TW202324705A - Memory device, memory circuit and manufacturing method of memory circuit - Google Patents

Memory device, memory circuit and manufacturing method of memory circuit Download PDF

Info

Publication number
TW202324705A
TW202324705A TW111126381A TW111126381A TW202324705A TW 202324705 A TW202324705 A TW 202324705A TW 111126381 A TW111126381 A TW 111126381A TW 111126381 A TW111126381 A TW 111126381A TW 202324705 A TW202324705 A TW 202324705A
Authority
TW
Taiwan
Prior art keywords
metal oxide
layer
oxide layer
gate
region
Prior art date
Application number
TW111126381A
Other languages
Chinese (zh)
Other versions
TWI813378B (en
Inventor
黃震鑠
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to US17/988,764 priority Critical patent/US20230189499A1/en
Priority to CN202211556797.4A priority patent/CN115968199A/en
Publication of TW202324705A publication Critical patent/TW202324705A/en
Application granted granted Critical
Publication of TWI813378B publication Critical patent/TWI813378B/en

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Confectionery (AREA)
  • Glass Compositions (AREA)
  • External Artificial Organs (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)
  • Ceramic Capacitors (AREA)

Abstract

A memory device includes a substrate, an oxide insulation layer, a first metal oxide layer, a first gate dielectric layer, a second metal oxide layer, a second gate dielectric layer, a first gate, a source and a drain. The oxide insulation layer is located above the substrate. The first metal oxide layer is located above the oxide insulation layer. The first gate dielectric layer is located above the first metal oxide layer. The second metal oxide layer is located above the first gate dielectric layer. The second gate dielectric layer is located above the second metal oxide layer. The first gate is located above the second gate dielectric layer. The second metal oxide layer is located between the first gate and the first metal oxide layer. The source and the drain are electrically connected to the first metal oxide layer.

Description

記憶體裝置、記憶體電路及記憶體電路的製造方法Memory device, memory circuit and method for manufacturing memory circuit

本發明是有關於一種記憶體裝置、記憶體電路及記憶體電路的製造方法。The invention relates to a memory device, a memory circuit and a manufacturing method of the memory circuit.

電子可抹除可程式唯讀記憶體(以下簡稱EEPROM)為一種可在無電源供應的狀態下保存資料的記憶體裝置,其具有存取速度快、容量大以及體積小等優點,因此EEPROM目前已廣泛地應用於各種電子產品中。Electronic Erasable Programmable Read-Only Memory (hereinafter referred to as EEPROM) is a memory device that can save data without power supply. It has the advantages of fast access speed, large capacity and small size. Therefore, EEPROM is currently Has been widely used in various electronic products.

在一般的EEPROM中,藉由對閘極施加不同的控制閘電壓(Vg),以控制電子是否穿隧至浮置閘中。當電子進入浮置閘中,EEPROM之記憶胞將存入「1」。反之,當電子由浮置閘中逃脫,則EEPROM之記憶胞將存入「0」。In a general EEPROM, by applying different control gate voltages (Vg) to the gate, whether electrons tunnel into the floating gate is controlled. When electrons enter the floating gate, the memory cell of EEPROM will store "1". Conversely, when electrons escape from the floating gate, the memory cell of EEPROM will store "0".

本發明提供一種記憶體裝置、記憶體電路以及記憶體電路的製造方法,其中記憶體裝置具有存取速度快的優點。The invention provides a memory device, a memory circuit and a manufacturing method of the memory circuit, wherein the memory device has the advantage of fast access speed.

本發明的至少一實施例提供一種記憶體裝置。記憶體裝置包括基板、氧化物絕緣層、第一金屬氧化物層、第一閘介電層、第二金屬氧化物層、第二閘介電層、第一閘極、源極以及汲極。氧化物絕緣層位於基板之上。第一金屬氧化物層位於氧化物絕緣層之上。第一閘介電層位於第一金屬氧化物層之上。第二金屬氧化物層位於第一閘介電層之上。第二閘介電層位於第二金屬氧化物層之上。第一閘極位於第二閘介電層之上。第二金屬氧化物層位於第一閘極與第一金屬氧化物層之間。源極以及汲極電性連接第一金屬氧化物層。At least one embodiment of the invention provides a memory device. The memory device includes a substrate, an oxide insulating layer, a first metal oxide layer, a first gate dielectric layer, a second metal oxide layer, a second gate dielectric layer, a first gate, a source and a drain. An oxide insulating layer is on the substrate. The first metal oxide layer is located on the oxide insulating layer. The first gate dielectric layer is located on the first metal oxide layer. The second metal oxide layer is on the first gate dielectric layer. The second gate dielectric layer is located on the second metal oxide layer. The first gate is located on the second gate dielectric layer. The second metal oxide layer is located between the first gate and the first metal oxide layer. The source and the drain are electrically connected to the first metal oxide layer.

本發明的至少一實施例提供一種記憶體電路。記憶體電路包括基板、氧化物絕緣層、第一閘介電層、第二閘介電層、記憶體裝置以及薄膜電晶體。氧化物絕緣層位於基板之上,且包括第一含氧結構以及第二含氧結構。第一閘介電層位於氧化物絕緣層之上,且包括第一介電結構以及第二介電結構。第二含氧結構與第二介電結構互相堆疊以構成凸起結構。第二閘介電層位於第一閘介電層之上。記憶體裝置包括第一金屬氧化物層、第二金屬氧化物層、第一閘極、第一源極以及第一汲極。第一金屬氧化物層位於第一含氧結構之上。第一介電結構位於第一金屬氧化物層與第二金屬氧化物層之間。第二閘介電層位於第二金屬氧化物層與第一閘極之間。第二金屬氧化物層位於第一閘極與第一金屬氧化物層之間。第一源極以及第一汲極電性連接第一金屬氧化物層。薄膜電晶體包括第三金屬氧化物層、第二閘極、第二源極以及第二汲極。第三金屬氧化物層覆蓋凸起結構的頂面以及側面。第二閘極重疊於第三金屬氧化物層。第二閘介電層位於第二閘極與第三金屬氧化物層之間。第二源極以及第二汲極電性連接該第三金屬氧化物層。At least one embodiment of the invention provides a memory circuit. The memory circuit includes a substrate, an oxide insulating layer, a first gate dielectric layer, a second gate dielectric layer, a memory device and a thin film transistor. The oxide insulating layer is located on the substrate and includes a first oxygen-containing structure and a second oxygen-containing structure. The first gate dielectric layer is located on the oxide insulating layer and includes a first dielectric structure and a second dielectric structure. The second oxygen-containing structure and the second dielectric structure are stacked to form a protruding structure. The second gate dielectric layer is located on the first gate dielectric layer. The memory device includes a first metal oxide layer, a second metal oxide layer, a first gate, a first source and a first drain. A first metal oxide layer overlies the first oxygen-containing structure. The first dielectric structure is located between the first metal oxide layer and the second metal oxide layer. The second gate dielectric layer is located between the second metal oxide layer and the first gate. The second metal oxide layer is located between the first gate and the first metal oxide layer. The first source and the first drain are electrically connected to the first metal oxide layer. The TFT includes a third metal oxide layer, a second gate, a second source and a second drain. The third metal oxide layer covers the top surface and side surfaces of the protruding structures. The second gate overlaps the third metal oxide layer. The second gate dielectric layer is located between the second gate electrode and the third metal oxide layer. The second source and the second drain are electrically connected to the third metal oxide layer.

本發明的至少一實施例提供一種記憶體電路的製造方法,包括:形成氧化物絕緣層於基板之上;形成第一金屬氧化物層於氧化物絕緣層之上;形成第一閘介電層於第一金屬氧化物層之上;形成第二金屬氧化物層於第一閘介電層之上;形成第二閘介電層於第二金屬氧化物層之上;形成第一閘極於第二閘介電層之上,其中第二金屬氧化物層位於第一閘極與第一金屬氧化物層之間;形成電性連接至第一金屬氧化物層的源極以及汲極。At least one embodiment of the present invention provides a method for manufacturing a memory circuit, comprising: forming an oxide insulating layer on a substrate; forming a first metal oxide layer on the oxide insulating layer; forming a first gate dielectric layer On the first metal oxide layer; forming a second metal oxide layer on the first gate dielectric layer; forming a second gate dielectric layer on the second metal oxide layer; forming the first gate on the On the second gate dielectric layer, wherein the second metal oxide layer is located between the first gate electrode and the first metal oxide layer; a source electrode and a drain electrode electrically connected to the first metal oxide layer are formed.

圖1是依照本發明的一實施例的一種記憶體電路的剖面示意圖。FIG. 1 is a schematic cross-sectional view of a memory circuit according to an embodiment of the present invention.

請參考圖1,記憶體電路10包括基板100、氧化物絕緣層120、第一閘介電層130、第二閘介電層140、記憶體裝置ROM以及薄膜電晶體TFT。在本實施例中,記憶體電路10還包括緩衝層110以及層間介電層150。Referring to FIG. 1 , the memory circuit 10 includes a substrate 100 , an oxide insulating layer 120 , a first gate dielectric layer 130 , a second gate dielectric layer 140 , a memory device ROM and a thin film transistor TFT. In this embodiment, the memory circuit 10 further includes a buffer layer 110 and an interlayer dielectric layer 150 .

基板100之材質可為玻璃、石英、有機聚合物或是不透光/反射材料(例如:導電材料、金屬、晶圓、陶瓷或其他可適用的材料)或是其他可適用的材料。若使用導電材料或金屬時,則在基板100上覆蓋一層絕緣層(未繪示),以避免短路問題。在一些實施例中,基板100為軟性基板,且基板100的材料例如為聚乙烯對苯二甲酸酯(polyethylene terephthalate, PET)、聚二甲酸乙二醇酯(polyethylene naphthalate, PEN)、聚酯(polyester, PES)、聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)、聚碳酸酯(polycarbonate, PC)、聚醯亞胺(polyimide, PI)或金屬軟板(Metal Foil)或其他可撓性材質。The material of the substrate 100 can be glass, quartz, organic polymer or opaque/reflective material (eg conductive material, metal, wafer, ceramic or other applicable materials) or other applicable materials. If conductive materials or metals are used, an insulating layer (not shown) is covered on the substrate 100 to avoid short circuit problems. In some embodiments, the substrate 100 is a flexible substrate, and the material of the substrate 100 is, for example, polyethylene terephthalate (polyethylene terephthalate, PET), polyethylene glycol ester (polyethylene naphthalate, PEN), polyester (polyester, PES), polymethylmethacrylate (polymethylmethacrylate, PMMA), polycarbonate (polycarbonate, PC), polyimide (polyimide, PI) or metal soft board (Metal Foil) or other flexible materials .

在一些實施例中,緩衝層110位於基板100之上,且緩衝層110中含有氫元素。舉例來說,緩衝層110的材料包括含氫的氮化矽(或氫化氮化矽)或其他合適的材料。在一些實施例中,緩衝層110毯覆於基板100上。在一些實施例中,緩衝層110的厚度為100埃至6000埃。In some embodiments, the buffer layer 110 is located on the substrate 100 , and the buffer layer 110 contains hydrogen. For example, the material of the buffer layer 110 includes hydrogen-containing silicon nitride (or hydrogenated silicon nitride) or other suitable materials. In some embodiments, the buffer layer 110 is blanketed on the substrate 100 . In some embodiments, the buffer layer 110 has a thickness of 100 angstroms to 6000 angstroms.

氧化物絕緣層120位於基板100之上。在本實施例中,氧化物絕緣層120位於緩衝層110上。在一些實施例中,氧化物絕緣層120經圖案化而未覆蓋部分緩衝層110。換句話說,氧化物絕緣層120覆蓋緩衝層110的部分頂面,且未覆蓋緩衝層110的另一部分頂面。在一些實施例中,氧化物絕緣層120包括第一含氧結構122以及第二含氧結構124。在一些實施例中,第一含氧結構122以及第二含氧結構124彼此分離。在一些實施例中,氧化物絕緣層120的材料包括氧化矽、氮氧化矽、氧化鋁、氧化鉿或其他合適的材料。在一些實施例中,氧化物絕緣層120的厚度為300埃至5000埃。The oxide insulating layer 120 is located on the substrate 100 . In this embodiment, the oxide insulating layer 120 is located on the buffer layer 110 . In some embodiments, the oxide insulating layer 120 is patterned without covering part of the buffer layer 110 . In other words, the oxide insulating layer 120 covers part of the top surface of the buffer layer 110 and does not cover another part of the top surface of the buffer layer 110 . In some embodiments, the oxide insulating layer 120 includes a first oxygen-containing structure 122 and a second oxygen-containing structure 124 . In some embodiments, the first oxygen-containing structure 122 and the second oxygen-containing structure 124 are separated from each other. In some embodiments, the material of the oxide insulating layer 120 includes silicon oxide, silicon oxynitride, aluminum oxide, hafnium oxide or other suitable materials. In some embodiments, the oxide insulating layer 120 has a thickness of 300 angstroms to 5000 angstroms.

