TWI822129B - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
TWI822129B
TWI822129B TW111122796A TW111122796A TWI822129B TW I822129 B TWI822129 B TW I822129B TW 111122796 A TW111122796 A TW 111122796A TW 111122796 A TW111122796 A TW 111122796A TW I822129 B TWI822129 B TW I822129B
Authority
TW
Taiwan
Prior art keywords
gate
thick
thick portion
thin
semiconductor device
Prior art date
Application number
TW111122796A
Other languages
Chinese (zh)
Other versions
TW202324542A (en
Inventor
黃震鑠
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to CN202211398135.9A priority Critical patent/CN115621304A/en
Priority to US17/988,767 priority patent/US20230187556A1/en
Publication of TW202324542A publication Critical patent/TW202324542A/en
Application granted granted Critical
Publication of TWI822129B publication Critical patent/TWI822129B/en

Links

Images

Abstract

A semiconductor device includes a substrate, a semiconductor structure, a gate dielectric layer, a first gate, a source and a drain. The semiconductor structure is disposed above the substrate. The semiconductor structure includes a first thick portion, a second thick portion, and a thin portion between the first thick portion and the second thick portion. The gate dielectric layer is disposed on the semiconductor structure. The first gate is disposed on the gate dielectric layer. The first gate overlaps a portion of the first thick portion and a portion of the thin portion. The first gate does not overlap with another portion of the thin portion and the second thick portion. The source is electrically connected to the first thick portion. The drain is electrically connected to the second thick portion.

Description

半導體裝置及其製造方法Semiconductor device and manufacturing method thereof

本發明是有關於一種半導體裝置及其製造方法。 The present invention relates to a semiconductor device and a manufacturing method thereof.

一般來說,薄膜電晶體的半導體層可分為通道區及摻雜區。若摻雜區的載子濃度高,且摻雜區與通道區之間出現突然下降的載子濃度,會使薄膜電晶體在大電流的操作過程中於靠近汲極處出現很高的橫向電場,並導致半導體裝置劣化。然而,若為了避免半導體裝置劣化而降低摻雜區的載子濃度,會使半導體裝置的操作電流不足。因此,如何使半導體裝置在保有足夠的操作電流表現下,同時減小靠近汲極處的橫向電場是目前需改善的問題。 Generally speaking, the semiconductor layer of a thin film transistor can be divided into a channel region and a doped region. If the carrier concentration in the doped region is high and there is a sudden drop in carrier concentration between the doped region and the channel region, a high lateral electric field will appear near the drain of the thin film transistor during high current operation. , and cause the semiconductor device to deteriorate. However, if the carrier concentration of the doped region is reduced in order to avoid degradation of the semiconductor device, the operating current of the semiconductor device will be insufficient. Therefore, how to reduce the lateral electric field near the drain while maintaining sufficient operating current performance of the semiconductor device is currently a problem that needs to be improved.

本發明提供一種半導體裝置及其製造方法,具有足夠的操作電流,且能減小靠近汲極處的橫向電場。 The present invention provides a semiconductor device and a manufacturing method thereof, which have sufficient operating current and can reduce the lateral electric field near the drain.

本發明的至少一實施例提供一種半導體裝置。半導體裝 置包括基板、半導體結構、閘介電層、第一閘極、源極以及汲極。半導體結構設置於基板之上。半導體結構包括第一厚部、第二厚部以及位於第一厚部與第二厚部之間的薄部。第一厚部以及第二厚部的厚度大於薄部的厚度。閘介電層設置於半導體結構上。第一閘極設置於閘介電層上。第一閘極在基板的頂面的法線方向上重疊於部分第一厚部以及部分薄部。第一閘極在基板的頂面的法線方向上不重疊於另一部分薄部以及第二厚部。源極電性連接第一厚部。汲極電性連接第二厚部。 At least one embodiment of the present invention provides a semiconductor device. Semiconductor packaging The device includes a substrate, a semiconductor structure, a gate dielectric layer, a first gate, a source and a drain. The semiconductor structure is disposed on the substrate. The semiconductor structure includes a first thick portion, a second thick portion, and a thin portion between the first thick portion and the second thick portion. The thickness of the first thick part and the second thick part is greater than the thickness of the thin part. The gate dielectric layer is disposed on the semiconductor structure. The first gate is disposed on the gate dielectric layer. The first gate overlaps part of the first thick part and part of the thin part in a normal direction of the top surface of the substrate. The first gate does not overlap another thin part and the second thick part in the normal direction of the top surface of the substrate. The source electrode is electrically connected to the first thick portion. The drain electrode is electrically connected to the second thick part.

本發明的至少一實施例提供一種半導體裝置的製造方法,包括:形成半導體結構於基板之上,半導體結構包括第一厚部、第二厚部以及位於第一厚部與第二厚部之間的薄部,其中第一厚部以及第二厚部的厚度大於薄部的厚度;形成閘介電層於半導體結構上;形成第一閘極於閘介電層上,其中第一閘極在基板的頂面的法線方向上重疊於部分第一厚部以及部分薄部,且第一閘極在基板的頂面的法線方向上不重疊於另一部分薄部以及第二厚部;形成電性連接第一厚部的源極以及電性連接第二厚部的汲極。 At least one embodiment of the present invention provides a method for manufacturing a semiconductor device, including: forming a semiconductor structure on a substrate. The semiconductor structure includes a first thick portion, a second thick portion, and a semiconductor device located between the first thick portion and the second thick portion. a thin part, wherein the thickness of the first thick part and the second thick part is greater than the thickness of the thin part; forming a gate dielectric layer on the semiconductor structure; forming a first gate electrode on the gate dielectric layer, wherein the first gate electrode is on The normal direction of the top surface of the substrate overlaps with part of the first thick part and part of the thin part, and the first gate does not overlap with another part of the thin part and the second thick part in the normal direction of the top surface of the substrate; forming The source electrode of the first thick part is electrically connected and the drain electrode of the second thick part is electrically connected.

100:基板 100:Substrate

110:緩衝層 110: Buffer layer

120,120’:半導體結構 120,120’: Semiconductor structure

122,122’:第一金屬氧化物層 122,122’: first metal oxide layer

122a,122a’:第一島狀結構 122a, 122a’: first island structure

122b,122b’:第二島狀結構 122b, 122b’: second island structure

124,124’:第二金屬氧化物層 124,124’: Second metal oxide layer

130:閘介電層 130: Gate dielectric layer

140:第一閘極 140: first gate

142:第二閘極 142: Second gate

150:層間介電層 150: Interlayer dielectric layer

160:導電層 160: Conductive layer

C:電容 C: capacitor

ch:通道區 ch: channel area

D:汲極 D: drain

dr:汲極區 dr: drain area

GND:接地電壓 GND: ground voltage

LED:發光二極體 LED: light emitting diode

l1,l2,l3,l4:長度 l1,l2,l3,l4: length

ND:法線方向 ND: normal direction

P:摻雜製程 P: doping process

p1A:第一厚部 p1A: The first thick part

p1B:第二厚部 p1B: The second thick part

p2:薄部 p2: thin part

OVDD:電壓 OVDD: voltage

S:源極 S: Source

sr:源極區 sr: source region

T1:驅動元件 T1: driving element

T1A,T1B,T1C:半導體裝置 T1A, T1B, T1C: semiconductor device

T2:開關元件 T2: switching element

t1,t2:厚度 t1,t2:Thickness

V1,V2:貫孔 V1, V2: through hole

圖1是依照本發明的一實施例的一種半導體裝置的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention.

圖2A至圖2D是圖1的半導體裝置的製造方法的剖面示意圖。 2A to 2D are schematic cross-sectional views of the manufacturing method of the semiconductor device of FIG. 1 .

圖3是依照本發明的另一實施例的一種半導體裝置的剖面示意圖。 FIG. 3 is a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention.

圖4A至圖4D是圖3的半導體裝置的製造方法的剖面示意圖。 4A to 4D are schematic cross-sectional views of the manufacturing method of the semiconductor device of FIG. 3 .

圖5是依照本發明的一實施例的一種半導體裝置的剖面示意圖。 FIG. 5 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention.

圖6是依照本發明的一實施例的一種畫素電路的示意圖。 FIG. 6 is a schematic diagram of a pixel circuit according to an embodiment of the present invention.

圖7是依照本發明的另一實施例的一種畫素電路的示意圖。 FIG. 7 is a schematic diagram of a pixel circuit according to another embodiment of the present invention.

圖1是依照本發明的一實施例的一種半導體裝置的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention.

請參考圖1,半導體裝置T1A包括基板100、半導體結構120、閘介電層130、第一閘極140、源極S以及汲極D。在本實施例中,半導體裝置T1A還包括緩衝層110以及層間介電層150。 Referring to FIG. 1 , the semiconductor device T1A includes a substrate 100 , a semiconductor structure 120 , a gate dielectric layer 130 , a first gate 140 , a source S and a drain D. In this embodiment, the semiconductor device T1A further includes a buffer layer 110 and an interlayer dielectric layer 150 .

