TWI756525B - 鋰二次電池及內建電池的卡片 - Google Patents

鋰二次電池及內建電池的卡片 Download PDF

Info

Publication number
TWI756525B
TWI756525B TW108108804A TW108108804A TWI756525B TW I756525 B TWI756525 B TW I756525B TW 108108804 A TW108108804 A TW 108108804A TW 108108804 A TW108108804 A TW 108108804A TW I756525 B TWI756525 B TW I756525B
Authority
TW
Taiwan
Prior art keywords
secondary battery
lithium secondary
plate
positive electrode
lithium
Prior art date
Application number
TW108108804A
Other languages
English (en)
Other versions
TW201943126A (zh
Inventor
由良幸信
日比野真彥
藤田雄樹
Original Assignee
日商日本碍子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本碍子股份有限公司 filed Critical 日商日本碍子股份有限公司
Publication of TW201943126A publication Critical patent/TW201943126A/zh
Application granted granted Critical
Publication of TWI756525B publication Critical patent/TWI756525B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0702Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including a battery
    • G06K19/0704Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including a battery the battery being rechargeable, e.g. solar batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Sustainable Development (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Wood Science & Technology (AREA)

Abstract

本發明提供一種卡片用薄型鋰二次電池,為高能量密度及高容量,且會展現出優異的充放電循環性能。該鋰二次電池,具備係鋰複合氧化物燒結體板的正極板、含有碳的負極層、介隔於正極板與負極層之間的隔離膜、及含浸於正極板、負極層、及隔離膜的電解液;正極板的厚度為70~120μm,負極層的厚度為90~170μm,鋰二次電池係各邊的長度為20~55mm之矩形平板狀,鋰二次電池的厚度為350~500μm,鋰二次電池的能量密度為200~300mWh/cm3

