TWI776075B - 在用於量測經傳送電力之晶粒上直流至直流轉換器中之電流感測 - Google Patents

在用於量測經傳送電力之晶粒上直流至直流轉換器中之電流感測 Download PDF

Info

Publication number
TWI776075B
TWI776075B TW108125770A TW108125770A TWI776075B TW I776075 B TWI776075 B TW I776075B TW 108125770 A TW108125770 A TW 108125770A TW 108125770 A TW108125770 A TW 108125770A TW I776075 B TWI776075 B TW I776075B
Authority
TW
Taiwan
Prior art keywords
circuit
node
current
voltage
output
Prior art date
Application number
TW108125770A
Other languages
English (en)
Other versions
TW202026647A (zh
Inventor
柏特 李 普萊斯
文君 云
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202026647A publication Critical patent/TW202026647A/zh
Application granted granted Critical
Publication of TWI776075B publication Critical patent/TWI776075B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16552Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies in I.C. power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45116Feedback coupled to the input of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0072Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Dc-Dc Converters (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本發明揭示在用於量測經傳送電力之一晶粒上直流至直流(DC-DC)轉換器中之電流感測。一DC-DC轉換器將輸入電壓轉換成在耦接至一負載電路之一輸出電壓處的輸出電流。該DC-DC轉換器包括用於在一第一階段中驅動該輸出電流之一高側驅動器(HSD)電路,及用於在一第二相中耦接該電力輸出至一負供應軌(GND)的一低側驅動器(LSD)電路,輸出電流係週期性的。該DC-DC轉換器包括用於等化一輸出電壓及一鏡像電壓之一放大器電路。基於該鏡像電壓,電流感測電路產生對應於驅動器電流之鏡像電流。該鏡像電流可經量測為經傳送至該負載電路之該輸出電流的一表示。複數個該等DC-DC轉換器可提供多相電流至該負載電路以用於提供電力至該負載電路。