基板100之材質可為玻璃、石英、有機聚合物或是不透光/反射材料(例如:導電材料、金屬、晶圓、陶瓷或其他可適用的材料)或是其他可適用的材料。在一些實施例中,基板100為軟性基板,且基板100的材料例如為聚乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚二甲酸乙二醇酯 (polyethylene naphthalate,PEN)、聚酯(polyester,PES)、聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)、聚碳酸酯(polycarbonate,PC)、聚醯亞胺(polyimide,PI)或金屬軟板(Metal Foil)或其他可撓性材質。緩衝層110位於基板100上,緩衝層110的材質可以包括氮化矽、氧化矽、氮氧化矽或其他合適的材料或上述材料的堆疊層,但本發明不以此為限。 The material of the substrate 100 may be glass, quartz, organic polymer, opaque/reflective material (such as conductive material, metal, wafer, ceramic or other applicable materials) or other applicable materials. In some embodiments, the substrate 100 is a flexible substrate, and the material of the substrate 100 is, for example, polyethylene terephthalate (PET), polyethylene dicarboxylate. (polyethylene naphthalate, PEN), polyester (PES), polymethylmethacrylate (PMMA), polycarbonate (PC), polyimide (PI) or metal soft plate ( Metal Foil) or other flexible materials. The buffer layer 110 is located on the substrate 100. The material of the buffer layer 110 may include silicon nitride, silicon oxide, silicon oxynitride or other suitable materials or stacked layers of the above materials, but the invention is not limited thereto.

半導體結構120設置於基板100與緩衝層110之上。半導體結構120包括第一厚部p1A、第二厚部p1B以及位於第一厚部p1A與第二厚部p1B之間的薄部p2,第一厚部p1A與第二厚部p1B的厚度大於薄部p2的厚度。在一些實施例中,第一厚部p1A與第二厚部p1B遠離薄部p2的外側亦包含其他薄部,使第一厚部p1A與第二厚部p1B分別夾在對應的兩個薄部之間。 The semiconductor structure 120 is disposed on the substrate 100 and the buffer layer 110 . The semiconductor structure 120 includes a first thick portion p1A, a second thick portion p1B, and a thin portion p2 located between the first thick portion p1A and the second thick portion p1B. The thickness of the first thick portion p1A and the second thick portion p1B is greater than that of the thin portion p1A. The thickness of part p2. In some embodiments, the outer sides of the first thick part p1A and the second thick part p1B away from the thin part p2 also include other thin parts, so that the first thick part p1A and the second thick part p1B are respectively sandwiched between the two corresponding thin parts. between.

半導體結構120可包括第一金屬氧化物層122及第二金屬氧化物層124。第一金屬氧化物層122及第二金屬氧化物層124的堆疊部分可構成半導體結構120的兩個厚部。舉例來說,在本實施例中,第一金屬氧化物層122包括互相分離的第一島狀結構122a以及第二島狀結構122b。第二金屬氧化物層124與第一島狀結構122a互相堆疊以構成第一厚部p1A,且第二金屬氧化物層124與第二島狀結構122b互相堆疊以構成第二厚部p1B。在本實施例中,第一島狀結構122a的長度l3不同於第二島狀結構122b的長度l4,但本發明不以此為限。在其他實施例中,第一島狀結構122a的長度l3等於第二島狀結構122b的長度l4。 The semiconductor structure 120 may include a first metal oxide layer 122 and a second metal oxide layer 124 . The stacked portions of the first metal oxide layer 122 and the second metal oxide layer 124 may constitute two thick portions of the semiconductor structure 120 . For example, in this embodiment, the first metal oxide layer 122 includes a first island-like structure 122a and a second island-like structure 122b that are separated from each other. The second metal oxide layer 124 and the first island-like structure 122a are stacked on each other to form the first thick portion p1A, and the second metal oxide layer 124 and the second island-like structure 122b are stacked on each other to form the second thick portion p1B. In this embodiment, the length l3 of the first island-shaped structure 122a is different from the length l4 of the second island-shaped structure 122b, but the invention is not limited thereto. In other embodiments, the length l3 of the first island structure 122a is equal to the length l4 of the second island structure 122b.

第二金屬氧化物層124位於第一厚部p1A與第二厚部p1B之間的部分可構成薄部p2。換句話說,第一厚部p1A與第二厚部p1B的厚度基本上為第一金屬氧化物層122的厚度t1與第二金屬氧化物層124的厚度t2的總和,而薄部p2的厚度基本上等於第二金屬氧化物層124的厚度t2。在一些實施例中,第二金屬氧化物層124位於第一厚部p1A與第二厚部p1B遠離薄部p2的外側的部份亦可構成其他薄部。 The portion of the second metal oxide layer 124 located between the first thick portion p1A and the second thick portion p1B may constitute the thin portion p2. In other words, the thickness of the first thick portion p1A and the second thick portion p1B is substantially the sum of the thickness t1 of the first metal oxide layer 122 and the thickness t2 of the second metal oxide layer 124 , while the thickness of the thin portion p2 is substantially equal to the thickness t2 of the second metal oxide layer 124 . In some embodiments, the portion of the second metal oxide layer 124 located outside the first thick portion p1A and the second thick portion p1B away from the thin portion p2 may also constitute other thin portions.

半導體結構120的材料包括銦鎵錫鋅氧化物(IGTZO)或氧化銦鎵鋅(IGZO)、氧化銦錫鋅(ITZO)、氧化鋁鋅錫(AZTO)、氧化銦鎢鋅(IWZO)等四元金屬化合物或包含鎵(Ga)、鋅(Zn)、銦(In)、錫(Sn)、鋁(Al)、鎢(W)中之任三者的三元金屬構成的氧化物或鑭系稀土摻雜金屬氧化物(例如Ln-IZO)。在一些實施例中,第一金屬氧化物層122與第二金屬氧化物層124可包括相同的金屬元素,但本發明不以此為限。在一些實施例中,第一金屬氧化物層122及第二金屬氧化物層124的厚度可以相同,例如皆在2nm至60nm之間,但本發明不以此為限。 The materials of the semiconductor structure 120 include indium gallium tin zinc oxide (IGTZO) or indium gallium zinc oxide (IGZO), indium tin zinc oxide (ITZO), aluminum zinc tin oxide (AZTO), indium tungsten zinc oxide (IWZO), etc. Metal compounds or oxides composed of ternary metals containing any three of gallium (Ga), zinc (Zn), indium (In), tin (Sn), aluminum (Al), and tungsten (W) or lanthanide rare earths Doped metal oxides (such as Ln-IZO). In some embodiments, the first metal oxide layer 122 and the second metal oxide layer 124 may include the same metal element, but the invention is not limited thereto. In some embodiments, the thicknesses of the first metal oxide layer 122 and the second metal oxide layer 124 may be the same, for example, between 2 nm and 60 nm, but the invention is not limited thereto.

閘介電層130設置於半導體結構120及緩衝層110上。第一閘極140設置於閘介電層130上。第一閘極140在基板100的頂面的法線方向ND上重疊於部分第一厚部p1A以及部分薄部p2,且第一閘極140在法線方向ND上未重疊於另一部分第一厚部p1A、另一部分薄部p2以及第二厚部p1B。在一些實施例中,第一閘極140的長度l1與薄部p2的長度l2彼此相等或彼此不同。 The gate dielectric layer 130 is disposed on the semiconductor structure 120 and the buffer layer 110 . The first gate 140 is disposed on the gate dielectric layer 130 . The first gate 140 overlaps with part of the first thick part p1A and part of the thin part p2 in the normal direction ND of the top surface of the substrate 100, and the first gate 140 does not overlap with another part of the first part in the normal direction ND. The thick part p1A, another thin part p2 and the second thick part p1B. In some embodiments, the length l1 of the first gate 140 and the length l2 of the thin portion p2 are equal to or different from each other.

在本實施例中,半導體結構包括源極區sr、汲極區dr以及位於源極區sr與汲極區dr之間的通道區ch。源極區sr與汲極區dr經摻雜而具有低於通道區ch的電阻率。 In this embodiment, the semiconductor structure includes a source region sr, a drain region dr, and a channel region ch located between the source region sr and the drain region dr. The source region sr and the drain region dr are doped to have a lower resistivity than the channel region ch.

在本實施例中,通道區ch的範圍是由第一閘極140所定義,其中通道區ch包括第一厚部p1A在法線方向ND上重疊於第一閘極140的部分以及薄部p2在法線方向ND上重疊於第一閘極140的部分。因此,在本實施例中,通道區ch包括部分第一島狀結構122a與部分第二金屬氧化物層124。 In this embodiment, the range of the channel region ch is defined by the first gate 140 , where the channel region ch includes a portion of the first thick portion p1A that overlaps the first gate 140 in the normal direction ND and a thin portion p2 A portion overlapping the first gate 140 in the normal direction ND. Therefore, in this embodiment, the channel region ch includes part of the first island structure 122a and part of the second metal oxide layer 124.