記憶體裝置ROM以及薄膜電晶體TFT位於基板100之上。在一些實施例中,記憶體裝置ROM以及薄膜電晶體TFT位於氧化物絕緣層120上。記憶體裝置ROM包括第一金屬氧化物層OS1、第二金屬氧化物層OS2、第一閘極G1、第一源極S1以及第一汲極D1。薄膜電晶體TFT包括第三金屬氧化物層OS3、第二閘極G2、第二源極S2以及第二汲極D2。The memory device ROM and the thin film transistor TFT are located on the substrate 100 . In some embodiments, the memory device ROM and the thin film transistor TFT are located on the oxide insulating layer 120 . The memory device ROM includes a first metal oxide layer OS1, a second metal oxide layer OS2, a first gate G1, a first source S1, and a first drain D1. The thin film transistor TFT includes a third metal oxide layer OS3 , a second gate G2 , a second source S2 and a second drain D2 .

第一金屬氧化物層OS1位於氧化物絕緣層120的第一含氧結構122之上,且第一金屬氧化物層OS1接觸第一含氧結構122的頂面。第一含氧結構122位於第一金屬氧化物層OS1與緩衝層110之間。緩衝層110以及第一含氧結構122位於第一金屬氧化物層OS1與基板100之間。The first metal oxide layer OS1 is located on the first oxygen-containing structure 122 of the oxide insulating layer 120 , and the first metal oxide layer OS1 contacts the top surface of the first oxygen-containing structure 122 . The first oxygen-containing structure 122 is located between the first metal oxide layer OS1 and the buffer layer 110 . The buffer layer 110 and the first oxygen-containing structure 122 are located between the first metal oxide layer OS1 and the substrate 100 .

第一金屬氧化物層OS1包括第一源極區sr1、第一汲極區dr1以及位於第一源極區sr1與第一汲極區dr1之間的第一通道區ch1,其中第一源極區sr1與第一汲極區dr1的電阻率低於第一通道區ch1的電阻率。在一些實施例中,第一通道區ch1與基板100之間的距離實質上等於第一源極區sr1與基板100之間的距離以及第一汲極區dr1與基板100之間的距離。The first metal oxide layer OS1 includes a first source region sr1, a first drain region dr1, and a first channel region ch1 between the first source region sr1 and the first drain region dr1, wherein the first source The resistivity of the region sr1 and the first drain region dr1 is lower than the resistivity of the first channel region ch1. In some embodiments, the distance between the first channel region ch1 and the substrate 100 is substantially equal to the distance between the first source region sr1 and the substrate 100 and the distance between the first drain region dr1 and the substrate 100 .

在一些實施例中,第一金屬氧化物層OS1下方之第一含氧結構122會對第一金屬氧化物層OS1進行補氧,使第一金屬氧化物層OS1的電阻率上升。在本實施例中,第一源極區sr1與第一汲極區dr1以及第一通道區ch1下方之第一含氧結構122具有實質上均勻的厚度。In some embodiments, the first oxygen-containing structure 122 under the first metal oxide layer OS1 supplies oxygen to the first metal oxide layer OS1 to increase the resistivity of the first metal oxide layer OS1 . In this embodiment, the first source region sr1 and the first drain region dr1 and the first oxygen-containing structure 122 under the first channel region ch1 have substantially uniform thickness.

第一閘介電層130位於氧化物絕緣層120之上,且包括第一介電結構132以及第二介電結構134。第一閘介電層130的第一介電結構132位於第一金屬氧化物層OS1上,且覆蓋第一金屬氧化物層OS1。在一些實施例中,第一源極區sr1、第一汲極區dr1以及第一通道區ch1皆位於氧化物絕緣層120的第一含氧結構122與第一閘介電層130的第一介電結構132之間。The first gate dielectric layer 130 is located on the oxide insulating layer 120 and includes a first dielectric structure 132 and a second dielectric structure 134 . The first dielectric structure 132 of the first gate dielectric layer 130 is located on the first metal oxide layer OS1 and covers the first metal oxide layer OS1 . In some embodiments, the first source region sr1 , the first drain region dr1 and the first channel region ch1 are located at the first oxygen-containing structure 122 of the oxide insulating layer 120 and the first layer of the first gate dielectric layer 130 . between the dielectric structures 132 .

第二介電結構134位於第二含氧結構124之上,且第二含氧結構124位於第二介電結構134與緩衝層110之間。第二含氧結構124與第二介電結構134互相堆疊以構成凸起結構P。在一些實施例中,第一閘介電層130的材料包括氧化矽、氮氧化矽、氧化鋁、氧化鉿或其他合適的材料。在一些實施例中,第一閘介電層130的厚度為100埃至1000埃。The second dielectric structure 134 is located on the second oxygen-containing structure 124 , and the second oxygen-containing structure 124 is located between the second dielectric structure 134 and the buffer layer 110 . The second oxygen-containing structure 124 and the second dielectric structure 134 are stacked to form the protruding structure P. Referring to FIG. In some embodiments, the material of the first gate dielectric layer 130 includes silicon oxide, silicon oxynitride, aluminum oxide, hafnium oxide or other suitable materials. In some embodiments, the thickness of the first gate dielectric layer 130 is 100 angstroms to 1000 angstroms.

第二金屬氧化物層OS2位於第一閘介電層130的第一介電結構132之上,且重疊於第一金屬氧化物層OS1的第一通道區ch1。第一介電結構132位於第一金屬氧化物層OS1與第二金屬氧化物層OS2之間。The second metal oxide layer OS2 is located on the first dielectric structure 132 of the first gate dielectric layer 130 and overlaps the first channel region ch1 of the first metal oxide layer OS1 . The first dielectric structure 132 is located between the first metal oxide layer OS1 and the second metal oxide layer OS2.

第三金屬氧化物層OS3位於凸起結構P上,且覆蓋凸起結構P的頂面以及側面,並延伸至緩衝層110的頂面。第三金屬氧化物層OS3接觸第二介電結構134的頂面、第二介電結構134的側面、第二含氧結構124的側面以及緩衝層110的頂面。The third metal oxide layer OS3 is located on the protruding structure P, covers the top and side surfaces of the protruding structure P, and extends to the top surface of the buffer layer 110 . The third metal oxide layer OS3 contacts the top surface of the second dielectric structure 134 , the side surfaces of the second dielectric structure 134 , the side surfaces of the second oxygen-containing structure 124 and the top surface of the buffer layer 110 .

第三金屬氧化物層OS3包括第二汲極區dr2、第二源極區sr2、第二通道區ch2、連接於第二汲極區dr2與第二通道區ch2之間的電阻漸變區g2a以及連接於第二源極區sr2與第二通道區ch2之間的電阻漸變區g2b。第二通道區ch2覆蓋第二介電結構134的頂面,且凸起結構P位於緩衝層110與第二通道區ch2之間。電阻漸變區g2a以及電阻漸變區g2b接觸凸起結構P的側面(包括第二介電結構134的側面以及第二含氧結構124的側面)。第二汲極區dr2與第二源極區sr2自凸起結構P的側面往遠離凸起結構P的方向延伸,且第二汲極區dr2與第二源極區sr2接觸緩衝層110的頂面。第二通道區ch2與基板100之間的距離大於第二汲極區dr2與基板100之間的距離以及第二源極區sr2與基板100之間的距離。The third metal oxide layer OS3 includes a second drain region dr2, a second source region sr2, a second channel region ch2, a resistance gradient region g2a connected between the second drain region dr2 and the second channel region ch2, and The resistance gradient region g2b is connected between the second source region sr2 and the second channel region ch2. The second channel region ch2 covers the top surface of the second dielectric structure 134 , and the protruding structure P is located between the buffer layer 110 and the second channel region ch2 . The resistance gradient region g2 a and the resistance gradient region g2 b contact the side surfaces of the protruding structure P (including the side surfaces of the second dielectric structure 134 and the second oxygen-containing structure 124 ). The second drain region dr2 and the second source region sr2 extend from the side of the protruding structure P to a direction away from the protruding structure P, and the second drain region dr2 and the second source region sr2 contact the top of the buffer layer 110 noodle. The distance between the second channel region ch2 and the substrate 100 is greater than the distance between the second drain region dr2 and the substrate 100 and the distance between the second source region sr2 and the substrate 100 .

在一些實施例中,第三金屬氧化物層OS3下方之凸起結構P會對第三金屬氧化物層OS3進行補氧,使第三金屬氧化物層OS3的電阻率上升,藉此避免薄膜電晶體TFT因為第二通道區ch2的電阻率太低而短路。此外,在一些實施例中,第二金屬氧化物層OS2下方之第一介電結構132也會對第二金屬氧化物層OS2進行補氧,藉此調整第二金屬氧化物層OS2的電阻率。In some embodiments, the protruding structure P under the third metal oxide layer OS3 will supply oxygen to the third metal oxide layer OS3, so that the resistivity of the third metal oxide layer OS3 will increase, thereby avoiding the thin film electrical resistance. The crystal TFT is short-circuited because the resistivity of the second channel region ch2 is too low. In addition, in some embodiments, the first dielectric structure 132 under the second metal oxide layer OS2 also supplies oxygen to the second metal oxide layer OS2, thereby adjusting the resistivity of the second metal oxide layer OS2. .

凸起結構P整體的厚度會影響其對第三金屬氧化物層OS3補氧的能力,進而影響第三金屬氧化物層OS3在不同區域之電阻率。具體來說,在第二通道區ch2下方,凸起結構P整體的厚度較大,因此第二通道區ch2的電阻率較大;在電阻漸變區g2a以及電阻漸變區g2b下方,凸起結構P整體的厚度逐漸減小,因此電阻漸變區g2a以及電阻漸變區g2b的電阻率亦隨之逐漸減小。換句話說,電阻漸變區g2a以及電阻漸變區g2b的電阻率隨著遠離第二通道區ch2而減少;第二汲極區dr2以及第二源極區sr2下方不具有凸起結構P,且第二汲極區dr2以及第二源極區sr2具有較第二通道區ch2、電阻漸變區g2a以及電阻漸變區g2b低的電阻率。在一些實施例中,第二通道區ch2的氧濃度大於電阻漸變區g2a以及電阻漸變區g2b的氧濃度,且電阻漸變區g2a以及電阻漸變區g2b的氧濃度大於第二汲極區dr2以及第二源極區sr2的氧濃度。The overall thickness of the protruding structure P will affect its ability to supply oxygen to the third metal oxide layer OS3, thereby affecting the resistivity of the third metal oxide layer OS3 in different regions. Specifically, under the second channel region ch2, the overall thickness of the raised structure P is relatively large, so the resistivity of the second channel region ch2 is relatively large; under the resistance gradient region g2a and the resistance gradient region g2b, the protrusion structure P The overall thickness gradually decreases, so the resistivity of the resistance gradient region g2a and the resistance gradient region g2b also gradually decreases accordingly. In other words, the resistivity of the resistance gradient region g2a and the resistance gradient region g2b decreases with distance from the second channel region ch2; there is no protruding structure P under the second drain region dr2 and the second source region sr2, and the first The second drain region dr2 and the second source region sr2 have lower resistivity than the second channel region ch2 , resistance gradient region g2a and resistance gradient region g2b. In some embodiments, the oxygen concentration of the second channel region ch2 is greater than the oxygen concentration of the resistance gradient region g2a and the resistance gradient region g2b, and the oxygen concentration of the resistance gradient region g2a and the resistance gradient region g2b is greater than that of the second drain region dr2 and the second drain region dr2. Oxygen concentration in the second source region sr2.

