI829183B (en) 2021-12-09 2022-06-02 Semiconductor device and manufacturing method thereof
TW111122489A TWI798110B (en) 2021-12-09 2022-06-16 Active device substrate, capacitive device, and manufacturing method of active device substrate
TW111122796A TWI822129B (en) 2021-12-09 2022-06-20 Semiconductor device and manufacturing method thereof
TW111126381A TWI813378B (en) 2021-12-09 2022-07-14 Memory device, memory circuit and manufacturing method of memory circuit
TW111142545A TWI814636B (en) 2021-12-09 2022-11-08 Active device substrate

Country Status (1)

Country Link
TW (28) TWI813217B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118197227B (en) * 2024-05-20 2024-09-13 南京邮电大学 Active driving circuit and Micro-LED device multicolor display method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715344B (en) * 2019-12-10 2021-01-01 友達光電股份有限公司 Active device substrate and manufacturing method thereof
US20210202481A1 (en) * 2019-12-31 2021-07-01 Tokyo Electron Limited 3d complementary metal oxide semiconductor (cmos) device and method of forming the same

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371026A (en) * 1992-11-30 1994-12-06 Motorola Inc. Method for fabricating paired MOS transistors having a current-gain differential
JP2002076352A (en) * 2000-08-31 2002-03-15 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
JP4802364B2 (en) * 2000-12-07 2011-10-26 ソニー株式会社 Semiconductor layer doping method, thin film semiconductor device manufacturing method, and semiconductor layer resistance control method
US6724012B2 (en) * 2000-12-14 2004-04-20 Semiconductor Energy Laboratory Co., Ltd. Display matrix with pixels having sensor and light emitting portions
TW595005B (en) * 2003-08-04 2004-06-21 Au Optronics Corp Thin film transistor and pixel structure with the same
KR100719366B1 (en) * 2005-06-15 2007-05-17 삼성전자주식회사 Method of forming a semiconductor device having a trench device isolation layer
JP4220509B2 (en) * 2005-09-06 2009-02-04 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP5337380B2 (en) * 2007-01-26 2013-11-06 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP5294651B2 (en) * 2007-05-18 2013-09-18 キヤノン株式会社 Inverter manufacturing method and inverter
JP5480554B2 (en) * 2008-08-08 2014-04-23 株式会社半導体エネルギー研究所 Semiconductor device
US8202773B2 (en) * 2008-08-29 2012-06-19 Texas Instruments Incorporated Engineered oxygen profile in metal gate electrode and nitrided high-k gate dielectrics structure for high performance PMOS devices
KR101529575B1 (en) * 2008-09-10 2015-06-29 삼성전자주식회사 Transistor, inverter comprising the same and methods of manufacturing transistor and inverter
KR101623224B1 (en) * 2008-09-12 2016-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
EP2172977A1 (en) * 2008-10-03 2010-04-07 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101016266B1 (en) * 2008-11-13 2011-02-25 한국과학기술원 Transparent memory for transparent electronics
US8367486B2 (en) * 2009-02-05 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the transistor
WO2011001880A1 (en) * 2009-06-30 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101907366B1 (en) * 2009-07-18 2018-10-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
KR101772639B1 (en) * 2009-10-16 2017-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5727204B2 (en) * 2009-12-11 2015-06-03 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
WO2011129037A1 (en) * 2010-04-16 2011-10-20 シャープ株式会社 Thin film transistor substrate, method for producing same, and display device
TWI434409B (en) * 2010-08-04 2014-04-11 Au Optronics Corp Organic electroluminescent display unit and method for fabricating the same
SG11201504734VA (en) * 2011-06-17 2015-07-30 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
US8952377B2 (en) * 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8952379B2 (en) * 2011-09-16 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20130053053A (en) * 2011-11-14 2013-05-23 삼성디스플레이 주식회사 Organic light emitting display apparatus and method of manufacturing organic light emitting display apparatus
KR101881895B1 (en) * 2011-11-30 2018-07-26 삼성디스플레이 주식회사 Thin-film transistor array substrate, organic light emitting display device comprising the same and method for manufacturing of the thin-film transistor array substrate
TWI478353B (en) * 2011-12-14 2015-03-21 E Ink Holdings Inc Thin film transistor and method for manufacturing the same
KR101884738B1 (en) * 2011-12-23 2018-08-31 삼성디스플레이 주식회사 Organic light emitting display apparatus and method of manufacturing organic light emitting display apparatus
US8796683B2 (en) * 2011-12-23 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9006733B2 (en) * 2012-01-26 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
TWI498220B (en) * 2012-10-31 2015-09-01 Au Optronics Corp Display panel and method for manufacturing the same
GB2511541B (en) * 2013-03-06 2015-01-28 Toshiba Res Europ Ltd Field effect transistor device
TWI690085B (en) * 2013-05-16 2020-04-01 日商半導體能源研究所股份有限公司 Semiconductor device
JP6374221B2 (en) * 2013-06-05 2018-08-15 株式会社半導体エネルギー研究所 Semiconductor device