第一閘極140在法線方向ND上不重疊於部分第一厚部p1A,且源極區sr包括第一厚部p1A在法線方向ND上不重疊於第一閘極140的部分。第一閘極140在法線方向ND上不重疊於部分薄部p2以及第二厚部p1B,且汲極區dr包括薄部p2在法線方向ND上不重疊於第一閘極140的部分以及第二厚部p1B。在一些實施例中,源極區sr還包括位於第一厚部p1A遠離薄部p2的外側的其他薄部,且汲極區dr還包括位於第二厚部p1B遠離薄部p2的外側的其他薄部。 The first gate 140 does not overlap a portion of the first thick portion p1A in the normal direction ND, and the source region sr includes a portion of the first thick portion p1A that does not overlap the first gate 140 in the normal direction ND. The first gate 140 does not overlap the thin portion p2 and the second thick portion p1B in the normal direction ND, and the drain region dr includes a portion of the thin portion p2 that does not overlap the first gate 140 in the normal direction ND. and the second thick part p1B. In some embodiments, the source region sr also includes other thin portions located outside the first thick portion p1A away from the thin portion p2, and the drain region dr also includes other thin portions located outside the second thick portion p1B away from the thin portion p2. Thin part.

在本實施例中,由於汲極區dr靠近通道區ch的部分的厚度較薄,因此可以減少汲極區dr連接通道區ch的部分的電阻率,藉此減少汲極區dr因為橫向電場而產生的熱載子效應。此外,由於源極區sr靠近通道區ch的部分的厚度較厚,因此可以避免源極區sr因為厚度減少而導致電阻率上升。 In this embodiment, since the thickness of the portion of the drain region dr close to the channel region ch is thinner, the resistivity of the portion of the drain region dr connected to the channel region ch can be reduced, thereby reducing the risk of the drain region dr due to the lateral electric field. The hot carrier effect produced. In addition, since the thickness of the portion of the source region sr close to the channel region ch is thicker, it is possible to avoid an increase in the resistivity of the source region sr due to a reduction in thickness.

此外,雖然通道區ch內具有厚度不同的部分,但由於通 道區ch內的電流大部分是在通道區ch的表面進行傳導,因此通道區ch的厚度變化對通道區ch的電阻率的影響較小。在本實施例中,藉由將第一厚部p1A設置於第一閘極140下方,以使第一厚部p1A與薄部p2的連接部分位於通道區ch內。在一些實施例中,藉由使第一島狀結構122a在法線方向ND上部分重疊於第一閘極140,以避免製程偏移導致第一厚部p1A與薄部p2的連接部分偏離通道區ch。 In addition, although there are portions with different thicknesses in the channel region ch, due to the Most of the current in the channel region ch is conducted on the surface of the channel region ch, so the thickness change of the channel region ch has little impact on the resistivity of the channel region ch. In this embodiment, by disposing the first thick portion p1A below the first gate 140 , the connection portion between the first thick portion p1A and the thin portion p2 is located in the channel region ch. In some embodiments, by partially overlapping the first gate 140 in the normal direction ND, the first island-shaped structure 122a is used to prevent process deviation from causing the connection portion of the first thick portion p1A and the thin portion p2 to deviate from the channel. District ch.

層間介電層150設置於閘介電層130上,並覆蓋第一閘極140。層間介電層150與閘介電層130的材料例如為氧化矽、氮化矽、氮氧化矽或其他合適的材料。貫孔V1、V2貫穿層間介電層150及閘介電層130,且貫孔V1、V2分別重疊於第一厚部p1A與第二厚度p1B。導電層160位於層間介電層150上,且分別填入貫孔V1、V2以電性連接至半導體結構120的第一厚部p1A與第二厚度p1B。導電層160可構成源極S與汲極D,源極S透過貫孔V1電性連接至源極區sr,汲極D透過貫孔V2電性連接至汲極區dr。在本實施例中,源極S與汲極D連接第二金屬氧化物層124。在一些實施例中,第一厚部p1A與第二厚度p1B在基板100的投影面積分別大於源極S與第一厚部p1A的接觸面積及汲極D與第二厚度p1B的接觸面積,藉此減少源極S及汲極D因為製程偏移而未接觸至厚部的機率。 The interlayer dielectric layer 150 is disposed on the gate dielectric layer 130 and covers the first gate electrode 140 . The materials of the interlayer dielectric layer 150 and the gate dielectric layer 130 are, for example, silicon oxide, silicon nitride, silicon oxynitride or other suitable materials. The through holes V1 and V2 penetrate the interlayer dielectric layer 150 and the gate dielectric layer 130 , and the through holes V1 and V2 overlap the first thick portion p1A and the second thickness p1B respectively. The conductive layer 160 is located on the interlayer dielectric layer 150 and fills the through holes V1 and V2 respectively to be electrically connected to the first thick portion p1A and the second thickness p1B of the semiconductor structure 120 . The conductive layer 160 can form a source S and a drain D. The source S is electrically connected to the source region sr through the through hole V1, and the drain D is electrically connected to the drain region dr through the through hole V2. In this embodiment, the source S and the drain D are connected to the second metal oxide layer 124 . In some embodiments, the projected areas of the first thick portion p1A and the second thickness p1B on the substrate 100 are respectively larger than the contact area between the source S and the first thick portion p1A and the contact area between the drain D and the second thickness p1B, whereby This reduces the probability that the source S and the drain D are not in contact with the thick part due to process deviation.

基於上述,除了能改善半導體裝置T1A的熱載子效應以外,還能避免半導體裝置T1A的源極區sr的電阻率上升,藉此提 升半導體裝置T1A的操作電流,進而提升半導體裝置T1A的整體性能與可靠度。 Based on the above, in addition to improving the hot carrier effect of the semiconductor device T1A, it can also avoid an increase in the resistivity of the source region sr of the semiconductor device T1A, thereby improving The operating current of the semiconductor device T1A is increased, thereby improving the overall performance and reliability of the semiconductor device T1A.

圖2A至圖2D是圖1的半導體裝置的製造方法的剖面示意圖。 2A to 2D are schematic cross-sectional views of the manufacturing method of the semiconductor device of FIG. 1 .

請參考圖2A與圖2B,形成半導體結構120’於基板100之上。舉例來說,可先形成緩衝層110於基板100上,之後形成半導體結構120’於緩衝層110上。半導體結構120’包括第一厚部p1A、第二厚部p1B以及位於第一厚部p1A與第二厚部p1B之間的薄部p2。 Referring to Figures 2A and 2B, a semiconductor structure 120' is formed on the substrate 100. For example, the buffer layer 110 can be formed on the substrate 100 first, and then the semiconductor structure 120' can be formed on the buffer layer 110. The semiconductor structure 120' includes a first thick portion p1A, a second thick portion p1B, and a thin portion p2 located between the first thick portion p1A and the second thick portion p1B.

在本實施例中,半導體結構120’的形成方法例如可如圖2A所示,先形成第一金屬氧化物層122’於緩衝層110及基板100之上,其中第一金屬氧化物半導體層122’包括互相分離的第一島狀結構122a’以及第二島狀結構122b’。然後,如圖2B所示,形成第二金屬氧化物層124’於第一金屬氧化物層122’上。在一些實施例中,第二金屬氧化物層124’完全包覆第一金屬氧化物層122’,以避免圖案化第二金屬氧化物層124’時的圖案化製程對第一金屬氧化物層122’造成損傷。 In this embodiment, the semiconductor structure 120' may be formed by, for example, as shown in FIG. 2A. The first metal oxide layer 122' is first formed on the buffer layer 110 and the substrate 100. The first metal oxide semiconductor layer 122' 'Includes a first island-shaped structure 122a' and a second island-shaped structure 122b' that are separated from each other. Then, as shown in FIG. 2B, a second metal oxide layer 124' is formed on the first metal oxide layer 122'. In some embodiments, the second metal oxide layer 124' completely covers the first metal oxide layer 122' to avoid damaging the first metal oxide layer during the patterning process when patterning the second metal oxide layer 124'. 122' causes damage.

在一些實施例中,第一金屬氧化物層122’的氧濃度小於或等於第二金屬氧化物層124’的氧濃度,藉此減少第一厚部p1A以及第二厚部p1B的電阻率。 In some embodiments, the oxygen concentration of the first metal oxide layer 122' is less than or equal to the oxygen concentration of the second metal oxide layer 124', thereby reducing the resistivity of the first thick portion p1A and the second thick portion p1B.

請參考圖2C,形成閘介電層130於半導體結構120’上。形成第一閘極140於閘介電層130上。在一些實施例中,形成第 一閘極140的製程包括乾式蝕刻或濕式蝕刻。第一閘極140在基板100的頂面的法線方向ND上重疊於部分第一厚部p1A以及部分薄部p2,且第一閘極140在法線方向ND上不重疊於另一部分第一厚部p1A、另一部分薄部p2以及第二厚部p1B。 Referring to FIG. 2C, a gate dielectric layer 130 is formed on the semiconductor structure 120'. The first gate 140 is formed on the gate dielectric layer 130 . In some embodiments, forming the The manufacturing process of a gate 140 includes dry etching or wet etching. The first gate 140 overlaps part of the first thick part p1A and part of the thin part p2 in the normal direction ND of the top surface of the substrate 100, and the first gate 140 does not overlap another part of the first part in the normal direction ND. The thick part p1A, another thin part p2 and the second thick part p1B.

接著,以第一閘極140為遮罩,對半導體結構120’執行摻雜製程P,以形成包含通道區ch、源極區sr與汲極區dr的半導體結構120。源極區sr與汲極區dr的摻雜濃度大於通道區ch的摻雜濃度。摻雜製程P例如可為氫電漿製程或離子布植製程,但本發明不以此為限。 Next, using the first gate 140 as a mask, a doping process P is performed on the semiconductor structure 120' to form the semiconductor structure 120 including the channel region ch, the source region sr and the drain region dr. The doping concentration of the source region sr and the drain region dr is greater than the doping concentration of the channel region ch. The doping process P may be, for example, a hydrogen plasma process or an ion implantation process, but the invention is not limited thereto.

