TWI792939B - Signal conversion circuit - Google Patents

Signal conversion circuit Download PDF

Info

Publication number
TWI792939B
TWI792939B TW111108669A TW111108669A TWI792939B TW I792939 B TWI792939 B TW I792939B TW 111108669 A TW111108669 A TW 111108669A TW 111108669 A TW111108669 A TW 111108669A TW I792939 B TWI792939 B TW I792939B
Authority
TW
Taiwan
Prior art keywords
circuit
transistor
bias
node
phase interpolator
Prior art date
Application number
TW111108669A
Other languages
Chinese (zh)
Other versions
TW202337136A (en
Inventor
葉建祖
劉熙恩
謝依峻
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW111108669A priority Critical patent/TWI792939B/en
Application granted granted Critical
Publication of TWI792939B publication Critical patent/TWI792939B/en
Priority to US18/173,785 priority patent/US20230291397A1/en
Publication of TW202337136A publication Critical patent/TW202337136A/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • H03K17/145Modifications for compensating variations of physical values, e.g. of temperature in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00286Phase shifter, i.e. the delay between the output and input pulse is dependent on the frequency, and such that a phase difference is obtained independent of the frequency

Abstract

The present disclosure provides a signal conversion circuit including a phase interpolator and a bias voltage generating circuit. The phase interpolator is configured to convert input clock signals into an output clock signal according to a digital signal. The bias voltage generating circuit is electrically coupled to the phase interpolator, is configured to generate a bias voltage according to reference information, and is configured to output the bias voltage to the phase interpolator, so that the output clock signal has a predetermined phase corresponding to one of multiple bit configurations of the digital signal, in which the reference information is related to a change of the phase interpolator due to the temperature variation.

Description

訊號轉換電路signal conversion circuit

本揭示內容係有關於一種電路,特別是指一種訊號轉換電路。The present disclosure relates to a circuit, in particular to a signal conversion circuit.

現有技術的相位內插器受製程變異、溫度變異或其組合的影響,具有較差的線性度,導致其在應用上受到許多限制。因此,有必要改善現有技術的相位內插器,以解決現有問題。Affected by process variation, temperature variation or a combination thereof, the prior art phase interpolator has poor linearity, resulting in many limitations in its application. Therefore, it is necessary to improve the prior art phase interpolator to solve the existing problems.

本揭示內容的一態樣為一訊號轉換電路。該訊號轉換電路包含一相位內插器電路以及一偏壓產生電路。該相位內插器電路用以根據一數位訊號將複數個輸入時脈訊號轉換為一輸出時脈訊號。該偏壓產生電路電性耦接於該相位內插器電路,用以根據一參考資訊產生一偏壓電壓,並用以輸出該偏壓電壓至該相位內插器電路,從而使該輸出時脈訊號具有與該數位訊號的複數個位元組態中之一者對應的一預設相位,其中該參考資訊關聯於該相位內插器電路因為溫度變異而產生的變化。One aspect of the disclosure is a signal conversion circuit. The signal converting circuit includes a phase interpolator circuit and a bias voltage generating circuit. The phase interpolator circuit is used for converting a plurality of input clock signals into an output clock signal according to a digital signal. The bias generating circuit is electrically coupled to the phase interpolator circuit, and is used to generate a bias voltage according to a reference information, and to output the bias voltage to the phase interpolator circuit, so that the output clock The signal has a predetermined phase corresponding to one of the plurality of bit configurations of the digital signal, wherein the reference information is related to the variation of the phase interpolator circuit due to temperature variation.

綜上,藉由根據關聯於相位內插器電路因為溫度變異(及製程變異)而產生的變化的參考資訊來產生合適的偏壓電壓對相位內插器電路進行補償,本揭示內容的訊號轉換電路具有提高線性度的優勢。In summary, the signal conversion of the present disclosure is accomplished by generating appropriate bias voltages to compensate the phase interpolator circuit based on reference information associated with changes in the phase interpolator circuit due to temperature variation (and process variation). The circuit has the advantage of improved linearity.

下文係舉實施例配合所附圖式作詳細說明,但所描述的具體實施例僅用以解釋本案,並不用來限定本案,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭示內容所涵蓋的範圍。The following is a detailed description of the embodiments in conjunction with the accompanying drawings, but the described specific embodiments are only used to explain the present case, and are not used to limit the present case, and the description of the structure and operation is not used to limit the order of its execution. The recombined structure and the devices with equivalent functions are all within the scope of this disclosure.

在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭示之內容中與特殊內容中的平常意義。The terms (terms) used throughout the specification and claims, unless otherwise noted, generally have the ordinary meaning of each term used in this field, in the disclosed content and in the special content.

關於本文中所使用之「耦接」或「連接」,均可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,亦可指二或多個元件相互操作或動作。As used herein, "coupling" or "connection" can refer to two or more components that are in direct physical or electrical contact with each other, or indirect physical or electrical contact with each other, and can also refer to two or more elements. Components operate or act on each other.

為了方便說明起見,本案說明書和圖式中使用的元件編號中的小寫英文索引1~n,只是為了方便指稱個別的元件,並非有意將前述元件的數量侷限在特定數目。在本案說明書和圖式中,若使用某一元件編號時沒有指明該元件編號的索引,則代表該元件編號是指稱所屬元件群組中不特定的任一元件。例如,元件編號TP[1]指稱的對象是電晶體對TP[1],而元件編號TP指稱的對象則是電晶體對TP[1]~TP[n]中不特定的任意電晶體對。For the convenience of explanation, the lowercase English indexes 1~n in the component numbers used in the specification and drawings of this case are only for the convenience of referring to individual components, and are not intended to limit the number of the aforementioned components to a specific number. In the description and drawings of this application, if a certain component number is used without specifying the index of the component number, it means that the component number refers to any unspecified component in the component group to which it belongs. For example, the component number TP[1] refers to the transistor pair TP[1], and the component number TP refers to any unspecified transistor pair among the transistor pairs TP[1]~TP[n].

請參閱第1圖,第1圖為根據本揭示內容的一些實施例所繪示的一訊號轉換電路100的結構示意圖。訊號轉換電路100包含一相位內插器(phase interpolator)電路10以及一偏壓產生電路。於一些實施例中,如第1圖所示,所述偏壓產生電路包含一阻抗元件20、一溫度敏感電路30以及一穩壓器40。結構上,阻抗元件20與溫度敏感電路30耦接於一節點N1,而穩壓器40又耦接於節點N1、一系統高電壓AVDD與相位內插器電路10之間。Please refer to FIG. 1 , which is a schematic structural diagram of a signal conversion circuit 100 according to some embodiments of the present disclosure. The signal conversion circuit 100 includes a phase interpolator circuit 10 and a bias voltage generation circuit. In some embodiments, as shown in FIG. 1 , the bias generating circuit includes an impedance element 20 , a temperature sensitive circuit 30 and a voltage regulator 40 . Structurally, the impedance element 20 and the temperature sensitive circuit 30 are coupled to a node N1 , and the voltage regulator 40 is coupled between the node N1 , a system high voltage AVDD and the phase interpolator circuit 10 .

於一些實施例中,阻抗元件20可藉由電阻器來實現,且具有一預設電阻值。穩壓器40可藉由低壓差穩壓器(low-dropout regulator,LDO)來實現。In some embodiments, the impedance element 20 can be realized by a resistor, and has a preset resistance value. The voltage regulator 40 can be realized by a low-dropout regulator (LDO).

於第1圖的實施例中,所述偏壓產生電路可透過穩壓器40提供一偏壓電壓Vbias至相位內插器電路10,而相位內插器電路10用以根據一數位訊號Scode將複數個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270轉換為一輸出時脈訊號CLKout。以下將參考第2圖詳細說明相位內插器電路10的結構與操作。 In the embodiment shown in FIG. 1, the bias generating circuit can provide a bias voltage Vbias to the phase interpolator circuit 10 through the voltage regulator 40, and the phase interpolator circuit 10 is used to convert The plurality of input clock signals CLK 0 , CLK 90 , CLK 180 , CLK 270 are converted into an output clock signal CLKout. The structure and operation of the phase interpolator circuit 10 will be described in detail below with reference to FIG. 2 .

請參閱第2圖,第2圖為根據本揭示內容的一些實施例所繪示的相位內插器電路10的電路示意圖。於一些實施例中,如第2圖所示,相位內插器電路10包含並聯連接於偏壓電壓Vbias和一接地電壓Gnd之間的複數個電晶體對TP[1]~TP[n],其中n為大於1的正整數。Please refer to FIG. 2 , which is a schematic circuit diagram of a phase interpolator circuit 10 according to some embodiments of the present disclosure. In some embodiments, as shown in FIG. 2 , the phase interpolator circuit 10 includes a plurality of transistor pairs TP[1]˜TP[n] connected in parallel between the bias voltage Vbias and a ground voltage Gnd, Where n is a positive integer greater than 1.