KR102281300B1 (en) * 2013-09-11 2021-07-26 삼성디스플레이 주식회사 Thin film transistor, method of manufacturing the same, and display device including the same
CN104576381B (en) * 2013-10-14 2018-01-09 中国科学院微电子研究所 Asymmetric ultrathin SOIMOS transistor structure and manufacturing method thereof
TWI535034B (en) * 2014-01-29 2016-05-21 友達光電股份有限公司 Pixel structure and method of fabricating the same
US9929279B2 (en) * 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2016076168A1 (en) * 2014-11-11 2016-05-19 シャープ株式会社 Semiconductor device and method for making same
US9859391B2 (en) * 2015-10-27 2018-01-02 Nlt Technologies, Ltd. Thin film transistor, display device, and method for manufacturing thin film transistor
TWI579974B (en) * 2015-12-25 2017-04-21 國立交通大學 A resistive memory, resistive memory unit and thin-film transistor having composition of amorphous metal oxide
KR20240027878A (en) * 2016-03-22 2024-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the same
TWI606283B (en) * 2016-04-08 2017-11-21 群創光電股份有限公司 Display device
US10468434B2 (en) * 2016-04-08 2019-11-05 Innolux Corporation Hybrid thin film transistor structure, display device, and method of making the same
CN106098784A (en) * 2016-06-13 2016-11-09 武汉华星光电技术有限公司 Coplanar type double grid electrode oxide thin film transistor and preparation method thereof
US20180122833A1 (en) * 2016-10-31 2018-05-03 LG Display Co. , Ltd. Thin film transistor substrate having bi-layer oxide semiconductor
WO2018211724A1 (en) * 2017-05-16 2018-11-22 住友電気工業株式会社 Oxide sintered body and production method therefor, sputtering target, oxide semiconductor film, and method for producing semiconductor device
KR102439133B1 (en) * 2017-09-05 2022-09-02 삼성디스플레이 주식회사 Thin film transistor substrate, method of manufacturing the same, and method of manufacturing a display device including the same
KR20190062695A (en) * 2017-11-29 2019-06-07 엘지디스플레이 주식회사 Thin film trnasistor, method for manufacturing the same and display device comprising the same
KR102482856B1 (en) * 2017-12-15 2022-12-28 엘지디스플레이 주식회사 Thin film trnasistor, method for manufacturing the same and display device comprising the same
CN108538789A (en) * 2018-03-30 2018-09-14 武汉华星光电技术有限公司 The preparation method of CMOS transistor, the preparation method of array substrate
TWI703735B (en) * 2018-06-26 2020-09-01 鴻海精密工業股份有限公司 Semiconductor substrate, array substrate, inverter circuit, and switch circuit
TWI666767B (en) * 2018-08-31 2019-07-21 友達光電股份有限公司 Active device substrate
JP6799123B2 (en) * 2018-09-19 2020-12-09 シャープ株式会社 Active matrix substrate and its manufacturing method
JP7066585B2 (en) * 2018-09-19 2022-05-13 キオクシア株式会社 Storage device
TWI685696B (en) * 2018-10-01 2020-02-21 友達光電股份有限公司 Active device substrate and manufacturing method thereof
KR102546780B1 (en) * 2018-12-28 2023-06-21 엘지디스플레이 주식회사 Thin film transistor comprising active layer having thickness difference and display apparatus comprising the same
KR20200093718A (en) * 2019-01-28 2020-08-06 삼성디스플레이 주식회사 Organic light emitting diode display device and method of manufacturing organic light emitting diode display device
US11183111B2 (en) * 2019-01-29 2021-11-23 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel unit and method for manufacturing the same, and double-sided OLED display device
EP3944329A4 (en) * 2019-03-18 2022-10-26 BOE Technology Group Co., Ltd. Display panel and manufacturing method thereof
KR20210000605A (en) * 2019-06-25 2021-01-05 엘지디스플레이 주식회사 Display device including sensor
US11594533B2 (en) * 2019-06-27 2023-02-28 Intel Corporation Stacked trigate transistors with dielectric isolation between first and second semiconductor fins
TWI726348B (en) * 2019-07-03 2021-05-01 友達光電股份有限公司 Semiconductor substrate
TWI712844B (en) * 2019-07-03 2020-12-11 友達光電股份有限公司 Device substrate and manufacturing method thereof
KR102698154B1 (en) * 2019-12-31 2024-08-22 엘지디스플레이 주식회사 Thin film transistor and display apparatus comprising the same
US11663455B2 (en) * 2020-02-12 2023-05-30 Ememory Technology Inc. Resistive random-access memory cell and associated cell array structure
US11410999B2 (en) * 2020-02-21 2022-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Boundary design for high-voltage integration on HKMG technology
KR20210117389A (en) * 2020-03-18 2021-09-29 삼성디스플레이 주식회사 Display device and method of fabricating for display device
KR20210142046A (en) * 2020-05-15 2021-11-24 삼성디스플레이 주식회사 Display device and method of fabricating the same
CN111710289B (en) * 2020-06-24 2024-05-31 天津中科新显科技有限公司 Pixel driving circuit and driving method of active light emitting device
CN113257841B (en) * 2021-07-19 2021-11-16 深圳市柔宇科技股份有限公司 TFT substrate and preparation method thereof, display and electronic equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715344B (en) * 2019-12-10 2021-01-01 友達光電股份有限公司 Active device substrate and manufacturing method thereof
US20210202481A1 (en) * 2019-12-31 2021-07-01 Tokyo Electron Limited 3d complementary metal oxide semiconductor (cmos) device and method of forming the same