請參照圖2D,形成層間介電層150於閘介電層130上,並覆蓋第一閘極140。之後,形成貫穿層間介電層150及閘介電層130的貫孔V1、V2,且貫孔V1、V2分別在基板100的頂面的法線方向ND上重疊於第一厚部p1A與第二厚部p1B。 Referring to FIG. 2D , an interlayer dielectric layer 150 is formed on the gate dielectric layer 130 and covers the first gate electrode 140 . Afterwards, through holes V1 and V2 are formed penetrating the interlayer dielectric layer 150 and the gate dielectric layer 130 , and the through holes V1 and V2 respectively overlap the first thick portion p1A and the third thick portion p1A in the normal direction ND of the top surface of the substrate 100 . Part 2 p1B.

然後,請參照圖1,形成分別電性連接至第一厚部p1A與第二厚部p1B的源極S及汲極D。舉例來說,可形成導電層160於層間介電層150之上,並填入貫孔V1、V2中,以與半導體結構120電性連接。導電層160可包括源極S及汲極D,其分別透過貫孔V1、V2電性連接至第一厚部p1A與第二厚部p1B。 Then, please refer to FIG. 1 to form a source S and a drain D that are electrically connected to the first thick portion p1A and the second thick portion p1B respectively. For example, the conductive layer 160 can be formed on the interlayer dielectric layer 150 and filled in the through holes V1 and V2 to be electrically connected to the semiconductor structure 120 . The conductive layer 160 may include a source S and a drain D, which are electrically connected to the first thick portion p1A and the second thick portion p1B through the through holes V1 and V2 respectively.

經過上述製程後可大致上完成半導體裝置T1A的製作。 After the above process, the production of the semiconductor device T1A can be substantially completed.

圖3是依照本發明的另一實施例的一種半導體裝置的剖面示意圖。在此必須說明的是,圖3的實施例沿用圖1的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同 或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG. 3 is a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention. It must be noted here that the embodiment of FIG. 3 follows the component numbers and part of the content of the embodiment of FIG. 1 , where the same or similar numbers are used to represent the same. or similar components, and descriptions of the same technical content are omitted. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be described again here.

圖3的半導體裝置T1B與圖1的半導體裝置T1A的主要差異在於:半導體裝置T1B的第二金屬氧化物層124位於第一金屬氧化物層122與基板100之間。此外,在本實施例中,源極S與汲極D連接第一金屬氧化物層122。 The main difference between the semiconductor device T1B of FIG. 3 and the semiconductor device T1A of FIG. 1 is that the second metal oxide layer 124 of the semiconductor device T1B is located between the first metal oxide layer 122 and the substrate 100 . In addition, in this embodiment, the source S and the drain D are connected to the first metal oxide layer 122 .

請參考圖3,第一金屬氧化物層122及第二金屬氧化物層124的堆疊部分可構成半導體結構120的兩個厚部。舉例來說,在本實施例中,第一金屬氧化物層122包括互相分離的第一島狀結構122a以及第二島狀結構122b。在本實施例中,第一島狀結構122a的長度l3不同於第二島狀結構122b的長度l4,但本發明不以此為限。在其他實施例中,第一島狀結構122a的長度l3等於第二島狀結構122b的長度l4。 Referring to FIG. 3 , the stacked portions of the first metal oxide layer 122 and the second metal oxide layer 124 may constitute two thick portions of the semiconductor structure 120 . For example, in this embodiment, the first metal oxide layer 122 includes a first island-like structure 122a and a second island-like structure 122b that are separated from each other. In this embodiment, the length l3 of the first island-shaped structure 122a is different from the length l4 of the second island-shaped structure 122b, but the invention is not limited thereto. In other embodiments, the length l3 of the first island structure 122a is equal to the length l4 of the second island structure 122b.

第二金屬氧化物層124與第一島狀結構122a互相堆疊以構成第一厚部p1A,且第二金屬氧化物層124與第二島狀結構122b互相堆疊以構成第二厚部p1B。第二金屬氧化物層124位於第一厚部p1A與第二厚部p1B之間的部分可構成薄部p2。換句話說,第一厚部p1A與第二厚部p1B的厚度基本上為第一金屬氧化物層122的厚度t1與第二金屬氧化物層124的厚度t2的總和,薄部p2的厚度基本上等於第二金屬氧化物層124的厚度t2。在一些實施例中,第二金屬氧化物層124位於第一厚部p1A與第二厚部p1B外側遠離薄部p2的部份亦可構成其他薄部。 The second metal oxide layer 124 and the first island-like structure 122a are stacked on each other to form the first thick portion p1A, and the second metal oxide layer 124 and the second island-like structure 122b are stacked on each other to form the second thick portion p1B. The portion of the second metal oxide layer 124 located between the first thick portion p1A and the second thick portion p1B may constitute the thin portion p2. In other words, the thickness of the first thick portion p1A and the second thick portion p1B is substantially the sum of the thickness t1 of the first metal oxide layer 122 and the thickness t2 of the second metal oxide layer 124 , and the thickness of the thin portion p2 is substantially is equal to the thickness t2 of the second metal oxide layer 124 . In some embodiments, the portion of the second metal oxide layer 124 located outside the first thick portion p1A and the second thick portion p1B away from the thin portion p2 may also form other thin portions.

在本實施例中,由於汲極區dr靠近通道區ch的部分的厚度較薄,因此可以減少汲極區dr連接通道區ch的部分的電阻率,藉此減少汲極區dr因為橫向電場而產生的熱載子效應。此外,由於源極區sr靠近通道區ch的部分的厚度較厚,因此可以避免源極區sr因為厚度減少而導致電阻率上升。 In this embodiment, since the thickness of the portion of the drain region dr close to the channel region ch is thinner, the resistivity of the portion of the drain region dr connected to the channel region ch can be reduced, thereby reducing the risk of the drain region dr due to the lateral electric field. The hot carrier effect produced. In addition, since the thickness of the portion of the source region sr close to the channel region ch is thicker, it is possible to avoid an increase in the resistivity of the source region sr due to a reduction in thickness.

此外,雖然通道區ch內具有厚度不同的部分,但由於通道區ch內的電流大部分是在通道區ch的表面進行傳導,因此通道區ch的厚度變化對通道區ch的電阻率的影響較小。在本實施例中,藉由將第一厚部p1A設置於第一閘極140下方,以使第一厚部p1A與薄部p2的連接部分位於通道區ch內。在一些實施例中,藉由使第一島狀結構122a在法線方向ND上重疊於第一閘極140,以避免製程偏移導致第一厚部p1A與薄部p2的連接部分偏離通道區ch。 In addition, although there are parts with different thicknesses in the channel region ch, since most of the current in the channel region ch is conducted on the surface of the channel region ch, changes in the thickness of the channel region ch have a relatively small impact on the resistivity of the channel region ch. Small. In this embodiment, by disposing the first thick portion p1A below the first gate 140 , the connection portion between the first thick portion p1A and the thin portion p2 is located in the channel region ch. In some embodiments, the first island structure 122a is overlapped with the first gate 140 in the normal direction ND to avoid process deviation causing the connection portion of the first thick portion p1A and the thin portion p2 to deviate from the channel area. ch.

圖4A至圖4D是圖3的半導體裝置的製造方法的剖面示意圖。 4A to 4D are schematic cross-sectional views of the manufacturing method of the semiconductor device of FIG. 3 .

請參考圖4A與圖4B,形成半導體結構120’於基板100之上。舉例來說,可先形成緩衝層110於基板100上,之後形成半導體結構120’於緩衝層110上。半導體結構120’包括第一厚部p1A、第二厚部p1B以及位於第一厚部p1A與第二厚部p1B之間的薄部p2。 Referring to Figures 4A and 4B, a semiconductor structure 120' is formed on the substrate 100. For example, the buffer layer 110 can be formed on the substrate 100 first, and then the semiconductor structure 120' can be formed on the buffer layer 110. The semiconductor structure 120' includes a first thick portion p1A, a second thick portion p1B, and a thin portion p2 located between the first thick portion p1A and the second thick portion p1B.

在本實施例中,半導體結構120’的形成方法例如可如圖4A所示,先形成第二金屬氧化物層124’於緩衝層110及基板100 之上。然後,如圖4B所示,形成第一金屬氧化物層122’於第二金屬氧化物層124’上,其中第一金屬氧化物半導體層122’包括互相分離的第一島狀結構122a’以及第二島狀結構122b’。 In this embodiment, the semiconductor structure 120' may be formed by, for example, as shown in FIG. 4A. The second metal oxide layer 124' is first formed on the buffer layer 110 and the substrate 100. above. Then, as shown in FIG. 4B , a first metal oxide layer 122 ′ is formed on the second metal oxide layer 124 ′, wherein the first metal oxide semiconductor layer 122 ′ includes mutually separated first island structures 122 a ′ and The second island structure 122b'.