於一些實施例中,多個電晶體對TP[1]~TP[n]分為複數組,且每組電晶體對用以接收多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270中的一對應輸入時脈訊號。詳細而言,輸入時脈訊號CLK 0代表具有0度相位的時脈訊號,輸入時脈訊號CLK 90代表具有90度相位的時脈訊號,輸入時脈訊號CLK 180代表具有180度相位的時脈訊號,而輸入時脈訊號CLK 270代表具有270度相位的時脈訊號。換句話說,輸入至相位內插器電路10的多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270的相位彼此不同。 In some embodiments, the plurality of transistor pairs TP[1]˜TP[n] are divided into multiple groups, and each group of transistor pairs is used to receive a plurality of input clock signals CLK 0 , CLK 90 , CLK 180 , CLK A corresponding input clock signal in 270 . In detail, the input clock signal CLK 0 represents a clock signal with a phase of 0 degrees, the input clock signal CLK 90 represents a clock signal with a phase of 90 degrees, and the input clock signal CLK 180 represents a clock signal with a phase of 180 degrees. signal, and the input clock signal CLK 270 represents a clock signal with a phase of 270 degrees. In other words, the phases of the plurality of input clock signals CLK 0 , CLK 90 , CLK 180 , CLK 270 input to the phase interpolator circuit 10 are different from each other.

於一些實務應用中,相位內插器電路10包含32個電晶體對TP[1]~TP[32],且分為4組。換言之,多個電晶體對TP[1]~TP[8]為一組,多個電晶體對TP[9]~TP[16]為一組,多個電晶體對TP[17]~TP[24]為一組,而多個電晶體對TP[25]~TP[32]為一組。多個電晶體對TP[1]~TP[8]接收輸入時脈訊號CLK 0,多個電晶體對TP[9]~TP[16]接收輸入時脈訊號CLK 90,多個電晶體對TP[17]~TP[24]接收輸入時脈訊號CLK 180,而多個電晶體對TP[25]~TP[32]接收輸入時脈訊號CLK 270In some practical applications, the phase interpolator circuit 10 includes 32 transistor pairs TP[ 1 ]˜TP[ 32 ], which are divided into 4 groups. In other words, multiple transistor pairs TP[1]~TP[8] form a group, multiple transistor pairs TP[9]~TP[16] form a group, and multiple transistor pairs TP[17]~TP[ 24] as a group, and multiple transistor pairs TP[25]~TP[32] as a group. Multiple transistor pairs TP[1]~TP[8] receive the input clock signal CLK 0 , multiple transistor pairs TP[9]~TP[16] receive the input clock signal CLK 90 , multiple transistor pairs TP [17]~TP[24] receive the input clock signal CLK 180 , and a plurality of transistor pairs TP[25]~TP[32] receive the input clock signal CLK 270 .

於一些實施例中,多個電晶體對TP[1]~TP[n]的結構彼此相同。以下將以電晶體對TP[1]為例說明電晶體對TP的結構。如第2圖所示,電晶體對TP[1]包含一第一電晶體T1、一第二電晶體T2、一第一開關ST1以及一第二開關ST2。第一電晶體T1的一第一端(例如:源極)接收偏壓電壓Vbias,第二電晶體T2的一第一端(例如:源極)接收接地電壓Gnd,第一電晶體T1的一控制端(例如:閘極)與第二電晶體T2的一控制端(例如:閘極)接收輸入時脈訊號CLK 0(或者,多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270中的一者)。第一開關ST1與第二開關ST2串聯連接後耦接於第一電晶體T1的一第二端(例如:汲極)與第二電晶體T2的一第二端(例如:汲極)之間。 In some embodiments, the structures of the plurality of transistor pairs TP[1]˜TP[n] are identical to each other. The following will take the transistor pair TP[1] as an example to illustrate the structure of the transistor pair TP. As shown in FIG. 2, the transistor pair TP[1] includes a first transistor T1, a second transistor T2, a first switch ST1 and a second switch ST2. A first end (for example: source) of the first transistor T1 receives the bias voltage Vbias, a first end (for example: source) of the second transistor T2 receives the ground voltage Gnd, and a first end (for example: source) of the first transistor T1 receives the ground voltage Gnd. The control terminal (for example: gate) and a control terminal (for example: gate) of the second transistor T2 receive the input clock signal CLK 0 (or, a plurality of input clock signals CLK 0 , CLK 90 , CLK 180 , CLK 270 ). The first switch ST1 and the second switch ST2 are connected in series and then coupled between a second end (eg drain) of the first transistor T1 and a second end (eg drain) of the second transistor T2 .

於一些實施例中,數位訊號Scode具有複數個位元,且數位訊號Scode的位元數量與多個電晶體對TP[1]~TP[n]的數量相同。多個電晶體對TP[1]~TP[n] 各自接收數位訊號Scode的多個位元中之一對應位元。舉例來說,電晶體對TP[1]接收數位訊號Scode的第1個位元,而電晶體對TP[2]接收數位訊號Scode的第2個位元。進一步地說,數位訊號Scode的每個位元具有一邏輯值。據此,電晶體對TP[1]中的第一開關ST1與第二開關ST2可根據數位訊號Scode的第1個位元的邏輯值(即,邏輯“0”或邏輯“1”)選擇性地導通。於第2圖的實施例中,電晶體對TP[1]中的第一開關ST1與第二開關ST2為同時導通或不導通。其餘電晶體對TP[2]~TP[n]中開關的操作可依此類推,故不在此贅述。In some embodiments, the digital signal Scode has a plurality of bits, and the number of bits of the digital signal Scode is the same as the number of transistor pairs TP[1]˜TP[n]. The plurality of transistor pairs TP[1]˜TP[n] each receive a bit corresponding to one of the bits of the digital signal Scode. For example, the transistor pair TP[1] receives the first bit of the digital signal Scode, and the transistor pair TP[2] receives the second bit of the digital signal Scode. Furthermore, each bit of the digital signal Scode has a logic value. Accordingly, the first switch ST1 and the second switch ST2 in the transistor pair TP[1] can select according to the logic value of the first bit of the digital signal Scode (that is, logic "0" or logic "1") ground conduction. In the embodiment shown in FIG. 2 , the first switch ST1 and the second switch ST2 in the transistor pair TP[1] are turned on or off at the same time. Operations of the remaining transistors on the switches in TP[2]~TP[n] can be deduced by analogy, so details are not described here.

應當理解,數位訊號Scode可具有複數個位元組態,且多個位元組態分別表示數位訊號Scode的多個位元的不同組合。於一些實務應用中,數位訊號Scode為32位元,並由8個邏輯“1”以及24個邏輯“0”組成。舉例來說,於一時間點,數位訊號Scode的第1至8個位元為邏輯“1”,且數位訊號Scode的第9至32個位元為邏輯“0”,此即數位訊號Scode的其中一位元組態。數位訊號Scode的其餘位元組態可依此類推,故不在此贅述。It should be understood that the digital signal Scode may have multiple bit configurations, and the multiple bit configurations respectively represent different combinations of the multiple bits of the digital signal Scode. In some practical applications, the digital signal Scode is 32 bits and consists of 8 logic "1"s and 24 logic "0". For example, at a point in time, the 1st to 8th bits of the digital signal Scode are logic "1", and the 9th to 32nd bits of the digital signal Scode are logic "0", which is the digital signal Scode One bit configuration. The rest of the bit configurations of the digital signal Scode can be deduced in the same way, so it will not be repeated here.

於一些實施例中,數位訊號Scode經操作者控制可具有特定位元組態(即,數位訊號Scode的多個位元組態中之一者)。相位內插器電路10中的多個電晶體對TP[1]~TP[n]則根據具有特定位元組態的數位訊號Scode對多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270執行內插操作,以合成出輸出時脈訊號CLKout。理論上,相位內插器電路10根據數位訊號Scode所產生的輸出時脈訊號CLKout應具有與所述特定位元組態相對應的特定相位(即,操作者預設的相位)。換言之,不同位元組態的數位訊號Scode理應分別對應至不同相位的輸出時脈訊號CLKout。然而,相位內插器電路10在實務上時常因為溫度變異而受到影響,導致輸出時脈訊號CLKout不具有操作者預設的相位。 In some embodiments, the digital signal Scode can have a specific bit configuration (ie, one of the multiple bit configurations of the digital signal Scode) controlled by the operator. The multiple transistor pairs TP[1]~TP[n] in the phase interpolator circuit 10 respond to multiple input clock signals CLK 0 , CLK 90 , CLK 180 , The CLK 270 performs an interpolation operation to synthesize an output clock signal CLKout. Theoretically, the output clock signal CLKout generated by the phase interpolator circuit 10 according to the digital signal Scode should have a specific phase corresponding to the specific bit configuration (ie, a phase preset by the operator). In other words, the digital signal Scode with different bit configurations should correspond to the output clock signal CLKout with different phases respectively. However, in practice, the phase interpolator circuit 10 is often affected by temperature variation, resulting in the output clock signal CLKout not having a phase preset by the operator.