Description

鋰二次電池及內建電池的卡片
本發明關於一種鋰二次電池及內建電池的卡片。
近年,內建電池的智慧卡片逐漸實用化。內建有一次電池之智慧卡片的示例,可列舉附設一次性密碼顯示功能的信用卡。內建有二次電池之智慧卡片的示例,可列舉具備無線通信IC、指紋分析用ASIC及指紋感測器的附設指紋認證、無線通信功能的卡片。對於智慧卡片用電池一般要求厚度未達0.45mm、為高容量且低電阻、具有耐彎曲性、能耐受處理溫度等特性。
有人提出以該用途為取向的二次電池或搭載二次電池的卡片。例如,專利文獻1(日本特開2017-79192號公報)揭示一種二次電池,係內建於卡片等板狀構件,即便在板狀構件發生彎曲變形的情況下仍具有充分的強度。該二次電池具備:含有正極及負極之電極體、外周側經熔接而呈包覆電極體之狀態的片狀層合薄膜外裝體、以及一端側與該電極體連接且另一端側從層合薄膜外裝體向外延伸的正極連接端子及負極連接端子。該二次電池中,採用將含有正極活性物質、導電助劑、黏結劑等的正極合劑予以塗佈並使其乾燥而製得之粉末分散型的正極(即所謂的塗覆電極)。另一方面,專利文獻2(國際公開第2016/092888號) 以智慧卡片等之用途為取向,揭示一種在可彎折的基板上具備有多個全固體電池的可彎折的電池模組,係使用(003)面配向於從正極層朝向負極層之方向的鋰複合氧化物燒結體作為正極層。
然而,一般而言,粉末分散型之正極含有相對較大量(例如約10重量%)的無助於容量的成分(黏結劑、導電助劑),故作為正極活性物質之鋰複合氧化物的填充密度變低。因此,粉末分散型之正極在容量、充放電效率方面仍有很大的改善餘地。於是,有人嘗試藉由以鋰複合氧化物燒結體板構成正極或正極活性物質層,以改善容量、充放電效率。於此情況下,正極或正極活性物質層中不含有黏結劑、導電助劑,故鋰複合氧化物之填充密度變高,從而可期待獲得高容量、良好的充放電效率。例如,專利文獻3(日本專利第5587052號公報)揭示一種鋰二次電池之正極,具備正極集電體、及藉由導電性接合層而與正極集電體接合的正極活性物質層。該正極活性物質層係由厚度為30μm以上,空隙率為3~30%,開放氣孔比率為70%以上的鋰複合氧化物燒結體板構成。又,專利文獻4(國際公開第2017/146088號)揭示使用配向燒結體板作為具備固體電解質的鋰二次電池之正極,該配向燒結體板包含由鈷酸鋰(LiCoO2 )等鋰複合氧化物構成的多個一次粒子,且多個一次粒子相對於正極板之板面以超過0°且在30°以下之平均配向角度進行配向。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2017-79192號公報 [專利文獻2]國際公開第2016/092888號 [專利文獻3]日本專利第5587052號公報 [專利文獻4]國際公開第2017/146088號
但是,如專利文獻1揭示的習知的卡片用鋰二次電池並不具有足以驅動各種IC的充分的能量密度。又,如專利文獻2揭示的二次電池雖具有充分的能量密度,但由於係為不含電解液的全固體電池,故瞬間流通大電流時容易發生正極劣化。特別是對於會頻繁地重複進行充放電的卡片用二次電池,不僅期望高的能量密度及容量,而且亦期望即便進行非常多次的充放電也不容易發生容量降低的優異的充放電循環性能。
本案發明人等此番獲得如下見解:藉由在具備正極燒結體板的卡片用薄型鋰二次電池中,使正極板的厚度、負極層的厚度、鋰二次電池之尺寸及厚度為預定之數值範圍內,可提供為高能量密度及高容量,且會展現出優異的充放電循環性能的鋰二次電池。
是以,本發明之目的係提供為高能量密度及高容量,且會展現出優異的充放電循環性能的卡片用薄型鋰二次電池。
根據本發明之一態樣,提供一種鋰二次電池,具備: 正極板,係鋰複合氧化物燒結體板, 負極層,含有碳, 隔離膜,介隔於該正極板與該負極層之間,及 電解液,含浸於該正極板、該負極層、及該隔離膜; 該正極板的厚度為70~120μm,該負極層的厚度為90~170μm,該鋰二次電池係各邊的長度為20~55mm之矩形平板狀,該鋰二次電池的厚度為350~500μm,該鋰二次電池的能量密度為200~300mWh/cm3
根據本發明之另一態樣,提供一種內建電池的卡片,具備樹脂基材、及埋設於該樹脂基材內的前述鋰二次電池。
鋰二次電池 圖1中示意性地顯示本發明之鋰二次電池之一例。圖1所示之鋰二次電池10具備正極板16、負極層20、隔離膜18、及電解液24。正極板16為鋰複合氧化物燒結體板。負極層20含有碳。隔離膜18介隔在正極板16與負極層20之間。電解液24含浸於正極板16、負極層20、及隔離膜18。正極板16的厚度為70~120μm,另一方面,負極層20的厚度為90~170μm。而且,鋰二次電池10係各邊的長度為20~55mm之矩形平板狀。又,鋰二次電池10的厚度為350~500μm。此外,鋰二次電池10的能量密度為200~300mWh/cm3 。如此般,藉由在具備正極燒結體板的卡片用薄型鋰二次電池中,使正極板16的厚度、負極層20的厚度、鋰二次電池10的尺寸及厚度為預定的數值範圍內,可提供如上述為高能量密度及高容量,且會展現出優異的充放電循環性能的鋰二次電池。
亦即,如專利文獻1揭示的習知的卡片用鋰二次電池並不具有足以驅動各種IC的充分的能量密度。又,如專利文獻2揭示的二次電池雖具有充分的能量密度,但由於係為不含電解液的全固體電池,故瞬間流通大電流時容易發生正極劣化。特別是對於會高度頻繁地重複進行充放電的卡片用二次電池,不僅期望高的能量密度及容量,而且亦期望即便進行非常多次的充放電也不容易發生容量降低的優異的充放電循環性能。關於此點,根據本發明之鋰二次電池,可充分地滿足所述要求。是以,本發明之鋰二次電池10宜為可內建於卡片的薄型二次電池,更佳為用以埋設於樹脂基材並製成卡片的薄型二次電池。亦即,根據本發明之另一較佳態樣,可提供一種內建電池的卡片,具備樹脂基材、及埋設於該樹脂基材的鋰二次電池。就該內建電池的卡片而言,典型係具備1對樹脂薄膜、及該1對樹脂薄膜所夾持的鋰二次電池,宜藉由黏接劑使樹脂薄膜彼此貼合,或藉由加熱壓製使樹脂薄膜彼此熱熔接。
如上述,鋰二次電池10為高能量密度之小型且薄型鋰二次電池。具體而言,鋰二次電池10的能量密度為200~300mWh/cm3 ,宜為210~300mWh/cm3 ,更佳為225~295mWh/cm3 ,又更佳為240~280mWh/cm3 。又,鋰二次電池10的厚度為350~500μm,宜為380~450μm,更佳為400~430μm。再者,鋰二次電池10係各邊的長度為20~55mm之矩形平板狀,若為如此範圍內的厚度及尺寸,則對於予以內建於智慧卡片等薄型裝置係極有利。
正極板16為鋰複合氧化物燒結體板。正極板16為燒結體板意指正極板16不含有黏結劑、導電助劑。這是因為即便生胚片(green sheet)含有黏結劑,黏結劑也會在煅燒時消失或燒掉。而且,藉由正極板16不含有黏結劑,有可避免電解液24所致之正極劣化的優點。另外,構成燒結體板的鋰複合氧化物為鈷酸鋰(典型為LiCoO2 (以下有時簡稱為LCO))的話,則特別理想。已知有各種鋰複合氧化物燒結體板或LCO燒結體板,例如可使用專利文獻3(日本專利第5587052號公報)、專利文獻4(國際公開第2017/146088號)所揭示者。
根據本發明的較佳態樣,正極板16,亦即鋰複合氧化物燒結體板,係為含有由鋰複合氧化物構成的多個一次粒子且多個一次粒子相對於正極板之板面以超過0°且在30°以下之平均配向角度進行配向的配向正極板。圖3顯示配向正極板16之與板面垂直之剖面的SEM圖像之一例,另一方面,圖4顯示配向正極板16之與板面垂直之剖面的電子背向散射繞射(EBSD:Electron Backscatter Diffraction)圖像。又,圖5顯示以面積基準表示圖4之EBSD圖像中的一次粒子11之配向角度之分布的直方圖。圖4所示之EBSD圖像中,可觀測到結晶方位的不連續性。圖4中以顏色的深淺來表示各一次粒子11的配向角度,顏色越深則表示配向角度越小。配向角度係指各一次粒子11的(003)面相對於板面方向所成的傾斜角度。另外,圖3及4中,在配向正極板16的內部顯示黑色的位置係氣孔。
配向正極板16係由彼此連接的多個一次粒子11構成的配向燒結體。各一次粒子11主要為板狀,但也可含有形成為長方體狀、立方體狀及球狀等者。各一次粒子11之剖面形狀並不特別限制,可為矩形、矩形以外的多邊形、圓形、橢圓形、或它們以外的複雜形狀。