在一些實施例中,第一金屬氧化物層OS1、第二金屬氧化物層OS2以及第三金屬氧化物層OS3的材料包括銦鎵錫鋅氧化物(IGTZO)或氧化銦鎵鋅(IGZO)、氧化銦錫鋅(ITZO)、氧化鋁鋅錫(AZTO)、氧化銦鎢鋅(IWZO)等金屬化合物或包含鎵(Ga)、鋅(Zn)、銦(In)、錫(Sn)、鋁(Al)、鎢(W)中之任三者的氧化物或鑭系稀土摻雜金屬氧化物(例如Ln-IZO)。在一些實施例中,第一金屬氧化物層OS1、第二金屬氧化物層OS2以及第三金屬氧化物層OS3包括相同的材料。在其他實施例中,第一金屬氧化物層OS1的材料不同於第二金屬氧化物層OS2以及第三金屬氧化物層OS3的材料。在一些實施例中,第二金屬氧化物層OS2與第三金屬氧化物層OS3屬於同一圖案化層。在一些實施例中,第二金屬氧化物層OS2的載子遷移率與第三金屬氧化物層OS3的第二通道區ch2的載子遷移率大於第一金屬氧化物層OS1的第一通道區ch1的載子遷移率,藉此提升薄膜電晶體TFT的切換速度。In some embodiments, the materials of the first metal oxide layer OS1, the second metal oxide layer OS2 and the third metal oxide layer OS3 include indium gallium tin zinc oxide (IGTZO) or indium gallium zinc oxide (IGZO), Indium tin zinc oxide (ITZO), aluminum zinc tin oxide (AZTO), indium tungsten zinc oxide (IWZO) and other metal compounds or containing gallium (Ga), zinc (Zn), indium (In), tin (Sn), aluminum ( An oxide of any three of Al), tungsten (W), or a lanthanide rare earth-doped metal oxide (such as Ln-IZO). In some embodiments, the first metal oxide layer OS1, the second metal oxide layer OS2, and the third metal oxide layer OS3 include the same material. In other embodiments, the material of the first metal oxide layer OS1 is different from that of the second metal oxide layer OS2 and the third metal oxide layer OS3 . In some embodiments, the second metal oxide layer OS2 and the third metal oxide layer OS3 belong to the same patterned layer. In some embodiments, the carrier mobility of the second metal oxide layer OS2 and the carrier mobility of the second channel region ch2 of the third metal oxide layer OS3 are greater than the first channel region of the first metal oxide layer OS1 The carrier mobility of ch1 is used to increase the switching speed of the thin film transistor TFT.

第二閘介電層140位於緩衝層110、第一閘介電層130的第一介電結構132、第二金屬氧化物層OS2以及第三金屬氧化物層OS3之上。第二金屬氧化物層OS2位於第一閘介電層130的第一介電結構132與第二閘介電層140之間。第三金屬氧化物層OS3位於第一閘介電層130的第二介電結構134與第二閘介電層140之間以及緩衝層110與第二閘介電層140之間。在一些實施例中,第二閘介電層140的材料包括氧化矽、氮氧化矽、氧化鋁、氧化鉿或其他合適的材料。在一些實施例中,第二閘介電層140的厚度為500埃至2000埃。在一些實施例中,第一閘介電層的140厚度小於第二閘介電層130的厚度,藉此使電子更容易從第一通道區ch1中穿隧至第二金屬氧化物層OS2中,以提升記憶體裝置ROM的切換速度。The second gate dielectric layer 140 is located on the buffer layer 110 , the first dielectric structure 132 of the first gate dielectric layer 130 , the second metal oxide layer OS2 and the third metal oxide layer OS3 . The second metal oxide layer OS2 is located between the first dielectric structure 132 of the first gate dielectric layer 130 and the second gate dielectric layer 140 . The third metal oxide layer OS3 is located between the second dielectric structure 134 of the first gate dielectric layer 130 and the second gate dielectric layer 140 and between the buffer layer 110 and the second gate dielectric layer 140 . In some embodiments, the material of the second gate dielectric layer 140 includes silicon oxide, silicon oxynitride, aluminum oxide, hafnium oxide or other suitable materials. In some embodiments, the second gate dielectric layer 140 has a thickness of 500 angstroms to 2000 angstroms. In some embodiments, the thickness of the first gate dielectric layer 140 is smaller than the thickness of the second gate dielectric layer 130, thereby making it easier for electrons to tunnel from the first channel region ch1 to the second metal oxide layer OS2. , to increase the switching speed of the memory device ROM.

第一閘極G1與第二閘極G2位於第二閘介電層140上,且分別重疊於第一金屬氧化物層OS1的第一通道區ch1與第三金屬氧化物層OS3的第二通道區ch2。第二閘介電層140位於第一閘極G1與第二金屬氧化物層OS2之間以及第二閘極G2與第三金屬氧化物層OS3之間。第二金屬氧化物層OS2位於第一閘極G1與第一金屬氧化物層OS1的第一通道區ch1之間。The first gate G1 and the second gate G2 are located on the second gate dielectric layer 140 and overlap the first channel region ch1 of the first metal oxide layer OS1 and the second channel of the third metal oxide layer OS3 respectively. District ch2. The second gate dielectric layer 140 is located between the first gate G1 and the second metal oxide layer OS2 and between the second gate G2 and the third metal oxide layer OS3 . The second metal oxide layer OS2 is located between the first gate G1 and the first channel region ch1 of the first metal oxide layer OS1.

在一些實施例中,第一閘極G1以及第二閘極G2的材料可包括金屬,例如鉻(Cr)、金(Au)、銀(Ag)、銅(Cu)、錫(Sn)、鉛(Pb)、鉿(Hf)、鎢(W)、鉬(Mo)、釹(Nd)、鈦(Ti)、鉭(Ta)、鋁(Al)、鋅(Zn)或上述金屬的任意組合之合金或上述金屬及/或合金之疊層,但本發明不以此為限。第一閘極G1以及第二閘極G2也可以使用其他導電材料,例如:金屬的氮化物、金屬的氧化物、金屬的氮氧化物、金屬與其它導電材料的堆疊層或是其他具有導電性質之材料。In some embodiments, the materials of the first gate G1 and the second gate G2 may include metals, such as chromium (Cr), gold (Au), silver (Ag), copper (Cu), tin (Sn), lead (Pb), hafnium (Hf), tungsten (W), molybdenum (Mo), neodymium (Nd), titanium (Ti), tantalum (Ta), aluminum (Al), zinc (Zn) or any combination of the above metals Alloys or stacks of the aforementioned metals and/or alloys, but the present invention is not limited thereto. The first gate G1 and the second gate G2 can also use other conductive materials, such as: metal nitride, metal oxide, metal oxynitride, stacked layers of metal and other conductive materials, or other conductive materials. The material.

層間介電層150位於第二閘介電層140上,且覆蓋第一閘極G1以及第二閘極G2。在一些實施例中,層間介電層150的材料包括氧化矽、氮化矽、氮氧化矽、氧化鉿、氧化鋁或其他絕緣材料。The interlayer dielectric layer 150 is located on the second gate dielectric layer 140 and covers the first gate G1 and the second gate G2 . In some embodiments, the material of the interlayer dielectric layer 150 includes silicon oxide, silicon nitride, silicon oxynitride, hafnium oxide, aluminum oxide or other insulating materials.

第一接觸孔V1以及第二接觸孔V2穿過層間介電層150、第二閘介電層140以及第一介電結構132。第一汲極D1以及第一源極S1位於層間介電層150上,且分別填入第一接觸孔V1以及第二接觸孔V2,以電性連接第一金屬氧化物層OS1。第一汲極D1以及第一源極S1分別連接第一金屬氧化物層OS1的第一汲極區dr1以及第一源極區sr1。The first contact hole V1 and the second contact hole V2 pass through the interlayer dielectric layer 150 , the second gate dielectric layer 140 and the first dielectric structure 132 . The first drain D1 and the first source S1 are located on the interlayer dielectric layer 150 and respectively fill the first contact hole V1 and the second contact hole V2 to electrically connect the first metal oxide layer OS1 . The first drain D1 and the first source S1 are respectively connected to the first drain region dr1 and the first source region sr1 of the first metal oxide layer OS1 .

第三接觸孔V3以及第四接觸孔V4穿過層間介電層150以及第二閘介電層140。第二汲極D2以及第二源極S2位於層間介電層150上,且分別填入第三接觸孔V3以及第四接觸孔V4,以電性連接第三金屬氧化物層OS3。第二汲極D2以及第二源極S2分別連接第三金屬氧化物層OS3的第二汲極區dr2以及第二源極區sr2。The third contact hole V3 and the fourth contact hole V4 pass through the interlayer dielectric layer 150 and the second gate dielectric layer 140 . The second drain D2 and the second source S2 are located on the interlayer dielectric layer 150 and respectively fill the third contact hole V3 and the fourth contact hole V4 to electrically connect the third metal oxide layer OS3. The second drain D2 and the second source S2 are connected to the second drain region dr2 and the second source region sr2 of the third metal oxide layer OS3 respectively.

第一汲極D1、第一源極S1、第二汲極D2以及第二源極S2的材料可包括金屬,例如鉻、金、銀、銅、錫、鉛、鉿、鎢、鉬、釹、鈦、鉭、鋁、鋅(或上述金屬的任意組合之合金或上述金屬及/或合金之疊層,但本發明不以此為限。第一汲極D1、第一源極S1、第二汲極D2以及第二源極S2也可以使用其他導電材料,例如:金屬的氮化物、金屬的氧化物、金屬的氮氧化物、金屬與其它導電材料的堆疊層或是其他具有導電性質之材料。The materials of the first drain D1, the first source S1, the second drain D2 and the second source S2 may include metals such as chromium, gold, silver, copper, tin, lead, hafnium, tungsten, molybdenum, neodymium, Titanium, tantalum, aluminum, zinc (or an alloy of any combination of the above metals or a stack of the above metals and/or alloys, but the present invention is not limited thereto. The first drain D1, the first source S1, the second The drain D2 and the second source S2 can also use other conductive materials, such as: metal nitride, metal oxide, metal oxynitride, stacked layers of metal and other conductive materials, or other materials with conductive properties .

圖2A是圖1的記憶體電路的電路圖。圖2B是圖2A的記憶體電路的訊號圖。在圖2B中,縱軸為電壓,橫軸為時間。FIG. 2A is a circuit diagram of the memory circuit of FIG. 1 . FIG. 2B is a signal diagram of the memory circuit in FIG. 2A . In FIG. 2B , the vertical axis is voltage, and the horizontal axis is time.

請同時參考圖1與圖2A,記憶體電路10更包括字元線WL、位元線BL、資料線DL以及源極線SL。字元線WL電性連接薄膜電晶體TFT的第二閘極G2。位元線BL電性連接薄膜電晶體TFT的第二汲極D2。薄膜電晶體TFT的第二源極S2電性連接記憶體裝置ROM的第一閘極G1。資料線DL電性連接電性連接記憶體裝置ROM的第一汲極D1。源極線SL電性連接電性連接記憶體裝置ROM的第一源極S1。Please refer to FIG. 1 and FIG. 2A at the same time, the memory circuit 10 further includes word lines WL, bit lines BL, data lines DL and source lines SL. The word line WL is electrically connected to the second gate G2 of the thin film transistor TFT. The bit line BL is electrically connected to the second drain D2 of the thin film transistor TFT. The second source S2 of the thin film transistor TFT is electrically connected to the first gate G1 of the memory device ROM. The data line DL is electrically connected to the first drain D1 of the memory device ROM. The source line SL is electrically connected to the first source S1 of the memory device ROM.