Description

在用於量測經傳送電力之晶粒上直流至直流轉換器中之電流感測
本發明之技術大體上係關於積體電路(IC)中之電力分配電路,諸如晶粒上直流至直流(DC-DC)轉換器,且更明確而言係關於量測藉由電力分配電路中之DC-DC轉換器分配的電力。
晶片中之積體電路(IC)包括耦接至來自電力供應器之操作電力的一組電子電路。直流(DC)電壓供應器(諸如電池)通常用作電力供應器以用於IC中之操作電力。舉例而言,電池通常用作諸如行動電話之攜帶型器件中之IC之電源。然而,IC可經設計以使用在不同於藉由電力供應器供應之DC電壓位準的DC電壓位準下供應的電力而操作。舉例而言,含有微處理器之IC需要在高於或低於藉由電力供應器供應之電壓位準的電壓位準下的電力。減小電壓以節約電力的需要亦因為操作的攜帶型電子器件對於電池電力之需求已增加而增加。另外,由於包括於IC中之電晶體的數目增加,因此存在降低操作電壓以使自電力供應器汲取的總電流之增加偏移的趨勢。此外,增加數目之電晶體的較高切換速度在電力分配電路中產生較快且較大電流暫態。另外,IC中之電路數目的增加已增加IC中產生的熱量,此可降低效能。因此,IC之操作電壓亦已經設計成待降低以減小熱。
出於此等原因,在IC中之電力分配電路中使用一或多個晶粒上直流至直流(DC-DC)轉換器以將來自電力供應器之電力的電壓位準轉換成較高或較低DC電壓位準已變為習知。舉例而言,降壓DC-DC轉換器(或步降轉換器)可用於IC中之電力分配電路以使電壓步降。多個DC-DC轉換器可包括於電力分配電路中以分配電力至IC之不同區域中的電路。電力分配電路亦可出於各種原因需要能夠調整IC中之操作電壓。舉例而言,可能需要在空閒操作模式期間按比例縮小或使IC中之電力坍塌以節約電力,且接著在活動操作模式期間按比例擴大電力。此外,可能需要在超效能模式期間升壓IC中之電力以增加效能。因此,包括切換DC-DC轉換器以控制功率位準亦已變得常見。切換DC-DC轉換器(諸如降壓DC-DC轉換器)以按照具有充電階段及放電階段之每一週期來週期性地操作。晶片上脈寬調變(PWM)為控制充電階段及放電階段之工作循環以提供對DC-DC轉換器之切換控制的技術。
IC設計可需要電力分配電路中供應的電力經準確監測以量測IC中分配的總電流。舉例而言,可基於IC內之電流量測判定或估計IC之溫度。藉由量測晶粒上電源中之個別電流,可判定藉由此等晶粒上電源分配的總電流,使得有可能管理IC設計中之總電力需求。另外,個別電流可經彼此比較或與DC-DC轉換器之電流臨限值比較,使得有可能改良電力分配及避免超出電力限制,以便防止過熱。
實施方式中揭示之態樣包括在用於量測經傳送電力之晶粒上直流至直流(DC-DC)轉換器中的電流感測。舉例而言,一或多個DC-DC轉換器可包括於電力分配電路中以用於將在輸入電壓下供應的輸入電力轉換成在所要輸出電壓下之輸出電力。輸出電力可被供應至負載電路以供應電力至負載電路。在一個實例中,複數個DC-DC轉換器可經提供於電力分配電路中以提供多相驅動器電流。在一個實例中,DC-DC轉換器包括經組態以回應於經調變信號在DC-DC轉換器之操作的充電階段中對耦接於HSD電路之驅動器輸出節點與負載電路節點之間的電感器進行充電的高側驅動器(HSD)電路。在此實例中,DC-DC轉換器亦包括經組態以在DC-DC轉換器之操作的放電階段中將驅動器輸出節點耦接至負供應軌或接地(GND)以對電感器進行放電的低側驅動器(LSD)電路。為量測經傳送電力,DC-DC轉換器亦包括用於感測HSD電路及電感器中之驅動器電流的電流感測電路。電流感測電路產生反映HSD電路之驅動器輸出節點處之驅動器電壓的在鏡像輸出節點處之鏡像電壓。基於鏡像電壓,在電流鏡像電路中產生與驅動器電流成比例之鏡像電流。鏡像電流產生感測電阻器上之感測電壓,該感測電壓與鏡像電流成比例。以此方式,感測感測電壓使得能夠感測鏡像電流,且藉此使得能夠感測輸入至HSD電路的電流及經傳送至負載電路之驅動器電流。為產生反映驅動器電壓的在鏡像輸出節點處之鏡像電壓,電流感測電路亦包括用於放大鏡像電壓與驅動器電壓之間的差的放大器電路,及用於回應於來自放大器電路之電壓等化信號而調整鏡像電壓以反映驅動器電壓的疊接電路(cascode circuit)。另外,藉由在電力分配電路中包括用於提供多相驅動器電流至負載電路的複數個DC-DC轉換器,可在時脈週期內分配經傳送電力。
在本文所揭示之另一例示性態樣中,電流感測電路中之放大器電路包含用於偵測驅動器電壓與鏡像電壓之間的較小差以產生與HSD電路中之驅動器電流成比例的在電流感測電路中之鏡像電流的差動放大器電路。在一個實例中,差動放大器電路經組態有用於偏移消除之斬波電路。以此方式,差動放大器電路中之偏移電壓經減少或消除,因此鏡像電流與經傳送至負載電路的驅動器電流成比例。
在本文所揭示之另一例示性態樣中,電流感測電路亦可包括電壓平均化電路。電壓平均化電路包括耦接至感測電阻器以在充電階段中維持感測電壓之平均值的電容器電路。電壓平均化電路亦包括用於在放電階段中斷開電容器電路與感測電阻器的開關。以此方式,藉由電力分配電路中之DC-DC轉換器傳送至負載電路的驅動器電流之平均值可藉由使用電壓平均化電路來判定。
在本文所揭示之又一個例示性態樣中,提供一多相DC-DC轉換器,該多相DC-DC轉換器包括用於在時脈週期之多個相中之每一者期間傳送電力的至少一個DC-DC轉換器。在一個實例中,總電壓平均化電路亦可經提供以量測被供應至包括於電力分配電路中的多相DC-DC轉換器中之HSD電路的總電流。總電壓平均化電路經組態以感測由多相DC-DC轉換器產生的鏡像電流之總和,且鏡像電流之總和反映被供應至HSD電路之全部的總電流。藉由外部電力供應器供應至多相DC-DC轉換器的總電力為供應電壓與被供應至HSD電路之全部的總電流的乘積。
就此而言,在一個態樣中,提供一電流感測電路。電流感測電路包含電流鏡像電路、放大器電路及疊接電路。電流鏡像電路包含耦接至輸入電力節點之電力供應節點,及經組態以耦接至DC-DC轉換器之HSD電路以接收HSD控制信號的控制節點。放大器電路包含耦接至電流鏡像電路之第一輸入埠,及經組態以耦接至HSD電路之輸出節點的第二輸入埠。疊接電路耦接至電流鏡像電路及放大器電路且包含耦接至感測節點的輸出埠,及耦接至放大器電路之疊接控制埠。
在另一態樣中,提供DC-DC轉換器中之電流感測電路。電流感測電路包含用於回應於HSD控制信號而基於HSD電路中之驅動器電流產生鏡像電流的構件。電流感測電路亦包含用於放大HSD電路之輸出節點處之驅動器電壓與用於產生鏡像電流之構件的輸出節點處之鏡像電壓之間的差的構件。電流感測電路進一步包含用於在用於放大的構件之輸出埠上產生電壓等化信號的構件。電壓等化信號表示鏡像電壓與驅動器電壓之間的經放大差。電流感測電路進一步包含用於回應於電壓等化信號而調整用於產生鏡像電流的構件之輸出節點上的鏡像電壓以對應於驅動器電壓的構件。
在另一態樣中,提供感測DC-DC轉換器中之電流的方法。該方法包含回應於HSD控制信號而基於HSD電路中之驅動器電流產生鏡像電流。該方法進一步包含放大HSD電路之輸出節點處的驅動器電壓與在電流鏡像電路之輸出節點處之鏡像電壓之間的差。該方法亦包含在放大器電路之輸出埠上產生表示鏡像電壓與驅動器電壓之間的經放大差的電壓等化信號。該方法進一步包含回應於電壓等化信號而將在電流鏡像電路之輸出節點處的鏡像電壓調整為對應於驅動器電壓。
在另一態樣中,提供一電力分配電路。電力分配電路包含一包含耦接至供應電壓軌及電感器之HSD電路的DC-DC轉換器。電力分配電路亦包含電流感測電路。電流感測電路包含耦接至供應電壓軌之電力供應節點,及耦接至DC-DC轉換器之HSD電路以接收HSD控制信號的控制節點。電流感測電路進一步包含放大器電路及疊接電路。放大器電路包含耦接至電流鏡像電路之第一輸入埠,及經組態以耦接至HSD電路之輸出節點的第二輸入埠。疊接電路耦接至電流鏡像電路及放大器電路且包含耦接至感測節點的輸出埠,及耦接至放大器電路之疊接控制埠。
在另一態樣中,提供一電流感測電路。電流感測電路包含DC-DC轉換器之複數個降壓轉換器電路、放大器電路及疊接電路。該複數個降壓轉換器電路中之每一降壓轉換器電路包含HSD電路、電流鏡像電路及經組態以接收HSD控制信號之控制節點。每一HSD電路包含驅動器輸出節點,且每一電流鏡像電路包含鏡像輸出節點。放大器電路包含耦接至該複數個降壓轉換器電路之每一電流鏡像電路之鏡像輸出節點的第一輸入埠、耦接至該複數個降壓轉換器電路之每一HSD電路之驅動器輸出節點的第二輸入埠,及放大器輸出埠。疊接電路經組態以基於在放大器輸出埠上產生之電壓等化信號將該複數個降壓轉換器電路耦接至感測節點。
本專利申請案主張2018年8月8日申請之名為「CURRENT SENSING IN AN ON-DIE DIRECT CURRENT-DIRECT CURRENT (DC-DC) CONVERTER FOR MEASURING DELIVERED POWER」的申請案第16/058,167號之優先權,且該申請案讓與給本受讓人並特此明確地以引用的方式併入本文中。
現參考圖式,描述本發明之若干例示性態樣。字「例示性」在本文中用以意謂「充當實例、例子或說明」。在本文中經描述為「例示性」之任何態樣未必被認作比其他態樣更佳或更有利。
實施方式中揭示之態樣包括在用於量測經傳送電力之晶粒上直流至直流(DC-DC)轉換器中的電流感測。舉例而言,一或多個DC-DC轉換器可包括於電力分配電路中以用於將在輸入電壓下供應的輸入電力轉換成在所要輸出電壓下之輸出電力。輸出電力可被供應至負載電路以供應電力至負載電路。在一個實例中,複數個DC-DC轉換器可經提供於電力分配電路中以提供多相驅動器電流。在一個實例中,DC-DC轉換器包括經組態以回應於經調變信號在DC-DC轉換器之操作的充電階段中對耦接於HSD電路之驅動器輸出節點與負載電路節點之間的電感器進行充電的高側驅動器(HSD)電路。在此實例中,DC-DC轉換器亦包括經組態以在DC-DC轉換器之操作的放電階段中將驅動器輸出節點耦接至負供應軌或接地(GND)以對電感器進行放電的低側驅動器(LSD)電路。為量測經傳送電力,DC-DC轉換器亦包括用於感測HSD電路及電感器中之驅動器電流的電流感測電路。電流感測電路產生反映HSD電路之驅動器輸出節點處之驅動器電壓的在鏡像輸出節點處之鏡像電壓。基於鏡像電壓,在電流鏡像電路中產生與驅動器電流成比例之鏡像電流。鏡像電流產生感測電阻器上之感測電壓,該感測電壓與鏡像電流成比例。以此方式,感測感測電壓使得能夠感測鏡像電流,且藉此使得能夠感測輸入至HSD電路的電流及經傳送至負載電路之驅動器電流。為產生反映驅動器電壓的在鏡像輸出節點處之鏡像電壓,電流感測電路亦包括用於放大鏡像電壓與驅動器電壓之間的差的放大器電路,及用於回應於來自放大器電路之電壓等化信號而調整鏡像電壓以反映驅動器電壓的疊接電路。另外,藉由在電力分配電路中包括用於提供多相驅動器電流至負載電路的複數個DC-DC轉換器,可在時脈週期內分配經傳送電力。
在論述包括DC-DC轉換器及電流感測電路之電力分配電路之前,該電流感測電路經組態以產生一鏡像電流以產生可經感測以感測藉由DC-DC轉換器供應至負載電路之驅動器電流的一感測電壓,在圖2處開始,首先關於圖1論述例示性晶粒上電力分配電路100(「電力分配電路100」)。就此而言,圖1為包括多相降壓DC-DC轉換器104中之四(4)個降壓DC-DC轉換器102(1)至102(4)之電力分配電路100的示意圖。為簡單起見,僅僅半H橋接電路經展示以表示降壓DC-DC轉換器102(1)至102(4)中之每一者,即使降壓DC-DC轉換器102(1)至102(4)中之每一者亦包括用於計時及控制的電路。所說明半H電橋電路(在本文中稱為降壓轉換器102(1)至102(4))各自包括可耦接至電力供應軌(圖中未示)以接收輸入電壓VIN 之輸入電力的各別輸入電力節點106(1)至106(4)。降壓轉換器102(1)至102(4)各自經組態以在降壓轉換器102(1)至102(4)之操作的充電階段期間產生各別驅動器電流IDRIVE ( 1 ) 至IDRIVE ( 4 ) 。經調變HSD控制信號118及LSD控制信號122分別在充電階段及放電階段期間藉由控制器(圖中未示)供應。降壓轉換器102(2)、102(3)及102(4)之時脈週期分別相對於降壓轉換器102(1)之時脈週期異相90˚、180˚及270˚以在經調變HSD控制信號118之時脈週期內均勻分配在各別充電階段中產生的驅動器電流IDRIVE ( 1 ) 至IDRIVE ( 4 )
繼續參看圖1,現將描述降壓轉換器102(1),注意降壓轉換器102(1)之描述同樣適用於電力分配電路100中之其他降壓轉換器102(2)至102(4)。就此而言,降壓轉換器102(1)包括用於回應於HSD控制信號118被確證而對耦接於HSD電路110(1)之驅動器輸出節點114(1)與負載電路節點116之間的電感器112(1)進行充電的HSD電路110(1)。HSD控制信號118在降壓轉換器102(1)至102(4)之操作的充電階段期間被週期性地確證,且在放電階段期間不被確證。在此實例中,降壓轉換器102(1)亦包括經組態以回應於LSD控制信號122在放電階段中被確證而將驅動器輸出節點114(1)耦接至負供應軌或接地(GND)以對電感器112(1)進行放電的LSD電路120(1)。降壓轉換器102(1)接收輸入節點HDRV1 上之HSD控制信號118並接收輸入節點LDRV1 上之LSD控制信號122。降壓轉換器102(2)至102(4)包括輸入節點HDRV2 至HDRV4 及LDRV2 至LDRV4 。耦接至負載電路節點116之負載電路108平滑可耦接至負載電路108的負載電路節點116處之電壓VOUT 。HSD電路110(1)可包括P型金屬氧化物半導體(MOS) (PMOS)電晶體111(1),且LSD電路120(1)可包括N型金屬氧化物半導體(MOS) (NMOS)電晶體121(1)。