各一次粒子11係由鋰複合氧化物構成。鋰複合氧化物係以Lix MO2 (0.05>x>1.10,M為至少1種的過渡金屬,典型而言M包含Co、Ni及Mn中的1種以上)表示之氧化物。鋰複合氧化物具有層狀岩鹽結構。層狀岩鹽結構係指鋰層與鋰以外的過渡金屬層隔著氧層而交替地疊層而成的結晶結構,亦即過渡金屬離子層與鋰層介隔氧化物離子而交替地疊層而成的結晶結構(典型為α-NaFeO2 型結構,亦即過渡金屬與鋰沿著立方晶岩鹽型結構的[111]軸方向規則排列而成的結構)。鋰複合氧化物之示例可列舉Lix CoO2 (鈷酸鋰)、Lix NiO2 (鎳酸鋰)、Lix MnO2 (錳酸鋰)、Lix NiMnO2 (鎳錳酸鋰)、Lix NiCoO2 (鎳鈷酸鋰)、Lix CoNiMnO2 (鈷鎳錳酸鋰)、Lix CoMnO2 (鈷錳酸鋰)等,特佳為Lix CoO2 (鈷酸鋰,典型為LiCoO2 )。鋰複合氧化物也可含有選自於Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及W中的1種以上的元素。
如圖4及5所示,各一次粒子11的配向角度之平均值,亦即平均配向角度為超過0°且在30°以下。藉此,可帶來如下的各種優點。第一,各一次粒子11係相對於厚度方向處於傾斜方向的狀態,故可改善各一次粒子彼此的密接性。結果,可改善某一次粒子11與鄰接於該一次粒子11的長邊方向兩側的其它一次粒子11之間的鋰離子傳導性,故可改善速率特性(rate characteristics)。第二,可更加改善速率特性。其原因為:如上所述,當鋰離子進出時,就配向正極板16而言,在厚度方向的膨張收縮會比在板面方向的膨張收縮更具優勢,故配向正極板16的膨張收縮變得平順,與此相伴,鋰離子的進出亦變得平順。
一次粒子11的平均配向角度可利用以下方法獲得。首先,在如圖4所示之對於95μm×125μm之矩形區域以1000倍之倍率進行觀察而得之EBSD圖像中,畫出將配向正極板16沿厚度方向分成四等分的3條橫線、及將配向正極板16沿板面方向分成四等分的3條縱線。然後,對和3條橫線及3條縱線當中的至少1條線交叉的所有一次粒子11的配向角度進行算術平均,藉此得到一次粒子11的平均配向角度。考量進一步改善速率特性之觀點,一次粒子11的平均配向角度宜為30°以下,更佳為25°以下。考量進一步改善速率特性之觀點,一次粒子11的平均配向角度宜為2°以上,更佳為5°以上。
如圖5所示,各一次粒子11的配向角度可在0°至90°間廣泛分布,但其大部分宜分布於超過0°且在30°以下的區域。亦即,利用EBSD分析構成配向正極板16的配向燒結體的剖面時,經分析的剖面所含的一次粒子11當中相對於配向正極板16之板面的配向角度為超過0°且在30°以下的一次粒子11(以下稱為低角度一次粒子)的合計面積,相對於剖面所含的一次粒子11(具體而言係用於計算平均配向角度的30個一次粒子11)的總面積宜為70%以上,更佳為80%以上。藉此,可增加相互密接性高的一次粒子11之比例,從而可更加改善速率特性。又,低角度一次粒子當中配向角度為20°以下者的合計面積,相對於用於計算平均配向角度的30個一次粒子11的總面積為50%以上的話更佳。再者,低角度一次粒子當中配向角度為10°以下者的合計面積,相對於用於計算平均配向角度的30個一次粒子11的總面積為15%以上的話更佳。
由於各一次粒子11主要為板狀,故如圖3及4所示,各一次粒子11的剖面分別沿預定方向延伸,典型為大致矩形。亦即,利用EBSD分析配向燒結體的剖面時,經分析的剖面所含的一次粒子11當中縱橫比為4以上的一次粒子11的合計面積,相對於剖面所含的一次粒子11(具體而言係用於計算平均配向角度的30個一次粒子11)的總面積宜為70%以上,更佳為80%以上。具體而言係在如圖4所示的EBSD圖像中,藉此可更加改善一次粒子11彼此的相互密接性,就其結果而言,可更加改善速率特性。一次粒子11的縱橫比係一次粒子11的最大費雷特徑(Feret diameter)除以最小費雷特徑而得之值。最大費雷特徑係在進行剖面觀察時的EBSD圖像上,以平行的2條直線夾住一次粒子11時的該直線間的最大距離。最小費雷特徑係在EBSD圖像上以平行的2條直線夾住一次粒子11時的該直線間的最小距離。
構成配向燒結體的多個一次粒子的平均粒徑宜為5μm以上。具體而言,用於計算平均配向角度的30個一次粒子11的平均粒徑宜為5μm以上,更佳為7μm以上,又更佳為12μm以上。藉此,在鋰離子傳導方向上的一次粒子11彼此的晶界(grain boundary)數變少,鋰離子傳導性整體而言得到改善,故可更加改善速率特性。一次粒子11的平均粒徑係對各一次粒子11的等效圓直徑進行算術平均而得之值。等效圓直徑係指和EBSD圖像中的各一次粒子11有相同面積的圓的直徑。
正極板16宜含有氣孔。藉由燒結體含有氣孔,特別是含有開放氣孔,在作為正極板而納入至電池時,可使電解液滲透到燒結體的內部,結果可改善鋰離子傳導性。其理由為:燒結體內之鋰離子的傳導,有經由燒結體的構成粒子的傳導、及經由氣孔內的電解液的傳導2種,而經由氣孔內的電解液的傳導係壓倒性地較快。
正極板16,亦即鋰複合氧化物燒結體板,其氣孔率宜為3~40%,更佳為5~38%,又更佳為10~36%,特佳為20~35%。可期待氣孔所帶來的應力釋放效果、及高容量化,同時可更加改善一次粒子11彼此的相互密接性,故可更加改善速率特性。燒結體的氣孔率,係藉由對正極板的剖面利用CP(剖面拋光機)研磨進行研磨,然後以1000倍率進行SEM觀察,將獲得之SEM圖像進行二值化而算出。形成於配向燒結體之內部的各氣孔之平均等效圓直徑不特別限制,宜為8μm以下。各氣孔之平均等效圓直徑越小,則越能進一步改善一次粒子11彼此之相互密接性,結果可使速率特性進一步改善。氣孔之平均等效圓直徑係將EBSD圖像中的10個氣孔之等效圓直徑進行算術平均而得之值。等效圓直徑係指和EBSD圖像中的各氣孔有相同面積的圓的直徑。形成於配向燒結體之內部的各氣孔宜為與正極板16之外部連通的開放氣孔。
正極板16,亦即鋰複合氧化物燒結體板的平均氣孔徑宜為15μm以下,更佳為12μm以下,又更佳為10μm以下。會抑制於大的氣孔的局部產生應力集中,燒結體內的應力容易均勻地釋放。平均氣孔徑之下限值不特別限定,但考量氣孔所帶來的應力釋放效果之觀點,平均氣孔徑宜為0.1μm以上,更佳為0.3μm以上。
正極板16的厚度為70~120μm,宜為80~100μm,更佳為80~95μm,特佳為85~95μm。若為如此的範圍內,會提高每單位面積的活性物質容量並改善鋰二次電池10的能量密度,而且可抑制重複充放電所伴隨的電池特性劣化(特別是電阻值上升)。
負極層20含有碳作為負極活性物質。碳之示例可列舉石墨(graphite)、熱分解碳、焦炭、樹脂煅燒體、中間相小球體、中間相系瀝青等,宜為石墨。石墨可為天然石墨及人造石墨中之任一者。負極層20宜更含有黏結劑。黏結劑之示例可列舉苯乙烯丁二烯橡膠(SBR)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)等,宜為苯乙烯丁二烯橡膠(SBR)或聚偏二氟乙烯(PVDF)。尤其,在使用耐熱性優異的γ-丁內酯(GBL)作為電解液24的情況下,考量不易溶於GBL且可避免黏結劑功能因加熱而劣化之觀點,使用苯乙烯丁二烯橡膠(SBR)作為黏結劑係更理想。
負極層20的厚度為90~170μm,宜為95~160μm,更佳為100~150μm。若為如此的範圍內,可提高每單位面積的活性物質容量並改善鋰二次電池10的能量密度。又,負極層20的密度宜為1.15~1.50g/cm3 ,更佳為1.20~1.48g/cm3 ,又更佳為1.25~1.45g/cm3 。若為如此的範圍內,可提高每單位面積的活性物質容量並改善鋰二次電池10的能量密度。
隔離膜18宜為聚烯烴、聚醯亞胺、聚酯(例如聚對苯二甲酸乙二酯(PET))或纖維素製的隔離膜。聚烯烴之示例可列舉聚丙烯(PP)、聚乙烯(PE)、及它們的組合等。考量價格便宜的觀點,宜為聚烯烴或纖維素製的隔離膜。又,隔離膜18之表面也可被覆有氧化鋁(Al2 O3 )、氧化鎂(MgO)、二氧化矽(SiO2 )等陶瓷。另一方面,考量耐熱性優異的觀點,宜為聚醯亞胺或纖維素製的隔離膜。聚醯亞胺、聚酯(例如聚對苯二甲酸乙二酯(PET))或纖維素製的隔離膜,與廣泛使用的耐熱性差的聚烯烴製隔離膜不同,不僅其本身的耐熱性優異,而且對於係為耐熱性優異之電解液成分之γ-丁內酯(GBL)的浸潤性亦優異。是以,使用含有GBL的電解液時,可使電解液充分地滲透至隔離膜(不會出現排斥)。考量耐熱性的觀點,特佳的隔離膜為聚醯亞胺製隔離膜。聚醯亞胺製隔離膜已有市售,由於具有極複雜的微細結構,故有能更有效地阻止或延遲過充電時析出的鋰枝晶的伸展及其所造成的短路之優點。