值得注意的是,藉由使用所述偏壓產生電路所提供的偏壓電壓Vbias,相位內插器電路10因溫度變異產生的誤差可獲得校正,使得相位內插器電路10所輸出的輸出時脈訊號CLKout可具有與數位訊號Scode的多個位元組態中之一者對應的一預設相位。應當理解,所述預設相位可為在0至360度之間的任意相位。以下將詳細說明如何產生偏壓電壓Vbias。It is worth noting that, by using the bias voltage Vbias provided by the bias generating circuit, the error of the phase interpolator circuit 10 due to temperature variation can be corrected, so that the output output by the phase interpolator circuit 10 is The pulse signal CLKout may have a predetermined phase corresponding to one of the multiple bit configurations of the digital signal Scode. It should be understood that the preset phase may be any phase between 0 and 360 degrees. How to generate the bias voltage Vbias will be described in detail below.

於一些實施例中,前述偏壓產生電路根據與相位內插器電路10因為溫度變異而產生的變化關聯的一參考資訊(圖中未示)產生合適的偏壓電壓Vbias至相位內插器電路10。於第1圖的實施例中,所述參考資訊是由溫度敏感電路30所提供的。詳細而言,如第1圖所示,溫度敏感電路30用以根據例如訊號轉換電路100的一工作溫度,產生與絕對溫度成正比(proportional to absolute temperature,PATA)的一電流I PTAT(即,溫度相依電流)。換言之,電流I PTAT與溫度呈正相關。舉例來說,電流I PTAT會隨著溫度提高而增加,且亦會隨著溫度降低而減少。 In some embodiments, the aforementioned bias voltage generation circuit generates a suitable bias voltage Vbias to the phase interpolator circuit according to a reference information (not shown in the figure) associated with the change of the phase interpolator circuit 10 due to temperature variation 10. In the embodiment of FIG. 1 , the reference information is provided by the temperature sensitive circuit 30 . In detail, as shown in FIG. 1 , the temperature sensitive circuit 30 is used to generate a current I PTAT proportional to absolute temperature (proportional to absolute temperature, PATA) according to an operating temperature of the signal conversion circuit 100 (ie, temperature dependent current). In other words, current I PTAT is positively correlated with temperature. For example, the current I PTAT increases as the temperature increases and decreases as the temperature decreases.

於第1圖的實施例中,溫度敏感電路30包含一放大器Amp、一第一參考電晶體對TPs1、一第二參考電晶體對TPs2、一電阻器Res以及複數個偏壓電晶體Mb1~Mb3。應當理解,放大器Amp具有一正輸入端(在第1圖中以符號“+”表示)、一負輸入端(在第1圖中以符號“-”表示)以及一輸出端。第一參考電晶體對TPs1與放大器Amp的負輸入端耦接於一節點N2。第二參考電晶體對TPs2耦接於一節點N3。電阻器Res與第二參考電晶體對TPs2耦接於節點N3,並與放大器Amp的正輸入端耦接於一節點N4。偏壓電晶體Mb1的一控制端、偏壓電晶體Mb2的一控制端與偏壓電晶體Mb3的一控制端皆耦接於放大器Amp的輸出端。偏壓電晶體Mb1的一第一端、偏壓電晶體Mb2的一第一端與偏壓電晶體Mb3的一第一端皆接收系統高電壓AVDD。此外,偏壓電晶體Mb1的一第二端耦接於節點N2,偏壓電晶體Mb2的一第二端耦接於節點N4,且偏壓電晶體Mb3的一第二端耦接於節點N1。In the embodiment of FIG. 1, the temperature sensitive circuit 30 includes an amplifier Amp, a first reference transistor pair TPs1, a second reference transistor pair TPs2, a resistor Res, and a plurality of bias transistors Mb1-Mb3 . It should be understood that the amplifier Amp has a positive input terminal (indicated by a symbol "+" in FIG. 1 ), a negative input terminal (indicated by a symbol "-" in FIG. 1 ) and an output terminal. The first reference transistor pair TPs1 and the negative input terminal of the amplifier Amp are coupled to a node N2. The second reference transistor pair TPs2 is coupled to a node N3. The resistor Res and the second reference transistor pair TPs2 are coupled to the node N3, and are coupled to the positive input terminal of the amplifier Amp to a node N4. A control terminal of the bias transistor Mb1 , a control terminal of the bias transistor Mb2 and a control terminal of the bias transistor Mb3 are all coupled to the output terminal of the amplifier Amp. A first terminal of the bias transistor Mb1 , a first terminal of the bias transistor Mb2 and a first terminal of the bias transistor Mb3 all receive the system high voltage AVDD. In addition, a second end of the bias transistor Mb1 is coupled to the node N2, a second end of the bias transistor Mb2 is coupled to the node N4, and a second end of the bias transistor Mb3 is coupled to the node N1. .

於一些實施例中,多個偏壓電晶體Mb1~Mb3皆可藉由P型金屬氧化物半導體場效電晶體來實現。應當理解,多個偏壓電晶體Mb1~Mb3的控制端可為閘極,多個偏壓電晶體Mb1~Mb3的第一端可為源極,而多個偏壓電晶體Mb1~Mb3的第二端可為汲極。In some embodiments, the plurality of bias transistors Mb1 - Mb3 can be realized by PMOS field effect transistors. It should be understood that the control terminals of the multiple bias transistors Mb1~Mb3 can be gates, the first terminals of the multiple bias transistors Mb1~Mb3 can be source electrodes, and the first terminals of the multiple bias transistors Mb1~Mb3 can be source electrodes. The two ends can be drain poles.

又如第1圖所示,第一參考電晶體對TPs1包含一電晶體Mp1以及一電晶體Mn1。電晶體Mp1的一第一端耦接於節點N2,電晶體Mn1的一第一端耦接於接地電壓Gnd,且電晶體Mp1的一控制端與一第二端以及電晶體Mn1的一控制端與一第二端耦接在一起。第二參考電晶體對TPs2包含一電晶體Mp2以及一電晶體Mn2。電晶體Mp2的一第一端耦接於節點N3,電晶體Mn2的一第一端耦接於接地電壓Gnd,且電晶體Mp2的一控制端與一第二端以及電晶體Mn2的一控制端與一第二端耦接在一起。於第1圖的實施例中,第二參考電晶體對TPs2的尺寸(或稱為長寬比(aspect ratio))比第一參考電晶體對TPs1的尺寸大N倍,其中N為大於1的正整數。Also as shown in FIG. 1 , the first reference transistor pair TPs1 includes a transistor Mp1 and a transistor Mn1 . A first terminal of the transistor Mp1 is coupled to the node N2, a first terminal of the transistor Mn1 is coupled to the ground voltage Gnd, and a control terminal and a second terminal of the transistor Mp1 and a control terminal of the transistor Mn1 coupled with a second end. The second reference transistor pair TPs2 includes a transistor Mp2 and a transistor Mn2. A first terminal of the transistor Mp2 is coupled to the node N3, a first terminal of the transistor Mn2 is coupled to the ground voltage Gnd, and a control terminal and a second terminal of the transistor Mp2 and a control terminal of the transistor Mn2 coupled with a second end. In the embodiment of FIG. 1, the size (or called aspect ratio) of the second reference transistor pair TPs2 is N times larger than the size of the first reference transistor pair TPs1, where N is greater than 1 positive integer.

於一些實施例中,電晶體Mp1與電晶體Mp2皆可藉由P型金屬氧化物半導體場效電晶體來實現,而電晶體Mn1與電晶體Mn2皆可藉由N型金屬氧化物半導體場效電晶體來實現。In some embodiments, both the transistor Mp1 and the transistor Mp2 can be implemented by a P-type MOSFET, and both the transistor Mn1 and the transistor Mn2 can be implemented by an N-type MOSFET. Transistors are implemented.

在溫度敏感電路30的運作期間,第一參考電晶體對TPs1經由偏壓電晶體Mb1偏壓而於節點N2形成一電壓V N2,且電壓V N2相當於電晶體Mn1的控制端與第一端之間的一電壓差的兩倍。此外,第二參考電晶體對TPs2經由偏壓電晶體Mb2偏壓而於節點N3形成一電壓V N3,且電壓V N3相當於電晶體Mn2的控制端與第一端之間的一電壓差的兩倍。 During the operation of the temperature sensitive circuit 30, the first reference transistor pair TPs1 is biased by the bias transistor Mb1 to form a voltage V N2 at the node N2, and the voltage V N2 is equivalent to the control terminal and the first terminal of the transistor Mn1 twice the voltage difference between In addition, the second reference transistor pair TPs2 is biased by the bias transistor Mb2 to form a voltage V N3 at the node N3, and the voltage V N3 is equivalent to a voltage difference between the control terminal and the first terminal of the transistor Mn2. double.