可需要藉由電力分配電路100量測藉由降壓轉換器102(1)至102(4)傳送至耦接至負載電路節點116之負載電路108的總電流。出於每相電流限制(亦即,個別地限制多相降壓DC-DC轉換器104之每一相中的電流)之目的,亦可需要量測降壓轉換器102(1)至102(4)中之每一者的各別電感器112(1)至112(4)中之驅動器電流IDRIVE ( 1 ) 至IDRIVE ( 4 ) 。然而,可能在不耗散來自驅動器電流IDRIVE ( 1 ) 至IDRIVE ( 4 ) 之電力中之一些的情況下難以量測傳送至耦接至負載電路節點116之負載電路108的驅動器電流IDRIVE ( 1 ) 至IDRIVE ( 4 ) 。因此,可能需要運用與降壓轉換器102(1)至102(4)分離的電流感測電路感測降壓轉換器102(1)至102(4)中之每一者中之驅動器電流IDRIVE ( 1 ) 至IDRIVE ( 4 ) 的能力。
就此而言,圖2說明包括降壓轉換器102的電力分配電路200之實例。如圖1中,降壓DC-DC轉換器之僅僅半H橋接電路被展示,且在本文中稱為降壓轉換器102。圖2中之降壓轉換器102包括與圖1之電力分配電路100中之降壓轉換器102(1)至102(4)相同的組件,該等組件在圖2中係運用共同元件編號來參考。因此,將不再描述降壓轉換器102。降壓轉換器102耦接至此實例中之電流感測電路201以產生可以量測被供應至降壓轉換器102以驅動耦接至負載電路節點116之負載電路108之電力的方式被感測的感測電壓VSENSE 。電流感測電路201包括產生與藉由降壓轉換器102傳送的驅動器電流IDRIVE 成比例之鏡像電流IMIRROR 的電流鏡像電路202,此使得電流感測電路201可藉由基於所感測鏡像電流IMIRROR 產生感測電壓VSENSE 而間接感測驅動器電流IDRIVE 。在此實例中,電流鏡像電路202包括對應於HSD電路110中之驅動器電晶體208之鏡像電晶體206。HSD控制信號118耦接至鏡像電晶體206之閘極控制埠G,且亦耦接至驅動器電晶體208之閘極控制埠G。當HSD控制信號118被確證時,鏡像電晶體206及驅動器電晶體208經深度驅動至其操作特性之三極體區中,其中其皆基本上充當電阻器。鏡像電晶體206經設定大小以具有為驅動器電晶體208之電阻的「M」倍的電阻。因此,橫跨鏡像電晶體206之實質上等於橫跨驅動器電晶體208之電壓VDROP _ DRV 的電壓VDROP _ MIR 將使得鏡像電晶體206中之鏡像電流IMIRROR 與驅動器電晶體208中之驅動器電流IDRIVE 成比例(亦即,1/「M」之電流傳送比)。
為達成橫跨鏡像電晶體206之實質上等於橫跨驅動器電晶體208之電壓的電壓,鏡像電晶體206之電力供應節點211及驅動器電晶體208之電力供應節點213兩者均耦接至輸入電力節點106處之輸入電壓VIN ,且使得電流鏡像電路202的鏡像輸出節點214處之鏡像電壓VMIRROR 實質上等於HSD電路110之驅動器輸出節點114上的驅動器電壓VDRIVE 。此藉由回應於HSD控制信號118而使用放大器電路218放大鏡像電壓VMIRROR 與驅動器電壓VDRIVE 之間的差,及基於該經放大差使用疊接電路220調整鏡像電壓VMIRROR 以反映驅動器電壓VDRIVE 而完成。在此實例中,鏡像電晶體206及驅動器電晶體208兩者均為P型MOS(PMOS)電晶體。鏡像輸出節點214耦接至鏡像電晶體206之汲極D,且驅動器輸出節點114耦接至驅動器電晶體208之汲極D。
放大器電路218包括耦接至鏡像輸出節點214之第一輸入埠222,及耦接至驅動器輸出節點114之補充輸入埠224。第一輸入埠222及補充輸入埠224可分別對應於放大器電路218之反相埠及非反相埠,或分別對應於非反相埠及反相埠。放大器電路218亦包括上面產生電壓等化信號228之放大器輸出埠226。電壓等化信號228之放大器電壓VAMP 表示鏡像電壓VMIRROR 與驅動器電壓VDRIVE 之間的經放大差。
疊接電路220在此實例中包含疊接電晶體221。疊接電路220之輸入埠230耦接至鏡像輸出節點214,且疊接控制埠G耦接至放大器電路218之放大器輸出埠226以接收電壓等化信號228。電壓等化信號228控制在飽和區中操作的疊接電晶體221以調整鏡像電流IMIRROR 。在疊接電晶體221串行耦接於鏡電晶體206與感測電阻器RSENSE 之間的情況下,鏡像電流IMIRROR 根據鏡像輸出節點214處之鏡像電壓VMIRROR 的變化而變化。舉例而言,當電壓等化信號228之放大器電壓VAMP 減小時,鏡像輸出節點214上之鏡像電壓VMIRROR 減小,橫跨鏡電晶體206之電壓VDROP _ MIR 增加,且鏡像電流IMIRROR 增加。當電壓等化信號228之放大器電壓VAMP 增加時,鏡像輸出節點214上之鏡像電壓VMIRROR 增加,橫跨鏡電晶體206之電壓VDROP _ MIR 減小,且鏡像電流IMIRROR 減小。
圖2之感測電阻器RSENSE 中的鏡像電流IMIRROR 在感測節點238處產生具有與鏡像電流IMIRROR 成特定比例關係之振幅的感測電壓VSENSE 。感測電壓VSENSE 因此與驅動器電流IDRIVE 成比例。就此而言,驅動器電流IDRIVE 可藉由量測在降壓轉換器102的操作之充電階段期間(亦即,在HSD控制信號118被確證時)橫跨感測電阻器RSENSE 產生的感測電壓VSENSE 來間接量測。藉由修整感測電阻器RSENSE 之電阻,驅動器電流IDRIVE 量測之準確度可被控制。當HSD控制信號118在降壓轉換器102之操作之放電階段期間未被確證時,電流鏡像電路202斷開,且鏡像輸出節點214藉由下拉電晶體242耦接至負供應軌或接地(GND),使得橫跨感測電阻器RSENSE 之感測電壓VSENSE 為零(0)。作為非限制性實例,下拉電晶體242可為NMOS電晶體。
圖3為說明圖2中之電力分配電路200中的電流感測電路201之例示性程序300的流程圖,該電流感測電路感測藉由圖2中之降壓轉換器102經由電感器112傳送至負載電路108的驅動器電流IDRIVE 。就此而言,如圖3所說明,程序300包括電流感測電路201回應於HSD控制信號118而基於HSD電路110中之驅動器電流IDRIVE 產生鏡像電流IMIRROR (區塊302)。程序300亦包括電流感測電路201放大HSD電路110之驅動器輸出節點114處的驅動器電壓VDRIVE 與電流鏡像電路202之鏡像輸出節點214處的鏡像電壓VMIRROR 之間的差(區塊304)。程序300亦包括電流感測電路201在放大器電路218之放大器輸出埠226上產生表示鏡像電壓VMIRROR 與驅動器電壓VDRIVE 之間的經放大差的電壓等化信號228(區塊306)。程序300亦包括電流感測電路201回應於電壓等化信號228而調整電流鏡像電路202之鏡像輸出節點214上的鏡像電壓VMIRROR 以對應於驅動器電壓VDRIVE (區塊308)。
圖4A為說明在自時間(t)0至時間3T之第一時脈週期T1 、第二時脈週期T2 及第三時脈週期T3 期間圖2中之電力分配電路200的降壓轉換器102中之電感器112中的電感器電流IIND 之例示性位準的時序圖400。在時序圖400中,時間0至時間DT對應於第一時脈週期T1 中之降壓轉換器102的操作之充電階段408,在充電階段期間HSD控制信號118被確證,且HSD電路110接通。如所示,電感器電流IIND 對應於驅動器電流IDRIVE ,其在充電階段408期間歸因於橫跨電感器112施加之恆定電壓而線性地增加。特定言之,電感器112耦接於如前展示的負載電路節點116與驅動器輸出節點114之間。負載電路節點116上之電壓VOUT (圖中未示)藉由負載電容器CLOAD (圖中未示)實質上保持恆定。如下,驅動器電壓VDRIVE 在充電階段408期間保持恆定於接近輸入電壓VIN 的電壓位準。藉由設定驅動器電晶體208大小以使接通電阻設定儘可能低,同時約束大小以限制開關損失,驅動器電晶體208中之將降低轉換效率的電力損失(亦即,I2 R損失)得以避免。在較小接通電阻情況下,橫跨驅動器電晶體208之電壓降極小,且驅動器輸出節點114上的驅動器電壓VDRIVE 保持接近輸入電壓VIN 而恆定。在充電階段408中橫跨電感器112之恆定電壓(大致VIN -VOUT )引起驅動器電流IDRIVE 線性地增加。返回至時序圖400,時間DT至時間T對應於第一時脈週期T1 中之降壓轉換器102之操作的放電階段410,在放電階段期間電感器112中之電感器電流IIND 線性地減小。在自時間DT至時間T之第一時脈週期T1 之放電階段410中,HSD控制信號118未被確證且HSD電路110斷開以使得驅動器電流IDRIVE 下降至零。LSD控制信號122係在放電階段410期間被確證,且LSD電路120接通。在驅動器輸出節點114藉由LSD電路120耦接至負供應軌或接地(GND)的情況下,橫跨電感器112施加電壓VOUT 。在時間T處,第一時脈週期T1 之放電階段410結束,且循環重複。如第一時脈週期T1 之充電階段408中,驅動器電流IDRIVE 在自時間T至時間T+DT之充電階段412期間及在自時間2T至時間2T+DT之充電階段416期間線性地增加。如第一時脈週期T1 之放電階段410中,驅動器電流IDRIVE 在自時間T+DT至時間2T之放電階段414期間及在自時間2T+DT至時間3T之放電階段418期間下降至零。電感器112中之電感器電流IIND 的平均電感器電流IAVG 係藉由圖4A中之水平線指示。
圖4B為說明在圖4A中所示的第一時脈週期T1 、第二時脈週期T2 及第三時脈週期T3 期間圖2中之感測電阻器RSENSE 中的鏡像電流IMIRROR 之例示性位準的時序圖420。在圖2之感測節點238處的感測電壓VSENSE 與鏡像電流IMIRROR 之所說明位準成比例。圖4B中之時間0至時間DT對應於第一時脈週期T1 之充電階段408,且時間DT至時間T對應於第一時脈週期T1 之放電階段410。圖4B中所示之感測電阻器RSENSE 中的鏡像電流IMIRROR 之線性增加(時間0至時間DT)對應於充電階段408期間電感器112中的電感器電流IIND 之線性增加,如圖4A中所示。然而,在時間DT與時間T之間的放電階段410期間,鏡像輸出節點214藉由下拉電晶體242耦接至負供應軌或接地(GND),以使得感測電阻器RSENSE 中的鏡像電流IMIRROR 之位準變為零(0)。因此,鏡像電流IMIRROR 在放電階段410期間不對應於電感器電流IIND
在整個第一時脈週期T1 期間之平均電感器電流IAVG 與在僅充電階段408期間之平均電感器電流IAVG 相同。由於電感器電流IIND 在充電階段408期間對應於驅動器電流IDRIVE ,且鏡像電流IMIRROR 與驅動器電流IDRIVE 成比例,在整個第一時脈週期T1 內的平均電感器電流IAVG 可藉由量測在充電階段408期間感測電阻器RSENSE 中之鏡像電流IMIRROR 之平均值IMIR _ AVG 而量測。在放電階段410期間鏡像電流IMIRROR 之零值不被使用。用以基於圖2中之感測電壓VSENSE 判定平均鏡像電流IMIR _ AVG 以判定平均電感器電流IAVG 的例示性電路之示意圖係在圖5中說明。
圖5為包括圖2之電力分配電路200且進一步包括電壓平均化電路501的電力分配電路500之示意圖,該電壓平均化電路經組態以藉由在充電階段408期間而非在放電階段410期間感測感測電壓VSENSE 準確地量測平均電感器電流IAVG 。電壓平均化電路501耦接至電流感測電路201。如上文所論述,圖2之降壓轉換器102對應於圖1之多相降壓DC-DC轉換器104中之四(4)個降壓轉換器102(1)至102(4)中的任一者。電壓平均化電路501判定對應於電感器112中之驅動器電流IDRIVE 的圖2及圖4B之平均鏡像電流IMIR _ AVG 的平均電壓VAVG ,其可出於每相監測之目的在多相降壓DC-DC轉換器104中使用。電壓平均化電路501經組態以藉由在第一時脈週期T1 之充電階段408 (時間0至時間DT)期間(藉由圖4B中之實例所提及)而非在放電階段410 (圖4B之時間DT至時間T)期間感測感測電壓VSENSE 對感測節點238處之感測電壓VSENSE (圖2)進行平均化。電壓平均化電路501包括感測電阻器RSENSE 、低通濾波器電路506及開關電路508。開關電路508受HSD控制信號118控制以在充電階段408中閉合以將感測節點238耦接至低通濾波器電路506,此對感測電壓VSENSE 進行平均化。低通濾波器電路506使用將開關電路508耦接至平均化節點514的濾波器電阻器RFILTER ,及耦接於平均化節點514與負供應軌或接地(GND)之間的平均化電容器CAVG 來平滑感測節點238處之感測電壓VSENSE 。在充電階段408中,在平均化電容器CAVG 之平均化節點514上誘發感測電壓VSENSE ,且基於感測電壓VSENSE 對平均化電容器CAVG 進行充電。在放電階段410中,HSD控制信號118不被確證,且開關電路508斷開以防止平均化電容器CAVG 經由濾波器電阻器RFILTER 及感測電阻器RSENSE 放電至負供應軌或接地(GND)。因此,在放電階段410期間,平均化電容器CAVG 保持充電至在充電階段408期間感測電壓VSENSE 之平均電壓VAVG 。因此,在平均化節點514處之平均電壓VAVG 表示在整個第一時脈週期T1 內的平均電感器電流IAVG
在圖6中說明在圖5之開關電路508與低通濾波器電路506之間的濾波器輸入電壓VFILTER 的例示性位準之時序圖600。時序圖600用以解釋平均化節點514處之平均電壓VAVG 如何表示平均電感器電流IAVG 。圖6之時序圖600中的時間0至時間3T對應於圖4A及圖4B的時序圖400及420中之時脈週期T1 、T2 及T3 。如先前所論述,感測電壓VSENSE 在自時間0至時間DT之充電階段408期間線性地增加。圖5展示根據感測節點238處之感測電壓VSENSE 線性上升的在節點518處之濾波器輸入電壓VFILTER 。濾波器輸入電壓VFILTER 在充電階段408期間經由RFILTER 對平均化電容器CAVG 進行充電。當充電階段408結束時,HSD控制信號118不再被確證,且開關電路508斷開。在放電階段410 (時間DT至時間T)期間,節點518不耦接至感測節點238,且濾波器輸入電壓VFILTER 變為平均化電容器CAVG 上之平均電壓VAVG 。因此,平均化節點514上之平均電壓VAVG 在充電階段408期間維持基於感測電壓VSENSE 之平均值的電壓位準,其可用以判定平均電感器電流IAVG 。因此,可在平均化節點514處監測平均電感器電流IAVG 。如上文所論述,出於平衡每相電感器電流IIND 之目的,其可適用於量測降壓轉換器102的電感器112中之驅動器電流IDRIVE 。另外,藉由監測平均化節點514處之平均電壓VAVG ,有可能實現每相電流限制。