電解液24不特別限定,使用將鋰鹽(例如LiPF6 )溶解於有機溶劑(例如碳酸伸乙酯(EC)及碳酸甲基乙酯(MEC)之混合溶劑、碳酸伸乙酯(EC)及碳酸二乙酯(DEC)之混合溶劑、或碳酸伸乙酯(EC)及碳酸乙基甲酯(EMC)之混合溶劑)而成之液體等鋰電池用的市售電解液即可。
製成耐熱性優異的鋰二次電池時,就電解液24而言,宜在非水溶劑中含有四氟硼酸鋰(LiBF4 )。此時,非水溶劑可為由γ-丁內酯(GBL)構成的單一溶劑,也可為由γ-丁內酯(GBL)及碳酸伸乙酯(EC)構成的混合溶劑。非水溶劑含有γ-丁內酯(GBL)的話,沸點會上升,會帶來耐熱性的大幅改善。考量該觀點,非水溶劑中的EC:GBL之體積比宜為0:1~1:1(GBL比率50~100體積%),更佳為0:1~1:1.5(GBL比率60~100體積%),又更佳為0:1~1:2(GBL比率66.6~100體積%),特佳為0:1~1:3(GBL比率75~100體積%)。溶解於非水溶劑中的四氟硼酸鋰(LiBF4 )為分解溫度高的電解質,此亦會帶來耐熱性的大幅改善。電解液24中的LiBF4 濃度宜為0.5~2mol/L,更佳為0.6~1.9mol/L,又更佳為0.7~1.7mol/L,特佳為0.8~1.5mol/L。
電解液24宜更含有碳酸伸乙烯酯(VC)及/或氟代碳酸伸乙酯(FEC)及/或碳酸乙烯基伸乙酯(VEC)作為添加劑。VC及FEC均為耐熱性優異。是以,藉由電解液24含有該添加劑,可使耐熱性優異的SEI膜形成於負極層20表面。
較佳為鋰二次電池10更具備1對外裝薄膜26,外裝薄膜26的外周緣彼此密封而形成內部空間,於該內部空間容納電池要素12及電解液24。亦即,如圖1所示,鋰二次電池10之內容物即電池要素12及電解液24,係以1對外裝薄膜26予以包裝且密封,其結果,鋰二次電池10成為所謂的薄膜外裝電池的形態。在此,電池要素12係定義為包含正極板16、隔離膜18及負極層20者,典型係更包含正極集電體(未顯示在圖中)及負極集電體(未顯示在圖中)。正極集電體及負極集電體不特別限定,宜為銅箔、鋁箔等金屬箔。正極集電體宜介隔在正極板16與外裝薄膜26之間,負極集電體宜介隔在負極層20與外裝薄膜26之間。又,正極端子宜以從正極集電體向外延伸的形態設置於正極集電體,負極端子宜以從負極集電體向外延伸的形態設置於負極集電體。宜藉由使外裝薄膜26彼此熱熔接以將鋰二次電池10之外緣密封。利用熱熔接所為之密封,宜使用通常用在熱封用途的熱棒(也稱為加熱棒)來實施。典型係鋰二次電池10為四邊形的形狀,而1對外裝薄膜26的外周緣宜外周4邊都被密封較理想。
外裝薄膜26使用市售的外裝薄膜即可。外裝薄膜26的厚度宜為每1片50~80μm,更佳為55~70μm,又更佳為55~65μm。理想的外裝薄膜26係包含樹脂薄膜與金屬箔的層合薄膜,更佳為包含樹脂薄膜與鋁箔的鋁層合薄膜。就層合薄膜而言,宜在鋁箔等金屬箔的兩面設置有樹脂薄膜。此時,金屬箔之其中一側的樹脂薄膜(以下稱為表面保護膜)宜由尼龍、聚醯胺、聚對苯二甲酸乙二酯、聚醯亞胺、聚四氟乙烯、聚氯三氟乙烯等補強性優異的材料構成,金屬箔之另一側的樹脂薄膜宜由聚丙烯等熱封材料構成。
典型而言,負極層20具有比正極板16的尺寸更大的尺寸,另一方面,隔離膜18具有比正極板16及負極層20的尺寸更大的尺寸。而且,隔離膜18之外周部分至少和正極板16側之外裝薄膜26的外周緣或其附近的周圍區域密接,而將容納正極板16的區域與容納負極層20的區域予以隔離。又,隔離膜18之外周部分也可和負極層20側之外裝薄膜26的外周緣或其附近的周圍區域密接。
製造方法 本發明之鋰複合氧化物燒結體板可利用任意的方法製造,較佳係經由(a)含有鋰複合氧化物的生胚片之製作、(b)視期望而實施的含過量鋰源的生胚片之製作、及(c)生胚片之疊層及煅燒來製造。
(a)含有鋰複合氧化物的生胚片之製作 首先,準備由鋰複合氧化物構成的原料粉末。該粉末宜包含係為LiMO2 之組成(M同前述)的已合成好的板狀粒子(例如LiCoO2 板狀粒子)。原料粉末之體積基準D50粒徑宜為0.3~30μm。例如,LiCoO2 板狀粒子之製作方法可按如下之方式實施。首先,將Co3 O4 原料粉末與Li2 CO3 原料粉末予以混合並進行煅燒(500~900℃,1~20小時),藉此合成LiCoO2 粉末。利用罐磨機(pot mill)將得到的LiCoO2 粉末粉碎成體積基準D50粒徑0.2μm~10μm,藉此獲得能與板面平行地傳導鋰離子的板狀的LiCoO2 粒子。如此的LiCoO2 粒子也可藉由使使用了LiCoO2 粉末漿液的生胚片進行晶粒成長後再予以碎解之方法、助熔劑法、水熱合成、使用了熔融液的單晶生長、溶膠凝膠法等合成板狀結晶的方法獲得。獲得之LiCoO2 粒子係為容易沿解理面解理的狀態。可藉由碎解使LiCoO2 粒子解理,以製作LiCoO2 板狀粒子。
可單獨使用上述板狀粒子作為原料粉末,也可使用上述板狀粉末與其它原料粉末(例如Co3 O4 粒子)的混合粉末作為原料粉末。就後者的情況而言,使板狀粉末作為用以賦予配向性的模板粒子(template particle)並發揮功能,且使其它原料粉末(例如Co3 O4 粒子)作為可沿著模板粒子來成長的基質粒子並發揮功能的話係較理想。此時,宜以將模板粒子與基質粒子按100:0~3:97予以混合而得之粉末作為原料粉末。使用Co3 O4 原料粉末作為基質粒子時,Co3 O4 原料粉末之體積基準D50粒徑不特別限制,例如可為0.1~1.0μm,但宜小於LiCoO2 模板粒子之體積基準D50粒徑。此基質粒子也可藉由將Co(OH)2 原料於500℃~800℃進行1~10小時熱處理來獲得。又,基質粒子除了可使用Co3 O4 以外,也可使用Co(OH)2 粒子,也可使用LiCoO2 粒子。
當原料粉末由100%之LiCoO2 模板粒子構成時,或使用LiCoO2 粒子作為基質粒子時,可藉由煅燒以獲得大尺寸(例如90mm×90mm平方)且平坦的LiCoO2 燒結體板。其機制尚不確定,但據推測在煅燒過程中並未進行朝向LiCoO2 的合成,故煅燒時不易發生體積變化或不易發生局部不均。
將原料粉末、與分散介質及各種添加劑(黏結劑、塑化劑、分散劑等)混合而形成漿液。為了在後述之煅燒步驟中促進晶粒成長或補償揮發成分,漿液中也可過量約0.5~30mol%地添加LiMO2 以外的鋰化合物(例如碳酸鋰)。漿液中不添加造孔材較為理想。漿液宜在減壓下予以攪拌並使其脫泡,同時將其黏度調整成4000~10000cP。將得到的漿液成形為片狀,而獲得含有鋰複合氧化物的生胚片。以此方式獲得之生胚片為獨立的片狀成形體。獨立的片材(有時也稱為「自立膜」)係指不依靠其它支持體而能夠單獨使用的片材(也包括縱橫比5以上之薄片)。亦即,獨立的片材不包括固著於其它支持體(基板等)並和該支持體合為一體(變得無法分離或難以分離)者。就片材成形而言,宜使用能對原料粉末中的板狀粒子(例如模板粒子)施加剪切力的成形方法來實施。藉由此方法,可使一次粒子的平均傾斜角相對於板面為超過0°且在30°以下。能對板狀粒子施加剪切力的成形方法,宜為刮刀法較理想。就含有鋰複合氧化物的生胚片的厚度而言,以煅燒後會達到如上述期望的厚度的方式予以適當設定即可。
(b)含有過量鋰源的生胚片之製作(任意步驟) 除了製作上述含有鋰複合氧化物的生胚片以外,因應期望另製作含有過量鋰源的生胚片。此過量鋰源宜為如Li以外的成分會因煅燒而消失這樣的LiMO2 以外的鋰化合物。如此的鋰化合物(過量鋰源)的較佳示例可列舉碳酸鋰。過量鋰源宜為粉末狀,過量鋰源粉末之體積基準D50粒徑宜為0.1~20μm,更佳為0.3~10μm。而且,將鋰源粉末與分散介質及各種添加劑(黏結劑、塑化劑、分散劑等)混合而形成漿液。宜將得到的漿液在減壓下進行攪拌並使其脫泡,同時將其黏度調整成1000~20000cP。將得到的漿液成形為片狀而獲得含有過量鋰源的生胚片。以此方式獲得之生胚片亦為獨立的片狀成形體。能以周知的各種方法來實施片材成形,利用刮刀法來實施係較理想。含有過量鋰源的生胚片的厚度,宜設定為能使含有過量鋰源的生胚片中的Li含量相對於含有鋰複合氧化物的生胚片中的Co含量之莫耳比(Li/Co比)成為較佳0.1以上,更佳0.1~1.1時所需的厚度。