於第1圖的實施例中,放大器Amp、偏壓電晶體Mb1與第一參考電晶體對TPs1構成一正回授路徑,且所述正回授路徑的增益大致上可由公式(1)表示:

Figure 02_image001
…(1), 其中,
Figure 02_image003
為偏壓電晶體Mb1的增益,
Figure 02_image005
為第一參考電晶體對TPs1的等效電阻值,而
Figure 02_image007
為放大器Amp的增益。 In the embodiment of FIG. 1, the amplifier Amp, the bias transistor Mb1 and the first reference transistor pair TPs1 form a positive feedback path, and the gain of the positive feedback path can be roughly expressed by formula (1):
Figure 02_image001
…(1), where,
Figure 02_image003
is the gain of the bias transistor Mb1,
Figure 02_image005
is the equivalent resistance value of the first reference transistor pair TPs1, and
Figure 02_image007
is the gain of the amplifier Amp.

又,放大器Amp、偏壓電晶體Mb2、電阻器Res與第二參考電晶體對TPs2構成一負回授路徑,且所述負回授路徑的增益大致上可由公式(2)表示:

Figure 02_image009
…(2), 其中,
Figure 02_image011
為偏壓電晶體Mb2的增益,
Figure 02_image013
為電阻器Res的電阻值,而
Figure 02_image015
為第二參考電晶體對TPs2的等效電阻值。 Also, the amplifier Amp, the bias transistor Mb2, the resistor Res and the second reference transistor pair TPs2 form a negative feedback path, and the gain of the negative feedback path can be roughly expressed by formula (2):
Figure 02_image009
…(2), where,
Figure 02_image011
is the gain of the bias transistor Mb2,
Figure 02_image013
is the resistance value of resistor Res, and
Figure 02_image015
is the equivalent resistance value of the second reference transistor pair TPs2.

於第1圖的實施例中,電阻器Res的電阻值遠大於第一參考電晶體對TPs1或第二參考電晶體對TPs2的等效電阻值,且偏壓電晶體Mb1與偏壓電晶體Mb2具有相同增益。經由前述公式(1)及(2)的計算可知,所述負回授路徑的增益將大於所述正回授路徑的增益。因此,放大器Amp的負回授成立,此進一步使節點N4具有與節點N2之電壓V N2相同之電壓。 In the embodiment of FIG. 1, the resistance value of the resistor Res is much larger than the equivalent resistance value of the first reference transistor pair TPs1 or the second reference transistor pair TPs2, and the bias transistor Mb1 and the bias transistor Mb2 have the same gain. It can be seen from the calculation of the aforementioned formulas (1) and (2), that the gain of the negative feedback path will be greater than the gain of the positive feedback path. Therefore, the negative feedback of the amplifier Amp is established, which further causes the node N4 to have the same voltage as the voltage V N2 of the node N2.

由上述說明可知,不同的兩個電壓V N2與V N3分別被施加於電阻器Res的兩端,使得一跨壓V Res產生。又,根據歐姆定律可知,一電流I Res將產生且將通過電阻器Res。應當理解,跨壓V Res的大小即為電壓V N2減去電壓V N3,而電流I Res的大小即為跨壓V Res除以電阻器Res的電阻值。此外,經由偏壓電晶體Mb2與偏壓電晶體Mb3所組成的一電流鏡電路來複製電流I Res,使偏壓電晶體Mb3的第二端產生前述電流I PTAT至阻抗元件20。由於偏壓電晶體Mb2與偏壓電晶體Mb3以相同製程製造且具有相同尺寸,電流I PTAT與電流I Res大致上相同。亦即,電流I PTAT的大小亦為跨壓V Res除以電阻器Res的電阻值。於一些實施例中,跨壓V Res的大小與溫度呈正相關。舉例來說,跨壓V Res會隨著溫度提高而增加,且還會隨著溫度降低而減少。據此,電流I PTAT的大小亦與溫度呈正相關。 It can be seen from the above description that two different voltages V N2 and V N3 are respectively applied to both ends of the resistor Res, so that a cross voltage V Res is generated. Also, according to Ohm's law, a current I Res will be generated and pass through the resistor Res. It should be understood that the magnitude of the cross voltage V Res is the voltage V N2 minus the voltage V N3 , and the magnitude of the current I Res is the cross voltage V Res divided by the resistance value of the resistor Res. In addition, the current I Res is replicated through a current mirror circuit composed of the bias transistor Mb2 and the bias transistor Mb3 , so that the second terminal of the bias transistor Mb3 generates the aforementioned current I PTAT to the impedance element 20 . Since the bias transistor Mb2 and the bias transistor Mb3 are manufactured by the same process and have the same size, the current I PTAT is substantially the same as the current I Res . That is, the magnitude of the current I PTAT is also divided by the voltage V Res divided by the resistance value of the resistor Res. In some embodiments, the magnitude of the transvoltage V Res is positively correlated with temperature. For example, the transvoltage V Res increases with increasing temperature and decreases with decreasing temperature. Accordingly, the magnitude of the current I PTAT is also positively correlated with the temperature.

如第1圖所示,溫度敏感電路30所輸出的電流I PTAT流入阻抗元件20,以在節點N1產生一節點電壓Vnode。於第1圖的實施例中,節點電壓Vnode的大小即為電流I PTAT的大小乘上阻抗元件20的預設電阻值。接著,穩壓器40可接收並穩定節點電壓Vnode,以產生偏壓電壓Vbias至相位內插器電路10。 As shown in FIG. 1 , the current I PTAT output by the temperature sensitive circuit 30 flows into the impedance element 20 to generate a node voltage Vnode at the node N1 . In the embodiment of FIG. 1 , the magnitude of the node voltage Vnode is the magnitude of the current I PTAT multiplied by the preset resistance value of the impedance element 20 . Then, the voltage regulator 40 can receive and stabilize the node voltage Vnode to generate the bias voltage Vbias to the phase interpolator circuit 10 .

值得注意的是,由於溫度敏感電路30中的第一參考電晶體對TPs1與第二參考電晶體對TPs2具有與相位內插器電路10中的電晶體對TP相似的結構,溫度敏感電路30產生的電流I PTAT將關聯於相位內插器電路10因為溫度變異而產生的變化。據此,前述偏壓產生電路根據阻抗元件20與電流I PTAT所產生的偏壓電壓Vbias將具有能夠補償相位內插器電路10的溫度變異的電壓大小。 It should be noted that since the first reference transistor pair TPs1 and the second reference transistor pair TPs2 in the temperature sensitive circuit 30 have a structure similar to that of the transistor pair TP in the phase interpolator circuit 10, the temperature sensitive circuit 30 generates The current I PTAT will be related to the variation of the phase interpolator circuit 10 due to temperature variation. Accordingly, the bias voltage Vbias generated by the aforementioned bias voltage generating circuit according to the impedance element 20 and the current I PTAT will have a voltage magnitude capable of compensating the temperature variation of the phase interpolator circuit 10 .

舉例來說,當相位內插器電路10因為溫度過低而使內部電晶體的上升時間(rise time)或下降時間(fall time)較短時,溫度敏感電路30產生的電流I PTAT相對較小。由於阻抗元件20的電阻值固定,前述偏壓產生電路將依據較小的節點電壓Vnode產生較小的偏壓電壓Vbias至相位內插器電路10,以拉長相位內插器電路10內部電晶體的上升或下降時間。又例如,當相位內插器電路10因為溫度過高而使內部電晶體的上升或下降時間較長時,溫度敏感電路30產生的電流I PTAT相對較大。由於阻抗元件20的電阻值固定,前述偏壓產生電路將依據較大的節點電壓Vnode產生較大的偏壓電壓Vbias至相位內插器電路10,以縮短相位內插器電路10內部電晶體的上升或下降時間。 For example, when the temperature of the phase interpolator circuit 10 is too low and the internal transistor rise time (rise time) or fall time (fall time) is short, the current I PTAT generated by the temperature sensitive circuit 30 is relatively small . Since the resistance value of the impedance element 20 is fixed, the aforementioned bias generating circuit will generate a smaller bias voltage Vbias to the phase interpolator circuit 10 according to the smaller node voltage Vnode, so as to elongate the internal transistor of the phase interpolator circuit 10 rise or fall time. For another example, when the temperature of the phase interpolator circuit 10 is too high and the rising or falling time of the internal transistor is relatively long, the current I PTAT generated by the temperature sensitive circuit 30 is relatively large. Since the resistance value of the impedance element 20 is fixed, the aforementioned bias generating circuit will generate a larger bias voltage Vbias to the phase interpolator circuit 10 according to the larger node voltage Vnode, so as to shorten the internal transistor of the phase interpolator circuit 10. rise or fall time.