請參考圖1、圖2A與圖2B,在執行記憶體裝置ROM的寫入指令時,藉由字元線WL對薄膜電晶體TFT的第二閘極G2施加電壓以開啟薄膜電晶體TFT,並同時藉由位元線BL對薄膜電晶體TFT的第二汲極D2施加第一電壓(例如15 V至30 V)。位元線BL上之訊號傳遞至記憶體裝置ROM的第一閘極G1,並藉由電場使電子自第一金屬氧化物層OS1通過第一閘介電層130的第一介電結構132而穿隧至第二金屬氧化物層OS2中。由於電子儲存於第二金屬氧化物層OS2中,記憶體裝置ROM的閾值電壓(threshold voltage,V th)得以改變。 Please refer to FIG. 1, FIG. 2A and FIG. 2B. When executing a write command of the memory device ROM, a voltage is applied to the second gate G2 of the thin film transistor TFT through the word line WL to turn on the thin film transistor TFT, and At the same time, a first voltage (for example, 15 V to 30 V) is applied to the second drain D2 of the thin film transistor TFT through the bit line BL. The signal on the bit line BL is transmitted to the first gate electrode G1 of the memory device ROM, and electrons are passed from the first metal oxide layer OS1 through the first dielectric structure 132 of the first gate dielectric layer 130 by the electric field. tunnel into the second metal oxide layer OS2. Since electrons are stored in the second metal oxide layer OS2, the threshold voltage (threshold voltage, V th ) of the memory device ROM is changed.

在執行記憶體裝置ROM的讀取指令時,藉由字元線WL對薄膜電晶體TFT的第二閘極G2施加電壓以開啟薄膜電晶體TFT,並同時藉由位元線BL對薄膜電晶體TFT的第二汲極D2施加第二電壓(例如5 V至15 V)。位元線BL上之訊號傳遞至記憶體裝置ROM的第一閘極G1以開啟記憶體裝置ROM,同時藉由資料線DL對記憶體裝置ROM的第一汲極D1施加電壓,使記憶體裝置ROM的第一汲極D1與第一源極S1之間產生電壓差,使訊號得以通過記憶體裝置ROM。藉由讀取通過記憶體裝置ROM的訊號,可以得知記憶體裝置ROM目前為狀態「1」或狀態「0」。在執行讀取指令時所用的第二電壓小於執行寫入指令時所用的第一電壓,因此,在執行寫入指令時不容易因為電子的穿隧而改變記憶體裝置ROM的閾值電壓。When executing the read command of the memory device ROM, apply a voltage to the second gate G2 of the thin film transistor TFT through the word line WL to turn on the thin film transistor TFT, and at the same time, apply a voltage to the thin film transistor TFT through the bit line BL A second voltage (for example, 5 V to 15 V) is applied to the second drain D2 of the TFT. The signal on the bit line BL is transmitted to the first gate G1 of the memory device ROM to turn on the memory device ROM, and at the same time, a voltage is applied to the first drain D1 of the memory device ROM through the data line DL to enable the memory device A voltage difference is generated between the first drain D1 and the first source S1 of the ROM, so that signals can pass through the memory device ROM. By reading the signal passing through the memory device ROM, it can be known that the memory device ROM is currently in state "1" or state "0". The second voltage used when executing the read command is lower than the first voltage used when executing the write command. Therefore, it is not easy to change the threshold voltage of the memory device ROM due to electron tunneling when executing the write command.

在執行記憶體裝置ROM的擦除指令時,藉由字元線WL對薄膜電晶體TFT的第二閘極G2施加電壓以開啟薄膜電晶體TFT,並同時藉由位元線BL對薄膜電晶體TFT的第二汲極D2施加第三電壓(例如-15 V至-30 V)。位元線BL上之訊號傳遞至記憶體裝置ROM的第一閘極G1,並藉由電場使電子自第二金屬氧化物層OS2通過第一閘介電層130的第一介電結構132而穿隧至第一金屬氧化物層OS1中,藉此使記憶體裝置ROM的閾值電壓得以回歸原本的數值。When executing the erase command of the memory device ROM, a voltage is applied to the second gate G2 of the thin film transistor TFT through the word line WL to turn on the thin film transistor TFT, and at the same time, the voltage is applied to the thin film transistor TFT through the bit line BL A third voltage (eg -15 V to -30 V) is applied to the second drain D2 of the TFT. The signal on the bit line BL is transmitted to the first gate electrode G1 of the memory device ROM, and electrons are passed from the second metal oxide layer OS2 through the first dielectric structure 132 of the first gate dielectric layer 130 by the electric field. Tunneling into the first metal oxide layer OS1, so that the threshold voltage of the memory device ROM can return to the original value.

基於上述,藉由記憶體裝置ROM具有存取速度快的優點。Based on the above, using the memory device ROM has the advantage of fast access speed.

圖3A至圖3F是圖1的記憶體電路的製造方法的剖面示意圖。3A to 3F are schematic cross-sectional views of the manufacturing method of the memory circuit shown in FIG. 1 .

請參考圖3A,形成緩衝層110以及氧化物絕緣層120於基板100之上。在一些實施例中,緩衝層110毯覆於基板100上,且氧化物絕緣層120毯覆於緩衝層110上。Referring to FIG. 3A , a buffer layer 110 and an oxide insulating layer 120 are formed on the substrate 100 . In some embodiments, the buffer layer 110 blankets the substrate 100 , and the oxide insulating layer 120 blankets the buffer layer 110 .

接著,形成第一金屬氧化物層OS1’於氧化物絕緣層120之上。在一些實施例中,形成第一金屬氧化物層OS1’的方法包括:於氧化物絕緣層120上形第一半導體材料層(未繪出);於前述第一半導體材料層上形成圖案化的光阻(未繪出);以圖案化的光阻為罩幕,蝕刻第一半導體材料層,以形成第一金屬氧化物層OS1’;最後,移除圖案化的光阻。Next, a first metal oxide layer OS1' is formed on the oxide insulating layer 120. In some embodiments, the method for forming the first metal oxide layer OS1' includes: forming a first semiconductor material layer (not shown) on the oxide insulating layer 120; forming a patterned Photoresist (not shown); using the patterned photoresist as a mask to etch the first semiconductor material layer to form the first metal oxide layer OS1 ′; finally, remove the patterned photoresist.

請參考圖3B,形成第一閘介電層130於第一金屬氧化物層OS1’以及氧化物絕緣層120之上。在一些實施例中,第一閘介電層130毯覆於第一金屬氧化物層OS1’以及氧化物絕緣層120上。Referring to FIG. 3B , a first gate dielectric layer 130 is formed on the first metal oxide layer OS1' and the oxide insulating layer 120. Referring to FIG. In some embodiments, the first gate dielectric layer 130 blankets the first metal oxide layer OS1' and the oxide insulating layer 120.

請參考圖3C,對氧化物絕緣層120以及第一閘介電層130執行圖案化製程,以使氧化物絕緣層120包括第一含氧結構122以及第二含氧結構124,且使第一閘介電層130包括第一介電結構132以及第二介電結構134。第一金屬氧化物層OS1’位於第一含氧結構122與第一介電結構132之間。第二含氧結構124與第二介電結構134互相堆疊以構成凸起結構P。在一些實施例中,前述圖案化製程包括濕蝕刻或乾蝕刻,且前述圖案化製程蝕刻停止於緩衝層110。Referring to FIG. 3C , a patterning process is performed on the oxide insulating layer 120 and the first gate dielectric layer 130, so that the oxide insulating layer 120 includes a first oxygen-containing structure 122 and a second oxygen-containing structure 124, and the first The gate dielectric layer 130 includes a first dielectric structure 132 and a second dielectric structure 134 . The first metal oxide layer OS1' is located between the first oxygen-containing structure 122 and the first dielectric structure 132. The second oxygen-containing structure 124 and the second dielectric structure 134 are stacked to form the protruding structure P. Referring to FIG. In some embodiments, the aforementioned patterning process includes wet etching or dry etching, and the aforementioned patterning process etch stops at the buffer layer 110 .

在一些實施例中,藉由同一個光罩圖案化氧化物絕緣層120以及第一閘介電層130,因此,第一含氧結構122的側面對齊於第一介電結構132,且第二含氧結構124的側面對齊於第二介電結構134。In some embodiments, the oxide insulating layer 120 and the first gate dielectric layer 130 are patterned by the same photomask, so the sides of the first oxygen-containing structure 122 are aligned with the first dielectric structure 132, and the second The sides of the oxygen-containing structure 124 are aligned with the second dielectric structure 134 .

接著請參考圖3D,形成第二金屬氧化物層OS2以及第三金屬氧化物層OS3’於第一閘介電層130之上。在本實施例中,形成第二金屬氧化物層OS2於第一閘介電層130的第一介電結構132上,並形成第三金屬氧化物層OS3’於凸起結構P的頂面、凸起結構P側面以及緩衝層110上。在一些實施例中,形成第二金屬氧化物層OS2以及第三金屬氧化物層OS3’的方法包括:於緩衝層110、氧化物絕緣層120以及第一閘介電層130上形第二半導體材料層(未繪出);於前述第二半導體材料層上形成圖案化的光阻(未繪出);以圖案化的光阻為罩幕,蝕刻第二半導體材料層,以形成第二金屬氧化物層OS2以及第三金屬氧化物層OS3’;最後,移除圖案化的光阻。在本實施例中,由於第一金屬氧化物層OS1’被第一含氧結構122以及第一介電結構132所包覆,因此前述蝕刻製程不會對第一金屬氧化物層OS1’造成損傷。Next, referring to FIG. 3D , a second metal oxide layer OS2 and a third metal oxide layer OS3' are formed on the first gate dielectric layer 130 . In this embodiment, the second metal oxide layer OS2 is formed on the first dielectric structure 132 of the first gate dielectric layer 130, and the third metal oxide layer OS3' is formed on the top surface of the protruding structure P, On the side of the protruding structure P and the buffer layer 110 . In some embodiments, the method for forming the second metal oxide layer OS2 and the third metal oxide layer OS3 ′ includes: forming a second semiconductor layer on the buffer layer 110 , the oxide insulating layer 120 and the first gate dielectric layer 130 material layer (not shown); forming a patterned photoresist (not shown) on the aforementioned second semiconductor material layer; using the patterned photoresist as a mask, etching the second semiconductor material layer to form a second metal oxide layer OS2 and the third metal oxide layer OS3'; finally, remove the patterned photoresist. In this embodiment, since the first metal oxide layer OS1' is covered by the first oxygen-containing structure 122 and the first dielectric structure 132, the aforementioned etching process will not cause damage to the first metal oxide layer OS1' .

請參考圖3E,形成第二閘介電層140於第二金屬氧化物層OS2以及第三金屬氧化物層OS3’之上。在本實施例中,第二閘介電層140位於第二金屬氧化物層OS2、第一介電結構132、緩衝層110以及第三金屬氧化物層OS3’上。Referring to FIG. 3E , a second gate dielectric layer 140 is formed on the second metal oxide layer OS2 and the third metal oxide layer OS3'. In this embodiment, the second gate dielectric layer 140 is located on the second metal oxide layer OS2, the first dielectric structure 132, the buffer layer 110 and the third metal oxide layer OS3'.

形成第一閘極G1以及第二閘極G2於第二閘介電層140之上。第二金屬氧化物層OS2位於第一閘極G1與第一金屬氧化物層OS1’之間,且第二閘極G2重疊於第三金屬氧化物層OS3’。A first gate G1 and a second gate G2 are formed on the second gate dielectric layer 140 . The second metal oxide layer OS2 is located between the first gate G1 and the first metal oxide layer OS1', and the second gate G2 overlaps the third metal oxide layer OS3'.

在一些實施例中,在形成第一閘極G1以及第二閘極G2之前,執行熱處理製程以使凸起結構P中的氧元素擴散至第三金屬氧化物層OS3’中,藉此提升位於凸起結構P上之第三金屬氧化物層OS3’的電阻率。在一些實施例中,熱處理製程還使第一介電結構132中的氧元素擴散至第二金屬氧化物層OS2中,藉此提升第二金屬氧化物層OS2的電阻率。在一些實施例中,前述熱處理製程例如是沉積第二閘介電層140時的加熱製程,但本發明不以此為限。In some embodiments, before forming the first gate G1 and the second gate G2, a heat treatment process is performed to diffuse the oxygen element in the protruding structure P into the third metal oxide layer OS3 ′, thereby improving the The resistivity of the third metal oxide layer OS3' on the protruding structure P. In some embodiments, the heat treatment process also diffuses the oxygen element in the first dielectric structure 132 into the second metal oxide layer OS2, thereby increasing the resistivity of the second metal oxide layer OS2. In some embodiments, the aforementioned heat treatment process is, for example, a heating process when depositing the second gate dielectric layer 140 , but the invention is not limited thereto.