(c)生胚片之疊層及煅燒 於下部承載板(setter)依序載置含有鋰複合氧化物的生胚片(例如LiCoO2 生胚片)、及因應期望而製作的含有過量鋰源的生胚片(例如Li2 CO3 生胚片),再於其上載置上部承載板。上部承載板及下部承載板為陶瓷製,宜為氧化鋯或氧化鎂製。承載板為氧化鎂製的話,則會有氣孔變小之傾向。上部承載板可為多孔質結構、蜂巢結構者,也可為緻密質結構。上部承載板為緻密質的話,就燒結體板而言會有氣孔變小且氣孔的數目增多之傾向。視需要,含有過量鋰源的生胚片宜裁切成使含有過量鋰源的生胚片中的Li含量相對於含有鋰複合氧化物的生胚片中的Co含量之莫耳比(Li/Co比)成為較佳0.1以上,更佳0.1~1.1時所需的尺寸來使用。
也可在下部承載板上已載置有含有鋰複合氧化物的生胚片(例如LiCoO2 生胚片)的階段,將該生胚片因應期望予以脫脂後,於600~850℃進行1~10小時之預燒。此時,在得到的預燒板上依序載置含有過量鋰源的生胚片(例如Li2 CO3 生胚片)及上部承載板即可。
然後,在以承載板夾持上述生胚片及/或預燒板的狀態下,因應期望予以脫脂後,於中溫範圍之煅燒溫度(例如700~1000℃)進行熱處理(煅燒),藉此獲得鋰複合氧化物燒結體板。此煅燒步驟可分成2次來實施,也可於1次實施。分成2次進行煅燒時,第1次的煅燒溫度宜低於第2次的煅燒溫度。以此方式獲得之燒結體板亦為獨立的片狀。 [實施例]
藉由以下的例子更具體地說明本發明。
例1 (1)正極板之製作 (1a)LiCoO2 生胚片之製作 首先,以如表1所示之方式來製作LiCoO2 原料粉末並令其為粉末A。將得到的LiCoO2 粉末(亦即粉末A)100重量份、分散介質(甲苯:異丙醇=1:1)100重量份、黏結劑(聚乙烯醇縮丁醛:型號BM-2,積水化學工業(股)公司製)10重量份、塑化劑(DOP:Di(2-ethylhexyl)phthalate[鄰苯二甲酸二(2-乙基己基)酯],黑金化成(股)公司製)4重量份、及分散劑(製品名RHEODOL SP-O30,花王(股)公司製)2重量份予以混合。將得到的混合物在減壓下進行攪拌並使其脫泡,同時將黏度調整成4000cP,藉此製備LiCoO2 漿液。黏度係以Brookfield公司製LVT型黏度計進行測定。將以此方式製備而得之漿液利用刮刀法在PET薄膜上成形為片狀,藉此形成LiCoO2 生胚片。乾燥後之LiCoO2 生胚片的厚度為98μm。
(1b)LiCoO2 燒結體板之製作 利用裁切機將已從PET薄膜剝離的LiCoO2 生胚片裁切成50mm見方,並予以載置於作為下部承載板之氧化鎂製承載板(尺寸90mm見方,高度1mm)的中央。於LiCoO2 片材之上載置作為上部承載板之多孔質氧化鎂製承載板。在以承載板夾持上述LiCoO2 片材的狀態下,予以載置於120mm見方的氧化鋁鞘(NIKKATO(股)公司製)內。此時,不將氧化鋁鞘密閉,以留有0.5mm之間隙的方式將蓋子蓋上。將得到的疊層物以升溫速度200℃/h升溫至600℃並進行3小時脫脂,然後以200℃/h升溫至870℃並保持20小時,藉此實施煅燒。煅燒後,予以降溫至室溫,然後從氧化鋁鞘取出煅燒體。如此進行而獲得厚度90μm之LiCoO2 燒結體板作為正極板。利用雷射加工機將得到的正極板裁成10.5mm×9.5mm見方之矩形,獲得多個晶片狀的正極板16。
(2)鋰二次電池之製作 依如圖2A及2B所示之程序來製作如圖1中示意性地顯示的薄膜外裝電池之形態的鋰二次電池10。具體如以下。
準備2片鋁層合薄膜(昭和電工包裝製,厚度61μm,聚丙烯薄膜/鋁箔/尼龍薄膜之3層結構)作為外裝薄膜26。如圖2A所示,對於1片外裝薄膜26隔著正極集電體14(厚度9μm之鋁箔)疊層多個晶片狀正極板16,製成正極組裝品17。圖2A中顯示多個晶片狀的正極板16,但不限於此,也可使用未分割成晶片狀的1片正極板16來形成正極組裝品17。此時,正極集電體14藉由黏接劑而固定於外裝薄膜26。此外,正極端子15藉由熔接而以從正極集電體14向外延伸的形態固定於正極集電體14。另一方面,對於另1片外裝薄膜26隔著負極集電體22(厚度10μm之銅箔)疊層負極層20(厚度125μm之碳層,密度1.4g/cm3 ),製成負極組裝品19。此時,負極集電體22藉由黏接劑而固定於外裝薄膜26。此外,負極端子23藉由熔接而以從負極集電體22向外延伸的形態固定於負極集電體22。又,作為負極層20之碳層,為含有作為活性物質之石墨、與作為黏結劑之聚偏二氟乙烯(PVDF)之混合物的塗覆膜。
準備多孔質聚丙烯膜(Polypore公司製,厚度25μm,氣孔率55%)作為隔離膜18。如圖2A所示,將正極組裝品17、隔離膜18及負極組裝品19,以使正極板16及負極層20和隔離膜18相向的方式依序予以疊層,而得到兩面覆有外裝薄膜26且外裝薄膜26之外周部分從電池要素12之外緣突出的疊層體28。如此,構築於疊層體28內的電池要素12(正極集電體14、正極板16、隔離膜18、負極層20及負極集電體22)的厚度為0.33mm,其形狀及尺寸為2.3cm×3.2cm之四角形。
如圖2A所示,對獲得之疊層體28的3邊A實施密封。此密封係藉由使用經調整以使密封寬度成為2.0mm的壓夾治具(熱棒),對疊層體28之外周部分以200℃、1.5MPa之條件加熱壓製15秒,於外周部分使外裝薄膜26(鋁層合薄膜)彼此熱熔接來實施。將3邊A予以密封後,將疊層體28放入真空乾燥器34,除去水分並使黏接劑乾燥。
如圖2B所示,於手套箱38內,在外緣3邊A經密封的疊層體28的剩下未密封的1邊B形成1對外裝薄膜26間的間隙,於此間隙插入注入器具36並注入電解液24,在絕對壓5kPa之減壓環境下使用簡易封口機將邊B暫時密封。就電解液而言,係使用在按3:7(體積比)含有碳酸伸乙酯(EC)及碳酸甲基乙酯(MEC)的混合溶劑中,將LiPF6 以使其達到1.0mol/L之濃度的方式予以溶解,並將碳酸伸乙烯酯(VC)以使其達到2重量%之濃度的方式予以溶解而得者。對於上述邊B已暫時密封的疊層體實施初始充電,並進行7天的熟化。最後將經密封的剩下1邊B之外周部分(不含電池要素的末端部分)切除,實施脫氣。
如圖2B所示,於手套箱38內,在絕對壓5kPa之減壓環境下,對因暫時密封的切除而產生的邊B’實施密封。該密封亦藉由對疊層體28之外周部分以200℃、1.5MPa之條件加熱壓製15秒,於外周部分使外裝薄膜26(鋁層合薄膜)彼此熱熔接來實施。如此將邊B’利用1對外裝薄膜26予以密封,製成薄膜外裝電池之形態的鋰二次電池10。將鋰二次電池10從手套箱38取出,切除外裝薄膜26之外周的多餘部分,調整鋰二次電池10之形狀。如此進行,獲得電池要素12之外緣4邊係以1對外裝薄膜26加以密封並且注入有電解液24的鋰二次電池10。獲得之鋰二次電池10為尺寸38mm×28mm之長方形,厚度為0.40mm。
(3)評價 針對上述(1b)中合成的LiCoO2 燒結體板(正極板)及上述(2)中製得的電池,如以下所示實施各種的評價。
>一次粒子的平均配向角度> 將LiCoO2 燒結體板利用剖面拋光機(CP)(日本電子(股)公司製,IB-15000CP)予以研磨,針對得到的正極板剖面(與正極板之板面垂直的剖面)於1000倍之視野(125μm×125μm)進行EBSD測定,獲得EBSD圖像。該EBSD測定係使用肖特基(Schottky)電場發射型掃描式電子顯微鏡(日本電子(股)公司製,型式JSM-7800F)來實施。針對獲得之EBSD圖像中指定的全部的粒子,求出一次粒子之(003)面與正極板之板面所成的角度(亦即來自(003)的結晶方位之傾斜)作為傾斜角,將該等角度的平均值定義為一次粒子的平均配向角度。
>板厚> 將LiCoO2 燒結體板利用剖面拋光機(CP)(日本電子(股)公司製,IB-15000CP)予以研磨,對得到的正極板剖面進行SEM觀察(日本電子製,JSM6390LA)並測定正極板的厚度。另外,關於步驟(1a),前述乾燥後的LiCoO2 生胚片的厚度也是以上述同樣方式測得。
>氣孔率> 將LiCoO2 燒結體板利用剖面拋光機(CP)(日本電子(股)公司製,IB-15000CP)予以研磨,對於得到的正極板剖面於1000倍之視野(125μm×125μm)進行SEM觀察(日本電子製,JSM6390LA)。將獲得之SEM圖像進行圖像分析,將全部的氣孔的面積除以正極的面積,然後將得到的值乘以100,藉此算出氣孔率(%)。
>平均氣孔徑> 使用水銀細孔計(島津製作所製,Autopore IV9510)並利用水銀壓入法來測定LiCoO2 燒結體板的平均氣孔徑。
