TWI792939B - 訊號轉換電路 - Google Patents

訊號轉換電路 Download PDF

Info

Publication number
TWI792939B
TWI792939B TW111108669A TW111108669A TWI792939B TW I792939 B TWI792939 B TW I792939B TW 111108669 A TW111108669 A TW 111108669A TW 111108669 A TW111108669 A TW 111108669A TW I792939 B TWI792939 B TW I792939B
Authority
TW
Taiwan
Prior art keywords
circuit
transistor
bias
node
phase interpolator
Prior art date
Application number
TW111108669A
Other languages
English (en)
Other versions
TW202337136A (zh
Inventor
葉建祖
劉熙恩
謝依峻
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW111108669A priority Critical patent/TWI792939B/zh
Application granted granted Critical
Publication of TWI792939B publication Critical patent/TWI792939B/zh
Priority to US18/173,785 priority patent/US20230291397A1/en
Publication of TW202337136A publication Critical patent/TW202337136A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • H03K17/145Modifications for compensating variations of physical values, e.g. of temperature in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00286Phase shifter, i.e. the delay between the output and input pulse is dependent on the frequency, and such that a phase difference is obtained independent of the frequency

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

本揭示內容提供一種訊號轉換電路。該訊號轉換電路包含一相位內插器電路以及一偏壓產生電路。該相位內插器電路用以根據一數位訊號將複數個輸入時脈訊號轉換為一輸出時脈訊號。該偏壓產生電路電性耦接於該相位內插器電路,用以根據一參考資訊產生一偏壓電壓,並用以輸出該偏壓電壓至該相位內插器電路,從而使該輸出時脈訊號具有與該數位訊號的複數個位元組態中之一者對應的一預設相位,其中該參考資訊關聯於該相位內插器電路因為溫度變異而產生的變化。