接著,以第一閘極G1以及第二閘極G2為遮罩,對該第一金屬氧化物層OS1’以及第三金屬氧化物層OS3’執行摻雜製程DP。以形成包括第一源極區sr1、第一汲極區dr1以及第一通道區ch1的第一金屬氧化物層OS1以及包括第二源極區sr2、第二汲極區dr2、電阻漸變區g2a、電阻漸變區g2b以及第二通道區ch2的第三金屬氧化物層OS3。在一些實施例中,摻雜製程DP例如為氫電漿製程或其他合適的製程。在一些實施例中,在基板100的頂面的法線方向ND上,第一閘極G1完全遮蔽第二金屬氧化物層OS2。因此,第一源極區sr1以及第一汲極區dr1不會於摻雜製程DP中被第二金屬氧化物層OS2所遮蔽。Next, using the first gate G1 and the second gate G2 as masks, a doping process DP is performed on the first metal oxide layer OS1' and the third metal oxide layer OS3'. To form the first metal oxide layer OS1 including the first source region sr1, the first drain region dr1 and the first channel region ch1 and the second source region sr2, the second drain region dr2, the resistance gradient region g2a , the resistance gradient region g2b and the third metal oxide layer OS3 in the second channel region ch2. In some embodiments, the doping process DP is, for example, a hydrogen plasma process or other suitable processes. In some embodiments, in the normal direction ND of the top surface of the substrate 100 , the first gate G1 completely covers the second metal oxide layer OS2 . Therefore, the first source region sr1 and the first drain region dr1 are not shielded by the second metal oxide layer OS2 in the doping process DP.

在一些實施例中,緩衝層110會於製程中提供氫元素至第三金屬氧化物層OS3,藉此降低第二源極區sr2以及第二汲極區dr2的電阻率。In some embodiments, the buffer layer 110 provides hydrogen elements to the third metal oxide layer OS3 during the manufacturing process, thereby reducing the resistivity of the second source region sr2 and the second drain region dr2 .

在本實施例中,第一閘極G1與第二閘極G2屬於同一圖案化層,且第一金屬氧化物層OS1以及第二金屬氧化物層OS2可以經由同一次的摻雜製程DP進行摻雜,因此可以節省記憶體裝置以及薄膜電晶體的製造成本。In this embodiment, the first gate G1 and the second gate G2 belong to the same patterned layer, and the first metal oxide layer OS1 and the second metal oxide layer OS2 can be doped through the same doping process DP. Therefore, the manufacturing cost of memory devices and thin film transistors can be saved.

請參考圖3F,形成層間介電層150於第二閘介電層140上。接著,執行蝕刻製程以形成第一接觸孔V1、第二接觸孔V2、第三接觸孔V3以及第四接觸孔V4。Referring to FIG. 3F , an interlayer dielectric layer 150 is formed on the second gate dielectric layer 140 . Next, an etching process is performed to form a first contact hole V1 , a second contact hole V2 , a third contact hole V3 and a fourth contact hole V4 .

最後,請回到圖1,形成第一汲極D1、第一源極S1、第二汲極D2以及第二源極S2於層間介電層150上,且分別填入第一接觸孔V1、第二接觸孔V2、第三接觸孔V3以及第四接觸孔V4中。至此,記憶體電路10大致完成。在一些實施例中,形成第一源極S1、第一汲極D1、第二源極S2以及第二汲極D2的方法包括:於層間介電層150上形成導電材料層(未繪出);於前述導電材料層上形成圖案化的光阻(未繪出);以圖案化的光阻為罩幕,蝕刻導電材料層,以形成第一源極S1、第一汲極D1、第二源極S2以及第二汲極D2;最後,移除圖案化的光阻。換句話說,第一源極S1、第一汲極D1、第二源極S2以及第二汲極D2屬於同一圖案化層。Finally, please return to FIG. 1, form the first drain D1, the first source S1, the second drain D2 and the second source S2 on the interlayer dielectric layer 150, and respectively fill the first contact holes V1, In the second contact hole V2 , the third contact hole V3 and the fourth contact hole V4 . So far, the memory circuit 10 is roughly completed. In some embodiments, the method for forming the first source S1, the first drain D1, the second source S2, and the second drain D2 includes: forming a conductive material layer (not shown) on the interlayer dielectric layer 150 ; Forming a patterned photoresist (not shown) on the aforementioned conductive material layer; using the patterned photoresist as a mask, etching the conductive material layer to form the first source S1, the first drain D1, the second The source S2 and the second drain D2; finally, remove the patterned photoresist. In other words, the first source S1 , the first drain D1 , the second source S2 and the second drain D2 belong to the same patterned layer.

圖4是依照本發明的一實施例的一種記憶體電路的剖面示意圖。在此必須說明的是,圖4的實施例沿用圖1的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。FIG. 4 is a schematic cross-sectional view of a memory circuit according to an embodiment of the invention. It must be noted here that the embodiment in FIG. 4 follows the component numbers and part of the content of the embodiment in FIG. 1 , where the same or similar numbers are used to denote the same or similar components, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, and details are not repeated here.

圖4的記憶體電路20與圖1的記憶體電路10的主要差異在於:記憶體電路20的薄膜電晶體TFT更包括底閘極BG。The main difference between the memory circuit 20 in FIG. 4 and the memory circuit 10 in FIG. 1 is that: the thin film transistor TFT of the memory circuit 20 further includes a bottom gate BG.

請參考圖4,底閘極BG位於基板100上。緩衝層110位於底閘極BG上。第三金屬氧化物層OS3位於底閘極BG與第二閘極G2之間,且凸起結構P位於底閘極BG與第三金屬氧化物層OS3之間。在一些實施例中,底閘極BG的長度L2大於第二閘極G2的長度L1。Referring to FIG. 4 , the bottom gate BG is located on the substrate 100 . The buffer layer 110 is located on the bottom gate BG. The third metal oxide layer OS3 is located between the bottom gate BG and the second gate G2, and the protruding structure P is located between the bottom gate BG and the third metal oxide layer OS3. In some embodiments, the length L2 of the bottom gate BG is greater than the length L1 of the second gate G2.

圖5是依照本發明的一實施例的一種記憶體電路的剖面示意圖。在此必須說明的是,圖5的實施例沿用圖1的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。FIG. 5 is a schematic cross-sectional view of a memory circuit according to an embodiment of the invention. It must be noted here that the embodiment in FIG. 5 follows the component numbers and part of the content of the embodiment in FIG. 1 , wherein the same or similar numbers are used to denote the same or similar components, and the description of the same technical content is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, and details are not repeated here.

圖5的記憶體電路30與圖1的記憶體電路10的主要差異在於:記憶體電路30的記憶體裝置ROM的第一金屬氧化物層OS1包括電阻漸變區g1a以及電阻漸變區g1b。電阻漸變區g1a連接於第一汲極區dr1與第一通道區ch1之間,電阻漸變區g1b且連接於第一源極區sr1與第一通道區ch1之間。The main difference between the memory circuit 30 of FIG. 5 and the memory circuit 10 of FIG. 1 is that the first metal oxide layer OS1 of the memory device ROM of the memory circuit 30 includes a resistance gradient region g1a and a resistance gradient region g1b. The resistance gradient region g1a is connected between the first drain region dr1 and the first channel region ch1, and the resistance gradient region g1b is also connected between the first source region sr1 and the first channel region ch1.

請參考圖5,第一金屬氧化物層OS1的第一通道區ch1位於第一含氧結構122上,且第一含氧結構122位於第一通道區ch1與緩衝層110之間。第一金屬氧化物層OS1的電阻漸變區g1a以及第二電阻漸變區g1b接觸第一含氧結構122的側面。第一汲極區dr1與第一源極區sr1自第一含氧結構122的側面往遠離第一含氧結構122的方向延伸,且第一汲極區dr1與第一源極區sr1接觸緩衝層110的頂面。第一通道區ch1與基板100之間的距離大於第一汲極區dr1與基板100之間的距離以及第一源極區sr1與基板100之間的距離。Referring to FIG. 5 , the first channel region ch1 of the first metal oxide layer OS1 is located on the first oxygen-containing structure 122 , and the first oxygen-containing structure 122 is located between the first channel region ch1 and the buffer layer 110 . The resistance gradient region g1 a and the second resistance gradient region g1 b of the first metal oxide layer OS1 contact the side surface of the first oxygen-containing structure 122 . The first drain region dr1 and the first source region sr1 extend from the side of the first oxygen-containing structure 122 to a direction away from the first oxygen-containing structure 122, and the first drain region dr1 and the first source region sr1 are in contact with the buffer top surface of layer 110. The distance between the first channel region ch1 and the substrate 100 is greater than the distance between the first drain region dr1 and the substrate 100 and the distance between the first source region sr1 and the substrate 100 .

在一些實施例中,第一金屬氧化物層OS1下方之第一含氧結構122會對第一金屬氧化物層OS1進行補氧,使第一金屬氧化物層OS1的電阻率上升,藉此避免記憶體裝置ROM因為第一通道區ch1的電阻率太低而短路。In some embodiments, the first oxygen-containing structure 122 under the first metal oxide layer OS1 supplies oxygen to the first metal oxide layer OS1 to increase the resistivity of the first metal oxide layer OS1, thereby avoiding The memory device ROM is short-circuited because the resistivity of the first channel region ch1 is too low.

第一含氧結構122的厚度會影響其對第一金屬氧化物層OS1補氧的能力,進而影響第一金屬氧化物層OS1在不同區域之電阻率。具體來說,在第一通道區ch1下方,第一含氧結構122的厚度較大,因此第一通道區ch1的電阻率較大;在電阻漸變區g1a以及電阻漸變區g1b下方,第一含氧結構122的厚度逐漸減小,因此電阻漸變區g1a以及電阻漸變區g1b的電阻率亦隨之逐漸減小。換句話說,電阻漸變區g1a以及電阻漸變區g1b的電阻率隨著遠離第一通道區ch1而減少。第一汲極區dr1與第一源極區sr1下方不具有第一含氧結構122,且第一汲極區dr1與第一源極區sr1具有較第一通道區ch1、電阻漸變區g1a以及電阻漸變區g1b低的電阻率。在一些實施例中,第一通道區ch1的氧濃度大於電阻漸變區g1a以及電阻漸變區g1b的氧濃度,且電阻漸變區g1a以及電阻漸變區g1b的氧濃度大於第一汲極區dr1以及第一源極區sr1的氧濃度。The thickness of the first oxygen-containing structure 122 affects its ability to supply oxygen to the first metal oxide layer OS1 , thereby affecting the resistivity of the first metal oxide layer OS1 in different regions. Specifically, under the first channel region ch1, the thickness of the first oxygen-containing structure 122 is relatively large, so the resistivity of the first channel region ch1 is relatively large; under the resistance gradient region g1a and resistance gradient region g1b, the first oxygen-containing structure The thickness of the oxygen structure 122 decreases gradually, so the resistivity of the resistance gradient region g1a and the resistance gradient region g1b also gradually decreases accordingly. In other words, the resistivity of the resistance gradient region g1a and the resistance gradient region g1b decreases with distance from the first channel region ch1. There is no first oxygen-containing structure 122 under the first drain region dr1 and the first source region sr1 , and the first drain region dr1 and the first source region sr1 have a larger structure than the first channel region ch1 , the resistance gradient region g1a and the first channel region ch1 . The resistance gradient region g1b has a low resistivity. In some embodiments, the oxygen concentration of the first channel region ch1 is greater than the oxygen concentration of the resistance gradient region g1a and the resistance gradient region g1b, and the oxygen concentration of the resistance gradient region g1a and the resistance gradient region g1b is greater than that of the first drain region dr1 and the first drain region dr1. Oxygen concentration in the source region sr1.

在一些實施例中,緩衝層110會於製程中提供氫元素至第一金屬氧化物層OS1,藉此降低第一源極區sr1以及第一汲極區dr1的電阻率。In some embodiments, the buffer layer 110 provides hydrogen elements to the first metal oxide layer OS1 during the manufacturing process, thereby reducing the resistivity of the first source region sr1 and the first drain region dr1 .