Also Published As

Publication number Publication date
TWI813217B (en) 2023-08-21
TWI828142B (en) 2024-01-01
TW202324762A (en) 2023-06-16
TWI805369B (en) 2023-06-11
TWI799253B (en) 2023-04-11
TWI814369B (en) 2023-09-01
TWI803320B (en) 2023-05-21
TW202230798A (en) 2022-08-01
TW202324759A (en) 2023-06-16
TWI829183B (en) 2024-01-11
TWI812181B (en) 2023-08-11
TW202324705A (en) 2023-06-16
TW202324768A (en) 2023-06-16
TW202324758A (en) 2023-06-16
TW202324764A (en) 2023-06-16
TW202324674A (en) 2023-06-16
TW202324608A (en) 2023-06-16
TWI804302B (en) 2023-06-01
TW202329434A (en) 2023-07-16
TW202324766A (en) 2023-06-16
TWI814636B (en) 2023-09-01
TW202329465A (en) 2023-07-16
TWI822129B (en) 2023-11-11
TWI841954B (en) 2024-05-11
TWI829169B (en) 2024-01-11
TWI803311B (en) 2023-05-21
TWI813276B (en) 2023-08-21
TWI793027B (en) 2023-02-11
TW202341448A (en) 2023-10-16
TW202324743A (en) 2023-06-16
TW202324541A (en) 2023-06-16
TW202324757A (en) 2023-06-16
TW202324542A (en) 2023-06-16
TW202324614A (en) 2023-06-16
TW202324339A (en) 2023-06-16
TW202324760A (en) 2023-06-16
TWI804300B (en) 2023-06-01
TWI798110B (en) 2023-04-01
TW202230615A (en) 2022-08-01
TW202324716A (en) 2023-06-16
TWI814340B (en) 2023-09-01
TW202324763A (en) 2023-06-16
TW202324536A (en) 2023-06-16
TWI816413B (en) 2023-09-21
TWI813378B (en) 2023-08-21
TW202324682A (en) 2023-06-16
TW202324737A (en) 2023-06-16
TW202324761A (en) 2023-06-16
TWI799254B (en) 2023-04-11
TWI824495B (en) 2023-12-01
TWI819592B (en) 2023-10-21
TW202324540A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US11574978B2 (en) Display panel and display apparatus
US11264443B2 (en) Display substrate with light shielding layer and manufacturing method thereof, and display panel
US6316790B1 (en) Active matrix assembly with light blocking layer over channel region
US10957252B2 (en) Active matrix OLED display with normally-on thin-film transistors
US6911666B2 (en) Flexible metal foil substrate display and method for forming same
KR20070074594A (en) Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
CN106920804A (en) A kind of array base palte, its driving method, display panel and display device
US20090206421A1 (en) Organic light emitting display and manufacturing method thereof
US11837665B2 (en) Thin film transistor and manufacturing method thereof and electronic device
TWI806591B (en) Active device substrate
TW200539293A (en) Thin film transistor
CN113903751A (en) Thin film transistor array substrate and display device
US8120037B2 (en) System for displaying images
US6818922B2 (en) Thin film transistor array and driving circuit structure
CN115241224A (en) Semiconductor device and method for manufacturing the same
CN115050840A (en) Semiconductor device and method for manufacturing the same
US20230187455A1 (en) Active device substrate and manufacturing method thereof
CN117641981A (en) Display device having oxide semiconductor
JP2024139917A (en) Semiconductor device and display device
JP2024139916A (en) Semiconductor device, display device, and method for manufacturing the semiconductor device
JP2024526000A (en) Display substrate, manufacturing method thereof, and display device
CN112992930A (en) Manufacturing method of array substrate, array substrate and display device