在一些實施例中,第一金屬氧化物層122’的氧濃度小於或等於第二金屬氧化物層124’的氧濃度,藉此減少第一厚部p1A以及第二厚部p1B的電阻率。 In some embodiments, the oxygen concentration of the first metal oxide layer 122' is less than or equal to the oxygen concentration of the second metal oxide layer 124', thereby reducing the resistivity of the first thick portion p1A and the second thick portion p1B.

請參考圖4C,形成閘介電層130於半導體結構120’上。形成第一閘極140於閘介電層130上。在一些實施例中,形成第一閘極140的製程包括乾式蝕刻或濕式蝕刻。第一閘極140在基板100的頂面的法線方向ND上重疊於部分第一厚部p1A以及部分薄部p2,且第一閘極140在法線方向ND上不重疊於另一部分第一厚部p1A、另一部分薄部p2以及第二厚部p1B。 Referring to FIG. 4C, a gate dielectric layer 130 is formed on the semiconductor structure 120'. The first gate 140 is formed on the gate dielectric layer 130 . In some embodiments, the process of forming the first gate 140 includes dry etching or wet etching. The first gate 140 overlaps part of the first thick part p1A and part of the thin part p2 in the normal direction ND of the top surface of the substrate 100, and the first gate 140 does not overlap another part of the first part in the normal direction ND. The thick part p1A, another thin part p2 and the second thick part p1B.

以第一閘極140為遮罩,對半導體結構120’執行摻雜製程P,以形成包含通道區ch、源極區sr與汲極區dr的半導體結構120。源極區sr與汲極區dr的摻雜濃度大於通道區ch的摻雜濃度。摻雜製程P例如可為氫電漿製程或離子布植製程,但本發明不以此為限。 Using the first gate 140 as a mask, a doping process P is performed on the semiconductor structure 120' to form the semiconductor structure 120 including the channel region ch, the source region sr and the drain region dr. The doping concentration of the source region sr and the drain region dr is greater than the doping concentration of the channel region ch. The doping process P may be, for example, a hydrogen plasma process or an ion implantation process, but the invention is not limited thereto.

請參照圖4D,形成層間介電層150於閘介電層130上,並覆蓋第一閘極140。之後,形成貫穿層間介電層150及閘介電層130的貫孔V1、V2,且貫孔V1、V2分別在基板100的頂面的法線方向ND上重疊於第一厚部p1A與第二厚部p1B。 Referring to FIG. 4D , an interlayer dielectric layer 150 is formed on the gate dielectric layer 130 and covers the first gate electrode 140 . Afterwards, through holes V1 and V2 are formed penetrating the interlayer dielectric layer 150 and the gate dielectric layer 130 , and the through holes V1 and V2 respectively overlap the first thick portion p1A and the third thick portion p1A in the normal direction ND of the top surface of the substrate 100 . Part 2 p1B.

然後,請參照圖3,形成分別電性連接至第一厚部p1A 與第二厚部p1B的源極S及汲極D。舉例來說,可形成導電層160於層間介電層150之上,並填入貫孔V1、V2中,以與半導體結構120電性連接。導電層160可包括源極S及汲極D,其分別透過貫孔V1、V2電性連接至第一厚部p1A與第二厚部p1B。 Then, please refer to Figure 3 to form electrical connections to the first thick portion p1A respectively. and the source S and drain D of the second thick portion p1B. For example, the conductive layer 160 can be formed on the interlayer dielectric layer 150 and filled in the through holes V1 and V2 to be electrically connected to the semiconductor structure 120 . The conductive layer 160 may include a source S and a drain D, which are electrically connected to the first thick portion p1A and the second thick portion p1B through the through holes V1 and V2 respectively.

經過上述製程後可大致上完成半導體裝置T1B的製作。 After the above process, the production of the semiconductor device T1B can be substantially completed.

圖5是依照本發明的另一實施例的一種半導體裝置的剖面示意圖。在此必須說明的是,圖5的實施例沿用圖1的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG. 5 is a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention. It must be noted here that the embodiment of FIG. 5 follows the component numbers and part of the content of the embodiment of FIG. 1 , where the same or similar numbers are used to represent the same or similar elements, and descriptions of the same technical content are omitted. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be described again here.

請參照圖5,圖5的半導體裝置T1C與圖1的半導體裝置T1A的主要差異在於:半導體裝置T1C為雙閘極電晶體,其還包括第二閘極142。 Please refer to FIG. 5 . The main difference between the semiconductor device T1C in FIG. 5 and the semiconductor device T1A in FIG. 1 is that the semiconductor device T1C is a dual-gate transistor, which also includes a second gate 142 .

請參考圖5,第二閘極142在基板100的頂面的法線方向ND上重疊於部分第一厚部p1A、部分第二厚部p1B以及薄部p2。在一些實施例中,第二閘極142重疊於第一厚部p1A的面積大於第二閘極142重疊於第二厚部p1B的面積,但本發明不以此為限。在一些實施例中,部分第一島狀結構122a位於第一閘極140與第二閘極142之間。 Referring to FIG. 5 , the second gate 142 overlaps part of the first thick part p1A, part of the second thick part p1B and the thin part p2 in the normal direction ND of the top surface of the substrate 100 . In some embodiments, the area of the second gate 142 overlapping the first thick portion p1A is larger than the area of the second gate 142 overlapping the second thick portion p1B, but the invention is not limited thereto. In some embodiments, part of the first island structure 122a is located between the first gate 140 and the second gate 142 .

在本實施例中,第二閘極142的設置可以提升半導體裝置T1C的開啟電流(turn-on current)。 In this embodiment, the provision of the second gate 142 can increase the turn-on current of the semiconductor device T1C.

圖6是依照本發明的一實施例的一種畫素電路的示意圖。 FIG. 6 is a schematic diagram of a pixel circuit according to an embodiment of the present invention.

請參考圖6,在本實施例中,畫素電路包括驅動元件T1、開關元件T2、電容C以及發光二極體LED。在一些實施例中,發光二極體LED為有機發光二極體或無機發光二極體。圖1的半導體裝置T1A、圖3的半導體裝置T1B或圖5的半導體裝置T1C皆可以用作圖6的畫素電路的驅動元件T1。關於驅動元件T1的具體結構可以參考圖1、圖3以及圖5的相關內容,於此不再贅述。 Please refer to FIG. 6 . In this embodiment, the pixel circuit includes a driving element T1 , a switching element T2 , a capacitor C and a light-emitting diode LED. In some embodiments, the light emitting diode LED is an organic light emitting diode or an inorganic light emitting diode. The semiconductor device T1A of FIG. 1 , the semiconductor device T1B of FIG. 3 , or the semiconductor device T1C of FIG. 5 can all be used as the driving element T1 of the pixel circuit of FIG. 6 . Regarding the specific structure of the driving element T1, reference may be made to the relevant contents of FIG. 1, FIG. 3, and FIG. 5, and will not be described again here.

驅動元件T1的第一閘極140電性連接至開關元件T2的源極或汲極以及電容C的其中一端。驅動元件T1的汲極D電性連接至電壓OVDD。驅動元件T1的源極S電性連接至發光二極體LED的一端以及電容C的其中另一端。發光二極體LED的其中另一端電性連接至接地電壓GND。 The first gate 140 of the driving element T1 is electrically connected to the source or drain of the switching element T2 and one end of the capacitor C. The drain D of the driving element T1 is electrically connected to the voltage OVDD. The source S of the driving element T1 is electrically connected to one end of the light-emitting diode LED and the other end of the capacitor C. The other end of the light-emitting diode LED is electrically connected to the ground voltage GND.

在本實施例中,電壓OVDD大於接地電壓GND,因此,在驅動元件T1開啟時,電流由汲極D流向源極S,並點亮發光二極體LED。 In this embodiment, the voltage OVDD is greater than the ground voltage GND. Therefore, when the driving element T1 is turned on, the current flows from the drain D to the source S, and the light-emitting diode LED is lit.

圖7是依照本發明的一實施例的一種畫素電路的示意圖。 FIG. 7 is a schematic diagram of a pixel circuit according to an embodiment of the present invention.

請參考圖7,在本實施例中,畫素電路包括驅動元件T1、開關元件T2、電容C以及發光二極體LED。在一些實施例中,發光二極體LED為有機發光二極體或無機發光二極體。圖1的半導體裝置T1A、圖3的半導體裝置T1B或圖5的半導體裝置T1C皆可以用作圖7的畫素電路的驅動元件T1。關於驅動元件T1的具體結構可以參考圖1、圖3以及圖5的相關內容,於此不再贅述。 Please refer to FIG. 7 . In this embodiment, the pixel circuit includes a driving element T1 , a switching element T2 , a capacitor C and a light-emitting diode LED. In some embodiments, the light emitting diode LED is an organic light emitting diode or an inorganic light emitting diode. The semiconductor device T1A of FIG. 1 , the semiconductor device T1B of FIG. 3 , or the semiconductor device T1C of FIG. 5 can all be used as the driving element T1 of the pixel circuit of FIG. 7 . Regarding the specific structure of the driving element T1, reference may be made to the relevant contents of FIG. 1, FIG. 3, and FIG. 5, and will not be described again here.