圖7為耦接至過電流偵測電路700的圖5之電壓平均化電路501的示意圖。過電流偵測電路700在此實例中用以判定平均電壓VAVG 等於或超出類比臨限電壓702。舉例而言,此判定可用於每相電流限制。就此而言,過電流比較器704比較平均化節點514處之平均電壓VAVG 與類比臨限電壓702。若平均電壓VAVG 變得等於或高於類比臨限電壓702,且過電流比較器704經啟用,則過電流比較器704產生過電流指示706,其可儲存於資料儲存電路708中。類比臨限電壓702可自數位至類比轉換器(DAC) 710供應至過電流比較器704。回應於接收到數位臨限資訊712,DAC 710將數位臨限資訊712轉換成類比臨限電壓702。若過電流指示706啟動且基於PWM重設啟用信號716而啟用PWM重設714,則產生脈寬調變(PWM)重設714。
特定言之,在基於AND之電路713處接收過電流指示706及PWM重設啟用信號716,該電路產生PWM重設714。PWM控制邏輯(圖中未示)可使用PWM重設714以減少平均驅動器電流IDRV _ AVG (圖中未示)。另外,過電流指示706可例如儲存於資料儲存電路708中。在一個實例中,PWM控制邏輯可自多相降壓DC-DC轉換器104之每一相接收PWM重設714,且每一相之資料儲存電路708可經讀取以判定哪一相達到類比臨限電壓702。在已讀取資料儲存電路708之值後,資料儲存電路708藉由資料儲存重設718而重設。
過電流指示706之準確度取決於比較類比臨限電壓702與平均電壓VAVG 之過電流比較器704。隨後,平均電壓VAVG 之準確度取決於準確反映驅動器電流IDRIVE 之鏡像電流IMIRROR 。先前提及,基於1/「M」之電流傳送比,鏡像電流IMIRROR 為驅動器電流IDRIVE 之分數,因此鏡像電流IMIRROR 之誤差將造成驅動器電流IDRIVE 之量測的誤差,其中量測誤差為鏡像電流IMIRROR 之誤差的數倍。由於鏡像電流IMIRROR 係基於鏡像電壓VMIRROR ,因此使得鏡像電壓VMIRROR 儘可能接近驅動器電壓VDRIVE 對於準確電力量測係極其重要的。此外,在使用圖1之電力分配電路100的IC之實例中,時脈週期可小於十(10)奈秒(ns)。因此,驅動器電流IDRIVE 之量測的準確度取決於放大器電路218能夠偵測及快速校正鏡像電壓VMIRROR 與驅動器電壓VDRIVE 之間的較小差。
圖8為例示性差動放大器電路800之電路圖,該例示性差動放大器電路為可用於偵測兩(2)個輸入之電壓位準之間的較小差且快速地產生至疊接電路220之電壓等化信號228以調整鏡像電壓VMIRROR 以校正此等差的圖2中之電流鏡像電路202中的放大器電路218之實例。差動放大器電路800包括輸入斬波電路802、上拉電路804、補充上拉電路806及輸出斬波電路808。理想地,在差動放大器電路800的對稱組態之相對側的上拉電路804及補充上拉電路806將具有平衡特性。然而,製造變化可造成較小差。舉例而言,上拉電路804可包括上拉電晶體805,且補充上拉電路806可包括補充上拉電晶體807。上拉電晶體805及補充上拉電晶體807可為具有不同臨限電壓之PMOS電晶體,臨限電壓將在本文中稱為偏移電壓。結果,當實際上存在等於偏移電壓的在鏡像電壓VMIRROR 與驅動器電壓VDRIVE 之間的差時,電壓等化信號228將指示鏡像電壓VMIRROR 等於驅動器電壓VDRIVE 。為解決偏移電壓,差動放大器電路800使用輸入斬波電路802及輸出斬波電路808用於偏移電壓消除。輸入斬波電路802及輸出斬波電路808遞回地反轉第一輸入埠222與補充輸入埠224之間至上拉電路804及補充上拉電路806的耦接,且遞回地反轉上拉電路804及補充上拉電路806至耦接至放大器輸出埠226 (圖中未示)之輸出節點809的耦接。藉由遞回地反轉上拉電路804及補充上拉電路806之間至第一輸入埠222及補充輸入埠224及輸出節點809的耦接,偏移電壓經遞回地成為正及負,且因此隨時間消除。在輸入斬波電路802中,斬波受斬波控制信號(PWMD) 814及補充斬波控制信號(PWMDB) 816控制,補充斬波控制信號(PWMDB)為斬波控制信號(PWMD) 814之補充,如下文所解釋。
回應於斬波控制信號(PWMD) 814,輸入斬波電路802中之第一輸入開關811將第一輸入埠222耦接至輸出節點818,且輸入斬波電路802中之補充第二輸入開關813將補充輸入埠224耦接至補充輸出節點820。回應於補充斬波控制信號(PWMDB) 816,輸入斬波電路802中之補充第一輸入開關815將第一輸入埠222耦接至輸出節點818,且輸入斬波電路802中之補充第二輸入開關817將補充輸入埠224耦接至補充輸出節點820。就此而言,輸入斬波電路802回應於斬波控制信號(PWMD) 814及補充斬波控制信號(PWMDB)816而交替第一輸入埠222及補充輸入埠224與輸入斬波電路802之輸出節點818及補充輸出節點820的耦接。
上拉電路804及補充上拉電路806交替地自輸入斬波電路802接收第一輸入埠222及補充輸入埠224上之電壓。上拉電路804及補充上拉電路806分別藉由上拉電晶體805及補充上拉電晶體807實施。上拉電晶體805包括耦接至輸入斬波電路802之輸出節點818的輸入節點824、耦接至輸出斬波電路808之輸入節點828的輸出節點826,及上拉閘極控制節點830。補充上拉電晶體807包括耦接至輸入斬波電路802之補充輸出節點820的輸入節點834、耦接至輸出斬波電路808之補充輸入節點838的輸出節點836,及補充上拉閘極控制節點840。
上拉電路804及補充上拉電路806之輸出節點826及836回應於斬波控制信號(PWMD) 814及補充斬波控制信號(PWMDB) 816而藉由輸出斬波電路808交替地耦接至疊接輸出埠821以控制疊接電路220。為實施斬波之此態樣,輸出斬波電路808將疊接輸出埠821耦接至疊接電路220之疊接控制節點823。回應於斬波控制信號(PWMD) 814,輸出斬波電路808之輸出開關842將輸入節點828耦接至疊接輸出埠821,且回應於補充斬波控制信號(PWMDB) 816,輸出斬波電路808之補充輸出開關844將補充輸入節點838耦接至疊接輸出埠821。
作為差動放大器電路800之部分,下拉電路846及補充下拉電路848耦接於輸出斬波電路808與負供應軌或接地(GND)之間。下拉電路846包括一下拉電晶體850,該下拉電晶體具有耦接至輸出斬波電路808之輸出節點854的輸入節點852,及耦接至負供應軌或接地(GND)之輸出節點856。補充下拉電路848包括一補充下拉電晶體858,該補充下拉電晶體具有耦接至輸出斬波電路808之補充輸出節點862的輸入節點860,及耦接至負供應軌或接地(GND)之輸出節點864。下拉電晶體850之下拉閘極控制節點866及補充下拉電晶體858之補充下拉閘極控制節點868基於HSD控制信號118接收來自二極體連接電晶體872的偏壓電流IBIAS
返回至輸出斬波電路808,上拉電晶體805之輸出節點826或補充上拉電晶體807之輸出節點836回應於斬波控制信號(PWMD) 814及補充斬波控制信號(PWMDB) 816而耦接至上拉閘極控制節點830及補充上拉閘極控制節點840。特定言之,輸出斬波電路808之輸入節點828耦接至輸出節點854及偏壓開關876之第一節點874。輸出斬波電路808之補充輸入節點838耦接至補充輸出節點862及補充偏壓開關880之第一節點878。偏壓開關876之第二節點883及補充偏壓開關880之第二節點884兩者均耦接至上拉閘極控制節點830及補充上拉閘極控制節點840。偏壓開關876及補充偏壓開關880分別受補充斬波控制信號(PWMDB) 816及斬波控制信號(PWMD) 814控制。
即使上拉電晶體805及補充上拉電晶體807之臨限電壓不同,圖8之差動放大器電路800仍能夠快速對鏡像電壓VMIRROR 與驅動器電壓VDRIVE 之間的較小電壓差作出回應。疊接輸出埠821提供電壓等化信號228至疊接電路220。
如上文所提及,補充斬波控制信號(PWMDB) 816為斬波控制信號(PWMD) 814之補充。斬波控制信號(PWMD) 814及補充斬波控制信號(PWMDB) 816分別藉由HSD時控鎖存器882之真輸出Q及互補輸出QB提供。HSD時控鎖存器882之時脈輸入C基於HSD控制信號118接收反相HSD控制信號885,且資料輸入D耦接至互補輸出QB。因此,斬波控制信號(PWMD) 814及補充斬波控制信號(PWMDB) 816之值回應於HSD控制信號118之每一下降邊緣(亦即,自邏輯「1」轉變至邏輯「0」)而反相,此在每一時脈週期後出現。結果,差動放大器電路800中使用的斬波之完全反覆花費兩(2)個時脈週期。計時圖8中之HSD時控鎖存器882的HSD控制信號118經標記為「HDRV1 」,其指示HSD控制信號118用於多相降壓DC-DC轉換器104之第一相。舉例而言,對於在第二、第三及第四相中操作的差動放大器電路800,對應HSD控制信號118可分別標記為HDRV2 、HDRV3 及HDRV4
圖9說明耦接至例如圖1之降壓轉換器102(1)至102(4)中的任一者中之疊接電路220之疊接輸出902的例示性電力量測電路900。與圖2(其中感測電阻器RSENSE 耦接至降壓轉換器102之疊接電路220)相反,電力量測電路900中之總計電阻器RTOTALING 耦接至降壓轉換器102中之疊接輸出902。電力量測電路900類似於圖5之電壓平均化電路501,該電壓平均化電路包括感測電阻器RSENSE 、開關電路508及低通濾波器電路506。舉例而言,總計電阻器RTOTALING 對應於感測電阻器RSENSE ,且圖9之實例中的低通濾波器電路906對應於低通濾波器電路506。低通濾波器電路906中之總計電容器CTOTALING 耦接至參考電壓,諸如負供應軌或接地(GND)。總計電阻器RTOTALING 直接耦接至總計電容器CTOTALING
電力量測電路900之輸入節點907耦接至疊接電路220之疊接輸出902,且電力量測電路900自多相降壓DC-DC轉換器104接收複數個鏡像電流IMIRROR ( 1 ) 至IMIRROR ( 4 ) 。如上文所論述,每一相中之時脈週期係相同的,但各別降壓轉換器102(1)至102(4)之時脈週期彼此異相,相對於時脈週期均勻地移位。舉例而言,多相降壓DC-DC轉換器104中的降壓轉換器102(1)至102(4)之時脈週期可相對於降壓轉換器102之時脈週期分別以90˚、180˚及270˚移位。除非HSD控制信號118之工作循環下降低於時脈週期之45%(對於4相系統),否則降壓轉換器102(1)至102(4)中之至少一者將在整個時脈週期期間產生非零鏡像電流IMIRROR 。分配至多相降壓DC-DC轉換器104之總電力可藉由耦接至總計電容器CTOTALING 之電力量測節點912處的電壓VTOTAL 量測,如關於圖5之平均電壓VAVG 所描述。
圖10為另外使用圖5之電壓平均化電路501的圖9之實例的示意圖1000。在圖10之此實例中,電流感測電路1002包括耦接至疊接電路220之電流鏡像電路202,該疊接電路進一步耦接至圖9之電力量測電路900。另外,電流鏡像電路202亦耦接至第二疊接電路1004,該第二疊接電路包括耦接至電壓等化信號228之第二疊接控制節點1006。第二疊接電路1004係以與疊接電路220之控制相同的方式受電壓等化信號228控制且以與疊接電路220之運作相同的方式運作。疊接電路220及第二疊接電路1004可經設定同樣大小,因此鏡像電流IMIRROR 在其之間均勻分割,其中第一半電流1008在疊接電路220中且第二半電流1010在第二疊接電路1004中。如同鏡像電流IMIRROR ,第一半電流1008及第二半電流1010中之每一者與電感器112中之驅動器電流IDRIVE 成比例。儘管在圖10之實例中的比例關係不同於圖5及圖9的實例(例如為其2倍),但經提供至降壓轉換器102的平均驅動器電流IDRV _ AVG (每相電流)及經提供至多相降壓DC-DC轉換器104之總電力可藉由圖5中之電壓平均化電路501及圖10之示意圖1000中展示的電力量測電路900判定。
圖11為使用圖10之第二疊接電路1004的對應於圖8之差動放大器電路800的差動放大器電路1102之電路圖1100。另外,差動放大器電路1102包括回應於HSD控制信號118將偏壓電流IBIAS 耦接至二極體連接電晶體872的下拉控制開關1104。因此,二極體連接電晶體872僅僅當HSD控制信號118在放電階段410期間被確證時操作。另外,根據圖10,差動放大器電路1102之疊接輸出埠821耦接至疊接電路220及第二疊接電路1004。如圖8中,應注意圖11中之「HDRV1 」指示用於多相降壓DC-DC轉換器104之第一相的HSD控制信號118。舉例而言,對於在第二、第三及第四相中操作的差動放大器電路1102,對應HSD控制信號118可分別標記為HDRV2 、HDRV3 及HDRV4