Description

訊號轉換電路
本揭示內容係有關於一種電路,特別是指一種訊號轉換電路。
現有技術的相位內插器受製程變異、溫度變異或其組合的影響,具有較差的線性度,導致其在應用上受到許多限制。因此,有必要改善現有技術的相位內插器,以解決現有問題。
本揭示內容的一態樣為一訊號轉換電路。該訊號轉換電路包含一相位內插器電路以及一偏壓產生電路。該相位內插器電路用以根據一數位訊號將複數個輸入時脈訊號轉換為一輸出時脈訊號。該偏壓產生電路電性耦接於該相位內插器電路,用以根據一參考資訊產生一偏壓電壓,並用以輸出該偏壓電壓至該相位內插器電路,從而使該輸出時脈訊號具有與該數位訊號的複數個位元組態中之一者對應的一預設相位,其中該參考資訊關聯於該相位內插器電路因為溫度變異而產生的變化。
綜上,藉由根據關聯於相位內插器電路因為溫度變異(及製程變異)而產生的變化的參考資訊來產生合適的偏壓電壓對相位內插器電路進行補償,本揭示內容的訊號轉換電路具有提高線性度的優勢。
下文係舉實施例配合所附圖式作詳細說明,但所描述的具體實施例僅用以解釋本案,並不用來限定本案,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭示內容所涵蓋的範圍。
在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭示之內容中與特殊內容中的平常意義。
關於本文中所使用之「耦接」或「連接」,均可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,亦可指二或多個元件相互操作或動作。
為了方便說明起見,本案說明書和圖式中使用的元件編號中的小寫英文索引1~n,只是為了方便指稱個別的元件,並非有意將前述元件的數量侷限在特定數目。在本案說明書和圖式中,若使用某一元件編號時沒有指明該元件編號的索引,則代表該元件編號是指稱所屬元件群組中不特定的任一元件。例如,元件編號TP[1]指稱的對象是電晶體對TP[1],而元件編號TP指稱的對象則是電晶體對TP[1]~TP[n]中不特定的任意電晶體對。
請參閱第1圖,第1圖為根據本揭示內容的一些實施例所繪示的一訊號轉換電路100的結構示意圖。訊號轉換電路100包含一相位內插器(phase interpolator)電路10以及一偏壓產生電路。於一些實施例中,如第1圖所示,所述偏壓產生電路包含一阻抗元件20、一溫度敏感電路30以及一穩壓器40。結構上,阻抗元件20與溫度敏感電路30耦接於一節點N1,而穩壓器40又耦接於節點N1、一系統高電壓AVDD與相位內插器電路10之間。
於一些實施例中,阻抗元件20可藉由電阻器來實現,且具有一預設電阻值。穩壓器40可藉由低壓差穩壓器(low-dropout regulator,LDO)來實現。
於第1圖的實施例中,所述偏壓產生電路可透過穩壓器40提供一偏壓電壓Vbias至相位內插器電路10,而相位內插器電路10用以根據一數位訊號Scode將複數個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270轉換為一輸出時脈訊號CLKout。以下將參考第2圖詳細說明相位內插器電路10的結構與操作。
請參閱第2圖,第2圖為根據本揭示內容的一些實施例所繪示的相位內插器電路10的電路示意圖。於一些實施例中,如第2圖所示,相位內插器電路10包含並聯連接於偏壓電壓Vbias和一接地電壓Gnd之間的複數個電晶體對TP[1]~TP[n],其中n為大於1的正整數。
於一些實施例中,多個電晶體對TP[1]~TP[n]分為複數組,且每組電晶體對用以接收多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270中的一對應輸入時脈訊號。詳細而言,輸入時脈訊號CLK 0代表具有0度相位的時脈訊號,輸入時脈訊號CLK 90代表具有90度相位的時脈訊號,輸入時脈訊號CLK 180代表具有180度相位的時脈訊號,而輸入時脈訊號CLK 270代表具有270度相位的時脈訊號。換句話說,輸入至相位內插器電路10的多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270的相位彼此不同。
於一些實務應用中,相位內插器電路10包含32個電晶體對TP[1]~TP[32],且分為4組。換言之,多個電晶體對TP[1]~TP[8]為一組,多個電晶體對TP[9]~TP[16]為一組,多個電晶體對TP[17]~TP[24]為一組,而多個電晶體對TP[25]~TP[32]為一組。多個電晶體對TP[1]~TP[8]接收輸入時脈訊號CLK 0,多個電晶體對TP[9]~TP[16]接收輸入時脈訊號CLK 90,多個電晶體對TP[17]~TP[24]接收輸入時脈訊號CLK 180,而多個電晶體對TP[25]~TP[32]接收輸入時脈訊號CLK 270