綜上所述,本發明的記憶體裝置ROM的第二金屬氧化物層OS2位於第一閘極G1與第一金屬氧化物層OS1之間,可以透過對第一閘極G1施加電壓以使電子在第一金屬氧化物層OS1與第二金屬氧化物層OS2之間穿隧,藉此使記憶體裝置ROM可以快速的切換。To sum up, the second metal oxide layer OS2 of the memory device ROM of the present invention is located between the first gate G1 and the first metal oxide layer OS1, and the electrons can be released by applying a voltage to the first gate G1. Tunneling between the first metal oxide layer OS1 and the second metal oxide layer OS2 enables fast switching of the memory device ROM.

10, 20, 30:記憶體電路 100:基板 110:緩衝層 120:氧化物絕緣層 122:第一含氧結構 124:第二含氧結構 130:第一閘介電層 132:第一介電結構 134:第二介電結構 140:第二閘介電層 150:層間介電層 BG:底閘極 BL:位元線 ch1:第一通道區 ch2:第二通道區 DL:資料線 dr1:第一汲極區 dr2:第二汲極區 D1:第一汲極 D2:第二汲極 DP:摻雜製程 G1:第一閘極 G2:第二閘極 g1a, g1b, g2a, g2b:電阻漸變區 L1, L2:長度 ND:法線方向 OS1, OS1’:第一金屬氧化物層 OS2:第二金屬氧化物層 OS3, OS3’:第三金屬氧化物層 P:凸起結構 ROM:記憶體裝置 SL:源極線 S1:第一源極 S2:第二源極 sr1:第一源極區 sr2:第二源極區 TFT:薄膜電晶體 V1:第一接觸孔 V2:第二接觸孔 V3:第三接觸孔 V4:第四接觸孔 WL:字元線 10, 20, 30: memory circuits 100: Substrate 110: buffer layer 120: Oxide insulating layer 122: The first oxygen-containing structure 124: Second oxygen-containing structure 130: The first gate dielectric layer 132: first dielectric structure 134: Second dielectric structure 140: second gate dielectric layer 150: interlayer dielectric layer BG: bottom gate BL: bit line ch1: the first channel area ch2: the second channel area DL: data line dr1: the first drain region dr2: the second drain area D1: the first drain D2: the second drain DP: doping process G1: the first gate G2: the second gate g1a, g1b, g2a, g2b: resistance gradient area L1, L2: Length ND: normal direction OS1, OS1’: first metal oxide layer OS2: second metal oxide layer OS3, OS3’: the third metal oxide layer P: raised structure ROM: memory device SL: source line S1: first source S2: second source sr1: the first source region sr2: second source region TFT: thin film transistor V1: first contact hole V2: Second contact hole V3: The third contact hole V4: Fourth contact hole WL: character line

圖1是依照本發明的一實施例的一種記憶體電路的剖面示意圖。 圖2A是圖1的記憶體電路的電路圖。 圖2B是圖2A的記憶體電路的訊號圖。 圖3A至圖3F是圖1的記憶體電路的製造方法的剖面示意圖。 圖4是依照本發明的一實施例的一種記憶體電路的剖面示意圖。 圖5是依照本發明的一實施例的一種記憶體電路的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a memory circuit according to an embodiment of the present invention. FIG. 2A is a circuit diagram of the memory circuit of FIG. 1 . FIG. 2B is a signal diagram of the memory circuit in FIG. 2A . 3A to 3F are schematic cross-sectional views of the manufacturing method of the memory circuit shown in FIG. 1 . FIG. 4 is a schematic cross-sectional view of a memory circuit according to an embodiment of the invention. FIG. 5 is a schematic cross-sectional view of a memory circuit according to an embodiment of the invention.

10:記憶體電路 10: Memory circuit

100:基板 100: Substrate

110:緩衝層 110: buffer layer

120:氧化物絕緣層 120: Oxide insulating layer

122:第一含氧結構 122: The first oxygen-containing structure

124:第二含氧結構 124: Second oxygen-containing structure

130:第一閘介電層 130: The first gate dielectric layer

132:第一介電結構 132: first dielectric structure

134:第二介電結構 134: Second dielectric structure

140:第二閘介電層 140: second gate dielectric layer

150:層間介電層 150: interlayer dielectric layer

ch1:第一通道區 ch1: the first channel area

ch2:第二通道區 ch2: the second channel area

dr1:第一汲極區 dr1: the first drain region

dr2:第二汲極區 dr2: the second drain region

D1:第一汲極 D1: the first drain

D2:第二汲極 D2: the second drain

G1:第一閘極 G1: the first gate

G2:第二閘極 G2: the second gate

g2a,g2b:電阻漸變區 g2a, g2b: resistance gradient area

OS1:第一金屬氧化物層 OS1: first metal oxide layer

OS2:第二金屬氧化物層 OS2: second metal oxide layer

OS3:第三金屬氧化物層 OS3: third metal oxide layer

P:凸起結構 P: raised structure

ROM:記憶體裝置 ROM: memory device

S1:第一源極 S1: first source

S2:第二源極 S2: second source

sr1:第一源極區 sr1: the first source region

sr2:第二源極區 sr2: second source region

TFT:薄膜電晶體 TFT: thin film transistor

V1:第一接觸孔 V1: first contact hole

V2:第二接觸孔 V2: Second contact hole

V3:第三接觸孔 V3: The third contact hole

V4:第四接觸孔 V4: Fourth contact hole

Claims (17)

一種記憶體裝置,包括: 一基板; 一氧化物絕緣層,位於該基板之上; 一第一金屬氧化物層,位於該氧化物絕緣層之上; 一第一閘介電層,位於該第一金屬氧化物層之上; 一第二金屬氧化物層,位於該第一閘介電層之上; 一第二閘介電層,位於該第二金屬氧化物層之上; 一第一閘極,位於該第二閘介電層之上,其中該第二金屬氧化物層位於該第一閘極與該第一金屬氧化物層之間;以及 一源極以及一汲極,電性連接該第一金屬氧化物層。 A memory device comprising: a substrate; an oxide insulating layer located on the substrate; a first metal oxide layer located on the oxide insulating layer; a first gate dielectric layer located on the first metal oxide layer; a second metal oxide layer located on the first gate dielectric layer; a second gate dielectric layer located on the second metal oxide layer; a first gate on the second gate dielectric layer, wherein the second metal oxide layer is between the first gate and the first metal oxide layer; and A source and a drain are electrically connected to the first metal oxide layer. 如請求項1所述的記憶體裝置,其中該第一金屬氧化物層包括一源極區、一汲極區以及位於該源極區與該汲極區之間的一通道區,其中該源極區與該汲極區的電阻率低於該通道區的電阻率,且該第二金屬氧化物層位於該通道區與該第一閘極之間。The memory device according to claim 1, wherein the first metal oxide layer includes a source region, a drain region, and a channel region between the source region and the drain region, wherein the source The resistivity of the electrode region and the drain region is lower than that of the channel region, and the second metal oxide layer is located between the channel region and the first gate. 如請求項2所述的記憶體裝置,更包括: 一緩衝層,位於該基板之上,且該緩衝層中含有氫元素,其中該氧化物絕緣層的一第一含氧結構位於該通道區與該緩衝層之間,且該源極區與該汲極區接觸該緩衝層。 The memory device as described in claim 2, further comprising: A buffer layer is located on the substrate, and the buffer layer contains hydrogen elements, wherein a first oxygen-containing structure of the oxide insulating layer is located between the channel region and the buffer layer, and the source region and the buffer layer The drain region contacts the buffer layer. 如請求項3所述的記憶體裝置,其中該第一金屬氧化物層更包括: 一第一電阻漸變區以及一第二電阻漸變區,接觸該第一含氧結構的一側面,其中該第一電阻漸變區以及該第二電阻漸變區的電阻率隨著遠離該通道區而減少,其中該第一電阻漸變區連接於該通道區與該源極區之間,且該第二電阻漸變區連接於該通道區與該汲極區之間。 The memory device according to claim 3, wherein the first metal oxide layer further comprises: a first resistance gradient region and a second resistance gradient region contacting a side surface of the first oxygen-containing structure, wherein the resistivity of the first resistance gradient region and the second resistance gradient region decreases with distance from the channel region , wherein the first resistance gradient region is connected between the channel region and the source region, and the second resistance gradient region is connected between the channel region and the drain region. 如請求項1所述的記憶體裝置,其中該第一閘介電層的厚度小於該第二閘介電層的厚度。The memory device as claimed in claim 1, wherein the thickness of the first gate dielectric layer is smaller than the thickness of the second gate dielectric layer. 如請求項1所述的記憶體裝置,其中在該基板的頂面的法線方向上,該第一閘極完全遮蔽該第二金屬氧化物層。The memory device as claimed in claim 1, wherein in the direction normal to the top surface of the substrate, the first gate completely shields the second metal oxide layer. 一種記憶體電路,包括: 一基板; 一氧化物絕緣層,位於該基板之上,且包括一第一含氧結構以及一第二含氧結構; 一第一閘介電層,位於該氧化物絕緣層之上,且包括一第一介電結構以及一第二介電結構,其中該第二含氧結構與該第二介電結構互相堆疊以構成一凸起結構; 一第二閘介電層,位於該第一閘介電層之上; 一記憶體裝置,包括: 一第一金屬氧化物層,位於該第一含氧結構之上; 一第二金屬氧化物層,其中該第一介電結構位於該第一金屬氧化物層與該第二金屬氧化物層之間; 一第一閘極,其中該第二閘介電層位於該第二金屬氧化物層與該第一閘極之間,且該第二金屬氧化物層位於該第一閘極與該第一金屬氧化物層之間;以及 一第一源極以及一第一汲極,電性連接該第一金屬氧化物層;以及 一薄膜電晶體,包括: 一第三金屬氧化物層,覆蓋該凸起結構的一頂面以及一側面; 一第二閘極,重疊於該第三金屬氧化物層,且該第二閘介電層位於該第二閘極與該第三金屬氧化物層之間;以及 一第二源極以及一第二汲極,電性連接該第三金屬氧化物層。 A memory circuit comprising: a substrate; An oxide insulating layer is located on the substrate and includes a first oxygen-containing structure and a second oxygen-containing structure; A first gate dielectric layer is located on the oxide insulating layer and includes a first dielectric structure and a second dielectric structure, wherein the second oxygen-containing structure and the second dielectric structure are stacked on each other so as to forming a raised structure; a second gate dielectric layer located on the first gate dielectric layer; A memory device, comprising: a first metal oxide layer overlying the first oxygen-containing structure; a second metal oxide layer, wherein the first dielectric structure is located between the first metal oxide layer and the second metal oxide layer; A first gate, wherein the second gate dielectric layer is located between the second metal oxide layer and the first gate, and the second metal oxide layer is located between the first gate and the first metal oxide layer between oxide layers; and a first source and a first drain electrically connected to the first metal oxide layer; and A thin film transistor, comprising: a third metal oxide layer covering a top surface and a side surface of the raised structure; a second gate overlapping the third metal oxide layer, and the second gate dielectric layer is located between the second gate and the third metal oxide layer; and A second source and a second drain are electrically connected to the third metal oxide layer. 如請求項7所述的記憶體電路,其中該第三金屬氧化物層包括: 一通道區,覆蓋該凸起結構的該頂面; 一第一電阻漸變區以及一第二電阻漸變區,接觸該凸起結構的該側面,其中該第一電阻漸變區以及該第二電阻漸變區的電阻率隨著遠離該通道區而減少;以及 一源極區以及一汲極區,自該凸起結構的該側面往遠離該凸起結構的方向延伸,其中該第一電阻漸變區連接於該通道區與該源極區之間,且該第二電阻漸變區連接於該通道區與該汲極區之間。 The memory circuit as claimed in item 7, wherein the third metal oxide layer comprises: a channel area covering the top surface of the raised structure; a first resistance gradient region and a second resistance gradient region contacting the side surface of the raised structure, wherein the resistivity of the first resistance gradient region and the second resistance gradient region decreases away from the channel region; and A source region and a drain region extend from the side of the raised structure to a direction away from the raised structure, wherein the first resistance gradient region is connected between the channel region and the source region, and the The second resistance gradient area is connected between the channel area and the drain area. 如請求項8所述的記憶體電路,更包括: 一緩衝層,位於該基板之上,且該緩衝層中含有氫元素,其中該凸起結構位於該通道區與該緩衝層之間,且該源極區與該汲極區接觸該緩衝層。 The memory circuit as described in claim item 8, further comprising: A buffer layer is located on the substrate, and the buffer layer contains hydrogen, wherein the raised structure is located between the channel region and the buffer layer, and the source region and the drain region are in contact with the buffer layer. 如請求項7所述的記憶體電路,更包括: 一字元線,電性連接該第二閘極; 一位元線,電性連接該第二汲極,且該第二源極電性連接該第一閘極; 一資料線,電性連接該第一汲極; 一源極線,電性連接該第一源極。 The memory circuit as described in claim item 7, further comprising: a word line electrically connected to the second gate; a bit line electrically connected to the second drain, and the second source electrically connected to the first gate; a data line electrically connected to the first drain; A source line is electrically connected to the first source. 如請求項7所述的記憶體電路,其中該薄膜電晶體更包括: 一底閘極,其中該第三金屬氧化物層位於該底閘極與該第二閘極之間,且該凸起結構位於該底閘極與該第三金屬氧化物層之間。 The memory circuit as claimed in item 7, wherein the thin film transistor further comprises: A bottom gate, wherein the third metal oxide layer is located between the bottom gate and the second gate, and the raised structure is located between the bottom gate and the third metal oxide layer. 如請求項11所述的記憶體電路,其中該底閘極的長度大於該第二閘極的長度。The memory circuit according to claim 11, wherein the length of the bottom gate is greater than the length of the second gate. 如請求項7所述的記憶體電路,其中該第二金屬氧化物層與該第三金屬氧化物層屬於同一圖案化層。The memory circuit as claimed in claim 7, wherein the second metal oxide layer and the third metal oxide layer belong to the same patterned layer. 一種記憶體電路的製造方法,包括: 形成一氧化物絕緣層於一基板之上; 形成一第一金屬氧化物層於該氧化物絕緣層之上; 形成一第一閘介電層於該第一金屬氧化物層之上; 形成一第二金屬氧化物層於該第一閘介電層之上; 形成一第二閘介電層於該第二金屬氧化物層之上; 形成一第一閘極於該第二閘介電層之上,其中該第二金屬氧化物層位於該第一閘極與該第一金屬氧化物層之間;以及 形成電性連接至該第一金屬氧化物層的一源極以及一汲極。 A method of manufacturing a memory circuit, comprising: forming an oxide insulating layer on a substrate; forming a first metal oxide layer on the oxide insulating layer; forming a first gate dielectric layer on the first metal oxide layer; forming a second metal oxide layer on the first gate dielectric layer; forming a second gate dielectric layer on the second metal oxide layer; forming a first gate over the second gate dielectric layer, wherein the second metal oxide layer is between the first gate and the first metal oxide layer; and A source and a drain electrically connected to the first metal oxide layer are formed. 如請求項14所述的記憶體電路的製造方法,更包括: 對該氧化物絕緣層以及該第一閘介電層執行一圖案化製程,以使該氧化物絕緣層包括一第一含氧結構以及一第二含氧結構,且使該第一閘介電層包括一第一介電結構以及一第二介電結構,其中該第二含氧結構與該第二介電結構互相堆疊以構成一凸起結構; 形成該第二金屬氧化物層於該第一閘介電層的該第一介電結構上,並形成一第三金屬氧化物層於該凸起結構的一頂面以及一側面上; 形成該第二閘介電層於該第二金屬氧化物層以及該第三金屬氧化物層上; 形成該第一閘極以及一第二閘極於該第二閘介電層上,其中該第二閘極重疊於該第三金屬氧化物層; 形成電性連接至該第三金屬氧化物層的一第二源極以及一第二汲極。 The method for manufacturing a memory circuit as described in claim 14, further comprising: performing a patterning process on the oxide insulating layer and the first gate dielectric layer, so that the oxide insulating layer includes a first oxygen-containing structure and a second oxygen-containing structure, and makes the first gate dielectric The layer includes a first dielectric structure and a second dielectric structure, wherein the second oxygen-containing structure and the second dielectric structure are stacked to form a raised structure; forming the second metal oxide layer on the first dielectric structure of the first gate dielectric layer, and forming a third metal oxide layer on a top surface and a side surface of the raised structure; forming the second gate dielectric layer on the second metal oxide layer and the third metal oxide layer; forming the first gate and a second gate on the second gate dielectric layer, wherein the second gate overlaps the third metal oxide layer; A second source and a second drain electrically connected to the third metal oxide layer are formed. 如請求項15所述的記憶體電路的製造方法,更包括: 以該第一閘極以及該第二閘極為遮罩,對該第一金屬氧化物層以及該第三金屬氧化物層執行一摻雜製程。 The manufacturing method of the memory circuit as described in claim item 15, further comprising: A doping process is performed on the first metal oxide layer and the third metal oxide layer by using the first gate electrode and the second gate electrode as masks. 如請求項15所述的記憶體電路的製造方法,更包括: 在形成該第一閘極以及該第二閘極之前,執行熱處理製程以使該凸起結構中的氧元素擴散至該第三金屬氧化物層中。 The manufacturing method of the memory circuit as described in claim item 15, further comprising: Before forming the first gate and the second gate, a heat treatment process is performed to diffuse the oxygen element in the raised structure into the third metal oxide layer.
TW111126381A 2021-12-09 2022-07-14 Memory device, memory circuit and manufacturing method of memory circuit TWI813378B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/988,764 US20230189499A1 (en) 2021-12-09 2022-11-17 Memory device, memory circuit and manufacturing method of memory circuit
CN202211556797.4A CN115968199A (en) 2021-12-09 2022-12-06 Memory device, memory circuit and method for manufacturing memory circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163287695P 2021-12-09 2021-12-09
US63/287,695 2021-12-09