驅動元件T1的第一閘極140電性連接至開關元件T2的 源極或汲極以及電容C的其中一端。驅動元件T1的汲極D電性連接至發光二極體LED的一端。驅動元件T1的源極S電性連接至以及電容C的其中另一端以及接地電壓GND。發光二極體LED的其中另一端電性連接至電壓OVDD。 The first gate 140 of the driving element T1 is electrically connected to the switching element T2 The source or drain and one end of the capacitor C. The drain D of the driving element T1 is electrically connected to one end of the light-emitting diode LED. The source S of the driving element T1 is electrically connected to the other end of the capacitor C and the ground voltage GND. The other end of the light-emitting diode LED is electrically connected to the voltage OVDD.

在本實施例中,電壓OVDD大於接地電壓GND,因此,在驅動元件T1開啟時,電流通過發光二極體LED後,由汲極D流向源極S。 In this embodiment, the voltage OVDD is greater than the ground voltage GND. Therefore, when the driving element T1 is turned on, the current flows from the drain D to the source S after passing through the light-emitting diode LED.

100:基板 100:Substrate

110:緩衝層 110: Buffer layer

120:半導體結構 120:Semiconductor Structure

122:第一金屬氧化物層 122: First metal oxide layer

122a:第一島狀結構 122a: First island structure

122b:第二島狀結構 122b: Second island structure

124:第二金屬氧化物層 124: Second metal oxide layer

130:閘介電層 130: Gate dielectric layer

140:第一閘極 140: first gate

150:層間介電層 150: Interlayer dielectric layer

160:導電層 160: Conductive layer

ch:通道區 ch: channel area

D:汲極 D: drain

dr:汲極區 dr: drain area

11,12,13,14:長度 11,12,13,14: length

ND:法線方向 ND: normal direction

p1A:第一厚部 p1A: The first thick part

p1B:第二厚部 p1B: The second thick part

p2:薄部 p2: thin part

S:源極 S: source

sr:源極區 sr: source region

T1A:半導體裝置 T1A: Semiconductor device

t1,t2:厚度 t1,t2:Thickness

V1,V2:貫孔 V1, V2: through hole

Claims (10)

一種半導體裝置,包括: 一基板; 一半導體結構,設置於該基板之上,該半導體結構包括一第一厚部、一第二厚部以及位於該第一厚部與該第二厚部之間的一薄部,其中該第一厚部以及該第二厚部的厚度大於該薄部的厚度; 一閘介電層,設置於該半導體結構上; 一第一閘極,設置於該閘介電層上,其中該第一閘極在該基板的一頂面的一法線方向上重疊於部分該第一厚部以及部分該薄部,且該第一閘極在該基板的該頂面的該法線方向上不重疊於另一部分該薄部以及該第二厚部; 一源極,電性連接該第一厚部;以及 一汲極,電性連接該第二厚部。 A semiconductor device including: a substrate; A semiconductor structure is provided on the substrate. The semiconductor structure includes a first thick part, a second thick part and a thin part between the first thick part and the second thick part, wherein the first thick part The thickness of the thick part and the second thick part is greater than the thickness of the thin part; a gate dielectric layer disposed on the semiconductor structure; A first gate is disposed on the gate dielectric layer, wherein the first gate overlaps part of the first thick part and part of the thin part in a normal direction of a top surface of the substrate, and the The first gate does not overlap another part of the thin part and the second thick part in the normal direction of the top surface of the substrate; a source electrically connected to the first thick portion; and A drain electrode is electrically connected to the second thick portion. 如請求項1所述的半導體裝置,其中該半導體結構包括: 一第一金屬氧化物層,包括互相分離的一第一島狀結構以及一第二島狀結構;以及 一第二金屬氧化物層,重疊於該第一島狀結構以及該第二島狀結構,其中該第二金屬氧化物層與該第一島狀結構互相堆疊以構成該第一厚部,且該第二金屬氧化物層與該第二島狀結構互相堆疊以構成該第二厚部。 The semiconductor device according to claim 1, wherein the semiconductor structure includes: a first metal oxide layer including a first island-like structure and a second island-like structure separated from each other; and a second metal oxide layer overlapping the first island-like structure and the second island-like structure, wherein the second metal oxide layer and the first island-like structure are stacked on each other to form the first thick portion, and The second metal oxide layer and the second island structure are stacked on each other to form the second thick portion. 如請求項2所述的半導體裝置,其中該第一島狀結構的長度不同於該第二島狀結構的長度。The semiconductor device of claim 2, wherein the length of the first island structure is different from the length of the second island structure. 如請求項2所述的半導體裝置,其中該第一島狀結構在該法線方向上部分重疊於該第一閘極。The semiconductor device of claim 2, wherein the first island structure partially overlaps the first gate in the normal direction. 如請求項1所述的半導體裝置,其中該半導體結構包括一源極區、一汲極區以及位於該源極區與該汲極區之間的一通道區,其中該通道區包括該第一厚部在該法線方向上重疊於該第一閘極的部分以及該薄部在該法線方向上重疊於該第一閘極的部分。The semiconductor device of claim 1, wherein the semiconductor structure includes a source region, a drain region and a channel region between the source region and the drain region, wherein the channel region includes the first The thick portion overlaps a portion of the first gate in the normal direction and the thin portion overlaps a portion of the first gate in the normal direction. 如請求項5所述的半導體裝置,其中該汲極區包括該薄部在該法線方向上不重疊於該第一閘極的部分以及該第二厚部。The semiconductor device of claim 5, wherein the drain region includes a portion of the thin portion that does not overlap the first gate in the normal direction and the second thick portion. 如請求項5所述的半導體裝置,其中該源極區包括該第一厚部在該法線方向上不重疊於該第一閘極的部分。The semiconductor device of claim 5, wherein the source region includes a portion of the first thick portion that does not overlap the first gate in the normal direction. 如請求項5所述的半導體裝置,更包括: 一第二閘極,在該法線方向上重疊於部分該第一厚部、部分該第二厚部以及該薄部。 The semiconductor device as claimed in claim 5 further includes: A second gate overlaps part of the first thick part, part of the second thick part and the thin part in the normal direction. 一種半導體裝置的製造方法,包括: 形成一半導體結構於一基板之上,該半導體結構包括一第一厚部、一第二厚部以及位於該第一厚部與該第二厚部之間的一薄部,其中該第一厚部以及該第二厚部的厚度大於該薄部的厚度; 形成一閘介電層於該半導體結構上; 形成一第一閘極於該閘介電層上,其中該第一閘極在該基板的一頂面的一法線方向上重疊於部分該第一厚部以及部分該薄部,且該第一閘極在該基板的該頂面的該法線方向上不重疊於另一部分該薄部以及該第二厚部; 形成電性連接該第一厚部的一源極以及電性連接該第二厚部的一汲極。 A method of manufacturing a semiconductor device, including: A semiconductor structure is formed on a substrate. The semiconductor structure includes a first thick portion, a second thick portion and a thin portion between the first thick portion and the second thick portion, wherein the first thick portion The thickness of the second thick part and the second thick part is greater than the thickness of the thin part; forming a gate dielectric layer on the semiconductor structure; A first gate is formed on the gate dielectric layer, wherein the first gate overlaps part of the first thick part and part of the thin part in a normal direction of a top surface of the substrate, and the third gate A gate does not overlap another part of the thin part and the second thick part in the normal direction of the top surface of the substrate; A source electrode electrically connected to the first thick part and a drain electrode electrically connected to the second thick part are formed. 如請求項9所述的半導體裝置的製造方法,更包括: 以該第一閘極為遮罩,對該半導體結構執行一摻雜製程,以於該半導體結構中形成一源極區、一汲極區以及位於該源極區與該汲極區之間的一通道區,其中該通道區包括該第一厚部在該法線方向上重疊於該第一閘極的部分以及該薄部在該法線方向上重疊於該第一閘極的部分,該汲極區包括該薄部在該法線方向上不重疊於該第一閘極的部分以及該第二厚部,且該源極區包括該第一厚部在該法線方向上不重疊於該第一閘極的部分。 The method for manufacturing a semiconductor device as claimed in claim 9 further includes: Using the first gate as a mask, a doping process is performed on the semiconductor structure to form a source region, a drain region and a region between the source region and the drain region in the semiconductor structure. a channel region, wherein the channel region includes a portion of the first thick portion overlapping the first gate in the normal direction and a portion of the thin portion overlapping the first gate in the normal direction, the drain The pole region includes a portion of the thin portion that does not overlap the first gate in the normal direction and the second thick portion, and the source region includes the first thick portion that does not overlap the first gate in the normal direction. part of the first gate.
TW111122796A 2021-12-09 2022-06-20 Semiconductor device and manufacturing method thereof TWI822129B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211398135.9A CN115621304A (en) 2021-12-09 2022-11-09 Semiconductor device and method for manufacturing the same
US17/988,767 US20230187556A1 (en) 2021-12-09 2022-11-17 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163287695P 2021-12-09 2021-12-09
US63/287,695 2021-12-09

Publications (2)

Publication Number Publication Date
TW202324542A TW202324542A (en) 2023-06-16
TWI822129B true TWI822129B (en) 2023-11-11

Family

ID=83782380

Family Applications (28)