>初始放電容量> 於3.0V之電位範圍按以下之程序進行測定。亦即,重複進行包括以0.2C速率進行定電流充電直至電池電壓成為4.3V為止,接著進行定電壓充電直至電流值成為0.02C速率為止,然後以0.2C速率進行放電直至成為3.0V為止的充放電循環合計3次,藉此實施放電容量之測定,將它們的平均值定義為初始放電容量。
>能量密度> 將上述初始放電容量乘以平均電壓,然後除以電池體積,藉此算出能量密度。此時,使用SOC0%、20%、40%、60%、80%、100%時的電壓之平均值作為平均電壓。
>脈衝循環性能> 於4.3V-3.0V之電位範圍按以下之程序測定電池之脈衝循環性能(放電容量維持率)。亦即,實施以充電速率0.5C進行定電流充電後,以相當於放電速率0.5C之電流值進行30秒放電的充放電循環合計3000次,然後以和上述初始放電容量同樣的方式測定脈衝循環試驗後放電容量。算出上述脈衝循環試驗後放電容量相對於初始放電容量之比率,然後乘以100,藉此得到脈衝循環性能(%)作為放電容量維持率。
例2 使用以如表1所示之方式製作而得的由LiCoO2 粒子構成的粉末B來替代粉末A,除此以外,以和例1同樣方式製作正極板及電池,並實施各種評價。
例3 除了下列事項外,以和例1同樣方式製作正極板及電池,並實施各種評價;1)以使正極板的厚度成為120μm的方式將LiCoO2 生胚片增厚,及2)使負極層的厚度成為165μm。
例4 除了下列事項外,以和例1同樣方式製作正極板及電池,並實施各種評價;1)以使正極板的厚度成為70μm的方式使LiCoO2 生胚片薄化,及2)使負極層的厚度成為95μm。
例5 使用以如表1所示之方式製作而得的由LiCoO2 板狀粒子構成的粉末C來替代粉末A,除此以外,以和例1同樣方式製作正極板及電池,並實施各種評價。
例6 除了下列事項外,以和例1同樣方式製作正極板及電池,並實施各種評價;1)於載置上部承載板之前,先在LiCoO2 生胚片上載置按以下之程序製作而得之Li2 CO3 生胚片作為過量鋰源,及2)不實施於870℃20小時之煅燒,改為實施於800℃保持5小時後於900℃保持20小時之2階段煅燒。
(Li2 CO3 生胚片(過量鋰源)之製作) 將Li2 CO3 原料粉末(體積基準D50粒徑2.5μm,Honjo Chemical(股)公司製)100重量份、黏結劑(聚乙烯醇縮丁醛:型號BM-2,積水化學工業(股)公司製)5重量份、塑化劑(DOP:鄰苯二甲酸二(2-乙基己基)酯,黑金化成(股)公司製)2重量份、及分散劑(RHEODOL SP-O30,花王(股)公司製)2重量份予以混合。將得到的混合物在減壓下進行攪拌並使其脫泡,同時將黏度調整成4000cP,藉此製備Li2 CO3 漿液。黏度係以Brookfield公司製LVT型黏度計進行測定。將以此方式製備而得之Li2 CO3 漿液利用刮刀法在PET薄膜上成形為片狀,藉此形成Li2 CO3 生胚片。就乾燥後之Li2 CO3 生胚片的厚度而言,係以能使Li2 CO3 生胚片中的Li含量相對於LiCoO2 生胚片中的Co含量之莫耳比即Li/Co比成為預定之值的方式予以設定。將乾燥後的Li2 CO3 生胚片裁切成使Li2 CO3 生胚片中的Li含量相對於得到的LiCoO2 預燒板中的Co含量之莫耳比即Li/Co比成為0.4時所需的尺寸。
例7 除了下列事項外,以和例1同樣方式製作正極板及電池,並實施各種評價;1)於LiCoO2 漿液中更添加Li2 CO3 原料粉末(體積基準D50粒徑2.5μm,Honjo Chemical(股)公司製),並使LiCoO2 生胚片中的過量Li/Co比成為0.2,及2)不實施於870℃20小時之煅燒,改為實施於800℃保持5小時後於900℃保持20小時之2階段煅燒。此外,上述過量Li/Co比係來自於LiCoO2 生胚片中的Li2 CO3 之過量Li含量相對於LiCoO2 生胚片中的Co含量之莫耳比。
例8 除了下列事項外,以和例6同樣方式製作正極板及電池,並實施各種評價;1)設定Li2 CO3 生胚片之載置量以使Li/Co比成為0.6,及2)在脫脂後且在煅燒前對LiCoO2 生胚片實施於700℃保持3小時之預燒。
例9 除了下列事項外,以和例6同樣方式製作正極板及電池,並實施各種評價;1)在脫脂後且在煅燒前對LiCoO2 生胚片實施於900℃保持3小時之預燒,及2)不實施2階段煅燒,改為實施在800℃保持10小時之1階段煅燒。
例10 除了下列事項外,以和例1同樣方式製作正極板及電池,並實施各種評價;1)使負極層的厚度為130μm,及2)使負極層的密度為1.25。
例11 除了下列事項外,以和例1同樣方式製作正極板及電池,並實施各種評價;1)使負極層的厚度為120μm,及2)使負極層的密度為1.5。
例12 將各構成構件的尺寸縮小以使電池的外形尺寸成為20mm×20mm,除此以外,以和例1同樣方式製作正極板及電池,並實施各種評價。
例13 將各構成構件的尺寸放大以使電池的外形尺寸成為50mm×50mm,除此以外,以和例1同樣方式製作正極板及電池,並實施各種評價。
例14(比較) 不使用LiCoO2 燒結體板而改用市售的LiCoO2 塗覆電極(八山(股)公司製)作為正極板,除此以外,以和例1同樣方式製作正極板及電池,並實施各種評價。此外,該塗覆電極係塗佈含有正極活性物質的糊劑並使其乾燥而製得者,並不是燒結體板。
例15(比較) 除了下列事項外,以和例6同樣方式製作正極板及電池,並實施各種評價;1)使用以如表1所示之方式製作而得的Co3 O4 /Bi2 O3 混合粉末D來替代粉末A,2)設定Li2 CO3 生胚片之載置量以使Li/Co比成為1.2,3)在脫脂後且在煅燒前對LiCoO2 生胚片實施於1300℃保持5小時之預燒,4)不實施2階段煅燒,改為實施於850℃保持20小時之1階段煅燒,及5)使負極層的厚度為180μm。
製造條件及評價結果 表2顯示例1~15之製造條件,另一方面,表3顯示例1~15之評價結果。又,表1顯示表2中提及的粉末A~D之詳情。
[表1]
Figure 108108804-A0304-0001
[表2]
Figure 02_image001
[表3]
Figure 02_image003
例16 製作表4所示之態樣的正極板(氣孔率10%),除此以外,以和例1同樣方式進行電池之製作及脈衝循環性能之評價。又,依循以下的程序來評價速率性能。 >速率性能> (i)重複進行包括以0.2C速率進行定電流充電直至電池電壓成為4.3V為止,接著進行定電壓充電直至電流值成為0.05C速率為止,然後以0.2C速率進行放電直至成為3.0V為止的充放電循環合計3次,藉此實施放電容量之測定,將它們的平均值定義為0.2C放電容量。 (ii)重複進行包括以0.2C速率進行定電流充電直至電池電壓成為4.3V為止,接著進行定電壓充電直至電流值成為0.05C速率為止,然後以1.0C速率進行放電直至成為3.0V為止的充放電循環合計3次,藉此實施放電容量之測定,將它們的平均值定義為1.0C放電容量。 (iii)將1.0C放電容量除以0.2C放電容量後乘以100,將所得之值定義為速率性能(%)。
結果如表4所示。為了比較,表4中亦一併顯示關於氣孔率15%、30%及40%之正極板的例6、例1及例7相關的數據。由此可知,當使用了含有由鋰複合氧化物構成的多個一次粒子且多個一次粒子相對於正極板之板面以超過0°且在30°以下的平均配向角度進行配向的正極板16時,將正極板16的氣孔率控制在15%~40%之相對較高的氣孔率範圍的話,會比控制在較低的氣孔率範圍(約10%)更為改善電池性能(速率性能、脈衝循環性能)。 [表4]
Figure 02_image005
10‧‧‧鋰二次電池 11‧‧‧一次粒子 12‧‧‧電池要素 14‧‧‧正極集電體 15‧‧‧正極端子 16‧‧‧正極板 17‧‧‧正極組裝品 18‧‧‧隔離膜 19‧‧‧負極組裝品 20‧‧‧負極層 22‧‧‧負極集電體 23‧‧‧負極端子 24‧‧‧電解液 26‧‧‧外裝薄膜 28‧‧‧疊層體 34‧‧‧真空乾燥器 36‧‧‧注入器具 38‧‧‧手套箱 A‧‧‧邊 B‧‧‧邊 B’‧‧‧邊
[圖1]係本發明之鋰二次電池之一例的示意剖面圖。 [圖2A]係顯示鋰二次電池之製造步驟之一例的前半之圖。 [圖2B]係顯示鋰二次電池之製造步驟之一例的後半,即接在圖2A所示之步驟之後的步驟之圖。圖2B之右端包含薄膜外裝電池的照片。 [圖3]係顯示配向正極板之與板面垂直之剖面之一例的SEM圖像。 [圖4]係圖3所示之配向正極板之剖面的EBSD圖像。 [圖5]係以面積基準表示圖4之EBSD圖像中的一次粒子之配向角度之分布的直方圖。