於第1圖的實施例中,本揭示內容的偏壓產生電路根據與相位內插器電路10因為溫度變異而產生的變化關聯的參考資訊產生合適的偏壓電壓Vbias,以補償受溫度變異影響的相位內插器電路10,但實務應用上相位內插器電路10還會受其他變異影響。因此,本揭示內容並不限於此。於其他實施例中,相位內插器電路10同時受到溫度變異與製程變異影響,因此本揭示內容的偏壓產生電路將針對受溫度變異與製程變異影響的相位內插器電路10產生合適的偏壓電壓Vbias,此將於後續段落中搭配第3圖進行詳細說明。In the embodiment of FIG. 1 , the bias voltage generation circuit of the present disclosure generates an appropriate bias voltage Vbias according to the reference information associated with the change of the phase interpolator circuit 10 due to temperature variation, so as to compensate for the influence of temperature variation The phase interpolator circuit 10, but in practice, the phase interpolator circuit 10 will also be affected by other variations. Accordingly, the present disclosure is not limited thereto. In other embodiments, the phase interpolator circuit 10 is affected by both temperature variation and process variation, so the bias generating circuit of the present disclosure will generate a suitable bias for the phase interpolator circuit 10 affected by temperature variation and process variation. Voltage Vbias, which will be described in detail in the following paragraphs with FIG. 3 .

請參閱第3圖,第3圖為根據本揭示內容的一些實施例所繪示的一訊號轉換電路300的結構示意圖。應當理解,第3圖中與第1圖相同的符號表示相同或類似的元件,故不再重複贅述。於第3圖的實施例中,訊號轉換電路300中的偏壓產生電路包含一參考電路50。結構上,參考電路50取代了第1圖中的阻抗元件20而與溫度敏感電路30耦接於節點N1,以提供與相位內插器電路10因為製程變異而產生的變化關聯的參考資訊。Please refer to FIG. 3 . FIG. 3 is a schematic structural diagram of a signal conversion circuit 300 according to some embodiments of the present disclosure. It should be understood that the same symbols in FIG. 3 as those in FIG. 1 denote the same or similar components, and thus will not be repeated here. In the embodiment of FIG. 3 , the bias generating circuit in the signal conversion circuit 300 includes a reference circuit 50 . Structurally, the reference circuit 50 replaces the impedance element 20 in FIG. 1 and is coupled to the temperature sensitive circuit 30 at the node N1 to provide reference information related to the variation of the phase interpolator circuit 10 due to process variation.

於第3圖的實施例中,參考電路50為相位內插器電路10的複製電路,亦即,參考電路50的電路結構大致上與相位內插器電路10的電路結構相同。以下將參考第4圖詳細說明參考電路50的結構。In the embodiment of FIG. 3 , the reference circuit 50 is a replica of the phase interpolator circuit 10 , that is, the circuit structure of the reference circuit 50 is substantially the same as that of the phase interpolator circuit 10 . The configuration of the reference circuit 50 will be described in detail below with reference to FIG. 4 .

請參閱第4圖,第4圖為根據本揭示內容的一些實施例所繪示的參考電路50的電路示意圖。參考電路50包含並聯連接的複數個電晶體對TP’[1]~TP’[n]。為了反映相位內插器電路10因為製程變異而產生的變化,參考電路50的多個電晶體對TP’[1]~TP’[n]亦按照相同於相位內插器電路10的多個電晶體對TP[1]~TP[n]的分組方式分為複數組,以分別接收亦被輸入至相位內插器電路10的多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270Please refer to FIG. 4 , which is a schematic circuit diagram of a reference circuit 50 according to some embodiments of the disclosure. The reference circuit 50 includes a plurality of transistor pairs TP′[1]˜TP′[n] connected in parallel. In order to reflect the variation of the phase interpolator circuit 10 due to process variations, the plurality of transistor pairs TP'[1]~TP'[n] of the reference circuit 50 also operate according to the same multiple transistor pairs of the phase interpolator circuit 10 The crystal pairs TP[1]~TP[n] are grouped into complex groups to respectively receive a plurality of input clock signals CLK 0 , CLK 90 , CLK 180 , and CLK 270 that are also input to the phase interpolator circuit 10 .

類似於相位內插器電路10的多個電晶體對TP[1]~TP[n],多個電晶體對TP’[1]~TP’[n]的結構彼此相同。以下將以電晶體對TP’[1]為例說明電晶體對TP’的結構。如第4圖所示,電晶體對TP’[1]包含一第一電晶體T1’、一第二電晶體T2’、一第一開關ST1’以及一第二開關ST2’。第一電晶體T1’的一第一端耦接於節點N1,第二電晶體T2’的一第一端接收接地電壓Gnd,第一電晶體T1’的一控制端與第二電晶體T2’的一控制端接收輸入時脈訊號CLK 0(或者,多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270中的一者)。第一開關ST1’與第二開關ST2’串聯連接後耦接於第一電晶體T1’的一第二端與第二電晶體T2’的一第二端之間。 Similar to the plurality of transistor pairs TP[ 1 ]˜TP[n] of the phase interpolator circuit 10 , the structures of the plurality of transistor pairs TP′[ 1 ]˜TP′[n] are identical to each other. The following will take the transistor pair TP'[1] as an example to illustrate the structure of the transistor pair TP'. As shown in FIG. 4 , the transistor pair TP′[1] includes a first transistor T1 ′, a second transistor T2 ′, a first switch ST1 ′, and a second switch ST2 ′. A first end of the first transistor T1' is coupled to the node N1, a first end of the second transistor T2' receives the ground voltage Gnd, a control end of the first transistor T1' is connected to the second transistor T2' A control terminal of a control terminal receives the input clock signal CLK 0 (or, one of the plurality of input clock signals CLK 0 , CLK 90 , CLK 180 , and CLK 270 ). The first switch ST1' and the second switch ST2' are connected in series and coupled between a second terminal of the first transistor T1' and a second terminal of the second transistor T2'.

如第4圖所示,參考電路50還接收類似於數位訊號Scode的一參考數位訊號Scode_ref。於一些實施例中,參考數位訊號Scode_ref的位元數量相同於數位訊號Scode的位元數量,但參考數位訊號Scode_ref經設定而僅具有一個固定的位元組態(即,預設位元組態)。參考數位訊號Scode_ref的預設位元組態可為前述數位訊號Scode的多個位元組態中之一者。應當理解,參考數位訊號Scode_ref的預設位元組態包含多個位元,而參考電路50的多個電晶體對TP’[1]~TP’[n]各自接收參考數位訊號Scode_ref的多個位元中之一對應位元。As shown in FIG. 4 , the reference circuit 50 also receives a reference digital signal Scode_ref similar to the digital signal Scode. In some embodiments, the number of bits of the reference digital signal Scode_ref is the same as the number of bits of the digital signal Scode, but the reference digital signal Scode_ref is configured to have only one fixed bit configuration (ie, the default bit configuration ). The default bit configuration of the reference digital signal Scode_ref can be one of the multiple bit configurations of the aforementioned digital signal Scode. It should be understood that the default bit configuration of the reference digital signal Scode_ref includes a plurality of bits, and the plurality of transistor pairs TP'[1]~TP'[n] of the reference circuit 50 each receive a plurality of bits of the reference digital signal Scode_ref. One of the bits corresponds to a bit.

又,雖然接收多個輸入時脈訊號CLK 0、CLK 90、CLK 180、CLK 270與參考數位訊號Scode_ref,但參考電路50可以不輸出合成時脈訊號,因為參考電路50接收前述多個訊號僅是為了反映相位內插器電路10因為製程變異而產生的變化。應當理解,在接收參考數位訊號Scode_ref且不輸出合成時脈訊號的情況下,參考電路50的功耗亦可減少。 Also, although receiving a plurality of input clock signals CLK 0 , CLK 90 , CLK 180 , CLK 270 and the reference digital signal Scode_ref, the reference circuit 50 may not output a synthesized clock signal, because the reference circuit 50 receives the aforementioned multiple signals only for In order to reflect the variation of the phase interpolator circuit 10 due to process variation. It should be understood that the power consumption of the reference circuit 50 can also be reduced when the reference digital signal Scode_ref is received and the synthesized clock signal is not output.

於一些實施例中,參考電路50可能因為製程變異而使內部電晶體的上升時間或下降時間較長或較短,因而又進一步影響了參考電路50的一等效電阻值的大小。於一些實施例中,參考電路50的等效電阻值包含以下成分:(1)製程變異所造成的電阻值誤差;以及(2)參考數位訊號Scode_ref的預設位元組態所設定的理想電阻值(亦即,理想電阻值為不考慮製程變異時,參考電路50中第一開關ST1’與第二開關ST2’導通的電晶體對TP’所造成的電阻值)。前述參考資訊即為參考電路50因為製程變異而具有的等效電阻值。進一步地說,由於參考電路50與相位內插器電路10是以相同製程製造,參考電路50所提供的參考資訊關聯於相位內插器電路10因為製程變異而產生的變化。In some embodiments, the rise time or fall time of the internal transistor may be longer or shorter in the reference circuit 50 due to process variation, which further affects an equivalent resistance value of the reference circuit 50 . In some embodiments, the equivalent resistance value of the reference circuit 50 includes the following components: (1) resistance error caused by process variation; and (2) ideal resistance set by the preset bit configuration of the reference digital signal Scode_ref value (that is, the ideal resistance value is the resistance value caused by the transistor pair TP' turned on by the first switch ST1 ′ and the second switch ST2 ′ in the reference circuit 50 when the process variation is not considered). The aforementioned reference information is the equivalent resistance value of the reference circuit 50 due to process variation. Further, since the reference circuit 50 and the phase interpolator circuit 10 are manufactured in the same process, the reference information provided by the reference circuit 50 is related to the variation of the phase interpolator circuit 10 due to process variation.