於一些實施例中,多個電晶體對TP[1]~TP[n]的結構彼此相同。以下將以電晶體對TP[1]為例說明電晶體對TP的結構。如第2圖所示,電晶體對TP[1]包含一第一電晶體T1、一第二電晶體T2、一第一開關ST1以及一第二開關ST2。第一電晶體T1的一第一端(例如:源極)接收偏壓電壓Vbias,第二電晶體T2的一第一端(例如:源極)接收接地電壓Gnd,第一電晶體T1的一控制端(例如:閘極)與第二電晶體T2的一控制端(例如:閘極)接收輸入時脈訊號CLK 0(或者,多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270中的一者)。第一開關ST1與第二開關ST2串聯連接後耦接於第一電晶體T1的一第二端(例如:汲極)與第二電晶體T2的一第二端(例如:汲極)之間。
於一些實施例中,數位訊號Scode具有複數個位元,且數位訊號Scode的位元數量與多個電晶體對TP[1]~TP[n]的數量相同。多個電晶體對TP[1]~TP[n] 各自接收數位訊號Scode的多個位元中之一對應位元。舉例來說,電晶體對TP[1]接收數位訊號Scode的第1個位元,而電晶體對TP[2]接收數位訊號Scode的第2個位元。進一步地說,數位訊號Scode的每個位元具有一邏輯值。據此,電晶體對TP[1]中的第一開關ST1與第二開關ST2可根據數位訊號Scode的第1個位元的邏輯值(即,邏輯“0”或邏輯“1”)選擇性地導通。於第2圖的實施例中,電晶體對TP[1]中的第一開關ST1與第二開關ST2為同時導通或不導通。其餘電晶體對TP[2]~TP[n]中開關的操作可依此類推,故不在此贅述。
應當理解,數位訊號Scode可具有複數個位元組態,且多個位元組態分別表示數位訊號Scode的多個位元的不同組合。於一些實務應用中,數位訊號Scode為32位元,並由8個邏輯“1”以及24個邏輯“0”組成。舉例來說,於一時間點,數位訊號Scode的第1至8個位元為邏輯“1”,且數位訊號Scode的第9至32個位元為邏輯“0”,此即數位訊號Scode的其中一位元組態。數位訊號Scode的其餘位元組態可依此類推,故不在此贅述。
於一些實施例中,數位訊號Scode經操作者控制可具有特定位元組態(即,數位訊號Scode的多個位元組態中之一者)。相位內插器電路10中的多個電晶體對TP[1]~TP[n]則根據具有特定位元組態的數位訊號Scode對多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270執行內插操作,以合成出輸出時脈訊號CLKout。理論上,相位內插器電路10根據數位訊號Scode所產生的輸出時脈訊號CLKout應具有與所述特定位元組態相對應的特定相位(即,操作者預設的相位)。換言之,不同位元組態的數位訊號Scode理應分別對應至不同相位的輸出時脈訊號CLKout。然而,相位內插器電路10在實務上時常因為溫度變異而受到影響,導致輸出時脈訊號CLKout不具有操作者預設的相位。
值得注意的是,藉由使用所述偏壓產生電路所提供的偏壓電壓Vbias,相位內插器電路10因溫度變異產生的誤差可獲得校正,使得相位內插器電路10所輸出的輸出時脈訊號CLKout可具有與數位訊號Scode的多個位元組態中之一者對應的一預設相位。應當理解,所述預設相位可為在0至360度之間的任意相位。以下將詳細說明如何產生偏壓電壓Vbias。
於一些實施例中,前述偏壓產生電路根據與相位內插器電路10因為溫度變異而產生的變化關聯的一參考資訊(圖中未示)產生合適的偏壓電壓Vbias至相位內插器電路10。於第1圖的實施例中,所述參考資訊是由溫度敏感電路30所提供的。詳細而言,如第1圖所示,溫度敏感電路30用以根據例如訊號轉換電路100的一工作溫度,產生與絕對溫度成正比(proportional to absolute temperature,PATA)的一電流I PTAT(即,溫度相依電流)。換言之,電流I PTAT與溫度呈正相關。舉例來說,電流I PTAT會隨著溫度提高而增加,且亦會隨著溫度降低而減少。
於第1圖的實施例中,溫度敏感電路30包含一放大器Amp、一第一參考電晶體對TPs1、一第二參考電晶體對TPs2、一電阻器Res以及複數個偏壓電晶體Mb1~Mb3。應當理解,放大器Amp具有一正輸入端(在第1圖中以符號“+”表示)、一負輸入端(在第1圖中以符號“-”表示)以及一輸出端。第一參考電晶體對TPs1與放大器Amp的負輸入端耦接於一節點N2。第二參考電晶體對TPs2耦接於一節點N3。電阻器Res與第二參考電晶體對TPs2耦接於節點N3,並與放大器Amp的正輸入端耦接於一節點N4。偏壓電晶體Mb1的一控制端、偏壓電晶體Mb2的一控制端與偏壓電晶體Mb3的一控制端皆耦接於放大器Amp的輸出端。偏壓電晶體Mb1的一第一端、偏壓電晶體Mb2的一第一端與偏壓電晶體Mb3的一第一端皆接收系統高電壓AVDD。此外,偏壓電晶體Mb1的一第二端耦接於節點N2,偏壓電晶體Mb2的一第二端耦接於節點N4,且偏壓電晶體Mb3的一第二端耦接於節點N1。
於一些實施例中,多個偏壓電晶體Mb1~Mb3皆可藉由P型金屬氧化物半導體場效電晶體來實現。應當理解,多個偏壓電晶體Mb1~Mb3的控制端可為閘極,多個偏壓電晶體Mb1~Mb3的第一端可為源極,而多個偏壓電晶體Mb1~Mb3的第二端可為汲極。
又如第1圖所示,第一參考電晶體對TPs1包含一電晶體Mp1以及一電晶體Mn1。電晶體Mp1的一第一端耦接於節點N2,電晶體Mn1的一第一端耦接於接地電壓Gnd,且電晶體Mp1的一控制端與一第二端以及電晶體Mn1的一控制端與一第二端耦接在一起。第二參考電晶體對TPs2包含一電晶體Mp2以及一電晶體Mn2。電晶體Mp2的一第一端耦接於節點N3,電晶體Mn2的一第一端耦接於接地電壓Gnd,且電晶體Mp2的一控制端與一第二端以及電晶體Mn2的一控制端與一第二端耦接在一起。於第1圖的實施例中,第二參考電晶體對TPs2的尺寸(或稱為長寬比(aspect ratio))比第一參考電晶體對TPs1的尺寸大N倍,其中N為大於1的正整數。