Application Number Title Priority Date Filing Date
TW111110923A TWI813217B (en) 2021-12-09 2022-03-23 Semiconductor device and manufacturing method thereof
TW111114109A TWI814340B (en) 2021-12-09 2022-04-13 Semiconductor device and manufacturing method thereof
TW111114337A TW202230798A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114336A TW202230615A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114880A TW202324758A (en) 2021-12-09 2022-04-19 Semiconductor device and manufacturing method thereof
TW111115009A TWI824495B (en) 2021-12-09 2022-04-20 Semiconductor device and manufacturing method thereof
TW111115197A TWI812181B (en) 2021-12-09 2022-04-21 Semiconductor device and manufacturing method thereof
TW111115389A TW202324737A (en) 2021-12-09 2022-04-22 Active device substrate and manufacturing method thereof
TW111116518A TWI804300B (en) 2021-12-09 2022-04-29 Thin film transistor and manufacturing method thereof
TW111116754A TWI819592B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof
TW111116874A TWI799254B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof
TW111116869A TWI799253B (en) 2021-12-09 2022-05-04 Semiconductor device and manufactoring method thereof
TW111117041A TWI813276B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111116903A TWI814369B (en) 2021-12-09 2022-05-05 Photosensitive device substrate and manufacturing method thereof
TW111117042A TWI804302B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111117040A TWI806591B (en) 2021-12-09 2022-05-05 Active device substrate
TW111117305A TWI828142B (en) 2021-12-09 2022-05-09 Semiconductor device
TW111117309A TWI803311B (en) 2021-12-09 2022-05-09 Semiconductor device and manufacturing method thereof
TW111118368A TWI805369B (en) 2021-12-09 2022-05-17 Semiconductor device and manufacturing method thereof
TW111118369A TWI803320B (en) 2021-12-09 2022-05-17 Inverter and pixel circuit
TW111119084A TWI829169B (en) 2021-12-09 2022-05-23 Semiconductor device and manufacturing method thereof
TW111120041A TWI793027B (en) 2021-12-09 2022-05-30 Inverter
TW111120152A TWI816413B (en) 2021-12-09 2022-05-31 Semiconductor device and manufacturing method thereof
TW111120547A TWI829183B (en) 2021-12-09 2022-06-02 Semiconductor device and manufacturing method thereof
TW111122489A TWI798110B (en) 2021-12-09 2022-06-16 Active device substrate, capacitive device, and manufacturing method of active device substrate
TW111122796A TWI822129B (en) 2021-12-09 2022-06-20 Semiconductor device and manufacturing method thereof
TW111126381A TWI813378B (en) 2021-12-09 2022-07-14 Memory device, memory circuit and manufacturing method of memory circuit
TW111142545A TWI814636B (en) 2021-12-09 2022-11-08 Active device substrate

Family Applications Before (25)

Application Number Title Priority Date Filing Date
TW111110923A TWI813217B (en) 2021-12-09 2022-03-23 Semiconductor device and manufacturing method thereof
TW111114109A TWI814340B (en) 2021-12-09 2022-04-13 Semiconductor device and manufacturing method thereof
TW111114337A TW202230798A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114336A TW202230615A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114880A TW202324758A (en) 2021-12-09 2022-04-19 Semiconductor device and manufacturing method thereof
TW111115009A TWI824495B (en) 2021-12-09 2022-04-20 Semiconductor device and manufacturing method thereof
TW111115197A TWI812181B (en) 2021-12-09 2022-04-21 Semiconductor device and manufacturing method thereof
TW111115389A TW202324737A (en) 2021-12-09 2022-04-22 Active device substrate and manufacturing method thereof
TW111116518A TWI804300B (en) 2021-12-09 2022-04-29 Thin film transistor and manufacturing method thereof
TW111116754A TWI819592B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof
TW111116874A TWI799254B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof
TW111116869A TWI799253B (en) 2021-12-09 2022-05-04 Semiconductor device and manufactoring method thereof
TW111117041A TWI813276B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111116903A TWI814369B (en) 2021-12-09 2022-05-05 Photosensitive device substrate and manufacturing method thereof
TW111117042A TWI804302B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111117040A TWI806591B (en) 2021-12-09 2022-05-05 Active device substrate
TW111117305A TWI828142B (en) 2021-12-09 2022-05-09 Semiconductor device
TW111117309A TWI803311B (en) 2021-12-09 2022-05-09 Semiconductor device and manufacturing method thereof
TW111118368A TWI805369B (en) 2021-12-09 2022-05-17 Semiconductor device and manufacturing method thereof
TW111118369A TWI803320B (en) 2021-12-09 2022-05-17 Inverter and pixel circuit
TW111119084A TWI829169B (en) 2021-12-09 2022-05-23 Semiconductor device and manufacturing method thereof
TW111120041A TWI793027B (en) 2021-12-09 2022-05-30 Inverter
TW111120152A TWI816413B (en) 2021-12-09 2022-05-31 Semiconductor device and manufacturing method thereof
TW111120547A TWI829183B (en) 2021-12-09 2022-06-02 Semiconductor device and manufacturing method thereof
TW111122489A TWI798110B (en) 2021-12-09 2022-06-16 Active device substrate, capacitive device, and manufacturing method of active device substrate

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW111126381A TWI813378B (en) 2021-12-09 2022-07-14 Memory device, memory circuit and manufacturing method of memory circuit
TW111142545A TWI814636B (en) 2021-12-09 2022-11-08 Active device substrate

Country Status (1)

Country Link
TW (28) TWI813217B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080179675A1 (en) * 2007-01-26 2008-07-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20210036160A1 (en) * 2009-12-11 2021-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20210359057A1 (en) * 2020-05-15 2021-11-18 Samsung Display Co., Ltd. Display device and method of manufacturing the same