圖12為包括可為多相降壓DC-DC轉換器104之一個相之單一半H橋接電路1201的驅動器電壓平均化電路1200的示意圖。半H橋接電路1201包括複數個半H橋接電路塊1202(1)至1202(N)。半H橋接電路塊1202(1)至1202(N)經並聯耦接以全部在相同相中產生驅動器電流IDRIVE ( 1 ) 至IDRIVE ( N ) ,相與圖1之實例相反,其中降壓轉換器102(1)至102(4)各自在時脈週期之不同相中提供驅動器電流IDRIVE ( 1 ) 至IDRIVE ( 4 ) 。類似地,在圖2、圖5、圖9及圖10之實例中,單一降壓轉換器102在時脈週期之一個相中提供電力,因此放大器電路218、疊接電路220及電流鏡像電路202專用於單一降壓轉換器102。相比而言,驅動器電壓平均化電路1200包括在時脈週期之相同相中共同產生相鏡像電流IPHS _ MIR 的半H橋接電路塊1202(1)至1202(N)。相鏡像電流IPHS _ MIR 為藉由半H橋接電路塊1202(1)至1202(N)之全部產生的總電流。與降壓轉換器102(1)至102(4)中之單一個能夠產生的電力相比,半H橋接電路塊1202(1)至1202(N)在此實例中可用於在相同相中產生更多電力。半H橋接電路塊1202(1)至1202(N)可橫跨IC分配,因此在外部電源與各別輸入電力節點之間存在電線長度差異。亦存在自各別半H橋接電路塊1202(1)至1202(N)至可量測其總電流所在之位置的電線長度差異。為量測相鏡像電流IPHS _ MIR 而不管自各別半H橋接電路塊1202(1)至1202(N)至量測電路的電線長度差異,驅動器電壓平均化電路1200獨立於流經半H橋接電路塊1202(1)至1202(N)中之每一者的電流之空間剖面產生反映相鏡像電流IPHS _ MIR 的平均電壓。
儘管半H橋接電路塊1202(1)至1202(N)包括專用電流鏡像電路1206(1)至1206(N),但半H橋接電路塊1202(1)至1202(N)之全部共用相疊接電路1208及相電壓放大器電路1210。如同降壓轉換器102中,相電壓放大器電路1210不放大鏡像電壓VMIRROR ( 1 ) 與驅動器電壓VDRIVE ( 1 ) 之間的差。實際上,相電壓放大器電路1210放大相驅動器電壓VPHS _ DRV 與相鏡像電壓VPHS _ MIR 之間的差。相驅動器電壓VPHS _ DRV 為半H橋接電路塊1202(1)至1202(N)之HSD電路1218(1)至1218(N)中的驅動器電壓VDRIVE ( 1 ) 至VDRIVE ( N ) 之平均值,且相鏡像電壓VPHS _ MIR 為電流鏡像電路1206(1)至1206(N)之鏡像電壓VMIRROR ( 1 ) 至VMIRROR ( N ) 的平均值。為產生相鏡像電壓VPHS _ MIR ,半H橋接電路塊1202(1)至1202(N)將電流鏡像電路1206(1)至1206(N)之鏡像輸出節點1222(1)至1222(N)耦接至鏡像電阻器RMIRROR ( 1 ) 至RMIRROR ( N ) 之第一節點1224(1)至1224(N),且將鏡像電阻器RMIRROR ( 1 ) 至RMIRROR ( N ) 之第二節點1228(1)至1228(N)耦接至相電壓放大器電路1210之第一節點1230。經由鏡像電阻器RMIRROR ( 1 ) 至RMIRROR ( N ) 彼此耦接的鏡像輸出節點1222(1)至1222(N)產生相鏡像電壓VPHS _ MIR 。為產生驅動器電壓VDRIVE ( 1 ) 至VDRIVE ( N ) 之平均值,半H橋接電路塊1202(1)至1202(N)將HSD電路1218(1)至1218(N)之驅動器輸出節點1232(1)至1232(N)耦接至驅動器電阻器RDRIVE ( 1 ) 至RDRIVE ( N ) 之第一節點1234(1)至1234(N),且將驅動器電阻器RDRIVE ( 1 ) 至RDRIVE ( N ) 之全部第二節點1238(1)至1238(N)耦接至相電壓放大器電路1210之第二輸入節點1240。經由驅動器電阻器RDRIVE ( 1 ) 至RDRIVE ( N ) 彼此耦接的驅動器輸出節點1232(1)至1232(N)產生相驅動器電壓VPHS _ DRV
如上文所提及,相電壓放大器電路1210放大相驅動器電壓VPHS _ DRV 與相鏡像電壓VPHS _ MIR 之間的差。相放大器等化信號1242係在相電壓放大器電路1210之輸出埠1244上產生,且輸出埠1244耦接至相疊接電路1208之疊接控制節點1246。相疊接電路1208耦接至鏡像輸出節點1222(1)至1222(N)以接收相鏡像電流IPHS _ MIR 且亦耦接至相感測電阻器RPHS _ SENSE 。相鏡像電流IPHS _ MIR 產生橫跨相感測電阻器RPHS _ SENSE 之相電壓VPHASE 。相電壓VPHASE 與相鏡像電流IPHS _ MIR 成比例且亦與相電感器LPHASE 中之相驅動器電流IPHS _ DRV 成比例。相驅動器電流IPHS _ DRV 為在時脈週期之相中自驅動器電壓平均化電路1200輸出至圖1之負載電路108的總電流。
另外,本文中所描述之電路及元件有時被稱作用於執行特定功能的構件。就此而言,DC-DC轉換器中之電流感測電路包含用於回應於HSD控制信號而基於HSD電路中之驅動器電流產生鏡像電流的構件。用於回應於HSD控制信號而基於HSD電路中之驅動器電流產生鏡像電流的構件之實例包括圖2、圖5、圖9及圖10中之電流鏡像電路202及圖12中之電流鏡像電路1206(1)至1206(N)。電流感測電路進一步包含用於放大HSD電路之輸出節點處之驅動器電壓與用於產生鏡像電流之構件的輸出節點處之鏡像電壓之間的差的構件。用於放大在HSD電路之輸出節點處之驅動器電壓與在用於產生鏡像電流的構件的輸出節點處之鏡像電壓之間的差的構件之實例包括圖2、圖5、圖9及圖10中之放大器電路218。電流感測電路進一步包含用於在用於放大的構件之輸出埠上產生電壓等化信號的構件,該電壓等化信號表示鏡像電壓與驅動器電壓之間的經放大差。用於在用於放大的構件之輸出埠上產生電壓等化信號的構件之實例包括圖2、圖5、圖9及圖10中之放大器電路218,該電壓等化信號表示鏡像電壓與驅動器電壓之間的經放大差。電流感測電路進一步包含用於回應於電壓等化信號而調整用於產生鏡像電流的構件之輸出節點上的鏡像電壓以對應於驅動器電壓的構件。用於回應於電壓等化信號調整用於產生鏡像電流的構件之輸出節點上的鏡像電壓以對應於驅動器電壓的構件之實例包括圖2、圖5、圖9及圖10中之疊接電路220及圖10中之第二疊接電路1004。
包括DC-DC轉換器及電流感測電路之電力分配電路,其中該DC-DC轉換器使用HSD電路及LSD電路,且該電流感測電路經組態以產生鏡像電流以產生可經感測以感測藉由HSD電路供應至負載電路之驅動器電流的感測電壓,該電流感測電路包括(但不限於)圖2、圖5、圖9及圖10中之電流感測電路201,且根據本文所揭示之態樣可提供於任一基於處理器之器件中或整合至其中。實例(非限制性地)包括機上盒、娛樂單元、導航器件、通信器件、固定位置資料單元、行動位置資料單元、全球定位系統(GPS)器件、行動電話、蜂巢式電話、智慧型電話、會話起始協定(SIP)電話、平板電腦、平板手機、伺服器、電腦、攜帶型電腦、行動計算器件、可穿戴式計算器件(例如,智慧型手錶、保健或健康追蹤器、護目鏡等)、桌上型電腦、個人數位助理(PDA)、監視器、電腦監視器、電視、調諧器、收音機、衛星收音機、音樂播放器、數位音樂播放器、攜帶型音樂播放器、數位視訊播放器、視訊播放器、數位視訊光碟(DVD)播放器、攜帶型數位視訊播放器、汽車、車輛組件、航電系統、無人機及多旋翼飛行器。
就此而言,圖13說明可使用包括DC-DC轉換器及電流感測電路之電力分配電路1301的基於處理器之系統1300的實例,其中DC-DC轉換器使用HSD電路及LSD電路,且電流感測電路經組態以產生鏡像電流以產生可經感測以感測藉由HSD電路供應至負載電路之驅動器電流的感測電壓,該電流感測電路包括(但不限於)圖2、圖5、圖9及圖10中之電流感測電路201。在此實例中,基於處理器之系統1300包括一或多個中央處理單元(CPU) 1302,每一者包括一或多個處理器1304。CPU 1302可具有耦接至處理器1304以用於快速存取暫時儲存之資料的快取記憶體1306。CPU 1302耦接至系統匯流排1308,且可相互耦接包括於基於處理器之系統1300中的主控器件及受控器件。如所熟知,CPU 1302藉由在系統匯流排1308上交換位址、控制及資料資訊與此等其他器件通信。舉例而言,CPU 1302可傳達匯流排異動請求至作為受控器件之實例的記憶體控制器1310。儘管圖13中未說明,但可提供多個系統匯流排1308,其中每一系統匯流排1308構成不同網狀構造。
其他主控器件及受控器件可連接至系統匯流排1308。作為實例,如圖13所說明,此等器件可包括記憶體系統1312、一或多個輸入器件1314、一或多個輸出器件1316、一或多個網路介面器件1318及一或多個顯示控制器1320。輸入器件1314可包括任何類型之輸入器件,包括(但不限於)輸入鍵、開關、語音處理器等。輸出器件1316可包括任何類型之輸出器件,包括(但不限於)音訊、視訊、其他視覺指示器等。網路介面器件1318可為任何經組態以允許至網路1322及來自網路1322之資料交換的器件。網路1322可為任何類型之網路,包括(但不限於)有線或無線網路、私用或公用網路、區域網路(LAN)、無線區域網路(WLAN)、廣域網路(WAN)、BLUETOOTH™網路及網際網路。網路介面器件1318可經組態以支援任何類型之所要通信協定。記憶體系統1312可包括一或多個記憶體單元1324(0)至1324(N)。
CPU 1302亦可經組態以在系統匯流排1308上存取顯示控制器1320以控制發送至一或多個顯示器1326之資訊。顯示控制器1320經由一或多個視訊處理器1328將待顯示之資訊發送至顯示器1326,該一或多個視訊處理器將待顯示之資訊處理為適合於顯示器1326之格式。顯示器1326可包括任何類型之顯示器,包括(但不限於)陰極射線管(CRT)、液晶顯示器(LCD)、電漿顯示器、發光二極體(LED)顯示器等等。
圖14說明包括形成於IC 1402中之射頻(RF)組件的例示性無線通信器件1400,其中IC 1402可包括包括DC-DC轉換器及電流感測電路之電力分配電路1401,其中DC-DC轉換器使用HSD電路及LSD電路,且電流感測電路經組態以產生鏡像電流以產生可經感測以感測藉由HSD電路供應至負載電路之驅動器電流的感測電壓,該電流感測電路包括(但不限於)圖2、圖5、圖9及圖10中之電流感測電路201。就此而言,無線通信器件1400可在IC 1402中提供。作為實例,無線通信器件1400可包括以上參考器件中之任一者或被提供至其中。如圖14所示,無線通信器件1400包括收發器1404及資料處理器1406。資料處理器1406可包括用以儲存資料及程式碼之記憶體。收發器1404包括支援雙向通信之傳輸器1408及接收器1410。一般而言,無線通信器件1400可包括用於任何數目個通信系統及頻帶的任何數目個傳輸器1408及/或接收器1410。收發器1404之全部或一部分可實施於一或多個類比IC、RF IC (RFIC)、混合信號IC等上。
傳輸器1408或接收器1410可藉由超外差式架構或直接轉換架構實施。在超外差式架構中,信號在多個階段中在RF與基頻之間被頻率轉換,例如,在一個階段中自RF轉換至中頻(IF),且接著在另一階段中自IF轉換至基頻以用於接收器1410。在直接轉換架構中,信號在一個階段中在RF與基頻之間被頻率轉換。超外差式及直接轉換架構可使用不同電路區塊及/或具有不同需求。在圖14之無線通信器件1400中,傳輸器1408及接收器1410係藉由直接轉換架構實施。
在傳輸路徑中,資料處理器1406處理待傳輸之資料,且提供I及Q類比輸出信號至傳輸器1408。在例示性無線通信器件1400中,資料處理器1406包括DAC 1412(1)及1412(2)以將由資料處理器1406產生之數位信號轉換為I及Q類比輸出信號,例如,I及Q輸出電流,以供進一步處理。
在傳輸器1408內,低通濾波器1414(1)及1414(2)分別對I及Q類比輸出信號進行濾波以移除由先前數位至類比轉換所引起的非所要信號。放大器(AMP) 1416(1)及1416(2)分別放大來自低通濾波器1414(1)及1414(2)之信號,並提供I及Q基頻信號。增頻轉換器1418增頻轉換I及Q基頻信號,及來自TX LO信號產生器1422經由混頻器1420(1)及1420(2)的I及Q傳輸(TX)本地振盪器(LO)信號,以提供經增頻轉換信號1424。濾波器1426濾波經增頻轉換之信號1424以移除由增頻轉換以及接收頻帶中之雜訊所引起之非所要信號。功率放大器(PA) 1428放大來自濾波器1426之經增頻轉換信號1424以獲得所要經傳送功率位準且提供傳輸RF信號。傳輸RF信號經路由貫穿雙工器或開關1430,且經由天線1432傳輸。
在接收路徑中,天線1432接收由基地台傳輸之信號且提供所接收之RF信號,其經路由貫穿雙工器或開關1430,且被提供至低雜訊放大器(LNA) 1434。雙工器/開關1430被設計為以特定之接收(RX)至TX雙工器頻率間距操作,使得RX信號與TX信號分離。接收之RF信號係藉由LNA 1434放大且藉由濾波器1436濾波以獲得所要RF輸入信號。降頻轉換混頻器1438(1)及1438(2)混合濾波器1436之輸出及來自RX LO信號產生器1440之I及Q RX LO信號(亦即,LO_I及LO_Q),以產生I及Q基頻信號。I及Q基頻信號係藉由放大器(AMP) 1442(1)及1442(2)放大Q且進一步藉由低通濾波器1444(1)及1444(2)濾波以獲得I及Q類比輸入信號,其被提供至資料處理器1406。在此實例中,資料處理器1406包括類比至數位轉換器(ADC) 1446(1)及1446(2)以將類比輸入信號轉換為數位信號,以待於由資料處理器1406進一步處理。
在圖14之無線通信器件1400中,TX LO信號產生器1422產生用於增頻轉換之I及Q TX LO信號,而RX LO信號產生器1440產生用於降頻轉換之I及Q RX LO信號。各LO信號係具有特定基本頻率之週期性信號。TX鎖相迴路(PLL)電路1448自資料處理器1406接收時序資訊且產生用於調整來自TX LO信號產生器1422之TX LO信號之頻率及/或相之控制信號。類似地,RX PLL電路1450自資料處理器1406接收時序資訊且產生用於調整來自RX LO信號產生器1440之RX LO信號之頻率及/或相之控制信號。