於一些實施例中,電晶體Mp1與電晶體Mp2皆可藉由P型金屬氧化物半導體場效電晶體來實現,而電晶體Mn1與電晶體Mn2皆可藉由N型金屬氧化物半導體場效電晶體來實現。
在溫度敏感電路30的運作期間,第一參考電晶體對TPs1經由偏壓電晶體Mb1偏壓而於節點N2形成一電壓V N2,且電壓V N2相當於電晶體Mn1的控制端與第一端之間的一電壓差的兩倍。此外,第二參考電晶體對TPs2經由偏壓電晶體Mb2偏壓而於節點N3形成一電壓V N3,且電壓V N3相當於電晶體Mn2的控制端與第一端之間的一電壓差的兩倍。
於第1圖的實施例中,放大器Amp、偏壓電晶體Mb1與第一參考電晶體對TPs1構成一正回授路徑,且所述正回授路徑的增益大致上可由公式(1)表示:
Figure 02_image001
…(1), 其中,
Figure 02_image003
為偏壓電晶體Mb1的增益,
Figure 02_image005
為第一參考電晶體對TPs1的等效電阻值,而
Figure 02_image007
為放大器Amp的增益。
又,放大器Amp、偏壓電晶體Mb2、電阻器Res與第二參考電晶體對TPs2構成一負回授路徑,且所述負回授路徑的增益大致上可由公式(2)表示:
Figure 02_image009
…(2), 其中,
Figure 02_image011
為偏壓電晶體Mb2的增益,
Figure 02_image013
為電阻器Res的電阻值,而
Figure 02_image015
為第二參考電晶體對TPs2的等效電阻值。
於第1圖的實施例中,電阻器Res的電阻值遠大於第一參考電晶體對TPs1或第二參考電晶體對TPs2的等效電阻值,且偏壓電晶體Mb1與偏壓電晶體Mb2具有相同增益。經由前述公式(1)及(2)的計算可知,所述負回授路徑的增益將大於所述正回授路徑的增益。因此,放大器Amp的負回授成立,此進一步使節點N4具有與節點N2之電壓V N2相同之電壓。
由上述說明可知,不同的兩個電壓V N2與V N3分別被施加於電阻器Res的兩端,使得一跨壓V Res產生。又,根據歐姆定律可知,一電流I Res將產生且將通過電阻器Res。應當理解,跨壓V Res的大小即為電壓V N2減去電壓V N3,而電流I Res的大小即為跨壓V Res除以電阻器Res的電阻值。此外,經由偏壓電晶體Mb2與偏壓電晶體Mb3所組成的一電流鏡電路來複製電流I Res,使偏壓電晶體Mb3的第二端產生前述電流I PTAT至阻抗元件20。由於偏壓電晶體Mb2與偏壓電晶體Mb3以相同製程製造且具有相同尺寸,電流I PTAT與電流I Res大致上相同。亦即,電流I PTAT的大小亦為跨壓V Res除以電阻器Res的電阻值。於一些實施例中,跨壓V Res的大小與溫度呈正相關。舉例來說,跨壓V Res會隨著溫度提高而增加,且還會隨著溫度降低而減少。據此,電流I PTAT的大小亦與溫度呈正相關。
如第1圖所示,溫度敏感電路30所輸出的電流I PTAT流入阻抗元件20,以在節點N1產生一節點電壓Vnode。於第1圖的實施例中,節點電壓Vnode的大小即為電流I PTAT的大小乘上阻抗元件20的預設電阻值。接著,穩壓器40可接收並穩定節點電壓Vnode,以產生偏壓電壓Vbias至相位內插器電路10。
值得注意的是,由於溫度敏感電路30中的第一參考電晶體對TPs1與第二參考電晶體對TPs2具有與相位內插器電路10中的電晶體對TP相似的結構,溫度敏感電路30產生的電流I PTAT將關聯於相位內插器電路10因為溫度變異而產生的變化。據此,前述偏壓產生電路根據阻抗元件20與電流I PTAT所產生的偏壓電壓Vbias將具有能夠補償相位內插器電路10的溫度變異的電壓大小。
舉例來說,當相位內插器電路10因為溫度過低而使內部電晶體的上升時間(rise time)或下降時間(fall time)較短時,溫度敏感電路30產生的電流I PTAT相對較小。由於阻抗元件20的電阻值固定,前述偏壓產生電路將依據較小的節點電壓Vnode產生較小的偏壓電壓Vbias至相位內插器電路10,以拉長相位內插器電路10內部電晶體的上升或下降時間。又例如,當相位內插器電路10因為溫度過高而使內部電晶體的上升或下降時間較長時,溫度敏感電路30產生的電流I PTAT相對較大。由於阻抗元件20的電阻值固定,前述偏壓產生電路將依據較大的節點電壓Vnode產生較大的偏壓電壓Vbias至相位內插器電路10,以縮短相位內插器電路10內部電晶體的上升或下降時間。
於第1圖的實施例中,本揭示內容的偏壓產生電路根據與相位內插器電路10因為溫度變異而產生的變化關聯的參考資訊產生合適的偏壓電壓Vbias,以補償受溫度變異影響的相位內插器電路10,但實務應用上相位內插器電路10還會受其他變異影響。因此,本揭示內容並不限於此。於其他實施例中,相位內插器電路10同時受到溫度變異與製程變異影響,因此本揭示內容的偏壓產生電路將針對受溫度變異與製程變異影響的相位內插器電路10產生合適的偏壓電壓Vbias,此將於後續段落中搭配第3圖進行詳細說明。