如第3圖所示,溫度敏感電路30可根據訊號轉換電路300的工作溫度產生電流I PTAT至參考電路50,以在節點N1產生節點電壓Vnode。於第3圖的實施例中,節點電壓Vnode即為電流I PTAT乘上參考電路50的等效電阻值。接著,穩壓器40可接收並穩定節點電壓Vnode,以產生偏壓電壓Vbias至相位內插器電路10。 As shown in FIG. 3 , the temperature sensitive circuit 30 can generate the current I PTAT to the reference circuit 50 according to the operating temperature of the signal converting circuit 300 to generate the node voltage Vnode at the node N1 . In the embodiment of FIG. 3 , the node voltage Vnode is the current I PTAT multiplied by the equivalent resistance value of the reference circuit 50 . Then, the voltage regulator 40 can receive and stabilize the node voltage Vnode to generate the bias voltage Vbias to the phase interpolator circuit 10 .

值得注意的是,由於參考電路50與相位內插器電路10是以相同製程製造,前述偏壓產生電路根據參考電路50的等效電阻值所產生的偏壓電壓Vbias將具有能夠補償相位內插器電路10的製程變異的電壓大小。舉例來說,若相位內插器電路10因為製程變異而使內部電晶體的上升或下降時間較短,則參考電路50的等效電阻值相對較小。假設溫度穩定而使電流I PTAT的大小固定,前述偏壓產生電路將依據較小的節點電壓Vnode產生較小的偏壓電壓Vbias至相位內插器電路10,以拉長相位內插器電路10內部電晶體的上升或下降時間。又例如,若相位內插器電路10因為製程變異而使內部電晶體的上升或下降時間較長,則參考電路50的等效電阻值相對較大。假設溫度穩定而使電流I PTAT的大小固定,前述偏壓產生電路將依據較大的節點電壓Vnode產生較大的偏壓電壓Vbias至相位內插器電路10,以縮短相位內插器電路10內部電晶體的上升或下降時間。 It is worth noting that since the reference circuit 50 and the phase interpolator circuit 10 are manufactured in the same manufacturing process, the bias voltage Vbias generated by the aforementioned bias voltage generation circuit according to the equivalent resistance value of the reference circuit 50 will have a compensation for phase interpolation. The voltage magnitude of the process variation of the device circuit 10. For example, if the rising or falling time of the internal transistor of the phase interpolator circuit 10 is short due to process variation, the equivalent resistance of the reference circuit 50 is relatively small. Assuming that the temperature is stable and the magnitude of the current I PTAT is fixed, the aforementioned bias generating circuit will generate a smaller bias voltage Vbias to the phase interpolator circuit 10 according to the smaller node voltage Vnode, so as to lengthen the phase interpolator circuit 10 The rise or fall time of the internal transistor. For another example, if the rising or falling time of the internal transistor of the phase interpolator circuit 10 is relatively long due to process variation, the equivalent resistance of the reference circuit 50 is relatively large. Assuming that the temperature is stable and the magnitude of the current I PTAT is fixed, the aforementioned bias generating circuit will generate a larger bias voltage Vbias to the phase interpolator circuit 10 according to the larger node voltage Vnode, so as to shorten the internal voltage of the phase interpolator circuit 10. The rise or fall time of a transistor.

從第1圖實施例的說明可知,根據溫度敏感電路30所提供的電流I PTAT來產生的偏壓電壓Vbias能夠補償相位內插器電路10的溫度變異。由此可知,第3圖的訊號轉換電路300可同時利用溫度敏感電路30所提供的電流I PTAT以及參考電路50的等效電阻值,來產生能夠補償相位內插器電路10的溫度變異與製程變異的偏壓電壓Vbias。據此,相位內插器電路10可產生具有與數位訊號Scode的多個位元組態中之一者對應的預設相位的輸出時脈訊號CLKout。 It can be known from the description of the embodiment in FIG. 1 that the bias voltage Vbias generated according to the current I PTAT provided by the temperature sensitive circuit 30 can compensate the temperature variation of the phase interpolator circuit 10 . It can be seen that the signal conversion circuit 300 in FIG. 3 can simultaneously use the current I PTAT provided by the temperature sensitive circuit 30 and the equivalent resistance value of the reference circuit 50 to generate a signal capable of compensating the temperature variation and manufacturing process of the phase interpolator circuit 10. Vary the bias voltage Vbias. Accordingly, the phase interpolator circuit 10 can generate the output clock signal CLKout having a preset phase corresponding to one of the multiple bit configurations of the digital signal Scode.

於前述實施例中,前述偏壓產生電路透過穩壓器40穩定節點電壓Vnode來產生偏壓電壓Vbias,但本揭示內容並不以此為限。由前述可知,節點電壓Vnode和偏壓電壓Vbias呈現正相關,因而於一些實施例中,穩壓器40可以省略且前述偏壓產生電路直接將節點電壓Vnode作為偏壓電壓Vbias輸出至相位內插器電路10。In the foregoing embodiments, the bias voltage generation circuit stabilizes the node voltage Vnode through the voltage regulator 40 to generate the bias voltage Vbias, but the present disclosure is not limited thereto. It can be seen from the foregoing that the node voltage Vnode and the bias voltage Vbias are positively correlated, so in some embodiments, the voltage regulator 40 can be omitted and the aforementioned bias voltage generating circuit directly outputs the node voltage Vnode as the bias voltage Vbias to the phase interpolation tor circuit 10.

於前述實施例中,第1或3圖中僅示出一個輸出時脈訊號CLKout,但本揭示內容並不以此為限。於其他實施例中,相位內插器電路10可產生彼此相差一特定相位(例如:180度相位、90度相位)的二個輸出時脈訊號。換言之,本揭示內容的相位內插器電路可產生至少一輸出時脈訊號。In the foregoing embodiments, only one output clock signal CLKout is shown in FIG. 1 or FIG. 3 , but the present disclosure is not limited thereto. In other embodiments, the phase interpolator circuit 10 can generate two output clock signals with a specific phase difference (for example: 180 degree phase, 90 degree phase). In other words, the phase interpolator circuit of the present disclosure can generate at least one output clock signal.

請參閱第5及6圖,第5圖為根據本揭示內容的一些實施例所繪示溫度變異未經補償的相位內插器電路10的實驗數據,而第6圖為根據本揭示內容的一些實施例所繪示溫度變異經補償的相位內插器電路10的實驗數據。於第5及6圖中,橫軸的多個刻度分別表示數位訊號Scode的多個位元組態,而縱軸的多個刻度分別表示差分非線性度(differential nonlinearity,DNL)的大小。應當理解,差分非線性度愈小,則轉換電路的線性度愈高。因此,理想的轉換電路,其差分非線性度接近零。Please refer to Figures 5 and 6, Figure 5 shows experimental data for a phase interpolator circuit 10 showing uncompensated temperature variations according to some embodiments of the present disclosure, and Figure 6 shows some embodiments according to the present disclosure. Experimental data of the temperature variation compensated phase interpolator circuit 10 shown in the embodiment. In FIGS. 5 and 6 , multiple scales on the horizontal axis respectively represent multiple bit configurations of the digital signal Scode, and multiple scales on the vertical axis respectively represent the magnitude of differential nonlinearity (DNL). It should be understood that the smaller the differential nonlinearity, the higher the linearity of the conversion circuit. Therefore, in an ideal conversion circuit, its differential nonlinearity is close to zero.

如第5圖所示,三條曲線FF(fast-fast)、TT(typical-typical)及SS(slow-slow)分別表示三種不同製程參數下的實驗數據,而縱軸範圍D則表示溫度變異未經補償的相位內插器電路10的差分非線性度的大小分布。如第6圖所示,三條曲線FF’、TT’及SS’分別表示三種不同製程參數下的實驗數據,而縱軸範圍D’則表示溫度變異經補償的相位內插器電路10的差分非線性度的大小分布。由第5及6圖可知,相較於溫度變異未經補償的相位內插器電路10,溫度變異經補償的相位內插器電路10具有更佳的線性度。舉例來說,第6圖中的縱軸範圍D’相較於第5圖中的縱軸範圍D’減少了大約22%。As shown in Figure 5, the three curves FF (fast-fast), TT (typical-typical) and SS (slow-slow) respectively represent the experimental data under three different process parameters, and the vertical axis range D represents the temperature variation. The magnitude distribution of the differential nonlinearity of the compensated phase interpolator circuit 10 . As shown in FIG. 6, the three curves FF', TT' and SS' respectively represent the experimental data under three different process parameters, and the range D' on the vertical axis represents the differential differential of the phase interpolator circuit 10 after the temperature variation is compensated. Size distribution of linearity. It can be seen from FIGS. 5 and 6 that the phase interpolator circuit 10 with temperature variation compensation has better linearity than the phase interpolator circuit 10 without temperature variation compensation. For example, the range D' of the vertical axis in FIG. 6 is reduced by about 22% compared to the range D' of the vertical axis in FIG. 5 .