Claims (12)

  1. 一種鋰二次電池,具備: 正極板,係鋰複合氧化物燒結體板, 負極層,含有碳, 隔離膜,介隔於該正極板與該負極層之間,及 電解液,含浸於該正極板、該負極層、及該隔離膜; 該正極板的厚度為70~120μm,該負極層的厚度為90~170μm,該鋰二次電池係各邊的長度為20~55mm之矩形平板狀,該鋰二次電池的厚度為350~500μm,該鋰二次電池的能量密度為200~300mWh/cm3
  2. 如申請專利範圍第1項之鋰二次電池,係可內建於卡片之薄型二次電池。
  3. 如申請專利範圍第1或2項之鋰二次電池,其中,該鋰複合氧化物為鈷酸鋰。
  4. 如申請專利範圍第1或2項之鋰二次電池,其中,該鋰複合氧化物燒結體板的氣孔率為3~40%。
  5. 如申請專利範圍第1或2項之鋰二次電池,其中,該鋰複合氧化物燒結體板的平均氣孔徑為15μm以下。
  6. 如申請專利範圍第1或2項之鋰二次電池,其中,該鋰複合氧化物燒結體板,係為含有由鋰複合氧化物構成的多個一次粒子且該多個一次粒子相對於該正極板之板面以超過0°且在30°以下之平均配向角度進行配向的配向正極板。
  7. 如申請專利範圍第1或2項之鋰二次電池,其中,該負極層的密度為1.15~1.50g/cm3
  8. 如申請專利範圍第1或2項之鋰二次電池,其中,該鋰二次電池更具備1對外裝薄膜,該外裝薄膜的外周緣彼此密封而形成內部空間,於該內部空間中容納該正極板、該負極層、該隔離膜、及該電解液。
  9. 如申請專利範圍第8項之鋰二次電池,其中,該外裝薄膜為包含樹脂薄膜與金屬箔之層合薄膜。
  10. 如申請專利範圍第1或2項之鋰二次電池,其中,該隔離膜為聚烯烴、聚醯亞胺、或纖維素製。
  11. 如申請專利範圍第1或2項之鋰二次電池,其更具備正極集電體及負極集電體。
  12. 一種內建電池的卡片,具備: 樹脂基材,及 埋設於該樹脂基材內之如申請專利範圍第1至11項中任一項之鋰二次電池。
TW108108804A 2018-03-28 2019-03-15 鋰二次電池及內建電池的卡片 TWI756525B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018063171A JP6496435B1 (ja) 2018-03-28 2018-03-28 リチウム二次電池及び電池内蔵カード
JP2018-063171 2018-03-28