請參閱第3圖,第3圖為根據本揭示內容的一些實施例所繪示的一訊號轉換電路300的結構示意圖。應當理解,第3圖中與第1圖相同的符號表示相同或類似的元件,故不再重複贅述。於第3圖的實施例中,訊號轉換電路300中的偏壓產生電路包含一參考電路50。結構上,參考電路50取代了第1圖中的阻抗元件20而與溫度敏感電路30耦接於節點N1,以提供與相位內插器電路10因為製程變異而產生的變化關聯的參考資訊。
於第3圖的實施例中,參考電路50為相位內插器電路10的複製電路,亦即,參考電路50的電路結構大致上與相位內插器電路10的電路結構相同。以下將參考第4圖詳細說明參考電路50的結構。
請參閱第4圖,第4圖為根據本揭示內容的一些實施例所繪示的參考電路50的電路示意圖。參考電路50包含並聯連接的複數個電晶體對TP’[1]~TP’[n]。為了反映相位內插器電路10因為製程變異而產生的變化,參考電路50的多個電晶體對TP’[1]~TP’[n]亦按照相同於相位內插器電路10的多個電晶體對TP[1]~TP[n]的分組方式分為複數組,以分別接收亦被輸入至相位內插器電路10的多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270
類似於相位內插器電路10的多個電晶體對TP[1]~TP[n],多個電晶體對TP’[1]~TP’[n]的結構彼此相同。以下將以電晶體對TP’[1]為例說明電晶體對TP’的結構。如第4圖所示,電晶體對TP’[1]包含一第一電晶體T1’、一第二電晶體T2’、一第一開關ST1’以及一第二開關ST2’。第一電晶體T1’的一第一端耦接於節點N1,第二電晶體T2’的一第一端接收接地電壓Gnd,第一電晶體T1’的一控制端與第二電晶體T2’的一控制端接收輸入時脈訊號CLK 0(或者,多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270中的一者)。第一開關ST1’與第二開關ST2’串聯連接後耦接於第一電晶體T1’的一第二端與第二電晶體T2’的一第二端之間。
如第4圖所示,參考電路50還接收類似於數位訊號Scode的一參考數位訊號Scode_ref。於一些實施例中,參考數位訊號Scode_ref的位元數量相同於數位訊號Scode的位元數量,但參考數位訊號Scode_ref經設定而僅具有一個固定的位元組態(即,預設位元組態)。參考數位訊號Scode_ref的預設位元組態可為前述數位訊號Scode的多個位元組態中之一者。應當理解,參考數位訊號Scode_ref的預設位元組態包含多個位元,而參考電路50的多個電晶體對TP’[1]~TP’[n]各自接收參考數位訊號Scode_ref的多個位元中之一對應位元。
又,雖然接收多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270與參考數位訊號Scode_ref,但參考電路50可以不輸出合成時脈訊號,因為參考電路50接收前述多個訊號僅是為了反映相位內插器電路10因為製程變異而產生的變化。應當理解,在接收參考數位訊號Scode_ref且不輸出合成時脈訊號的情況下,參考電路50的功耗亦可減少。
於一些實施例中,參考電路50可能因為製程變異而使內部電晶體的上升時間或下降時間較長或較短,因而又進一步影響了參考電路50的一等效電阻值的大小。於一些實施例中,參考電路50的等效電阻值包含以下成分:(1)製程變異所造成的電阻值誤差;以及(2)參考數位訊號Scode_ref的預設位元組態所設定的理想電阻值(亦即,理想電阻值為不考慮製程變異時,參考電路50中第一開關ST1’與第二開關ST2’導通的電晶體對TP’所造成的電阻值)。前述參考資訊即為參考電路50因為製程變異而具有的等效電阻值。進一步地說,由於參考電路50與相位內插器電路10是以相同製程製造,參考電路50所提供的參考資訊關聯於相位內插器電路10因為製程變異而產生的變化。
如第3圖所示,溫度敏感電路30可根據訊號轉換電路300的工作溫度產生電流I PTAT至參考電路50,以在節點N1產生節點電壓Vnode。於第3圖的實施例中,節點電壓Vnode即為電流I PTAT乘上參考電路50的等效電阻值。接著,穩壓器40可接收並穩定節點電壓Vnode,以產生偏壓電壓Vbias至相位內插器電路10。
值得注意的是,由於參考電路50與相位內插器電路10是以相同製程製造,前述偏壓產生電路根據參考電路50的等效電阻值所產生的偏壓電壓Vbias將具有能夠補償相位內插器電路10的製程變異的電壓大小。舉例來說,若相位內插器電路10因為製程變異而使內部電晶體的上升或下降時間較短,則參考電路50的等效電阻值相對較小。假設溫度穩定而使電流I PTAT的大小固定,前述偏壓產生電路將依據較小的節點電壓Vnode產生較小的偏壓電壓Vbias至相位內插器電路10,以拉長相位內插器電路10內部電晶體的上升或下降時間。又例如,若相位內插器電路10因為製程變異而使內部電晶體的上升或下降時間較長,則參考電路50的等效電阻值相對較大。假設溫度穩定而使電流I PTAT的大小固定,前述偏壓產生電路將依據較大的節點電壓Vnode產生較大的偏壓電壓Vbias至相位內插器電路10,以縮短相位內插器電路10內部電晶體的上升或下降時間。