由上述本揭示內容的實施方式可知,藉由根據關聯於相位內插器電路因為溫度變異(及製程變異)而產生的變化的參考資訊來產生合適的偏壓電壓對相位內插器電路進行補償,本揭示內容的訊號轉換電路具有提高線性度的優勢。As can be seen from the above embodiments of the present disclosure, the phase interpolator circuit is compensated by generating an appropriate bias voltage based on reference information associated with changes in the phase interpolator circuit due to temperature variation (and process variation) , the signal conversion circuit of the present disclosure has the advantage of improving linearity.

雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,所屬技術領域具有通常知識者在不脫離本揭示內容之精神和範圍內,當可作各種更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。Although the present disclosure has been disclosed above in terms of implementation, it is not intended to limit the present disclosure. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, this disclosure The scope of protection of the disclosed content shall be subject to the definition of the appended patent application scope.

10:相位內插器電路 20:阻抗元件 30:溫度敏感電路 40:穩壓器 50:參考電路 100,300:訊號轉換電路 Amp:放大器 AVDD:系統高電壓 CLK 0,CLK 90,CLK 180,CLK 270:輸入時脈訊號 CLKout:輸出時脈訊號 Gnd:接地電壓 I PTAT:電流 I Res:電流 Mb1,Mb2.Mb3:偏壓電晶體 Mp1,Mp2,Mn1,Mn2:電晶體 N1,N2,N3,N4:節點 Res:電阻器 Scode:數位訊號 Scode_ref:參考數位訊號 ST1,ST1’:第一開關 ST2,ST2’:第二開關 T1,T1’:第一電晶體 T2,T2’:第二電晶體 TP[1]~TP[n],TP’[1]~TP’[n]:電晶體對 TPs1:第一參考電晶體對 TPs2:第二參考電晶體對 Vbias:偏壓電壓 Vnode:節點電壓 V N2,V N3:電壓 V Res:跨壓 FF,FF’,SS,SS’,TT,TT’:曲線 D,D’:縱軸範圍 10: Phase interpolator circuit 20: Impedance element 30: Temperature sensitive circuit 40: Regulator 50: Reference circuit 100,300: Signal conversion circuit Amp: Amplifier AVDD: System high voltage CLK 0 , CLK 90 , CLK 180 , CLK 270 : Input clock signal CLKout: Output clock signal Gnd: Ground voltage I PTAT : Current I Res : Current Mb1, Mb2.Mb3: Bias transistors Mp1, Mp2, Mn1, Mn2: Transistors N1, N2, N3, N4: Node Res: resistor Scode: digital signal Scode_ref: reference digital signal ST1, ST1': first switch ST2, ST2': second switch T1, T1': first transistor T2, T2': second transistor TP[ 1]~TP[n],TP'[1]~TP'[n]: transistor pair TPs1: first reference transistor pair TPs2: second reference transistor pair Vbias: bias voltage Vnode: node voltage V N2 , V N3 : voltage V Res : voltage across FF, FF', SS, SS', TT, TT': curve D, D': vertical axis range

第1圖係根據本揭示內容的一些實施例所繪示的訊號轉換電路的結構示意圖。 第2圖係根據本揭示內容的一些實施例所繪示的相位內插器電路的電路示意圖。 第3圖係根據本揭示內容的一些實施例所繪示的訊號轉換電路的結構示意圖。 第4圖係根據本揭示內容的一些實施例所繪示的參考電路的電路示意圖。 第5圖係根據本揭示內容的一些實施例所繪示受溫度變異影響的相位內插器電路的實驗數據示意圖。 第6圖係根據本揭示內容的一些實施例所繪示溫度變異經補償的相位內插器電路的實驗數據示意圖。 FIG. 1 is a schematic structural diagram of a signal conversion circuit according to some embodiments of the present disclosure. FIG. 2 is a schematic circuit diagram of a phase interpolator circuit according to some embodiments of the present disclosure. FIG. 3 is a schematic structural diagram of a signal conversion circuit according to some embodiments of the present disclosure. FIG. 4 is a schematic circuit diagram of a reference circuit according to some embodiments of the disclosure. FIG. 5 is a schematic diagram illustrating experimental data of a phase interpolator circuit affected by temperature variation according to some embodiments of the present disclosure. FIG. 6 is a schematic diagram of experimental data illustrating a temperature variation compensated phase interpolator circuit according to some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

10:相位內插器電路 10: Phase interpolator circuit

20:阻抗元件 20: Impedance element

30:溫度敏感電路 30: Temperature Sensitive Circuit

40:穩壓器 40: Regulator

100:訊號轉換電路 100: Signal conversion circuit

Amp:放大器 Amp: Amplifier

AVDD:系統高電壓 AVDD: system high voltage

CLK0,CLK90,CLK180,CLK270:輸入時脈訊號 CLK 0 , CLK 90 , CLK 180 , CLK 270 : input clock signal

CLKout:輸出時脈訊號 CLKout: output clock signal

Gnd:接地電壓 Gnd: ground voltage

IPTAT:電流 I PTAT : Current

IRes:電流 I Res : current

Mb1,Mb2.Mb3:偏壓電晶體 Mb1,Mb2.Mb3: bias transistor

Mp1,Mp2,Mn1,Mn2:電晶體 Mp1, Mp2, Mn1, Mn2: Transistor

N1,N2,N3,N4:節點 N1, N2, N3, N4: nodes

Res:電阻器 Res: Resistor

Scode:數位訊號 Scode: digital signal

TPs1:第一參考電晶體對 TPs1: the first reference transistor pair

TPs2:第二參考電晶體對 TPs2: The second reference transistor pair

Vbias:偏壓電壓 Vbias: bias voltage

Vnode:節點電壓 Vnode: node voltage

VN2,VN3:電壓 V N2 , V N3 : Voltage

VRes:跨壓 V Res : across voltage

Claims (10)