熟習此項技術者應進一步瞭解,結合本文中所揭示之態樣描述的各種說明性邏輯區塊、模組、電路及演算法可實施為電子硬體、儲存於記憶體或另一電腦可讀媒體中且由處理器或其他處理器件實行之指令,或此兩者之組合。作為實例,本文中所描述之仲裁器、主控器件及受控器件可用於任何電路、硬體組件、IC或IC晶片中。本文中所揭示之記憶體可為任何類型及大小之記憶體,且可經組態以儲存所要的任何類型之資訊。為清楚地說明此互換性,上文已大體上就其功能性而言描述各種說明性組件、區塊、模組、電路及步驟。如何實施此功能性取決於特定應用、設計選項及/或強加於整個系統之設計約束。熟習此項技術者可針對每一特定應用而以變化之方式實施所描述之功能性,而但不應將此等實施決策解譯為致使脫離本發明之範疇。
可藉由處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場可程式化閘陣列(FPGA)或經設計以執行本文中所描述之功能的其他可程式化邏輯器件、離散閘或電晶體邏輯、離散硬體組件或其經設計以執行本文中所描述之功能的任何組合來實施或執行結合本文中所揭示之態樣而描述的各種說明性邏輯區塊、模組及電路。處理器可為微處理器,但在替代例中,處理器可為任何習知處理器、控制器、微控制器或狀態機。處理器亦可實施為計算器件之組合(例如,DSP與微處理器之組合、複數個微處理器、結合DSP核心之一或多個微處理器,或任何其他此類組態)。
本文中所揭示之態樣可體現於硬體及儲存於硬體中之指令中,且可駐留於(例如)隨機存取記憶體(RAM)、快閃記憶體、唯讀記憶體(ROM)、電可程式化ROM (EPROM)、電可抹除可程式化ROM (EEPROM)、暫存器、硬碟、可移除式磁碟、CD-ROM或此項技術中已知的任何其他形式之電腦可讀媒體中。將一例示性儲存媒體耦接至處理器以使得處理器可自儲存媒體讀取資訊及將資訊寫入至儲存媒體。在替代例中,儲存媒體可與處理器成一體式。處理器及儲存媒體可駐留於ASIC中。ASIC可駐留在遠端台中。在替代例中,處理器及儲存媒體可作為離散組件而駐留於遠端台、基地台或伺服器中。
亦應注意,描述在本文中例示性態樣中之任一者中所描述之操作步驟以提供實例及論述。可以不同於所說明之序列的眾多不同序列執行所描述之操作。此外,實際上可以數個不同步驟來執行單一操作步驟中描述之操作。另外,可組合例示性態樣中所論述之一或多個操作步驟。應理解,對於熟習此項技術者而言將顯而易見,流程圖中所說明之操作步驟可經受大量不同修改。熟習此項技術者亦應理解,可使用多種不同技藝及技術中之任一者表示資訊及信號。舉例而言,可由電壓、電流、電磁波、磁場或磁性粒子、光場或光學粒子,或其任何組合來表示在貫穿以上描述中可能引用之資料、指令、命令、資訊、信號、位元、符號及碼片。
提供本發明之先前描述以使任何熟習此項技術者能夠製作或使用本發明。熟習此項技術者將容易地顯而易見對本發明之各種修改,且本文中定義之一般原理可在不背離本發明之精神或範疇的情況下應用於其他變體。因此,本發明並不意欲限於本文中所描述之實例及設計,而應符合與本文中所揭示之原理及新穎特徵相一致的最廣泛範疇。
100:晶粒上電力分配電路/電力分配電路 102:降壓轉換器 102(1):降壓直流至直流(DC-DC)轉換器 102(2):降壓直流至直流(DC-DC)轉換器 102(3):降壓直流至直流(DC-DC)轉換器 102(4):降壓直流至直流(DC-DC)轉換器 104:多相降壓直流至直流(DC-DC)轉換器 106:輸入電力節點 106(1):輸入電力節點 106(2):輸入電力節點 106(3):輸入電力節點 106(4):輸入電力節點 106(N):輸入電力節點 108:負載電路 110:高側驅動器(HSD)電路 110(1):高側驅動器(HSD)電路 110(2):高側驅動器(HSD)電路 110(3):高側驅動器(HSD)電路 110(4):高側驅動器(HSD)電路 111(1):P型金屬氧化物半導體(MOS) (PMOS)電晶體 112:電感器 112(1):電感器 112(2):電感器 112(3):電感器 112(4):電感器 114:驅動器輸出節點 114(1):驅動器輸出節點 116:負載電路節點 118:高側驅動器(HSD)控制信號 120:低側驅動器(LSD)電路 120(1):低側驅動器(LSD)電路 120(2):低側驅動器(LSD)電路 120(3):低側驅動器(LSD)電路 120(4):低側驅動器(LSD)電路 121(1):N型金屬氧化物半導體(MOS) (NMOS)電晶體 122:低側驅動器(LSD)控制信號 200:電力分配電路 201:電流感測電路 202:電流鏡像電路 206:鏡像電晶體 208:驅動器電晶體 211:電力供應節點 213:電力供應節點 214:鏡像輸出節點 218:放大器電路 220:疊接電路 221:疊接電晶體 222:第一輸入埠 224:補充輸入埠 226:放大器輸出埠 228:電壓等化信號 230:輸入埠 238:感測節點 242:下拉電晶體 300:程序 302:區塊 304:區塊 306:區塊 308:區塊 400:時序圖 408:充電階段 410:放電階段 412:充電階段 414:放電階段 416:充電階段 418:放電階段 420:時序圖 500:電力分配電路 501:電壓平均化電路 506:低通濾波器電路 508:開關電路 514:平均化節點 518:節點 600:時序圖 700:過電流偵測電路 702:類比臨限電壓 704:過電流比較器 706:過電流指示 708:資料儲存電路 710:數位至類比轉換器(DAC) 712:數位臨限資訊 713:基於AND之電路 714:脈寬調變(PWM)重設 716:脈寬調變(PWM)重設啟用信號 718:資料儲存重設 800:差動放大器電路 802:輸入斬波電路 804:上拉電路 805:上拉電晶體 806:補充上拉電路 807:補充上拉電晶體 808:輸出斬波電路 809:輸出節點 811:第一輸入開關 813:補充第二輸入開關 814:斬波控制信號(PWMD) 815:補充第一輸入開關 816:補充斬波控制信號(PWMDB) 817:補充第二輸入開關 818:輸出節點 820:補充輸出節點 821:疊接輸出埠 823:疊接控制節點 824:輸入節點 826:輸出節點 828:輸入節點 830:上拉閘極控制節點 834:輸入節點 836:輸出節點 838:補充輸入節點 840:補充上拉閘極控制節點 842:輸出開關 844:補充輸出開關 846:下拉電路 848:補充下拉電路 850:下拉電晶體 852:輸入節點 854:輸出節點 856:輸出節點 858:補充下拉電晶體 860:輸入節點 862:補充輸出節點 864:輸出節點 866:下拉閘極控制節點 868:補充下拉閘極控制節點 872:二極體連接電晶體 874:第一節點 876:偏壓開關 878:第一節點 880:補充偏壓開關 882:高側驅動器(HSD)時控鎖存器 883:第二節點 884:第二節點 885:反相高側驅動器(HSD)控制信號 900:電力量測電路 902:疊接輸出 906:低通濾波器電路 907:輸入節點 912:電力量測節點 1000:示意圖 1002:電流感測電路 1004:第二疊接電路 1006:第二疊接控制節點 1008:第一半電流 1010:第二半電流 1100:電路圖 1102:差動放大器電路 1104:下拉控制開關 1200:驅動器電壓平均化電路 1201:半H橋接電路 1202(1):半H橋接電路塊 1202(N):半H橋接電路塊 1206(1):電流鏡像電路 1206(N):電流鏡像電路 1208:相疊接電路 1210:相電壓放大器電路 1218(1):高側驅動器(HSD)電路 1218(N):高側驅動器(HSD)電路 1222(1):鏡像輸出節點 1222(N):鏡像輸出節點 1224(1):第一節點 1224(N):第一節點 1228(1):第二節點 1228(N):第二節點 1230:第一節點 1232(1):驅動器輸出節點 1232(N):驅動器輸出節點 1234(1):第一節點 1234(N):第一節點 1238(1):第二節點 1238(N):第二節點 1240:第二輸入節點 1242:相放大器等化信號 1244:輸出埠 1246:疊接控制節點 1300:基於處理器之系統 1301:電力分配電路 1302:中央處理單元(CPU) 1304:處理器 1306:快取記憶體 1308:系統匯流排 1310:記憶體控制器 1312:記憶體系統 1314:輸入器件 1316:輸出器件 1318:網路介面器件 1320:顯示控制器 1322:網路 1324(0):記憶體單元 1324(N):記憶體單元 1326:顯示器 1328:視訊處理器 1400:無線通信器件 1401:電力分配電路 1402:積體電路(IC) 1404:收發器 1406:資料處理器 1408:傳輸器 1410:接收器 1412(1):數位至類比轉換器(DAC) 1412(2):數位至類比轉換器(DAC) 1414(1):低通濾波器 1414(2):低通濾波器 1416(1):放大器(AMP) 1416(2):放大器(AMP) 1418:增頻轉換器 1420(1):混頻器 1420(2):混頻器 1422:傳輸(TX)本地振盪器(LO)信號產生器 1424:經增頻轉換信號 1426:濾波器 1428:功率放大器(PA) 1430:雙工器或開關 1432:天線 1434:低雜訊放大器(LNA) 1436:濾波器 1438(1):降頻轉換混頻器 1438(2):降頻轉換混頻器 1440:接收(RX)本地振盪器(LO)信號產生器 1442(1):放大器(AMP) 1442(2):放大器(AMP) 1444(1):低通濾波器 1444(2):低通濾波器 1446(1):類比至數位轉換器(ADC) 1446(2):類比至數位轉換器(ADC) 1448:傳輸(TX)鎖相迴路(PLL)電路 1450:接收(RX)鎖相迴路(PLL)電路
圖1為包括分配多相電力至負載電路之直流至直流(DC)轉換器的例示性電力分配電路之電路圖;
圖2為包括DC-DC轉換器及電流感測電路的例示性電力分配電路之電路圖,其中DC-DC轉換器使用高側驅動器(HSD)電路及低側驅動器(LSD)電路,且電流感測電路經組態以產生鏡像電流以產生可經感測以感測被供應至HSD電路之輸入電流的感測電壓;
圖3為說明圖2中的電力分配電路中之感測藉由圖2中之DC-DC轉換器傳送至負載電路之電流的電流感測電路之例示性程序的流程圖;
圖4A為說明耦接至圖2之HSD電路的電感器中之例示性電流位準的時序圖;
圖4B為說明圖2之電流感測電路中的鏡像電流之例示性電流位準的時序圖,其中乘以鏡像因數(「M」)的鏡像電流之位準對應於HSD電路中之電流;
圖5為圖2之電力分配電路的電路圖,其中電流感測電路進一步使用例示性電壓平均化電路以量測對應於耦接於HSD電路之驅動器輸出節點與DC-DC轉換器之負載電路節點之間的電感器中之電流的平均輸出電壓;
圖6為說明在圖5之電力分配電路中的電壓平均化電路之節點處之例示性電壓位準的時序圖;
圖7為經組態以接收藉由圖5之電壓平均化電路產生的平均輸出電壓以基於平均輸出電壓產生過電流指示信號的例示性過電流偵測電路之電路圖;
圖8為經提供為圖2之電力分配電路之電流感測電路中的放大器電路之實例的例示性差動放大器電路之電路圖,該差動放大器電路使用斬波電路用於偏移電壓消除;
圖9為使用例示性電壓平均化電路以判定對應於圖1之電力分配電路中的DC-DC轉換器之HSD電路中的驅動器電流之總和的平均輸出電壓的圖2之電力分配電路的電路圖;
圖10為圖9之電力分配電路的電路圖,其中電流感測電路包括耦接至電壓平均化電路之第二疊接電路;
圖11為可用作圖8之電流感測電路中之差動放大器電路的例示性放大器電路之電路圖,其中放大器電路包括用於在時脈週期之放電階段期間將差動放大器電路中之電路斷電的開關;
圖12為使用在多相降壓DC-DC轉換器之相同相中產生電流的DC-DC轉換器的電力分配電路之電路圖,其中每一DC-DC轉換器經說明為具有耦接至電流鏡像電路之HSD電路的半H橋接電路塊,且在HSD電路之驅動器輸出節點處的驅動器電壓之平均值與在電流鏡像電路之鏡像輸出節點處的鏡像電壓之平均值之間的差經放大;
圖13為可包括包括DC-DC轉換器及電流感測電路之電力分配電路的例示性基於處理器之系統的方塊圖,其中DC-DC轉換器使用HSD電路及LSD電路,且電流感測電路經組態以產生鏡像電流以產生可經感測以感測藉由HSD電路供應至負載電路的驅動器電流的感測電壓,包括(但不限於)圖2、圖5、圖9及圖10中之電流感測電路;且
圖14為包括形成於積體電路(IC)中之射頻(RF)組件的例示性無線通信器件之方塊圖,其中無線通信器件可包括包括DC-DC轉換器及電流感測電路之電力分配電路,其中DC-DC轉換器使用HSD電路及LSD電路,且電流感測電路經組態以產生鏡像電流以產生可經感測以感測藉由HSD電路供應至負載電路之驅動器電流的感測電壓,包括(但不限於)圖2、圖5、圖9及圖10中之電流感測電路。
102:降壓轉換器
106:輸入電力節點
108:負載電路
110:高側驅動器(HSD)電路
112:電感器
114:驅動器輸出節點
116:負載電路節點
118:高側驅動器(HSD)控制信號
120:低側驅動器(LSD)電路
122:低側驅動器(LSD)控制信號
201:電流感測電路
202:電流鏡像電路
206:鏡像電晶體
208:驅動器電晶體
211:電力供應節點
213:電力供應節點
214:鏡像輸出節點
218:放大器電路
220:疊接電路
221:疊接電晶體
222:第一輸入埠
224:補充輸入埠
226:放大器輸出埠
228:電壓等化信號
230:輸入埠
238:感測節點
242:下拉電晶體
500:電力分配電路
501:電壓平均化電路
506:低通濾波器電路
508:開關電路
514:平均化節點
518:節點