從第1圖實施例的說明可知,根據溫度敏感電路30所提供的電流I PTAT來產生的偏壓電壓Vbias能夠補償相位內插器電路10的溫度變異。由此可知,第3圖的訊號轉換電路300可同時利用溫度敏感電路30所提供的電流I PTAT以及參考電路50的等效電阻值,來產生能夠補償相位內插器電路10的溫度變異與製程變異的偏壓電壓Vbias。據此,相位內插器電路10可產生具有與數位訊號Scode的多個位元組態中之一者對應的預設相位的輸出時脈訊號CLKout。
於前述實施例中,前述偏壓產生電路透過穩壓器40穩定節點電壓Vnode來產生偏壓電壓Vbias,但本揭示內容並不以此為限。由前述可知,節點電壓Vnode和偏壓電壓Vbias呈現正相關,因而於一些實施例中,穩壓器40可以省略且前述偏壓產生電路直接將節點電壓Vnode作為偏壓電壓Vbias輸出至相位內插器電路10。
於前述實施例中,第1或3圖中僅示出一個輸出時脈訊號CLKout,但本揭示內容並不以此為限。於其他實施例中,相位內插器電路10可產生彼此相差一特定相位(例如:180度相位、90度相位)的二個輸出時脈訊號。換言之,本揭示內容的相位內插器電路可產生至少一輸出時脈訊號。
請參閱第5及6圖,第5圖為根據本揭示內容的一些實施例所繪示溫度變異未經補償的相位內插器電路10的實驗數據,而第6圖為根據本揭示內容的一些實施例所繪示溫度變異經補償的相位內插器電路10的實驗數據。於第5及6圖中,橫軸的多個刻度分別表示數位訊號Scode的多個位元組態,而縱軸的多個刻度分別表示差分非線性度(differential nonlinearity,DNL)的大小。應當理解,差分非線性度愈小,則轉換電路的線性度愈高。因此,理想的轉換電路,其差分非線性度接近零。
如第5圖所示,三條曲線FF(fast-fast)、TT(typical-typical)及SS(slow-slow)分別表示三種不同製程參數下的實驗數據,而縱軸範圍D則表示溫度變異未經補償的相位內插器電路10的差分非線性度的大小分布。如第6圖所示,三條曲線FF’、TT’及SS’分別表示三種不同製程參數下的實驗數據,而縱軸範圍D’則表示溫度變異經補償的相位內插器電路10的差分非線性度的大小分布。由第5及6圖可知,相較於溫度變異未經補償的相位內插器電路10,溫度變異經補償的相位內插器電路10具有更佳的線性度。舉例來說,第6圖中的縱軸範圍D’相較於第5圖中的縱軸範圍D’減少了大約22%。
由上述本揭示內容的實施方式可知,藉由根據關聯於相位內插器電路因為溫度變異(及製程變異)而產生的變化的參考資訊來產生合適的偏壓電壓對相位內插器電路進行補償,本揭示內容的訊號轉換電路具有提高線性度的優勢。
雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,所屬技術領域具有通常知識者在不脫離本揭示內容之精神和範圍內,當可作各種更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。
10:相位內插器電路 20:阻抗元件 30:溫度敏感電路 40:穩壓器 50:參考電路 100,300:訊號轉換電路 Amp:放大器 AVDD:系統高電壓 CLK 0,CLK 90,CLK 180,CLK 270:輸入時脈訊號 CLKout:輸出時脈訊號 Gnd:接地電壓 I PTAT:電流 I Res:電流 Mb1,Mb2.Mb3:偏壓電晶體 Mp1,Mp2,Mn1,Mn2:電晶體 N1,N2,N3,N4:節點 Res:電阻器 Scode:數位訊號 Scode_ref:參考數位訊號 ST1,ST1’:第一開關 ST2,ST2’:第二開關 T1,T1’:第一電晶體 T2,T2’:第二電晶體 TP[1]~TP[n],TP’[1]~TP’[n]:電晶體對 TPs1:第一參考電晶體對 TPs2:第二參考電晶體對 Vbias:偏壓電壓 Vnode:節點電壓 V N2,V N3:電壓 V Res:跨壓 FF,FF’,SS,SS’,TT,TT’:曲線 D,D’:縱軸範圍
第1圖係根據本揭示內容的一些實施例所繪示的訊號轉換電路的結構示意圖。 第2圖係根據本揭示內容的一些實施例所繪示的相位內插器電路的電路示意圖。 第3圖係根據本揭示內容的一些實施例所繪示的訊號轉換電路的結構示意圖。 第4圖係根據本揭示內容的一些實施例所繪示的參考電路的電路示意圖。 第5圖係根據本揭示內容的一些實施例所繪示受溫度變異影響的相位內插器電路的實驗數據示意圖。 第6圖係根據本揭示內容的一些實施例所繪示溫度變異經補償的相位內插器電路的實驗數據示意圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
10:相位內插器電路
20:阻抗元件
30:溫度敏感電路
40:穩壓器
100:訊號轉換電路
Amp:放大器
AVDD:系統高電壓
CLK0,CLK90,CLK180,CLK270:輸入時脈訊號
CLKout:輸出時脈訊號
Gnd:接地電壓
IPTAT:電流
IRes:電流
Mb1,Mb2.Mb3:偏壓電晶體
Mp1,Mp2,Mn1,Mn2:電晶體
N1,N2,N3,N4:節點
Res:電阻器
Scode:數位訊號
TPs1:第一參考電晶體對
TPs2:第二參考電晶體對
Vbias:偏壓電壓
Vnode:節點電壓
VN2,VN3:電壓
VRes:跨壓