Publications (2)

Publication Number Publication Date
TW201943126A TW201943126A (zh) 2019-11-01
TWI756525B true TWI756525B (zh) 2022-03-01

Family

ID=65999139

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108108804A TWI756525B (zh) 2018-03-28 2019-03-15 鋰二次電池及內建電池的卡片

Country Status (5)

Country Link
US (1) US11658280B2 (zh)
JP (1) JP6496435B1 (zh)
KR (1) KR102368344B1 (zh)
TW (1) TWI756525B (zh)
WO (1) WO2019187913A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3961753A4 (en) * 2019-04-26 2023-09-20 NGK Insulators, Ltd. LITHIUM SECONDARY BATTERY
JP7328081B2 (ja) * 2019-08-29 2023-08-16 日本碍子株式会社 自動車用多機能カード及びその使用方法
WO2021220626A1 (ja) * 2020-04-28 2021-11-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2023120099A1 (ja) * 2021-12-23 2023-06-29 日本碍子株式会社 ハニカム型セラミック正極及びそれを備えたリチウムイオン二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282148A (ja) * 1998-08-31 2003-10-03 Toshiba Corp 薄型リチウムイオン二次電池
US20060251955A1 (en) * 1998-05-20 2006-11-09 Shizukuni Yata Non-aqueous secondary battery and its control method
CN105280843A (zh) * 2014-07-14 2016-01-27 三星Sdi株式会社 柔性二次电池
WO2017188233A1 (ja) * 2016-04-25 2017-11-02 日本碍子株式会社 正極

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3702868B2 (ja) * 2002-06-26 2005-10-05 日産自動車株式会社 薄型電池
JP4899299B2 (ja) * 2003-10-14 2012-03-21 日産自動車株式会社 薄型電池
JP2006004816A (ja) * 2004-06-18 2006-01-05 Fuji Xerox Co Ltd Icカード
EP1923934A1 (de) * 2006-11-14 2008-05-21 Fortu Intellectual Property AG Wiederaufladbare elektrochemische Batteriezelle
US9219288B2 (en) * 2010-01-05 2015-12-22 Samsung Sdi Co., Ltd. Secondary battery
JP5587052B2 (ja) 2010-06-23 2014-09-10 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
US10069140B2 (en) * 2012-12-14 2018-09-04 Umicore Bimodal lithium transition metal based oxide powder for use in a rechargeable battery
JP6418898B2 (ja) 2014-10-30 2018-11-07 京セラ株式会社 圧電発電装置
JPWO2016092888A1 (ja) 2014-12-09 2017-04-27 日本碍子株式会社 折り曲げ可能な電池モジュール
JP6730016B2 (ja) 2015-10-22 2020-07-29 マクセルホールディングス株式会社 電気化学素子及びそれを備えたカード
WO2017118238A1 (zh) * 2016-01-07 2017-07-13 广州华睿光电材料有限公司 氘代三芳胺衍生物及其在电子器件中的应用
KR101803628B1 (ko) 2016-02-16 2017-12-28 엘지전자 주식회사 냉장고
KR102643570B1 (ko) 2016-02-24 2024-03-04 엔지케이 인슐레이터 엘티디 판형 리튬 복합 산화물
JP6430065B2 (ja) * 2016-04-25 2018-11-28 日本碍子株式会社 正極の製造方法
KR102327922B1 (ko) * 2016-04-25 2021-11-18 엔지케이 인슐레이터 엘티디 정극

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060251955A1 (en) * 1998-05-20 2006-11-09 Shizukuni Yata Non-aqueous secondary battery and its control method
JP2003282148A (ja) * 1998-08-31 2003-10-03 Toshiba Corp 薄型リチウムイオン二次電池
CN105280843A (zh) * 2014-07-14 2016-01-27 三星Sdi株式会社 柔性二次电池
WO2017188233A1 (ja) * 2016-04-25 2017-11-02 日本碍子株式会社 正極

Also Published As

Publication number Publication date
US20200335768A1 (en) 2020-10-22
JP2019175711A (ja) 2019-10-10
TW201943126A (zh) 2019-11-01
JP6496435B1 (ja) 2019-04-03
WO2019187913A1 (ja) 2019-10-03
KR20200086329A (ko) 2020-07-16
US11658280B2 (en) 2023-05-23
KR102368344B1 (ko) 2022-03-03

Similar Documents

Publication Publication Date Title
TWI756525B (zh) 鋰二次電池及內建電池的卡片
JP6643528B1 (ja) リチウム二次電池
KR102368342B1 (ko) 리튬 이차 전지 및 전지 내장 디바이스의 제조 방법
JPWO2019221139A1 (ja) コイン形リチウム二次電池及びIoTデバイス
WO2020079819A1 (ja) リチウム二次電池
TW202032843A (zh) 鋰二次電池
JPWO2019221141A1 (ja) コイン形リチウム二次電池及びIoTデバイス
JP7126028B2 (ja) リチウムイオン二次電池
TWI772625B (zh) 鋰二次電池及內建電池的卡片
JP2021086790A (ja) リチウム二次電池
TW202027321A (zh) 鋰二次電池
JP6959281B2 (ja) リチウム二次電池及び電池内蔵カード
JPWO2019221144A1 (ja) リチウム二次電池
TWI755585B (zh) 鋰二次電池及內建電池的卡片
JPWO2019221143A1 (ja) リチウム二次電池
TWI811311B (zh) 鋰二次電池及內建電池的卡片
TWI787478B (zh) 鋰二次電池及內建電池的卡片
WO2023042801A1 (ja) 回路基板アセンブリの製造方法