Claims (27)

  1. 一種電流感測電路,其包含:一電流鏡像電路,其包含:一電力供應節點,其耦接至一輸入電力節點;及一控制節點,其經組態以耦接至一直流至直流(DC-DC)轉換器之一高側驅動器(HSD)電路以接收一HSD控制信號;一放大器電路,其包含:一第一輸入埠,其耦接至該電流鏡像電路;及一第二輸入埠,其經組態以耦接至該HSD電路之一輸出節點;及一疊接電路,其耦接至該電流鏡像電路及該放大器電路,該疊接電路包含:一輸出埠,其耦接至一感測節點;及一疊接控制埠,其耦接至該放大器電路;其中該放大器電路包含一差動放大器電路,其中該差動放大器電路包含:一輸入斬波電路,其包含一第一輸入節點及一第二輸入節點;一輸出斬波電路,其包含一輸入節點、一補充輸入節點、一輸出節點、一補充輸出節點,及耦接至該疊接電路之一疊接輸出節點;一上拉電路,其耦接於該輸入斬波電路與該輸出斬波電路之該輸入節點之間;一補充上拉電路,其耦接於該輸入斬波電路與該輸出斬波電路之該補充輸入節點之間;一下拉電路,其耦接於一負供應軌與該輸出斬波電路之該輸出節點 之間;及一補充下拉電路,其耦接於該負供應軌與該輸出斬波電路之該補充輸出節點之間;該輸入斬波電路經組態以:回應於基於該HSD控制信號之一斬波控制信號而將該差動放大器電路之一第一輸入節點耦接至該上拉電路並將該差動放大器電路之一第二輸入節點耦接至該補充上拉電路;及回應於基於該HSD控制信號之一補充的一補充斬波控制信號而將該差動放大器電路之該第一輸入節點耦接至該補充上拉電路並將該差動放大器電路之該第二輸入節點耦接至該上拉電路;且該輸出斬波電路經組態以:回應於該斬波控制信號而將該上拉電路耦接至該疊接輸出節點;及回應於該補充斬波控制信號而將該補充上拉電路耦接至該疊接輸出節點。
  2. 如請求項1之電流感測電路,其中:該電流鏡像電路進一步包含一輸出節點;該放大器電路進一步包含一輸出埠,且該放大器電路之該第一輸入埠耦接至該電流鏡像電路之該輸出節點;且該疊接電路進一步包含耦接至該電流鏡像電路之該輸出節點的一輸入埠。
  3. 如請求項2之電流感測電路,其中:該電流鏡像電路經組態以回應於該HSD控制信號而基於該HSD電路中之 一驅動器電流產生一鏡像電流;該放大器電路經組態以放大在該HSD電路之該輸出節點處的一驅動器電壓與在該電流鏡像電路之該輸出節點處的一鏡像電壓之間的一差,並在該放大器電路之該輸出埠上輸出表示該鏡像電壓與該驅動器電壓之間的該經放大差的一電壓等化信號;且該疊接電路經組態以回應於該電壓等化信號而將在該電流鏡像電路之該輸出節點處的該鏡像電壓調整為對應於該驅動器電壓。
  4. 如請求項3之電流感測電路,其中該電流鏡像電路經組態以回應於該HSD控制信號而產生與該HSD電路中之該驅動器電流成比例的該鏡像電流。
  5. 如請求項1之電流感測電路,其中該電流鏡像電路包含一電晶體,該電晶體包含耦接至該控制節點之一閘極控制節點、耦接至該電力供應節點之一第一節點,及耦接至該放大器電路之該第一輸入埠的一第二節點。
  6. 如請求項1之電流感測電路,其中該電流鏡像電路具有與該HSD電路之一電阻成比例的一電阻。
  7. 如請求項1之電流感測電路,其中:該差動放大器電路之一第一輸入節點包含該差動放大器電路之一反相輸入埠;且該差動放大器電路之一第二輸入節點包含該差動放大器電路之一非反相埠。
  8. 如請求項1之電流感測電路,其中:該差動放大器電路之一第一輸入節點包含該差動放大器電路之一非反相輸入埠;且該差動放大器電路之一第二輸入節點包含該差動放大器電路之一反相埠。
  9. 如請求項1之電流感測電路,其中:該上拉電路包含一上拉電晶體,該上拉電晶體包含耦接至該輸入斬波電路之一輸出節點的一輸入節點、耦接至該輸出斬波電路之該輸入節點的一輸出節點,及一上拉閘極控制節點;該補充上拉電路包含一補充上拉電晶體,該補充上拉電晶體包含耦接至該輸入斬波電路之一補充輸出節點的一輸入節點、耦接至該輸出斬波電路之該補充輸入節點的一輸出節點,及一補充上拉閘極控制節點;該下拉電路包含一下拉電晶體,該下拉電晶體包含耦接至該輸出斬波電路之該輸出節點的一輸入節點、耦接至該負供應軌之一輸出節點,及一下拉閘極控制節點;且該補充下拉電路包含一補充下拉電晶體,該補充下拉電晶體包含耦接至該輸出斬波電路之該補充輸出節點的一輸入節點、耦接至該負供應軌之一輸出節點,及一補充下拉閘極控制節點。
  10. 如請求項1之電流感測電路,其中該輸入斬波電路包含:一第一輸入開關及一補充第二輸入開關,回應於基於該HSD控制信號之該斬波控制信號,該第一輸入開關經組態以將該差動放大器電路之該第一輸入節點耦接至該上拉電路,該補充第二輸入開關經組態以將該差動放大器電路之該第二輸入節點耦接至該補充上拉電路;及一補充第一輸入開關及一第二輸入開關,回應於基於該HSD控制信號之該補充的該補充斬波控制信號,該補充第一輸入開關用以將該差動放大器電路之該第一輸入節點耦接至該補充上拉電路,該第二輸入開關用以將該差動放大器電路之該第二輸入節點耦接至該上拉電路。
  11. 如請求項9之電流感測電路,其中該輸出斬波電路進一步包含: 一輸出開關,其包含耦接至該輸出斬波電路之該輸入節點及該輸出斬波電路之該輸出節點的一第一節點,及耦接至該輸出斬波電路之該疊接輸出節點的一第二節點;一補充輸出開關,其包含耦接至該輸出斬波電路之該補充輸入節點及該輸出斬波電路之該補充輸出節點的一第一節點,及耦接至該輸出斬波電路之該疊接輸出節點的一第二節點;一偏壓開關,其包含耦接至該上拉電路之該輸出節點的一第一節點,及耦接至該上拉閘極控制節點及該補充上拉閘極控制節點之一第二節點;及一補充偏壓開關,其包含耦接至該補充上拉電路之該輸出節點的一第一節點,及耦接至該上拉閘極控制節點及該補充上拉閘極控制節點之一第二節點。
  12. 如請求項9之電流感測電路,其中該差動放大器電路進一步經組態以基於該HSD控制信號將一偏壓電壓耦接至該下拉電晶體之該下拉閘極控制節點及該補充下拉電晶體之該補充下拉閘極控制節點。
  13. 如請求項1之電流感測電路,其中該疊接電路包含一疊接電晶體,該疊接電晶體包含耦接至該放大器電路之一閘極控制節點、耦接至該電流鏡像電路之一輸入節點,及耦接至該感測節點之該輸出埠。
  14. 如請求項3之電流感測電路,其中該疊接電路經組態以回應於該放大器電路之該輸出埠上之該電壓等化信號表示該鏡像電壓與該驅動器電壓之間的該經放大差而調整該電流鏡像電路之該輸出節點與該感測節點之間的耦接。
  15. 如請求項3之電流感測電路,其中該疊接電路經組態以:使得在該電流鏡像電路之該輸出節點處的該鏡像電壓回應於該放大器電路之該輸出埠上之該電壓等化信號指示該鏡像電壓小於該驅動器電壓而增加;及使得在該電流鏡像電路之該輸出節點處的該鏡像電壓回應於該放大器電路 之該輸出埠上之該電壓等化信號指示該鏡像電壓大於該驅動器電壓而減小。
  16. 如請求項13之電流感測電路,其中該疊接電晶體經組態以基於連接至該疊接電晶體之該閘極控制節點的一電壓等化信號調整該疊接電晶體之一電阻。
  17. 如請求項1之電流感測電路,其進一步包含一電壓平均化電路,該電壓平均化電路包含:一感測電阻器,其耦接至該感測節點及一負供應軌;及一開關電路,其耦接至該感測節點及一低通濾波器電路,其中該低通濾波器電路包含耦接至該感測節點之一濾波器電阻器及一平均化電容器。
  18. 如請求項17之電流感測電路,其中該開關電路經組態以回應於該HSD控制信號而將該感測節點耦接至該電壓平均化電路之一輸出節點,以在該感測節點上誘發具有基於該電流鏡像電路之一鏡像電流之一振幅的一電壓。
  19. 如請求項18之電流感測電路,其進一步包含耦接至該電壓平均化電路之該輸出節點的一過電流偵測電路,該過電流偵測電路包含經組態以比較在該感測節點處之一電壓位準與一臨限電壓並基於一脈寬調變(PWM)重設啟用信號輸出一過電流指示的一過電流比較器。
  20. 如請求項19之電流感測電路,其中該過電流偵測電路進一步包含經組態以回應於接收到數位臨限電壓資訊而輸出該臨限電壓之一數位至類比轉換器(DAC)。
  21. 如請求項1之電流感測電路,其進一步包含:一電力量測電路,其耦接至該感測節點及一電力量測節點,該電力量測電路包含一感測電阻器及一低通濾波器。
  22. 如請求項21之電流感測電路,其中該低通濾波器包含: 一濾波器電阻器,其耦接至該感測節點及該電力量測節點;及一電容器,其耦接至該電力量測節點及一參考電壓。
  23. 如請求項22之電流感測電路,其中該電力量測電路經組態以自複數個疊接電路接收複數個鏡像電流,並在該電力量測節點處誘發表示該電流感測電路之一鏡像電流與一第二電流感測電路之一第二鏡像電流之一總和的一電壓。
  24. 如請求項21之電流感測電路,其進一步包含:一第二疊接電路,其包含耦接至該感測節點之一輸出埠、耦接至該放大器電路之一第二疊接控制埠,及耦接至該電流鏡像電路之一輸出節點的一輸入埠。
  25. 如請求項24之電流感測電路,其中該電流鏡像電路中之一鏡像電流係在該疊接電路與該第二疊接電路之間分割,且該電力量測節點上之一電壓反映該電流鏡像電路中之該鏡像電流及該電流感測電路之該電流鏡像電路中的一第二鏡像電流。
  26. 如請求項1之電流感測電路,其整合至一積體電路(IC)中。
  27. 如請求項1之電流感測電路,其整合至選自由以下組成之群組的一器件中:一機上盒;一娛樂單元;一導航器件;一通信器件;一固定位置資料單元;一行動位置資料單元;一全球定位系統(GPS)器件;一行動電話;一蜂巢式電話;一智慧型電話;一會話起始協定(SIP)電話;一平板電腦;一平板手機;一伺服器;一電腦;一攜帶型電腦;一行動計算器件;一可穿戴式計算器件;一桌上型電腦;一個人數位助理(PDA);一監視器;一電腦監視器;一電視;一調諧器;一收音機;一衛星收音機;一音樂播放器;一數位音樂播放器;一攜帶型音樂播放器;一數位視訊播放器;一視訊播放器;一數位視訊光 碟(DVD)播放器;一攜帶型數位視訊播放器;一汽車;一車輛組件;航電系統;一無人機及一多旋翼飛行器。
TW108125770A 2018-08-08 2019-07-22 在用於量測經傳送電力之晶粒上直流至直流轉換器中之電流感測 TWI776075B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/058,167 US10958167B2 (en) 2018-08-08 2018-08-08 Current sensing in an on-die direct current-direct current (DC-DC) converter for measuring delivered power
US16/058,167 2018-08-08