Claims (10)

  1. 一種訊號轉換電路,包含:一相位內插器電路,用以根據一數位訊號將複數個輸入時脈訊號轉換為一輸出時脈訊號;以及一偏壓產生電路,電性耦接於該相位內插器電路,用以根據一參考資訊產生一偏壓電壓,並用以輸出該偏壓電壓至該相位內插器電路,從而使該輸出時脈訊號具有與該數位訊號的複數個位元組態中之一者對應的一預設相位,其中該偏壓產生電路包含一溫度敏感電路,該溫度敏感電路用以偵測該訊號轉換電路的一工作溫度產生一溫度相依電流,且該偏壓產生電路用以根據該溫度相依電流產生該偏壓電壓;其中該參考資訊關聯於該相位內插器電路因為溫度變異而產生的變化。
  2. 如請求項1所述之訊號轉換電路,其中該相位內插器電路包含並聯連接的複數個電晶體對,且該些電晶體對各自接收該數位訊號的複數個位元中之一對應位元,其中該些電晶體對分為複數組,且每組電晶體對用以接收該些輸入時脈訊號中的一對應輸入時脈訊號,且該些輸入時脈訊號的相位彼此不同。
  3. 如請求項1所述之訊號轉換電路,其中該偏 壓產生電路包含一阻抗元件,該阻抗元件具有一預設電阻值,且該偏壓產生電路根據該預設電阻值以及輸入至該阻抗元件的該溫度相依電流產生該偏壓電壓。
  4. 如請求項3所述之訊號轉換電路,其中該溫度敏感電路與該阻抗元件耦接於一第一節點,並用以產生該溫度相依電流至該阻抗元件,以在該第一節點產生一節點電壓。
  5. 如請求項4所述之訊號轉換電路,其中該溫度敏感電路包含:一放大器,具有一正輸入端、一負輸入端以及一輸出端;一第一參考電晶體對,與該放大器的該負輸入端耦接於一第二節點;一第二參考電晶體對,耦接於一第三節點;一電阻器,與該第二參考電晶體對耦接於該第三節點,且與該放大器的該正輸入端耦接於一第四節點;以及一第一偏壓電晶體、一第二偏壓電晶體以及一第三偏壓電晶體,其中該第一偏壓電晶體的一控制端、該第二偏壓電晶體的一控制端與該第三偏壓電晶體的一控制端皆耦接於該放大器的該輸出端,且該第一偏壓電晶體的一第一端、該第二偏壓電晶體的一第一端與該第三偏壓電晶體的一第一端皆耦接於一系統高電壓,其中該第一偏壓電晶體的一第二端耦接於該第二節點, 該第二偏壓電晶體的一第二端耦接於該第四節點,且該第三偏壓電晶體的一第二端耦接於該第一節點。
  6. 如請求項5所述之訊號轉換電路,其中該放大器、該第一偏壓電晶體與該第一參考電晶體對構成一正回授路徑,該放大器、該第二偏壓電晶體、該電阻器與該第二參考電晶體對構成一負回授路徑,且該負回授路徑的增益大於該正回授路徑的增益。
  7. 如請求項5所述之訊號轉換電路,其中該溫度相依電流為該第四節點與該第三節點的一跨壓除以該電阻器的一電阻值,且與溫度呈正相關。
  8. 如請求項4所述之訊號轉換電路,其中該偏壓產生電路還包含一穩壓器,且該穩壓器耦接於該第一節點與該相位內插器電路之間,並用以接收並穩定該節點電壓,以產生該偏壓電壓至該相位內插器電路。
  9. 如請求項1所述之訊號轉換電路,其中該參考資訊還關聯於該相位內插器電路因為製程變異而產生的變化。
  10. 如請求項9所述之訊號轉換電路,其中該偏壓產生電路包含: 一參考電路,為該相位內插器電路的複製電路,並用以反映該相位內插器電路因為製程變異而產生的變化,其中該參考電路因為製程變異而具有的一等效電阻值,使該偏壓產生電路根據該等效電阻值以及輸入至該參考電路的該溫度相依電流產生該偏壓電壓。
TW111108669A 2022-03-09 2022-03-09 訊號轉換電路 TWI792939B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111108669A TWI792939B (zh) 2022-03-09 2022-03-09 訊號轉換電路
US18/173,785 US20230291397A1 (en) 2022-03-09 2023-02-24 Signal converting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111108669A TWI792939B (zh) 2022-03-09 2022-03-09 訊號轉換電路