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371026A (en) * 1992-11-30 1994-12-06 Motorola Inc. Method for fabricating paired MOS transistors having a current-gain differential
JP2002076352A (en) * 2000-08-31 2002-03-15 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
JP4802364B2 (en) * 2000-12-07 2011-10-26 ソニー株式会社 Semiconductor layer doping method, thin film semiconductor device manufacturing method, and semiconductor layer resistance control method
US6724012B2 (en) * 2000-12-14 2004-04-20 Semiconductor Energy Laboratory Co., Ltd. Display matrix with pixels having sensor and light emitting portions
TW595005B (en) * 2003-08-04 2004-06-21 Au Optronics Corp Thin film transistor and pixel structure with the same
KR100719366B1 (en) * 2005-06-15 2007-05-17 삼성전자주식회사 Method of forming a semiconductor device having a trench device isolation layer
JP4220509B2 (en) * 2005-09-06 2009-02-04 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP5294651B2 (en) * 2007-05-18 2013-09-18 キヤノン株式会社 Inverter manufacturing method and inverter
JP5480554B2 (en) * 2008-08-08 2014-04-23 株式会社半導体エネルギー研究所 Semiconductor device
US8202773B2 (en) * 2008-08-29 2012-06-19 Texas Instruments Incorporated Engineered oxygen profile in metal gate electrode and nitrided high-k gate dielectrics structure for high performance PMOS devices
KR101529575B1 (en) * 2008-09-10 2015-06-29 삼성전자주식회사 Transistor, inverter comprising the same and methods of manufacturing transistor and inverter
KR20160063402A (en) * 2008-09-12 2016-06-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
EP2172977A1 (en) * 2008-10-03 2010-04-07 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101016266B1 (en) * 2008-11-13 2011-02-25 한국과학기술원 Transparent memory for transparent electronics
US8367486B2 (en) * 2009-02-05 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the transistor
KR101604577B1 (en) * 2009-06-30 2016-03-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR20180112107A (en) * 2009-07-18 2018-10-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
WO2011046048A1 (en) * 2009-10-16 2011-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011129037A1 (en) * 2010-04-16 2011-10-20 シャープ株式会社 Thin film transistor substrate, method for producing same, and display device
TWI434409B (en) * 2010-08-04 2014-04-11 Au Optronics Corp Organic electroluminescent display unit and method for fabricating the same
KR20140024866A (en) * 2011-06-17 2014-03-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8952377B2 (en) * 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8952379B2 (en) * 2011-09-16 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20130053053A (en) * 2011-11-14 2013-05-23 삼성디스플레이 주식회사 Organic light emitting display apparatus and method of manufacturing organic light emitting display apparatus
KR101881895B1 (en) * 2011-11-30 2018-07-26 삼성디스플레이 주식회사 Thin-film transistor array substrate, organic light emitting display device comprising the same and method for manufacturing of the thin-film transistor array substrate
TWI478353B (en) * 2011-12-14 2015-03-21 E Ink Holdings Inc Thin film transistor and method for manufacturing the same
KR101884738B1 (en) * 2011-12-23 2018-08-31 삼성디스플레이 주식회사 Organic light emitting display apparatus and method of manufacturing organic light emitting display apparatus
TWI613824B (en) * 2011-12-23 2018-02-01 半導體能源研究所股份有限公司 Semiconductor device
US9006733B2 (en) * 2012-01-26 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
TWI498220B (en) * 2012-10-31 2015-09-01 Au Optronics Corp Display panel and method for manufacturing the same
GB2511541B (en) * 2013-03-06 2015-01-28 Toshiba Res Europ Ltd Field effect transistor device
TWI690085B (en) * 2013-05-16 2020-04-01 日商半導體能源研究所股份有限公司 Semiconductor device
US9806198B2 (en) * 2013-06-05 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102281300B1 (en) * 2013-09-11 2021-07-26 삼성디스플레이 주식회사 Thin film transistor, method of manufacturing the same, and display device including the same
CN104576381B (en) * 2013-10-14 2018-01-09 中国科学院微电子研究所 A kind of asymmetric ultra-thin SOI mos transistor structure and its manufacture method
TWI535034B (en) * 2014-01-29 2016-05-21 友達光電股份有限公司 Pixel structure and method of fabricating the same
US9929279B2 (en) * 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20170317217A1 (en) * 2014-11-11 2017-11-02 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
US9859391B2 (en) * 2015-10-27 2018-01-02 Nlt Technologies, Ltd. Thin film transistor, display device, and method for manufacturing thin film transistor
TWI579974B (en) * 2015-12-25 2017-04-21 國立交通大學 A resistive memory, resistive memory unit and thin-film transistor having composition of amorphous metal oxide
DE112017001488T5 (en) * 2016-03-22 2018-12-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device comprising the same
CN112133710A (en) * 2016-04-08 2020-12-25 群创光电股份有限公司 Display device
US10468434B2 (en) * 2016-04-08 2019-11-05 Innolux Corporation Hybrid thin film transistor structure, display device, and method of making the same
CN106098784A (en) * 2016-06-13 2016-11-09 武汉华星光电技术有限公司 Coplanar type double grid electrode oxide thin film transistor and preparation method thereof
US20180122833A1 (en) * 2016-10-31 2018-05-03 LG Display Co. , Ltd. Thin film transistor substrate having bi-layer oxide semiconductor
WO2018211724A1 (en) * 2017-05-16 2018-11-22 住友電気工業株式会社 Oxide sintered body and production method therefor, sputtering target, oxide semiconductor film, and method for producing semiconductor device
KR102439133B1 (en) * 2017-09-05 2022-09-02 삼성디스플레이 주식회사 Thin film transistor substrate, method of manufacturing the same, and method of manufacturing a display device including the same
KR20190062695A (en) * 2017-11-29 2019-06-07 엘지디스플레이 주식회사 Thin film trnasistor, method for manufacturing the same and display device comprising the same
KR102482856B1 (en) * 2017-12-15 2022-12-28 엘지디스플레이 주식회사 Thin film trnasistor, method for manufacturing the same and display device comprising the same
CN108538789A (en) * 2018-03-30 2018-09-14 武汉华星光电技术有限公司 The preparation method of CMOS transistor, the preparation method of array substrate
TWI703735B (en) * 2018-06-26 2020-09-01 鴻海精密工業股份有限公司 Semiconductor substrate, array substrate, inverter circuit, and switch circuit
TWI666767B (en) * 2018-08-31 2019-07-21 友達光電股份有限公司 Active device substrate
JP6799123B2 (en) * 2018-09-19 2020-12-09 シャープ株式会社 Active matrix substrate and its manufacturing method
TWI685696B (en) * 2018-10-01 2020-02-21 友達光電股份有限公司 Active device substrate and manufacturing method thereof
KR102546780B1 (en) * 2018-12-28 2023-06-21 엘지디스플레이 주식회사 Thin film transistor comprising active layer having thickness difference and display apparatus comprising the same
KR20200093718A (en) * 2019-01-28 2020-08-06 삼성디스플레이 주식회사 Organic light emitting diode display device and method of manufacturing organic light emitting diode display device
WO2020154875A1 (en) * 2019-01-29 2020-08-06 京东方科技集团股份有限公司 Pixel unit and manufacturing method therefor, and double-sided oled display device
EP3944329A4 (en) * 2019-03-18 2022-10-26 BOE Technology Group Co., Ltd. Display panel and manufacturing method thereof
KR20210000605A (en) * 2019-06-25 2021-01-05 엘지디스플레이 주식회사 Display device including sensor
US11594533B2 (en) * 2019-06-27 2023-02-28 Intel Corporation Stacked trigate transistors with dielectric isolation between first and second semiconductor fins
TWI726348B (en) * 2019-07-03 2021-05-01 友達光電股份有限公司 Semiconductor substrate
TWI712844B (en) * 2019-07-03 2020-12-11 友達光電股份有限公司 Device substrate and manufacturing method thereof
TWI715344B (en) * 2019-12-10 2021-01-01 友達光電股份有限公司 Active device substrate and manufacturing method thereof
KR20210085942A (en) * 2019-12-31 2021-07-08 엘지디스플레이 주식회사 Thin film transistor and display apparatus comprising the same
US11631671B2 (en) * 2019-12-31 2023-04-18 Tokyo Electron Limited 3D complementary metal oxide semiconductor (CMOS) device and method of forming the same
US11663455B2 (en) * 2020-02-12 2023-05-30 Ememory Technology Inc. Resistive random-access memory cell and associated cell array structure
US11410999B2 (en) * 2020-02-21 2022-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Boundary design for high-voltage integration on HKMG technology
KR20210117389A (en) * 2020-03-18 2021-09-29 삼성디스플레이 주식회사 Display device and method of fabricating for display device
CN111710289A (en) * 2020-06-24 2020-09-25 天津中科新显科技有限公司 Pixel driving circuit and driving method of active light-emitting device
CN113257841B (en) * 2021-07-19 2021-11-16 深圳市柔宇科技股份有限公司 TFT substrate and preparation method thereof, display and electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080179675A1 (en) * 2007-01-26 2008-07-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20210036160A1 (en) * 2009-12-11 2021-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20210359057A1 (en) * 2020-05-15 2021-11-18 Samsung Display Co., Ltd. Display device and method of manufacturing the same

Also Published As

Publication number Publication date
TWI812181B (en) 2023-08-11
TWI813276B (en) 2023-08-21
TWI829183B (en) 2024-01-11
TW202324608A (en) 2023-06-16
TWI804302B (en) 2023-06-01
TWI829169B (en) 2024-01-11
TWI803311B (en) 2023-05-21
TW202329434A (en) 2023-07-16
TW202329465A (en) 2023-07-16
TWI813378B (en) 2023-08-21
TWI798110B (en) 2023-04-01
TW202324705A (en) 2023-06-16
TWI813217B (en) 2023-08-21
TW202324764A (en) 2023-06-16
TWI799253B (en) 2023-04-11
TW202324536A (en) 2023-06-16
TW202324757A (en) 2023-06-16
TW202324737A (en) 2023-06-16
TW202324614A (en) 2023-06-16
TW202324766A (en) 2023-06-16
TW202324768A (en) 2023-06-16
TW202324758A (en) 2023-06-16
TWI816413B (en) 2023-09-21
TW202324743A (en) 2023-06-16
TW202324540A (en) 2023-06-16
TWI814636B (en) 2023-09-01
TW202341448A (en) 2023-10-16
TWI804300B (en) 2023-06-01
TW202230798A (en) 2022-08-01
TW202230615A (en) 2022-08-01
TWI814340B (en) 2023-09-01
TW202324716A (en) 2023-06-16
TW202324759A (en) 2023-06-16
TW202324541A (en) 2023-06-16
TW202324682A (en) 2023-06-16
TWI805369B (en) 2023-06-11
TW202324761A (en) 2023-06-16
TWI799254B (en) 2023-04-11
TWI806591B (en) 2023-06-21
TWI819592B (en) 2023-10-21
TWI824495B (en) 2023-12-01
TW202324762A (en) 2023-06-16
TW202324763A (en) 2023-06-16
TW202324542A (en) 2023-06-16
TWI814369B (en) 2023-09-01
TWI793027B (en) 2023-02-11
TW202324339A (en) 2023-06-16
TW202324760A (en) 2023-06-16
TWI828142B (en) 2024-01-01
TWI803320B (en) 2023-05-21
TW202324674A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US20230215954A1 (en) Thin film transistor, thin film transistor array panel including the same, and method of manufacturing the same
KR101856221B1 (en) Method of fabricating a thin film transistor and method of fabricating an organic light-emitting display device
US8324629B2 (en) Organic light emitting display device and method of manufacturing the same
US9659967B2 (en) Thin-film transistor and display device having the same
KR102568632B1 (en) Transistor array panel, manufacturing method thereof, and disalay device including the same
US20120199891A1 (en) Semiconductor device and method for manufacturing same
KR20200060629A (en) Display device and method of manufacturing the same
KR102172972B1 (en) Thin film transistor and method for fabricating the same
CN111627933B (en) Active element substrate and manufacturing method thereof
US11177334B2 (en) Display substrate, display panel and method of fabricating display substrate
TWI822129B (en) Semiconductor device and manufacturing method thereof
CN112397555A (en) Organic light emitting diode display
JP2018133398A (en) Semiconductor device
JP2018010231A (en) Display device
US20230187556A1 (en) Semiconductor device and manufacturing method thereof
KR20160053383A (en) Thin Film Transistor Array Substrate and Organic Light Emitting Diode Display Device Having The Same
JP2001100663A (en) El display device
KR20170124152A (en) Transistor panel and manufacturing method thereof
TWI802478B (en) Active component substrate
US20230187485A1 (en) Semiconductor device and manufacturing method thereof
US20230187513A1 (en) Semiconductor device and manufacturing method thereof
US20230187484A1 (en) Semiconductor device and manufacturing method thereof
US20230387320A1 (en) Semiconductor device
US20240114730A1 (en) Display panel and manufacturing method thereof
US20230187554A1 (en) Active device substrate, capacitive device, and manufacturing method of active device substrate