Publications (2)

Publication Number Publication Date
TW202324705A true TW202324705A (en) 2023-06-16
TWI813378B TWI813378B (en) 2023-08-21

Family

ID=83782380

Family Applications (27)

Application Number Title Priority Date Filing Date
TW111110923A TWI813217B (en) 2021-12-09 2022-03-23 Semiconductor device and manufacturing method thereof
TW111114109A TWI814340B (en) 2021-12-09 2022-04-13 Semiconductor device and manufacturing method thereof
TW111114336A TW202230615A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114337A TW202230798A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114880A TW202324758A (en) 2021-12-09 2022-04-19 Semiconductor device and manufacturing method thereof
TW111115009A TWI824495B (en) 2021-12-09 2022-04-20 Semiconductor device and manufacturing method thereof
TW111115197A TWI812181B (en) 2021-12-09 2022-04-21 Semiconductor device and manufacturing method thereof
TW111116518A TWI804300B (en) 2021-12-09 2022-04-29 Thin film transistor and manufacturing method thereof
TW111116874A TWI799254B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof
TW111116869A TWI799253B (en) 2021-12-09 2022-05-04 Semiconductor device and manufactoring method thereof
TW111116754A TWI819592B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof
TW111116903A TWI814369B (en) 2021-12-09 2022-05-05 Photosensitive device substrate and manufacturing method thereof
TW111117042A TWI804302B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111117041A TWI813276B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111117040A TWI806591B (en) 2021-12-09 2022-05-05 Active device substrate
TW111117309A TWI803311B (en) 2021-12-09 2022-05-09 Semiconductor device and manufacturing method thereof
TW111117305A TWI828142B (en) 2021-12-09 2022-05-09 Semiconductor device
TW111118368A TWI805369B (en) 2021-12-09 2022-05-17 Semiconductor device and manufacturing method thereof
TW111118369A TWI803320B (en) 2021-12-09 2022-05-17 Inverter and pixel circuit
TW111119084A TWI829169B (en) 2021-12-09 2022-05-23 Semiconductor device and manufacturing method thereof
TW111120041A TWI793027B (en) 2021-12-09 2022-05-30 Inverter
TW111120152A TWI816413B (en) 2021-12-09 2022-05-31 Semiconductor device and manufacturing method thereof
TW111120547A TWI829183B (en) 2021-12-09 2022-06-02 Semiconductor device and manufacturing method thereof
TW111122489A TWI798110B (en) 2021-12-09 2022-06-16 Active device substrate, capacitive device, and manufacturing method of active device substrate
TW111122796A TWI822129B (en) 2021-12-09 2022-06-20 Semiconductor device and manufacturing method thereof
TW111126381A TWI813378B (en) 2021-12-09 2022-07-14 Memory device, memory circuit and manufacturing method of memory circuit
TW111142545A TWI814636B (en) 2021-12-09 2022-11-08 Active device substrate

Family Applications Before (25)

Application Number Title Priority Date Filing Date
TW111110923A TWI813217B (en) 2021-12-09 2022-03-23 Semiconductor device and manufacturing method thereof
TW111114109A TWI814340B (en) 2021-12-09 2022-04-13 Semiconductor device and manufacturing method thereof
TW111114336A TW202230615A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114337A TW202230798A (en) 2021-12-09 2022-04-14 Semiconductor device
TW111114880A TW202324758A (en) 2021-12-09 2022-04-19 Semiconductor device and manufacturing method thereof
TW111115009A TWI824495B (en) 2021-12-09 2022-04-20 Semiconductor device and manufacturing method thereof
TW111115197A TWI812181B (en) 2021-12-09 2022-04-21 Semiconductor device and manufacturing method thereof
TW111116518A TWI804300B (en) 2021-12-09 2022-04-29 Thin film transistor and manufacturing method thereof
TW111116874A TWI799254B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof
TW111116869A TWI799253B (en) 2021-12-09 2022-05-04 Semiconductor device and manufactoring method thereof
TW111116754A TWI819592B (en) 2021-12-09 2022-05-04 Semiconductor device and manufacturing method thereof
TW111116903A TWI814369B (en) 2021-12-09 2022-05-05 Photosensitive device substrate and manufacturing method thereof
TW111117042A TWI804302B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111117041A TWI813276B (en) 2021-12-09 2022-05-05 Semiconductor device and manufacturing method thereof
TW111117040A TWI806591B (en) 2021-12-09 2022-05-05 Active device substrate
TW111117309A TWI803311B (en) 2021-12-09 2022-05-09 Semiconductor device and manufacturing method thereof
TW111117305A TWI828142B (en) 2021-12-09 2022-05-09 Semiconductor device
TW111118368A TWI805369B (en) 2021-12-09 2022-05-17 Semiconductor device and manufacturing method thereof
TW111118369A TWI803320B (en) 2021-12-09 2022-05-17 Inverter and pixel circuit
TW111119084A TWI829169B (en) 2021-12-09 2022-05-23 Semiconductor device and manufacturing method thereof
TW111120041A TWI793027B (en) 2021-12-09 2022-05-30 Inverter
TW111120152A TWI816413B (en) 2021-12-09 2022-05-31 Semiconductor device and manufacturing method thereof
TW111120547A TWI829183B (en) 2021-12-09 2022-06-02 Semiconductor device and manufacturing method thereof
TW111122489A TWI798110B (en) 2021-12-09 2022-06-16 Active device substrate, capacitive device, and manufacturing method of active device substrate
TW111122796A TWI822129B (en) 2021-12-09 2022-06-20 Semiconductor device and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111142545A TWI814636B (en) 2021-12-09 2022-11-08 Active device substrate

Country Status (1)

Country Link
TW (27) TWI813217B (en)

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371026A (en) * 1992-11-30 1994-12-06 Motorola Inc. Method for fabricating paired MOS transistors having a current-gain differential
JP2002076352A (en) * 2000-08-31 2002-03-15 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
JP4802364B2 (en) * 2000-12-07 2011-10-26 ソニー株式会社 Semiconductor layer doping method, thin film semiconductor device manufacturing method, and semiconductor layer resistance control method
US6724012B2 (en) * 2000-12-14 2004-04-20 Semiconductor Energy Laboratory Co., Ltd. Display matrix with pixels having sensor and light emitting portions
TW595005B (en) * 2003-08-04 2004-06-21 Au Optronics Corp Thin film transistor and pixel structure with the same
KR100719366B1 (en) * 2005-06-15 2007-05-17 삼성전자주식회사 Method of forming a semiconductor device having a trench device isolation layer
JP4220509B2 (en) * 2005-09-06 2009-02-04 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP5337380B2 (en) * 2007-01-26 2013-11-06 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP5294651B2 (en) * 2007-05-18 2013-09-18 キヤノン株式会社 Inverter manufacturing method and inverter
JP5480554B2 (en) * 2008-08-08 2014-04-23 株式会社半導体エネルギー研究所 Semiconductor device
US8202773B2 (en) * 2008-08-29 2012-06-19 Texas Instruments Incorporated Engineered oxygen profile in metal gate electrode and nitrided high-k gate dielectrics structure for high performance PMOS devices
KR101529575B1 (en) * 2008-09-10 2015-06-29 삼성전자주식회사 Transistor, inverter comprising the same and methods of manufacturing transistor and inverter
WO2010029859A1 (en) * 2008-09-12 2010-03-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
EP2172977A1 (en) * 2008-10-03 2010-04-07 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101016266B1 (en) * 2008-11-13 2011-02-25 한국과학기술원 Transparent memory for transparent electronics
US8367486B2 (en) * 2009-02-05 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the transistor
EP3236504A1 (en) * 2009-06-30 2017-10-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN102751295B (en) * 2009-07-18 2015-07-15 株式会社半导体能源研究所 Semiconductor device and method for manufacturing semiconductor device
WO2011046048A1 (en) * 2009-10-16 2011-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5727204B2 (en) * 2009-12-11 2015-06-03 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
WO2011129037A1 (en) * 2010-04-16 2011-10-20 シャープ株式会社 Thin film transistor substrate, method for producing same, and display device
TWI434409B (en) * 2010-08-04 2014-04-11 Au Optronics Corp Organic electroluminescent display unit and method for fabricating the same
SG10201505586UA (en) * 2011-06-17 2015-08-28 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
US8952377B2 (en) * 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8952379B2 (en) * 2011-09-16 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20130053053A (en) * 2011-11-14 2013-05-23 삼성디스플레이 주식회사 Organic light emitting display apparatus and method of manufacturing organic light emitting display apparatus
KR101881895B1 (en) * 2011-11-30 2018-07-26 삼성디스플레이 주식회사 Thin-film transistor array substrate, organic light emitting display device comprising the same and method for manufacturing of the thin-film transistor array substrate
TWI478353B (en) * 2011-12-14 2015-03-21 E Ink Holdings Inc Thin film transistor and method for manufacturing the same
KR101884738B1 (en) * 2011-12-23 2018-08-31 삼성디스플레이 주식회사 Organic light emitting display apparatus and method of manufacturing organic light emitting display apparatus
US8796683B2 (en) * 2011-12-23 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9006733B2 (en) * 2012-01-26 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
TWI498220B (en) * 2012-10-31 2015-09-01 Au Optronics Corp Display panel and method for manufacturing the same
GB2511541B (en) * 2013-03-06 2015-01-28 Toshiba Res Europ Ltd Field effect transistor device
TWI669824B (en) * 2013-05-16 2019-08-21 日商半導體能源研究所股份有限公司 Semiconductor device
US9806198B2 (en) * 2013-06-05 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102281300B1 (en) * 2013-09-11 2021-07-26 삼성디스플레이 주식회사 Thin film transistor, method of manufacturing the same, and display device including the same
CN104576381B (en) * 2013-10-14 2018-01-09 中国科学院微电子研究所 Asymmetric ultrathin SOIMOS transistor structure and manufacturing method thereof
TWI535034B (en) * 2014-01-29 2016-05-21 友達光電股份有限公司 Pixel structure and method of fabricating the same
US9929279B2 (en) * 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2016076168A1 (en) * 2014-11-11 2016-05-19 シャープ株式会社 Semiconductor device and method for making same
US9859391B2 (en) * 2015-10-27 2018-01-02 Nlt Technologies, Ltd. Thin film transistor, display device, and method for manufacturing thin film transistor
TWI579974B (en) * 2015-12-25 2017-04-21 國立交通大學 A resistive memory, resistive memory unit and thin-film transistor having composition of amorphous metal oxide
WO2017163146A1 (en) * 2016-03-22 2017-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
US10468434B2 (en) * 2016-04-08 2019-11-05 Innolux Corporation Hybrid thin film transistor structure, display device, and method of making the same
CN112133710A (en) * 2016-04-08 2020-12-25 群创光电股份有限公司 Display device
CN106098784A (en) * 2016-06-13 2016-11-09 武汉华星光电技术有限公司 Coplanar type double grid electrode oxide thin film transistor and preparation method thereof
US20180122833A1 (en) * 2016-10-31 2018-05-03 LG Display Co. , Ltd. Thin film transistor substrate having bi-layer oxide semiconductor
WO2018211724A1 (en) * 2017-05-16 2018-11-22 住友電気工業株式会社 Oxide sintered body and production method therefor, sputtering target, oxide semiconductor film, and method for producing semiconductor device
KR102439133B1 (en) * 2017-09-05 2022-09-02 삼성디스플레이 주식회사 Thin film transistor substrate, method of manufacturing the same, and method of manufacturing a display device including the same
KR20190062695A (en) * 2017-11-29 2019-06-07 엘지디스플레이 주식회사 Thin film trnasistor, method for manufacturing the same and display device comprising the same
KR102482856B1 (en) * 2017-12-15 2022-12-28 엘지디스플레이 주식회사 Thin film trnasistor, method for manufacturing the same and display device comprising the same
CN108538789A (en) * 2018-03-30 2018-09-14 武汉华星光电技术有限公司 The preparation method of CMOS transistor, the preparation method of array substrate
TWI703735B (en) * 2018-06-26 2020-09-01 鴻海精密工業股份有限公司 Semiconductor substrate, array substrate, inverter circuit, and switch circuit
TWI666767B (en) * 2018-08-31 2019-07-21 友達光電股份有限公司 Active device substrate
JP6799123B2 (en) * 2018-09-19 2020-12-09 シャープ株式会社 Active matrix substrate and its manufacturing method
TWI685696B (en) * 2018-10-01 2020-02-21 友達光電股份有限公司 Active device substrate and manufacturing method thereof
KR102546780B1 (en) * 2018-12-28 2023-06-21 엘지디스플레이 주식회사 Thin film transistor comprising active layer having thickness difference and display apparatus comprising the same
KR20200093718A (en) * 2019-01-28 2020-08-06 삼성디스플레이 주식회사 Organic light emitting diode display device and method of manufacturing organic light emitting diode display device
CN109997230A (en) * 2019-01-29 2019-07-09 京东方科技集团股份有限公司 Pixel unit and its manufacturing method and double-sided OLED display device
WO2020186428A1 (en) * 2019-03-18 2020-09-24 京东方科技集团股份有限公司 Display panel and manufacturing method thereof
KR20210000605A (en) * 2019-06-25 2021-01-05 엘지디스플레이 주식회사 Display device including sensor
US11594533B2 (en) * 2019-06-27 2023-02-28 Intel Corporation Stacked trigate transistors with dielectric isolation between first and second semiconductor fins
TWI726348B (en) * 2019-07-03 2021-05-01 友達光電股份有限公司 Semiconductor substrate
TWI712844B (en) * 2019-07-03 2020-12-11 友達光電股份有限公司 Device substrate and manufacturing method thereof
TWI715344B (en) * 2019-12-10 2021-01-01 友達光電股份有限公司 Active device substrate and manufacturing method thereof
KR20210085942A (en) * 2019-12-31 2021-07-08 엘지디스플레이 주식회사 Thin film transistor and display apparatus comprising the same
US11631671B2 (en) * 2019-12-31 2023-04-18 Tokyo Electron Limited 3D complementary metal oxide semiconductor (CMOS) device and method of forming the same
US11663455B2 (en) * 2020-02-12 2023-05-30 Ememory Technology Inc. Resistive random-access memory cell and associated cell array structure
US11410999B2 (en) * 2020-02-21 2022-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Boundary design for high-voltage integration on HKMG technology
KR20210117389A (en) * 2020-03-18 2021-09-29 삼성디스플레이 주식회사 Display device and method of fabricating for display device
KR20210142046A (en) * 2020-05-15 2021-11-24 삼성디스플레이 주식회사 Display device and method of fabricating the same
CN111710289B (en) * 2020-06-24 2024-05-31 天津中科新显科技有限公司 Pixel driving circuit and driving method of active light emitting device
CN113257841B (en) * 2021-07-19 2021-11-16 深圳市柔宇科技股份有限公司 TFT substrate and preparation method thereof, display and electronic equipment

Also Published As

Publication number Publication date
TW202230798A (en) 2022-08-01
TWI798110B (en) 2023-04-01
TW202324757A (en) 2023-06-16
TWI814340B (en) 2023-09-01
TWI819592B (en) 2023-10-21
TWI814369B (en) 2023-09-01
TW202324766A (en) 2023-06-16
TW202324761A (en) 2023-06-16
TWI799254B (en) 2023-04-11
TW202324608A (en) 2023-06-16
TWI804302B (en) 2023-06-01
TW202324716A (en) 2023-06-16
TW202324737A (en) 2023-06-16
TWI803311B (en) 2023-05-21
TWI814636B (en) 2023-09-01
TW202324762A (en) 2023-06-16
TWI829169B (en) 2024-01-11
TW202324764A (en) 2023-06-16
TW202324682A (en) 2023-06-16
TW202324760A (en) 2023-06-16
TW202324759A (en) 2023-06-16
TW202324540A (en) 2023-06-16
TW202324536A (en) 2023-06-16
TW202329465A (en) 2023-07-16
TW202324542A (en) 2023-06-16
TWI804300B (en) 2023-06-01
TW202329434A (en) 2023-07-16
TW202324768A (en) 2023-06-16
TW202324674A (en) 2023-06-16
TWI813276B (en) 2023-08-21
TWI824495B (en) 2023-12-01
TW202324763A (en) 2023-06-16
TWI812181B (en) 2023-08-11
TWI822129B (en) 2023-11-11
TW202230615A (en) 2022-08-01
TWI813217B (en) 2023-08-21
TWI813378B (en) 2023-08-21
TWI793027B (en) 2023-02-11
TW202341448A (en) 2023-10-16
TWI829183B (en) 2024-01-11
TW202324339A (en) 2023-06-16
TWI805369B (en) 2023-06-11
TWI828142B (en) 2024-01-01
TW202324758A (en) 2023-06-16
TWI799253B (en) 2023-04-11
TWI803320B (en) 2023-05-21
TW202324743A (en) 2023-06-16
TWI806591B (en) 2023-06-21
TW202324541A (en) 2023-06-16
TW202324614A (en) 2023-06-16
TWI816413B (en) 2023-09-21

Similar Documents

Publication Publication Date Title
JP5417275B2 (en) Nonvolatile memory cell and manufacturing method thereof
TWI538215B (en) Field-effect transistor, and memory and semiconductor circuit including the same
KR100883741B1 (en) Gated Field Effect Devices And Method Of Forming A Gated Field Effect Device
JP2020123741A (en) Semiconductor device
KR100825383B1 (en) Nonvolatile memory device, fabricating the same and organic electroluminescence display device including the same
US20050224859A1 (en) Semiconductor storage device
KR20130046357A (en) Semiconductor device
US20210358927A1 (en) Memory And Method For Forming The Same
TWI813378B (en) Memory device, memory circuit and manufacturing method of memory circuit
US20230189499A1 (en) Memory device, memory circuit and manufacturing method of memory circuit
JP6005391B2 (en) Semiconductor device
TW201234566A (en) Semiconductor device and semiconductor memory device
KR102519947B1 (en) Array Substrate For Display Device And Method Of Fabricating The Same
US20230187484A1 (en) Semiconductor device and manufacturing method thereof
US20230187554A1 (en) Active device substrate, capacitive device, and manufacturing method of active device substrate
TWI841954B (en) Active device substrate and manufacturing method thereof
JP2007288060A (en) Semiconductor storage device, manufacturing method thereof, and portable electronic equipment
TWI802478B (en) Active component substrate
US20230187485A1 (en) Semiconductor device and manufacturing method thereof
US20230187455A1 (en) Active device substrate and manufacturing method thereof
CN115763481A (en) Active element substrate
TW202412323A (en) Semiconductor device
KR20000041409A (en) Fabrication method of thin film transistor of sram
WO2007138754A1 (en) Semiconductor device, method for manufacturing same, and display
KR20030015528A (en) Flash memory cell and method of making the same