Publications (2)

Publication Number Publication Date
TWI792939B true TWI792939B (zh) 2023-02-11
TW202337136A TW202337136A (zh) 2023-09-16

Family

ID=86689140

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111108669A TWI792939B (zh) 2022-03-09 2022-03-09 訊號轉換電路

Country Status (2)

Country Link
US (1) US20230291397A1 (zh)
TW (1) TWI792939B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070222530A1 (en) * 2006-03-07 2007-09-27 Woogeun Rhee Hybrid current-starved phase-interpolation circuit for voltage-controlled devices
US20130088274A1 (en) * 2011-10-09 2013-04-11 Realtek Semiconductor Corp. Phase interpolator, multi-phase interpolation device, interpolated clock generating method and multi-phase clock generating method
US20140125394A1 (en) * 2012-11-08 2014-05-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Phase interpolator having adaptively biased phase mixer
US10498345B1 (en) * 2017-06-30 2019-12-03 Cadence Design Systems, Inc. Multiple injection lock ring-based phase interpolator
US20210131878A1 (en) * 2017-08-29 2021-05-06 Cirrus Logic International Semiconductor Ltd. Temperature monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070222530A1 (en) * 2006-03-07 2007-09-27 Woogeun Rhee Hybrid current-starved phase-interpolation circuit for voltage-controlled devices
US20130088274A1 (en) * 2011-10-09 2013-04-11 Realtek Semiconductor Corp. Phase interpolator, multi-phase interpolation device, interpolated clock generating method and multi-phase clock generating method
US20140125394A1 (en) * 2012-11-08 2014-05-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Phase interpolator having adaptively biased phase mixer
US10498345B1 (en) * 2017-06-30 2019-12-03 Cadence Design Systems, Inc. Multiple injection lock ring-based phase interpolator
US20210131878A1 (en) * 2017-08-29 2021-05-06 Cirrus Logic International Semiconductor Ltd. Temperature monitoring

Also Published As

Publication number Publication date
TW202337136A (zh) 2023-09-16
US20230291397A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
US8664993B2 (en) Phase interpolator, multi-phase interpolation device, interpolated clock generating method and multi-phase clock generating method
US8421664B2 (en) Analog-to-digital converter
JP2014042314A (ja) 可変遅延線及び可変遅延線を備えた表示装置及びシステム
US20100164765A1 (en) DAC calibration circuits and methods
JPH11122048A (ja) 定電流源回路とそれを用いたディジタル/アナログ変換回路
US20060192705A1 (en) Current source cell and D/A converter using the same
US7777655B2 (en) Wideband switched current source
TW201828607A (zh) 數位類比轉換器
TWI792939B (zh) 訊號轉換電路
CN117214514A (zh) 过零检测电路
TWI813197B (zh) 訊號轉換電路及其偏壓產生電路
CN216873190U (zh) 一种用于差分逐次逼近寄存器型adc的参考电压缓冲器
US20180254750A1 (en) Amplifier circuit
CN116805869A (zh) 信号转换电路
CN109584936B (zh) 一种提高漏极电压稳定性的电路、存储芯片及存储器
US9425777B2 (en) Phase interpolator
CN112346505B (zh) 增益调变电路
JP2014057135A (ja) 半導体装置
CN114421958A (zh) 振荡电路
CN116795169A (zh) 信号转换电路及其偏压产生电路
TWI626829B (zh) 數模轉換器電路
US6940331B2 (en) Delayed tap signal generating circuit for controlling delay by interpolating two input clocks
CN106253898B (zh) 具有寄生元件补偿的用于增益选择的装置和相关方法
US10425043B1 (en) Operational amplifier with constant transconductance bias circuit and method using the same
CN112350694B (zh) 相位插值器