一種訊號轉換電路,包含:一相位內插器電路,用以根據一數位訊號將複數個輸入時脈訊號轉換為一輸出時脈訊號;以及一偏壓產生電路,電性耦接於該相位內插器電路,用以根據一參考資訊產生一偏壓電壓,並用以輸出該偏壓電壓至該相位內插器電路,從而使該輸出時脈訊號具有與該數位訊號的複數個位元組態中之一者對應的一預設相位,其中該偏壓產生電路包含一溫度敏感電路,該溫度敏感電路用以偵測該訊號轉換電路的一工作溫度產生一溫度相依電流,且該偏壓產生電路用以根據該溫度相依電流產生該偏壓電壓;其中該參考資訊關聯於該相位內插器電路因為溫度變異而產生的變化。 A signal conversion circuit, comprising: a phase interpolator circuit for converting a plurality of input clock signals into an output clock signal according to a digital signal; and a bias generating circuit electrically coupled in the phase The interpolator circuit is used to generate a bias voltage according to a reference information, and to output the bias voltage to the phase interpolator circuit, so that the output clock signal has a plurality of bit configurations corresponding to the digital signal One of them corresponds to a preset phase, wherein the bias voltage generating circuit includes a temperature sensitive circuit, the temperature sensitive circuit is used to detect an operating temperature of the signal conversion circuit to generate a temperature-dependent current, and the bias voltage generates The circuit is used to generate the bias voltage according to the temperature-dependent current; wherein the reference information is related to the change of the phase interpolator circuit due to temperature variation. 如請求項1所述之訊號轉換電路,其中該相位內插器電路包含並聯連接的複數個電晶體對,且該些電晶體對各自接收該數位訊號的複數個位元中之一對應位元,其中該些電晶體對分為複數組,且每組電晶體對用以接收該些輸入時脈訊號中的一對應輸入時脈訊號,且該些輸入時脈訊號的相位彼此不同。 The signal conversion circuit as described in Claim 1, wherein the phase interpolator circuit includes a plurality of transistor pairs connected in parallel, and each of the transistor pairs receives one corresponding bit of the plurality of bits of the digital signal , wherein the transistor pairs are divided into plural groups, and each transistor pair is used to receive a corresponding input clock signal among the input clock signals, and the phases of the input clock signals are different from each other. 如請求項1所述之訊號轉換電路,其中該偏 壓產生電路包含一阻抗元件,該阻抗元件具有一預設電阻值,且該偏壓產生電路根據該預設電阻值以及輸入至該阻抗元件的該溫度相依電流產生該偏壓電壓。 The signal conversion circuit as described in claim 1, wherein the bias The voltage generation circuit includes an impedance element with a preset resistance value, and the bias voltage generation circuit generates the bias voltage according to the preset resistance value and the temperature-dependent current input to the impedance element. 如請求項3所述之訊號轉換電路,其中該溫度敏感電路與該阻抗元件耦接於一第一節點,並用以產生該溫度相依電流至該阻抗元件,以在該第一節點產生一節點電壓。 The signal conversion circuit as claimed in item 3, wherein the temperature sensitive circuit and the impedance element are coupled to a first node, and used to generate the temperature-dependent current to the impedance element to generate a node voltage at the first node . 如請求項4所述之訊號轉換電路,其中該溫度敏感電路包含:一放大器,具有一正輸入端、一負輸入端以及一輸出端;一第一參考電晶體對,與該放大器的該負輸入端耦接於一第二節點;一第二參考電晶體對,耦接於一第三節點;一電阻器,與該第二參考電晶體對耦接於該第三節點,且與該放大器的該正輸入端耦接於一第四節點;以及一第一偏壓電晶體、一第二偏壓電晶體以及一第三偏壓電晶體,其中該第一偏壓電晶體的一控制端、該第二偏壓電晶體的一控制端與該第三偏壓電晶體的一控制端皆耦接於該放大器的該輸出端,且該第一偏壓電晶體的一第一端、該第二偏壓電晶體的一第一端與該第三偏壓電晶體的一第一端皆耦接於一系統高電壓,其中該第一偏壓電晶體的一第二端耦接於該第二節點, 該第二偏壓電晶體的一第二端耦接於該第四節點,且該第三偏壓電晶體的一第二端耦接於該第一節點。 The signal conversion circuit as described in claim 4, wherein the temperature sensitive circuit comprises: an amplifier having a positive input terminal, a negative input terminal and an output terminal; a first reference transistor pair, connected to the negative input terminal of the amplifier The input terminal is coupled to a second node; a second reference transistor pair is coupled to a third node; a resistor is coupled to the second reference transistor pair to the third node and is connected to the amplifier The positive input end is coupled to a fourth node; and a first bias transistor, a second bias transistor and a third bias transistor, wherein a control terminal of the first bias transistor , a control terminal of the second bias transistor and a control terminal of the third bias transistor are both coupled to the output terminal of the amplifier, and a first terminal of the first bias transistor, the A first end of the second bias transistor and a first end of the third bias transistor are both coupled to a system high voltage, wherein a second end of the first bias transistor is coupled to the second node, A second terminal of the second bias transistor is coupled to the fourth node, and a second terminal of the third bias transistor is coupled to the first node. 如請求項5所述之訊號轉換電路,其中該放大器、該第一偏壓電晶體與該第一參考電晶體對構成一正回授路徑,該放大器、該第二偏壓電晶體、該電阻器與該第二參考電晶體對構成一負回授路徑,且該負回授路徑的增益大於該正回授路徑的增益。 The signal conversion circuit as described in Claim 5, wherein the amplifier, the first bias transistor and the first reference transistor pair form a positive feedback path, the amplifier, the second bias transistor, the resistor The device and the second reference transistor pair form a negative feedback path, and the gain of the negative feedback path is greater than the gain of the positive feedback path. 如請求項5所述之訊號轉換電路,其中該溫度相依電流為該第四節點與該第三節點的一跨壓除以該電阻器的一電阻值,且與溫度呈正相關。 The signal conversion circuit as claimed in claim 5, wherein the temperature-dependent current is a voltage across the fourth node and the third node divided by a resistance value of the resistor, and is positively correlated with temperature. 如請求項4所述之訊號轉換電路,其中該偏壓產生電路還包含一穩壓器,且該穩壓器耦接於該第一節點與該相位內插器電路之間,並用以接收並穩定該節點電壓,以產生該偏壓電壓至該相位內插器電路。 The signal conversion circuit as described in claim 4, wherein the bias voltage generating circuit further includes a voltage regulator, and the voltage regulator is coupled between the first node and the phase interpolator circuit, and is used to receive and The node voltage is stabilized to generate the bias voltage to the phase interpolator circuit. 如請求項1所述之訊號轉換電路,其中該參考資訊還關聯於該相位內插器電路因為製程變異而產生的變化。 The signal conversion circuit as claimed in claim 1, wherein the reference information is also related to the variation of the phase interpolator circuit due to process variation. 如請求項9所述之訊號轉換電路,其中該偏壓產生電路包含: 一參考電路,為該相位內插器電路的複製電路,並用以反映該相位內插器電路因為製程變異而產生的變化,其中該參考電路因為製程變異而具有的一等效電阻值,使該偏壓產生電路根據該等效電阻值以及輸入至該參考電路的該溫度相依電流產生該偏壓電壓。 The signal conversion circuit as described in Claim 9, wherein the bias voltage generation circuit includes: A reference circuit is a copy circuit of the phase interpolator circuit, and is used to reflect the change of the phase interpolator circuit due to process variation, wherein the reference circuit has an equivalent resistance value due to process variation, so that the The bias voltage generation circuit generates the bias voltage according to the equivalent resistance value and the temperature-dependent current input to the reference circuit.
TW111108669A 2022-03-09 2022-03-09 Signal conversion circuit TWI792939B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111108669A TWI792939B (en) 2022-03-09 2022-03-09 Signal conversion circuit
US18/173,785 US20230291397A1 (en) 2022-03-09 2023-02-24 Signal converting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111108669A TWI792939B (en) 2022-03-09 2022-03-09 Signal conversion circuit

Publications (2)

Publication Number Publication Date
TWI792939B true TWI792939B (en) 2023-02-11
TW202337136A TW202337136A (en) 2023-09-16

Family

ID=86689140

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111108669A TWI792939B (en) 2022-03-09 2022-03-09 Signal conversion circuit

Country Status (2)

Country Link
US (1) US20230291397A1 (en)
TW (1) TWI792939B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070222530A1 (en) * 2006-03-07 2007-09-27 Woogeun Rhee Hybrid current-starved phase-interpolation circuit for voltage-controlled devices
US20130088274A1 (en) * 2011-10-09 2013-04-11 Realtek Semiconductor Corp. Phase interpolator, multi-phase interpolation device, interpolated clock generating method and multi-phase clock generating method
US20140125394A1 (en) * 2012-11-08 2014-05-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Phase interpolator having adaptively biased phase mixer
US10498345B1 (en) * 2017-06-30 2019-12-03 Cadence Design Systems, Inc. Multiple injection lock ring-based phase interpolator
US20210131878A1 (en) * 2017-08-29 2021-05-06 Cirrus Logic International Semiconductor Ltd. Temperature monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070222530A1 (en) * 2006-03-07 2007-09-27 Woogeun Rhee Hybrid current-starved phase-interpolation circuit for voltage-controlled devices
US20130088274A1 (en) * 2011-10-09 2013-04-11 Realtek Semiconductor Corp. Phase interpolator, multi-phase interpolation device, interpolated clock generating method and multi-phase clock generating method
US20140125394A1 (en) * 2012-11-08 2014-05-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Phase interpolator having adaptively biased phase mixer
US10498345B1 (en) * 2017-06-30 2019-12-03 Cadence Design Systems, Inc. Multiple injection lock ring-based phase interpolator
US20210131878A1 (en) * 2017-08-29 2021-05-06 Cirrus Logic International Semiconductor Ltd. Temperature monitoring

Also Published As

Publication number Publication date
US20230291397A1 (en) 2023-09-14
TW202337136A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
US8664993B2 (en) Phase interpolator, multi-phase interpolation device, interpolated clock generating method and multi-phase clock generating method
US8421664B2 (en) Analog-to-digital converter
JP2014042314A (en) Variable delay line, and display device and system having variable delay line
US20100164765A1 (en) DAC calibration circuits and methods
JPH11122048A (en) Constant current source circuit and digital/analog conversion circuit using the same
US20060192705A1 (en) Current source cell and D/A converter using the same
US7777655B2 (en) Wideband switched current source
TW201828607A (en) Digital to analog converter
TWI792939B (en) Signal conversion circuit
CN117214514A (en) Zero-crossing detection circuit
CN107465400B (en) Relaxation oscillator with adjustable temperature coefficient
TWI813197B (en) Signal conversion circuit and bias voltage generating circuit thereof
US20180254750A1 (en) Amplifier circuit
CN116805869A (en) Signal conversion circuit
US9425777B2 (en) Phase interpolator
CN112346505B (en) Gain modulation circuit
JP2014057135A (en) Semiconductor device
CN114421958A (en) Oscillating circuit
CN116795169A (en) Signal conversion circuit and bias voltage generation circuit thereof
TWI626829B (en) Digital-to-analog converter
US6940331B2 (en) Delayed tap signal generating circuit for controlling delay by interpolating two input clocks
CN106253898B (en) Apparatus for gain selection with parasitic element compensation and related methods
US10425043B1 (en) Operational amplifier with constant transconductance bias circuit and method using the same
CN112350694B (en) Phase interpolator
US10498351B1 (en) High-speed DAC