Publications (2)

Publication Number Publication Date
TW202026647A TW202026647A (zh) 2020-07-16
TWI776075B true TWI776075B (zh) 2022-09-01

Family

ID=67441775

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125770A TWI776075B (zh) 2018-08-08 2019-07-22 在用於量測經傳送電力之晶粒上直流至直流轉換器中之電流感測

Country Status (5)

Country Link
US (2) US10958167B2 (zh)
EP (1) EP3833989B1 (zh)
CN (1) CN112534278B (zh)
TW (1) TWI776075B (zh)
WO (1) WO2020033100A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10958167B2 (en) * 2018-08-08 2021-03-23 Qualcomm Incorporated Current sensing in an on-die direct current-direct current (DC-DC) converter for measuring delivered power
US10951178B2 (en) * 2018-09-28 2021-03-16 Skyworks Solutions, Inc. Averaging overcurrent protection
JP7237774B2 (ja) 2019-08-27 2023-03-13 株式会社東芝 電流検出回路
CN111596715A (zh) * 2020-05-29 2020-08-28 北京集创北方科技股份有限公司 电压调整装置、芯片、电源及电子设备
US11581795B2 (en) * 2020-07-22 2023-02-14 Mediatek Inc. Current sensing circuit for generating sensed current signal with average value being constant under different input voltages of direct current to direct current converter and associated current-mode control circuit
FR3117601B1 (fr) * 2020-12-15 2023-02-24 Thales Sa Dispositif de mesure
CN113179018B (zh) * 2021-06-29 2021-11-05 钰泰半导体股份有限公司 多相dc-dc变换器
CN113589033B (zh) * 2021-07-29 2024-08-13 昂宝电子(上海)有限公司 功率信号检测电路和方法
TWI789238B (zh) * 2022-02-11 2023-01-01 瑞昱半導體股份有限公司 測試系統以及測試方法
US20230275502A1 (en) * 2022-02-25 2023-08-31 Stmicroelectronics Asia Pacific Pte Ltd Vertical metal sensing method for dc-dc converter
US12119735B2 (en) 2022-02-25 2024-10-15 Stmicroelectronics Asia Pacific Pte Ltd Hardware and methods for voltage and current sensing
CN114531026B (zh) * 2022-04-21 2022-07-19 深圳英集芯科技股份有限公司 多相降压变换电路、装置及设备
CN118225210B (zh) * 2024-05-24 2024-07-26 杭州山科智能科技股份有限公司 一种智能水表的微电流自检测电路、系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW531647B (en) * 2000-10-13 2003-05-11 Primarion Inc System and method for current sensing
US20060125568A1 (en) * 2004-12-10 2006-06-15 Felder Matthew D Current threshold circuit
TW200941907A (en) * 2007-12-06 2009-10-01 Intersil Inc System and method for improving inductor current sensing accuracy of a DC/DC voltage regulator
US20120306541A1 (en) * 2011-05-31 2012-12-06 System General Corporation High-side signal sensing circuit
CN107450014A (zh) * 2016-05-13 2017-12-08 电力集成公司 用于半导体晶体管器件的集成线性电流感测电路系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19609203A1 (de) 1996-03-09 1997-09-11 Urich Manfred Mechanisch-elektrisches Kombinationsthermometer
SE0301927D0 (sv) * 2003-06-30 2003-06-30 Infineon Technologies Ag Bi-polar RNP chopper
JP4658874B2 (ja) * 2006-07-19 2011-03-23 ローム株式会社 電流検出回路ならびにそれを用いた充電制御回路、充電回路および電子機器
US7960997B2 (en) 2007-08-08 2011-06-14 Advanced Analogic Technologies, Inc. Cascode current sensor for discrete power semiconductor devices
EP2128633B1 (en) * 2008-05-29 2012-05-02 Austriamicrosystems AG Current-sense amplifier arrangement and method for measuring a voltage signal
DE102009037649B4 (de) 2009-08-14 2017-11-23 Texas Instruments Deutschland Gmbh Elektronische Vorrichtung und Verfahren zur Induktivitätsstrommessung
US9232574B2 (en) * 2012-07-06 2016-01-05 Lutron Electronics Co., Inc. Forward converter having a primary-side current sense circuit
US10698430B2 (en) * 2012-12-19 2020-06-30 Intel Corporation Method and apparatus of current balancing for multiple phase power converter
US20140292298A1 (en) 2013-04-01 2014-10-02 Lsi Corporation Operational Amplifier-Based Current-Sensing Circuit for DC-DC Voltage Converters and The Like
US9791480B2 (en) * 2013-05-21 2017-10-17 Analog Devices Global Current sensing of switching power regulators
CN104765397B (zh) * 2014-01-02 2017-11-24 意法半导体研发(深圳)有限公司 用于内部电源的具有改善的负载瞬态性能的ldo调节器
US9494957B2 (en) 2014-09-10 2016-11-15 Qualcomm Incorporated Distributed voltage network circuits employing voltage averaging, and related systems and methods
US9671438B2 (en) * 2014-11-05 2017-06-06 Qualcomm Incorporated High-current sensing scheme using drain-source voltage
CN104506042B (zh) * 2014-12-23 2017-06-06 刘孝涛 一种高可靠性恒流车载dcdc变换器及控制方法
DE102015204519B4 (de) 2015-03-12 2019-01-03 Dialog Semiconductor (UK) Ltd Genaue Stromerfassungsschaltung und Verfahren zur genauen Stromerfassung
DE102015221101B4 (de) 2015-10-28 2022-12-08 Dialog Semiconductor (Uk) Limited Batterieladeregler, Ladegerät zum Laden einer Batterie, tragbare elektronische Vorrichtung mit Ladegerät und Verfahren für einen Betrieb eines Ladegeräts
CN206962700U (zh) * 2017-04-24 2018-02-02 深圳市华芯邦科技有限公司 无需外部采样电阻的Buck转换器负载电流检测电路
US10958167B2 (en) * 2018-08-08 2021-03-23 Qualcomm Incorporated Current sensing in an on-die direct current-direct current (DC-DC) converter for measuring delivered power

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW531647B (en) * 2000-10-13 2003-05-11 Primarion Inc System and method for current sensing
US20060125568A1 (en) * 2004-12-10 2006-06-15 Felder Matthew D Current threshold circuit
TW200941907A (en) * 2007-12-06 2009-10-01 Intersil Inc System and method for improving inductor current sensing accuracy of a DC/DC voltage regulator
US20120306541A1 (en) * 2011-05-31 2012-12-06 System General Corporation High-side signal sensing circuit
TW201301942A (zh) * 2011-05-31 2013-01-01 System General Corp 高側訊號感測電路
CN107450014A (zh) * 2016-05-13 2017-12-08 电力集成公司 用于半导体晶体管器件的集成线性电流感测电路系统

Also Published As

Publication number Publication date
CN112534278B (zh) 2024-05-07
US11637494B2 (en) 2023-04-25
EP3833989B1 (en) 2023-11-29
US10958167B2 (en) 2021-03-23
TW202026647A (zh) 2020-07-16
US20210203224A1 (en) 2021-07-01
WO2020033100A1 (en) 2020-02-13
EP3833989C0 (en) 2023-11-29
US20200052586A1 (en) 2020-02-13
EP3833989A1 (en) 2021-06-16
CN112534278A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
TWI776075B (zh) 在用於量測經傳送電力之晶粒上直流至直流轉換器中之電流感測
TWI763671B (zh) 用於調整供應電壓以減少供應電壓降並最小化功率消耗之適應性電壓調變電路、用於適應性地調變供應電壓之方法及基於處理器之系統
USRE49763E1 (en) Feedback control for hybrid regulator including a buck converter and a switched capacitor converter
US9998125B2 (en) Clock calibration using asynchronous digital sampling
TWI427907B (zh) And the current mode switching regulator
TWI362818B (en) Multi-phase dc-dc controller and controlling method thereof
JP2009290857A (ja) 半導体装置
CN115211012A (zh) 用于并联电力转换器的启动检测
US9531269B2 (en) Semiconductor device
US9568376B2 (en) Temperature detecting circuit and method thereof
US11005370B2 (en) Dynamic phase change mechanism in multi-phase converters
US10348200B2 (en) Digital current sensor for on-die switching voltage regulator
WO2020068226A1 (en) Self-tuning zero current detection circuit
US20220029538A1 (en) Optimizing the Control of a Hysteretic Power Converter at Low Duty Cycles
CN110998337B (zh) 使用分布式电压平均化电路感测分布式负载电路的总电流
US20230299678A1 (en) Voltage regulator circuit and method
EP3834284A1 (en) Apparatus and method for assisting envelope tracking with transient response in supply voltage for power amplifier
US9300257B1 (en) High gain, high slew rate amplifier
US11082050B2 (en) Clock distribution circuit using adjustable phase control and voltage converter including the same
US20170353160A1 (en) Multiphase power supply having single comparator
EP4203311A1 (en) Feedback oscillator with multiple switched capacitors
WO2023070584A1 (zh) 一种功率变换器、电源适配器、电子设备和功率变换方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent