TWI741638B - 半導體發光元件 - Google Patents

半導體發光元件 Download PDF

Info

Publication number
TWI741638B
TWI741638B TW109119119A TW109119119A TWI741638B TW I741638 B TWI741638 B TW I741638B TW 109119119 A TW109119119 A TW 109119119A TW 109119119 A TW109119119 A TW 109119119A TW I741638 B TWI741638 B TW I741638B
Authority
TW
Taiwan
Prior art keywords
layer
contact electrode
type
side contact
type semiconductor
Prior art date
Application number
TW109119119A
Other languages
English (en)
Other versions
TW202103341A (zh
Inventor
稲津哲彦
丹羽紀隆
Original Assignee
日商日機裝股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日機裝股份有限公司 filed Critical 日商日機裝股份有限公司
Publication of TW202103341A publication Critical patent/TW202103341A/zh
Application granted granted Critical
Publication of TWI741638B publication Critical patent/TWI741638B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本發明提供一種使半導體發光元件之光取出效率提高的半導體發光元件。半導體發光元件10係以發出波長320nm以下的紫外光之方式所構成。當將基板20的主表面的整體面積設為S0、將p型半導體層28上之p側接觸電極34的形成面積設為S1、將n型半導體層24上之n側接觸電極36的形成面積設為S2、將p側接觸電極34相對於從p型半導體層28側所射入之波長280nm的紫外光之反射率設為R1、將n側接觸電極36相對於從n型半導體層24側所射入之波長280nm的紫外光之反射率設為R2時,(S1/S0)×R1+(S2/S0)×R2≧0.5、S1>S2、R1≦R2。

Description

半導體發光元件
本發明係關於一種半導體發光元件。
波長355nm以下的深紫外光用之發光元件具有積層於基板上之AlGaN(氮化鋁鎵)系之n型包覆層(n-type clad layer)、活性層以及p型包覆層。p型包覆層上係設置有用以取得歐姆接觸(ohmic contact)的Ni(鎳)/Au(金)的p側電極。由於Ni/Au的p側電極相對於深紫外光的反射率低的緣故,使得從活性層朝向p側電極的深紫外光的大多數被p側電極所吸收,從而導致光取出效率的降低。於是,在p型包覆層上設置不形成p側電極的開口部,從而在開口部形成相對於深紫外光為高反射率的Al(鋁)的反射電極(例如參照專利文獻1)。 [先前技術文獻] [專利文獻]
[專利文獻1] 國際公開第2012/127660號。
[發明所欲解決之課題]
一旦在反射電極形成開口部,p側電極的接觸面積降低,從而導致p側電極的接觸電阻的增加。較佳為能於深紫外光用的半導體發光元件中實現低電阻且高反射率的電極構造。
本發明係鑒於此課題而完成,目的在於提高半導體發光元件之光取出效率。 [用以解決課題之手段]
本發明之一態樣之半導體發光元件具備:n型AlGaN 系半導體材料的n型半導體層,係設置於基板的主表面上;AlGaN系半導體材料的活性層,係設置於前述n型半導體層上,以發出波長320nm以下的紫外光之方式所構成;p型半導體層,係設置於活性層上;p側接觸電極,係設置於p型半導體層上;以及n側接觸電極,係設置於n型半導體層上之與活性層的形成區域不同之區域。當基板的主表面的整體面積設為S0、將p型半導體層上之p側接觸電極的形成面積設為S1、將n型半導體層上之n側接觸電極的形成面積設為S2、將p側接觸電極相對於從p型半導體層側所射入之波長280nm的紫外光之反射率設為R1、將n側接觸電極相對於從n型半導體層側所射入之波長280nm的紫外光之反射率設為R2時,(S1/S0)×R1+(S2/S0)×R2≧0.5、S1>S2、R1≦R2。
根據該態樣,藉由使p側接觸電極的形成面積S1比 n側接觸電極的形成面積S2還要大,能加大用於提升發光效率的活性層所佔據的面積,從而能提升活性層的發光效率。另一方面,要使形成面積大的p側接觸電極的反射率R1提高並不容易,存在形成面積小的n側接觸電極的反射率R2以下的限制條件。即使是在這樣的條件下,根據本態樣能以n側接觸電極與p側接觸電極的雙方實現相對於基板的整體面積S0的50%以上的反射率,且降低因n側接觸電極或p側接觸電極的吸收所導致的損失,從而能提高作為元件整體的光取出效率。
p側接觸電極亦可包含與p型半導體層接觸的Rh(rhodium;銠)層。
p側接觸電極亦可包含:透明導電性氧化物層,係與p型半導體層接觸;以及金屬層,係設置於透明導電性氧化物層上。當將透明導電性氧化物層相對於從p型半導體層側所射入之波長280nm的紫外光之透過率設為T且將金屬層相對於從透明導電性氧化物層側所射入之波長280nm的紫外光之反射率設為R時,p側接觸電極的反射率R1亦可為R1=RT2
透明導電性氧化物層亦可為具有4nm以下的厚度的氧化銦錫層。金屬層亦可包含具有100nm以上的厚度的Al層。
n側接觸電極亦可包含:Ti(鈦)層,係具有1nm以上至2nm以下的厚度且與n型半導體層接觸;以及Al層,係具有100nm以上的厚度且設置於Ti層上。
亦可為(S1+S2)/S0≧0.7,R1≧0.6,R2≧0.8。
p型半導體層亦可包含與p側接觸電極接觸的p型接觸層,p型接觸層亦可為AlN(氮化鋁)比率為20%以下的p型AlGaN或p型GaN(氮化鎵);p型接觸層與p側接觸電極的接觸電阻亦可為1×10-2 Ω・cm2 以下。
p型接觸層的厚度亦可為20nm以下。 [發明功效]
依據本發明,能夠使半導體發光元件之光取出效率提高。
以下,一邊參照圖式一邊對用以實施本發明之形態進行詳細說明。再者,說明中對相同要素附上相同元件符號且適當省略重複說明。而且,為了有助於理解說明,各圖式中之各構成要素之尺寸比未必與實際之發光元件之尺寸比一致。
本實施形態係以發出中心波長λ約為360nm以下之「深紫外光」之方式所構成之半導體發光元件,也就是所謂的DUV-LED(Deep Ultraviolet-Light Emitting Diode;深紫外發光二極體)晶片(chip)。為了輸出此種波長之深紫外光,使用帶隙(band gap)約為3.4eV以上之AlGaN(氮化鋁鎵)系半導體材料。在本實施形態中,特別表示出發出中心波長λ約為240 nm至320 nm之深紫外光之情形。
本說明書中,「AlGaN系半導體材料」係指至少包含AlN(氮化鋁)以及GaN(氮化鎵)之半導體材料,且包含含有InN(氮化銦)等其他材料之半導體材料。從而,本說明書中提及之「AlGaN系半導體材料」例如可由In1-x-y Alx Gay N(0<x+y≦1;0<x<1;0<y<1)之組成來表示,包含AlGaN或InAlGaN(氮化銦鋁鎵)。本說明書之「AlGaN系半導體材料」係例如AlN以及GaN之各者的莫耳分率為1%以上,較佳為5%以上、10%以上或20%以上。
而且,為了區分不含有AlN之材料,有時稱作「GaN系半導體材料」。「GaN系半導體材料」包含GaN或InGaN(氮化銦鎵)。同樣地,為了區分不含有GaN之材料,有時稱作「AlN系半導體材料」。「AlN系半導體材料」包含AlN或InAlN(氮化銦鋁)。
圖1係概略地表示實施形態之半導體發光元件10之構成之剖視圖。半導體發光元件10係具備基板20、基底層22、n型半導體層24、活性層26、p型半導體層28、p側接觸電極34、n側接觸電極36、保護層38、p側墊電極44以及n側墊電極46。
圖1中,有時將箭頭A所表示的方向稱作「上下方向」或「厚度方向」。而且,從基板20觀察,有時將遠離基板20之方向稱作上側,且將朝向基板20之方向稱作下側。
基板20係相對於半導體發光元件10所發出之深紫外光具有透光性之基板,例如是Al2 O3 (藍寶石)基板。基板20具有第一主表面20a和與第一主表面20a為相反側之第二主表面20b。第一主表面20a係成為用以使自基底層22至p型半導體層28為止之各層成長之結晶成長面之一主表面。第二主表面20b係成為用以將活性層26所發出之深紫外光取出至外部之光取出面之一主表面。在變化例中,基板20既可以是AlN基板,也可以是AlGaN基板。
基底層22係設置於基板20的第一主表面20a上。基底層22為底層(模板(template)層),用以形成n型半導體層24。基底層22例如是未摻雜(un-doped)之AlN層,具體而言是經高溫成長之AlN(HT-AlN;High Temperature AlN;高溫氮化鋁)層。基底層22亦可包含形成於AlN層上之未摻雜之AlGaN層。於基板20為AlN基板或AlGaN基板之情形中,基底層22亦可僅由未摻雜之AlGaN層所構成。也就是說,基底層22係包含未摻雜之AlN層以及AlGaN層之至少一層。
基底層22係以Si(矽)等的n型雜質之濃度為5×1017 cm-3 以下之方式所構成,且基底層22係以從n側接觸電極36朝向活性層26注入電子時無助於導電之方式所構成。也就是說,由於基底層22的n型雜質濃度比n型半導體層24的n型雜質濃度低的緣故,所以基底層22的導電率變低(也就是電阻率高)。
n型半導體層24係設置於基底層22上。n型半導體層24係n型AlGaN系半導體材料層,例如是摻雜有作為n型雜質之Si的AlGaN層。n型半導體層24係以讓活性層26所發出之深紫外光透過之方式來選擇組成比,例如以AlN之莫耳分率成為25%以上之方式來形成,較佳為以AlN之莫耳分率成為40%以上或50%以上之方式來形成。n型半導體層24係具有比活性層26所發出之深紫外光的波長還大之帶隙,例如以帶隙成為4.3eV以上之方式來形成。n型半導體層24較佳為以AlN之莫耳分率成為80%以下之方式來形成,也就是以帶隙成為5.5eV以下之方式來形成,更理想為以AlN之莫耳分率成為70%以下(也就是帶隙為5.2eV以下)之方式來形成。n型半導體層24係具有1μm至3μm左右的厚度,例如具有2μm左右的厚度。
n型半導體層24係以作為雜質之Si之濃度成為1×1018 /cm3 以上至5×1019 /cm3 以下之方式來形成。n型半導體層24較佳為以Si濃度為5×1018 /cm3 以上至3×1019 /cm3 以下之方式來形成,較佳為以7×1018 /cm3 以上至2×1019 /cm3 以下之方式來形成。在一實施例中,n型半導體層24之Si濃度為1×1019 /cm3 前後,為8×1018 /cm3 以上至1.5×1019 /cm3 以下之範圍。
n型半導體層24係具有第一上表面24a以及第二上表面24b。第一上表面24a係形成有活性層26的部分,第二上表面24b係形成有活性層26的部分。第一上表面24a的高度以及第二上表面24b的高度相互不同,從基板20至第一上表面24a為止的高度係比從基板20至第二上表面24b為止的高度還大。在此,將第一上表面24a位置所在之區域定義為「第一區域W1」,且將第二上表面24b位置所在之區域定義為「第二區域W2」。第二區域W2係鄰接於第一區域W1。
活性層26係設置於n型半導體層24的第一上表面24a上。活性層26係由AlGaN系半導體材料所構成,被夾在n型半導體層24與p型半導體層28之間而形成雙異質接合(double-hetero junction)構造。為了輸出波長355 nm以下之深紫外光,活性層26係以帶隙成為3.4eV以上之方式所構成,例如以能夠輸出波長320 nm以下之深紫外光之方式來選擇AlN組成比。
活性層26例如具有單層或多層之量子井構造,且由障蔽層與井層之積層體所構成,障蔽層係由未摻雜之AlGaN系半導體材料所形成,井層係由未摻雜之AlGaN系半導體材料所形成。活性層26例如包含:第一障蔽層,係與n型半導體層24直接接觸;以及第一井層,係設置於第一障蔽層上。第一障蔽層與第一井層之間亦可追加地設置一對以上的井層以及障蔽層之對。障蔽層以及井層係具有1 nm至20 nm左右的厚度,例如具有2 nm至10 nm左右的厚度。
活性層26亦可進一步包含與p型半導體層28直接接觸的電子阻擋層(electron block layer)。電子阻擋層係未摻雜之AlGaN系半導體材料層,例如以AlN之莫耳分率成為40%以上之方式來形成,較佳為以AlN之莫耳分率成為50%以上之方式來形成。電子阻擋層既可以AlN之莫耳分率成為80%以上之方式來形成,亦可由實質不含有GaN之AlN系半導體材料所形成。電子阻擋層係具有1 nm至10 nm左右的厚度,例如具有2 nm至5 nm左右的厚度。
p型半導體層28係形成於活性層26上。p型半導體層28為p型AlGaN系半導體材料層或p型GaN系半導體材料層,例如為摻雜作為p型雜質之Mg(鎂)的AlGaN層或GaN層。p型半導體層28係具有p型第一包覆層30、p型第二包覆層31以及p型接觸層32。p型第一包覆層30、p型第二包覆層31以及p型接觸層32係能分別以AlN比率不同之方式所構成。
p型第一包覆層30為相對性地高AlN比率的p型AlGaN層,p型第一包覆層30係以讓活性層26所發出之深紫外光透過之方式來選擇組成比。p型第一包覆層30係例如以AlN之莫耳分率成為40%以上之方式來形成,較佳為以AlN之莫耳分率成為50%以上或60%以上之方式來形成。p型第一包覆層30的AlN比率係例如與n型半導體層24的AlN比率相同程度,或者p型第一包覆層30的AlN比率係大於n型半導體層24的AlN比率。p型第一包覆層30的AlN比率亦可為70%以上或80%以上。p型第一包覆層30係具有10nm至100nm左右的厚度,例如具有15nm至70nm左右的厚度。
p型第二包覆層31為AlN比率中度左右的p型AlGaN層,且p型第二包覆層31的AlN比率係低於p型第一包覆層30的AlN比率,但p型第二包覆層31的AlN比率係高於p型接觸層32的AlN比率。p型第二包覆層31係例如以AlN之莫耳分率成為25%以上之方式來形成,較佳為以AlN之莫耳分率成為40%以上或50%以上之方式來形成。p型第二包覆層31的AlN比率係例如以成為n型半導體層24的AlN比率±10%左右之方式來形成。p型第二包覆層31係具有5nm至250nm左右的厚度,例如具有10nm至150nm左右的厚度。再者,亦可不設置p型第二包覆層31。
p型接觸層32為相對性地低AlN比率的p型AlGaN層或p型GaN層。為了獲得與p側接觸電極34良好的歐姆接觸,p型接觸層32係以AlN比率成為20%以下之方式來形成,較佳為以AlN比率成為10%以下、5%以下或0%之方式來形成。也就是說,p型接觸層32能以實質不包含AlN的p型GaN系半導體材料來形成。結果,p型接觸層32能吸收活性層26所發出的深紫外光。為了縮小活性層26所發出的深紫外光的吸收量,較佳為使p型接觸層32形成為較薄。p型接觸層32係具有5nm至30nm左右的厚度,例如具有10nm至20nm左右的厚度。
p側接觸電極34係設置於p型半導體層28上。p側接觸電極34係能與p型半導體層28(也就是p型接觸層32)歐姆接觸,且p側接觸電極34係由對活性層26所發出之深紫外光的反射率高之材料來構成。這種特性的材料雖然有限,但依據本發明人們的知識見解例如能使用Rh(銠)。藉由將p側接觸電極34設為Rh層,能將與p型接觸層32之間的接觸電阻設為1×10-2 Ω・cm2 以下(例如1×10-4 Ω・cm2 以下),從而能得到相對於波長280nm的紫外光為60%以上(例如60%至65%左右)的反射率。此時,構成p側接觸電極34的Rh層的厚度較佳為50nm以上或100nm以上。再者,本說明書中亦將p側接觸電極34相對於從p型半導體層28側所射入之波長280nm的紫外光之反射率稱為「第一反射率R1」。
p側接觸電極34係形成於第一區域W1的內側。在此,將形成有p側接觸電極34的區域定義為「第三區域W3」。p側接觸電極34係遍及第三區域W3的整體而與p型半導體層28歐姆接觸,且以相對於遍及第三區域W3的整體的深紫外光成為高反射率之方式所構成。p側接觸電極34較佳為以遍及第三區域W3的整體的厚度成為均勻之方式所構成。藉此,p側接觸電極34係能作為於第三區域W3的整體中使來自活性層26的紫外光反射並朝向基板20的第二主表面20b之高效率的反射電極而發揮作用,並且能作為低電阻的接觸電極而發揮作用。
n側接觸電極36係設置於n型半導體層24的第二上表面24b上。n側接觸電極36係設置於第二區域W2,第二區域W2係與設置有活性層26的第一區域W1不同。n側接觸電極36係能與n型半導體層24歐姆接觸,且n側接觸電極36係由對活性層26所發出之深紫外光的反射率高之材料來構成。n側接觸電極36包含:第一Ti(鈦)層36a,係與n型半導體層24直接接觸;Al(鋁)層36b,係與第一Ti層36a直接接觸;第二Ti層36c,係設置於Al層36b上;以及TiN(氮化鈦)層36d,係設置於第二Ti層36c上。
第一Ti層36a的厚度為1nm至10nm左右,較佳為5nm以下,更佳為1nm至2nm。藉由縮小第一Ti層36a的厚度,能提高從n型半導體層24觀察時之n側接觸電極36的紫外光反射率。Al層36b的厚度為100nm至1000nm左右,較佳為200nm以上。藉由加大Al層的厚度能提高n側接觸電極36的紫外光反射率。
第二Ti層36c以及TiN層36d係披覆Al層36b的表面,第二Ti層36c以及TiN層36d係用以防止n側接觸電極36之退火(anneal)處理時中之Al層36b的氧化而設置。第二Ti層36c以及TiN層36d的厚度較佳為合計20nm以上,更佳為30nm以上。舉個例子,第二Ti層36c的厚度為10nm至50nm左右,TiN層36d的厚度為10nm至50nm左右。再者,也可不設置第二Ti層36c而是只設置TiN層36d。
n側接觸電極36係形成於第二區域W2的內側。在此,將形成有n側接觸電極36的區域定義為「第四區域W4」。n側接觸電極36係遍及第四區域W4的整體而與n型半導體層24歐姆接觸。藉由使用Ti/Al層作為n側接觸電極36,能實現1×10-2 Ω・cm2 以下(例如1×10-3 Ω・cm2 以下)之接觸電阻。n側接觸電極36係以相對於遍及第四區域W4的整體的深紫外光成為高反射率之方式所構成。n側接觸電極36係藉由縮小第一Ti層36a的厚度從而能得到相對於波長280nm的紫外光為80%以上(例如85%至90%左右)的反射率。再者,本說明書中亦將n側接觸電極36相對於從n型半導體層24側所射入之波長280nm的紫外光之反射率稱為「第二反射率R2」。
n側接觸電極36較佳為遍及第四區域W4的整體均勻地構成。換言之,用以構成n側接觸電極36之第一Ti層36a、Al層36b、第二Ti層36c以及TiN層36d較佳為以遍及第四區域W4的整體之均勻的厚度來積層。藉此,n側接觸電極36係作為於第四區域W4的整體中使來自活性層26的紫外光反射並朝向基板20的第二主表面20b之高效率的反射電極而發揮作用,並且作為低電阻的接觸電極而發揮作用。再者,n側接觸電極36中較佳為不含有可能造成紫外光反射率下降的原因的Au(金)。
保護層38係以披覆活性層26以及p型半導體層28的側面(亦稱為台(mesa)面12)與p側接觸電極34以及n側接觸電極36的表面之方式設置。圖1中,雖然以活性層26以及p型半導體層28的台面12相對於基板20成為垂直之方式表示,但台面12亦可以預定的傾斜角相對於基板20呈傾斜。活性層26以及p型半導體層28的台面12的傾斜角例如亦可為40度以上至未滿55度。
保護層38由SiO2 (氧化矽)、SiON(氮氧化矽)或Al2 O3 (氧化鋁)等的絕緣性材料所構成。保護層38的厚度例如為100 nm以上、200 nm以上、300 nm以上或500 nm以上。保護層38的厚度例如為2μm以下、1μm以下或800nm以下。藉由加大保護層38的厚度,能適當地披覆並保護形成於n型半導體層24上的各層的表面。
保護層38係由相對於深紫外光之折射率比活性層26相對於深紫外光之折射率還低之材料所構成。用以構成活性層26之AlGaN系半導體材料之折射率係取決於組成比,為2.1至2.56左右。另一方面,可構成保護層38之SiO2 相對於波長280nm的紫外光之折射率為1.4左右,SiON相對於波長280nm的紫外光之折射率為1.4至2.1左右,Al2 O3 相對於波長280nm的紫外光之折射率為1.8左右。藉由設置低折射率之保護層38,能夠在活性層26與保護層38之界面處使更多的紫外光全反射並朝向作為光取出面之基板20的第二主表面20b。尤其SiO2 與活性層26之折射率差大,因而能更提高反射特性。
p側墊電極44以及n側墊電極46(亦總稱為墊電極)係於將半導體發光元件10安裝在封裝基板等時用於打線(bonding)接合的部分。p側墊電極44係設置於p側接觸電極34上,且p側墊電極44係通過貫通保護層38之p側開口38p而與p側接觸電極34電連接。n側墊電極46係設置於n側接觸電極36上,且n側墊電極46係通過貫通保護層38之n側開口38n而與n側接觸電極36電連接。
從耐腐蝕性的觀點來看,p側墊電極44以及n側墊電極46係以包含Au(金)之方式所構成,例如以 Ni(鎳)/Au、Ti(鈦)/Au或Ti/Pt(鉑)/Au之積層構造來構成。在p側墊電極44以及n側墊電極46以AuSn(金錫)來接合的情況下,p側墊電極44以及n側墊電極46亦可包含成為金屬接合材的AuSn層。
圖2係概略地表示實施形態之半導體發光元件10之構成之俯視圖。上述圖1係顯示圖2的B-B線剖面。半導體發光元件10之外形係受基板20的外周所限定且為長方形或正方形。於圖2之俯視中,半導體發光元件10所佔據的區域W的面積S0(亦稱為整體面積)係與基板20的第一主表面20a或第二主表面20b的面積相同。第一區域W1為形成有活性層26以及p型半導體層28的區域。第一區域W1的面積為整體面積S0的55%至65%左右。第二區域W2為未形成有活性層26以及p型半導體層28的區域,且第二區域W2為除了第一區域W1以外的區域。第二區域W2的面積為整體面積S0的35%至45%左右。
第三區域W3為形成有p側接觸電極34的區域,且第三區域W3為僅稍小於第一區域W1的區域。p側接觸電極34所佔據的第三區域W3的面積(亦稱為第一面積S1)為整體面積S0的45%至50%左右。n側接觸電極36所佔據的第四區域W4為形成有n側接觸電極36的區域,且n側接觸電極36為比第二區域W2還小的區域。第四區域W4的面積(亦稱為第二面積S2)為整體面積S0的25%至30%左右。從而,p側接觸電極34所佔據的第一面積S1(45%至50%)係比n側接觸電極36所佔據的第二面積S2(25%至30%)還大(也就是S1大於S2)。例如,第一面積S1能以成為第二面積S2的一點五倍以上之方式來構成。而且,p側接觸電極34以及n側接觸電極36所佔據的面積,也就是第一面積S1與第二面積S2的總和(S1加S2)成為整體面積S0的70%至80%。
在圖2所表示的例子中,形成有p側接觸電極34的第三區域W3以及形成有n側接觸電極36的第四區域W4為大致長方形。再者,第三區域W3以及第四區域W4的形狀並不限於大致長方形,第三區域W3以及第四區域W4亦可具有任意的形狀。例如,第三區域W3以及第四區域W4亦可形成為梳齒狀,且各個梳齒以相互交錯插入之方式所構成。
依據本實施形態,相對於半導體發光元件10的整體面積S0,能使p側接觸電極34以及n側接觸電極36之作為反射電極的反射效率在50%以上。本說明書中,元件整體的反射效率Rt能定義為Rt=(S1/S0)×R1+(S2/S0)×R2。雖然上述內容已經提到,將基板20的主表面的整體面積設為S0,將p型半導體層28上之p側接觸電極34的形成面積(第一面積)設為S1,將n型半導體層24上之n側接觸電極36的形成面積(第二面積)設為S2,將p側接觸電極34相對於從p型半導體層28側所射入之波長280nm的紫外光之反射率(第一反射率)設為R1,將n側接觸電極36相對於從n型半導體層24側所射入之波長280nm的紫外光之反射率(第二反射率)設為R2。
依據一實施例,p側接觸電極34係以厚度100nm的Rh層來構成,且n側接觸電極36係以厚度2nm/600nm/25nm/25nm的Ti/Al/Ti/TiN層來構成。在本實施例中,第一反射率R1約為63%,第二反射率R2約為89%。從而,第一反射率R1為第二反射率R2以下(也就是R1≦R2)。在本實施例中,藉由將第一面積S1設為45%以上且將第二面積S2設為25%以上,而使元件整體的反射效率Rt成為50%以上。例如,當第一面積S1設為47%且第二面積S2設為27%時,元件整體的反射效率Rt成為54%。
圖3係概略地表示反射電極的功能之圖,圖3係舉例表示朝向基板20的第二主表面20b射出的紫外光之第一光線L1、第二光線L2以及第三光線L3。第一光線L1係表示經由p側接觸電極34反射後朝向基板20的第二主表面20b的情形。藉由加大p側接觸電極34的第一面積S1以及第一反射率R1,能如第一光線L1般提高經由p側接觸電極34反射後朝向外部射出之紫外光的強度。第二光線L2係表示經由n側接觸電極36反射後朝向基板20的第二主表面20b的情形。藉由加大n側接觸電極36的第二面積S2以及第二反射率R2,能如第二光線L2般提高經由n側接觸電極36反射後朝向外部射出之紫外光的強度。第三光線L3係表示由活性層26或p型半導體層28的台面12反射後朝向基板20的第二主表面20b的情形。藉由設置低折射率之保護層38,能夠提高由台面12進行全反射之紫外光的比率,且能如第三光線L3般提高由台面12反射後朝向外部射出之紫外光的強度。
圖示之第一光線L1、第二光線L2以及第三光線L3雖然表示經由p側接觸電極34、n側接觸電極36或台面12僅反射一次的情況,但在半導體發光元件10的內部亦存在有重複進行複數次反射之後朝外部射出的紫外光。而且,亦存在有由p側接觸電極34以及n側接觸電極36的雙方反射之後朝外部射出的紫外光。依據本實施形態,定義元件整體的反射效率Rt,且以使反射效率Rt成為50%以上之方式構成半導體發光元件10,藉此能適當地提高從基板20的第二主表面20b射出之紫外光的強度。如此,依據本實施形態,能提高半導體發光元件10的光取出效率。
而且,在本實施形態中,使p側接觸電極34所佔據的第一面積S1大於n側接觸電極36所佔據的第二面積S2,藉此能加大設置有活性層26之第一區域W1的面積。藉由加大活性層26所佔據的第一區域W1的面積比率,能提高基板20的每單位面積的發光效率,從而能提高半導體發光元件10的光取出效率。
在本實施形態中,藉由減小p型接觸層32的厚度,能降低p型接觸層32所為之紫外光的吸收量。也就是說,如第一光線L1所表示的,能以反覆地透過p型接觸層32來減小經由p側接觸電極34所反射的紫外光的衰減量。藉此,能提高半導體發光元件10的光取出效率。
然後,對半導體發光元件10的製造方法進行說明。圖4至圖9係概略地表示半導體發光元件10的製造步驟之圖。在圖4中,首先,於基板20的第一主表面20a上依序形成基底層22、n型半導體層24、活性層26以及p型半導體層28(p型第一包覆層30、p型第二包覆層31以及p型接觸層32)。
基板20為藍寶石(Al2 O3 )基板,且為用以形成AlGaN系半導體材料之成長基板。例如,於藍寶石基板之(0001)面上形成基底層22。基底層22例如包含經高溫成長之AlN(HT-AlN)層以及未摻雜之AlGaN(u-AlGaN)層。n型半導體層24、活性層26以及p型半導體層28為由AlGaN系半導體材料、AlN系半導體材料或GaN系半導體材料所形成之層,能使用有機金屬化學氣相成長(MOVPE;Metalorganic Vapor Phase Epitaxy)法或分子束磊晶(MBE;Molecular Beam Epitaxy)法等周知之磊晶成長法來形成。
接下來,如圖5所示,於p型半導體層28上的第一區域W1形成遮罩50,且從遮罩50上進行p型半導體層28以及活性層26的乾式蝕刻60。遮罩50例如能使用已知的光微影(photolithography)技術來形成。乾式蝕刻60係執行直至在第二區域W2中n型半導體層24露出為止。藉此,形成n型半導體層24的第二上表面24b。而且,於第一區域W1形成具有台面12的活性層26以及p型半導體層28。在形成台面12之步驟中,能夠使用蝕刻氣體的電漿化所為之反應性離子蝕刻,例如能夠使用感應耦合型電漿(ICP;Inductively Coupled Plasma)蝕刻。執行乾式蝕刻60之後,去除遮罩50。
接下來,如圖6所示,於第三區域W3形成具有開口51的遮罩52,於p型半導體層28上的第三區域W3形成p側接觸電極34。遮罩52例如能使用已知的光微影技術來形成。p側接觸電極34係能以濺鍍法或EB(電子束;electron beam)蒸鍍法來形成。在形成台面12後立即於p型半導體層28上形成p側接觸電極34,藉此能在p型半導體層28與p側接觸電極34之間實現良好的歐姆接觸。在形成p側接觸電極34且去除了遮罩52之後,對p側接觸電極34實施退火處理。
接下來,如圖7所示,於第四區域W4形成具有開口53的遮罩54,於n型半導體層24的第二上表面24b上的第四區域W4形成n側接觸電極36。遮罩54例如能使用已知的光微影技術來形成。首先,於n型半導體層24的第二上表面24b上形成第一Ti層36a、Al層36b以及第二Ti層36c。能夠由濺鍍法或EB蒸鍍法形成這些層。再者,相較於使用EB蒸鍍法的狀況,藉由使用濺鍍法來形成這些層能夠形成膜密度低之金屬層,能夠以相對低之退火溫度實現更優良的接觸電阻。
之後,去除遮罩54,藉由氨氣(NH3 )氣體電漿(gas plasma)處理第二Ti層36c的表面,藉此將N(氮)原子供給至第二Ti層36c的表面,從而使第二Ti層36c的表面氮化。藉此形成TiN層36d。用於形成TiN層36d之電漿處理的溫度較佳為未滿Al之熔點(約660℃),例如更佳為未滿300℃。
然後,對n側接觸電極36實施退火處理。n側接觸電極36的退火處理係以未滿Al之熔點(約660℃)之溫度所執行,較佳為以560℃以上至650℃以下之溫度退火。將Al層的膜密度設為未滿2.7g/cm3 且將退火溫度設為560℃以上至650℃以下,藉此能夠將n側接觸電極36的接觸電阻設為1×10-2 Ω・cm2 以下。而且,藉由將退火溫度設為560℃以上至650℃以下,能夠提高退火後之n側接觸電極36的平坦性,能夠使紫外光反射率為80%以上。
接下來,如圖8所示,形成保護層38。保護層38係以披覆元件構造的上表面的整體之方式而形成。保護層38係以披覆p側接觸電極34以及n側接觸電極36的表面且披覆活性層26以及p型半導體層28中之包含台面12的露出面之方式設置。保護層38係以披覆n型半導體層24的第二上表面24b的至少一部分之方式設置。
接下來,如圖9所示,形成具有開口55p、55n的遮罩56,將保護層38的一部分去除從而形成p側開口38p以及n側開口38n。遮罩56例如能使用已知的光微影技術來形成。遮罩56的開口55p、55n係位於p側接觸電極34以及n側接觸電極36上。保護層38的一部分係能使用六氟乙烷(hexafluoroethane;C2 F6 )等的CF系的蝕刻氣體並藉由乾式蝕刻62來去除。在此乾式蝕刻步驟中,p側接觸電極34的Rh層以及n側接觸電極36的TiN層36d係作為乾式蝕刻62的停止層(stop layer)而發揮功能。藉此,能防止對於p側接觸電極34以及n側接觸電極36的損傷,從而能維持低電阻且高反射率的接觸電極。
然後,於p側接觸電極34上的p側開口38p形成p側墊電極44,且於n側接觸電極36上的n側開口38n形成n側墊電極46。p側墊電極44以及n側墊電極46係例如能藉由堆積Ni層或Ti層且再於Ni層或Ti層上堆積Au層而形成。亦可於Au層上進一步設置其他的金屬層,例如亦可形成Sn層、AuSn層、Sn/Au之積層構造。p側墊電極44以及n側墊電極46既可利用遮罩56來形成,亦可利用與遮罩56不同的其他阻劑遮罩(resist mask)來形成。形成p側墊電極44以及n側墊電極46之後,去除遮罩56或其他的阻劑遮罩。
藉由以上的步驟完成圖1所表示的半導體發光元件10。依據本實施形態,於形成n側接觸電極36並執行退火處理之前形成p側接觸電極34,藉此能使由Rh層所構成之p側接觸電極34良好地歐姆接觸至p型接觸層32,從而能實現1×10-2 Ω・cm2 以下的接觸電阻。
圖10係概略地表示其他實施形態之半導體發光元件110的構成之剖視圖。本實施形態中,於p側接觸電極134成為三層構造的這一點上與上述實施形態不同。以下,以與上述實施形態的差異點作為中心來說明半導體發光元件110。
半導體發光元件110係具備基板20、基底層22、n型半導體層24、活性層26、p型半導體層28、p側接觸電極134、n側接觸電極36、保護層38、p側墊電極44以及n側墊電極46。
p側接觸電極134係包含TCO(Transparent Conductive Oxide;透明導電性氧化物)層134a以及設置於TCO層134a上的第一金屬層134b以及第二金屬層134c。在此,所謂「透明導電性氧化物」一般係指被稱為透明導電性氧化物的材料的意思,為相對於可視光為透明(高透過率)的材料。從而,所謂「透明導電性氧化物」未必一定相對於活性層26所發出的深紫外光為透明,例如能在一定程度上吸收波長280nm的紫外光。TCO層134a係由SnO2 (氧化錫)、ZnO(氧化鋅)、ITO(Indium Tin Oxide;銦錫氧化物)等所構成,較佳為導電性佳的ITO層。為了縮小活性層26所發出的深紫外光的吸收量,較佳為使TCO層134a形成為較薄。TCO層134a例如為厚度4nm以下的ITO層,且較佳為厚度3nm左右的ITO層。
第一金屬層134b以及第二金屬層134c係以相對於紫外光成為高反射率之方式來構成。第一金屬層134b為Pd(鈀)層或Ni層,第二金屬層134c為Al層。第二金屬層134c的厚度為100nm至1000nm左右,較佳為200nm以上。藉由加大Al層的厚度能提高p側接觸電極134的紫外光反射率。為了提高TCO層134a與第二金屬層134c的密接性,設置有第一金屬層134b。為了縮小紫外光的吸收量,較佳為使第一金屬層134b形成為較薄,以成為5nm以下、3nm以下或2nm以下之方式形成第一金屬層134b。
依據本實施形態,使用與p型接觸層32歐姆接觸的TCO層134a,藉此能將p側接觸電極134的接觸電阻設定成1×10-2 Ω・cm2 以下。而且,組合厚度小的Pd層與厚度大的Al層,藉此能提高Al層相對於TCO層134a之密接性,並能將第一金屬層134b以及第二金屬層134c相對於波長280nm的紫外光之反射率設為90%以上。
再者,在本實施形態中,由於在p型半導體層28與第一金屬層134b以及第二金屬層134c之間插入TCO層134a,因此會產生反覆地通過TCO層134a所導致的損失。從而,p側接觸電極134相對於從p型半導體層28側所射入之紫外光之第一反射率R1必需考慮反覆地通過TCO層134a所導致的損失。在將第一金屬層134b以及第二金屬層134c的反射率設為R且將TCO層134a的單邊的透過率設為T時,作為p側接觸電極134的整體的第一反射率R1係成為R1=RT2 。例如,以ITO構成TCO層134a時,厚度3nm的ITO層相對於波長280nm的紫外光之透過率為約87%,厚度4nm的ITO層相對於波長280nm的紫外光之透過率為約83%。第一金屬層134b以及第二金屬層134c相對於波長280nm的紫外光之反射率為90%時,使用厚度3nm的ITO層時的p側接觸電極134的第一反射率R1成為約68%,使用厚度4nm的ITO層時的p側接觸電極134的第一反射率R1成為約62%。
從而,在本實施形態中也能與上述實施形態同樣地設為(S1+S2)/S0≧0.7、R1≧0.6、R2≧0.8。藉此,既能滿足(S1/S0)×R1+(S2/S0)×R2≧0.5、S1>S2、R1≦R2的條件,也能將元件整體的反射效率Rt設為50%以上。結果,能提供光取出效率良好的半導體發光元件110。
依據一實施形態,p側接觸電極34係由厚度3nm/2nm/200nm的ITO/Pd/Al層所構成,n側接觸電極36係由厚度2nm/600nm/25nm/25nm的Ti/Al/Ti/TiN層所構成。本實施例中,第一反射率R1為68%,第二反射率R2為89%。本實施例中,藉由將第一面積S1設為45%以上且將第二面積S2設為25%以上,而使元件整體的反射效率Rt成為50%以上。例如,當將第一面積S1設為47%且將第二面積S2設為27%時,元件整體的反射效率Rt成為56%。
半導體發光元件110係能以與上述實施形態的半導體發光元件10同樣的步驟來製造。用以構成p側接觸電極134之TCO層134a、第一金屬層134b以及第二金屬層134c係能以濺鍍法或EB(電子束)蒸鍍法來形成。再者,在本實施形態中,既可於形成n側接觸電極36之前先形成p側接觸電極134,亦可於形成n側接觸電極36之後再形成p側接觸電極134。
以上,基於實施例對本發明進行了說明。所屬技術領域中具有通常知識者應理解本發明不限定於上述實施形態,能夠進行各種設計變更,可有各種變化例,且這種變化例亦處於本發明之範圍。
10,110:半導體發光元件 12:台面 20:基板 20a:第一主表面 20b:第二主表面 22:基底層 24:n型半導體層 24a:第一上表面 24b:第二上表面 26:活性層 28:p型半導體層 30:p型第一包覆層 31:p型第二包覆層 32:p型接觸層 34,134:p側接觸電極 36:n側接觸電極 36a:第一Ti層 36b:Al層 36c:第二Ti層 36d:TiN層 38:保護層 38n:n側開口 38p:p側開口 44:p側墊電極 46:n側墊電極 50,52,54,56:遮罩 51,53,55n,55p:開口 60,62:乾式蝕刻 134a:TCO層 134b:第一金屬層 134c:第二金屬層 A:箭頭 L1:第一光線 L2:第二光線 L3:第三光線 W:區域 W1:第一區域 W2:第二區域 W3:第三區域 W4:第四區域
[圖1]係概略地表示實施形態之半導體發光元件之構成之剖視圖。 [圖2]係概略地表示實施形態之半導體發光元件之構成之俯視圖。 [圖3]係概略地表示反射電極之功能之圖。 [圖4]係概略地表示半導體發光元件之製造步驟之圖。 [圖5]係概略地表示半導體發光元件之製造步驟之圖。 [圖6]係概略地表示半導體發光元件之製造步驟之圖。 [圖7]係概略地表示半導體發光元件之製造步驟之圖。 [圖8]係概略地表示半導體發光元件之製造步驟之圖。 [圖9]係概略地表示半導體發光元件之製造步驟之圖。 [圖10]係概略地表示其他實施形態之半導體發光元件之構成之剖視圖。
10:半導體發光元件
12:台面
20:基板
20a:第一主表面
20b:第二主表面
22:基底層
24:n型半導體層
24a:第一上表面
24b:第二上表面
26:活性層
28:p型半導體層
30:p型第一包覆層
31:p型第二包覆層
32:p型接觸層
34:p側接觸電極
36:n側接觸電極
36a:第一Ti層
36b:Al層
36c:第二Ti層
36d:TiN層
38:保護層
38n:n側開口
38p:p側開口
44:p側墊電極
46:n側墊電極
W1:第一區域
W2:第二區域
W3:第三區域
W4:第四區域

Claims (8)

  1. 一種半導體發光元件,係具備:n型氮化鋁鎵系半導體材料的n型半導體層,係設置於基板的主表面上;氮化鋁鎵系半導體材料的活性層,係設置於前述n型半導體層上,以發出波長320nm以下的紫外光之方式所構成;p型半導體層,係設置於前述活性層上;p側接觸電極,係設置於前述p型半導體層上;以及n側接觸電極,係設置於前述n型半導體層上之與前述活性層的形成區域不同之區域,並包含:鈦層,係具有1nm以上至2nm以下的厚度且與前述n型半導體層接觸;以及鋁層,係具有100nm以上的厚度且設置於前述鈦層上;當前述基板的前述主表面的整體面積設為S0、將前述p型半導體層上之前述p側接觸電極的形成面積設為S1、將前述n型半導體層上之前述n側接觸電極的形成面積設為S2、將前述p側接觸電極相對於從前述p型半導體層側所射入之波長280nm的紫外光之反射率設為R1、將前述n側接觸電極相對於從前述n型半導體層側所射入之波長280nm的紫外光之反射率設為R2時,(S1/S0)×R1+(S2/S0)×R2≧0.5、S1>S2、R1≦R2。
  2. 如請求項1所記載之半導體發光元件,其中前述p型半導體層係包含與前述p側接觸電極接觸的p型接觸層,前述p型接觸層係氮化鋁比率為20%以下的p型氮化鋁鎵或p型氮化鎵;前述p型接觸層與前述p側接觸電極的接觸電阻係1×10-2Ω‧cm2以下。
  3. 一種半導體發光元件,係具備:n型氮化鋁鎵系半導體材料的n型半導體層,係設置於基板的主表面上;氮化鋁鎵系半導體材料的活性層,係設置於前述n型半導體層上,以發出波長320nm以下的紫外光之方式所構成;p型半導體層,係設置於前述活性層上;p側接觸電極,係設置於前述p型半導體層上;以及n側接觸電極,係設置於前述n型半導體層上之與前述活性層的形成區域不同之區域;前述p型半導體層係包含與前述p側接觸電極接觸的p型接觸層,前述p型接觸層係氮化鋁比率為20%以下的p型氮化鋁鎵或p型氮化鎵;前述p型接觸層與前述p側接觸電極的接觸電阻係1×10-2Ω‧cm2以下;當前述基板的前述主表面的整體面積設為S0、將前述p型半導體層上之前述p側接觸電極的形成面積設為S1、將前述n型半導體層上之前述n側接觸電極的形成面積設為S2、將前述p側接觸電極相對於從前述p型半導體層側所射入之波長280nm的紫外光之反射率設為R1、將前述n側接觸電極相對於從前述n型半導體層側所射入之波長280nm的紫外光之反射率設為R2時,(S1/S0)×R1+(S2/S0)×R2≧0.5、S1>S2、R1≦R2。
  4. 如請求項1至3中任一項所記載之半導體發光元件,其中前述p側接觸電極係包含與前述p型半導體層接觸的銠層。
  5. 如請求項1至3中任一項所記載之半導體發光元件,其中前述p側接觸電極係包含: 透明導電性氧化物層,係與前述p型半導體層接觸;以及金屬層,係設置於前述透明導電性氧化物層上;當將前述透明導電性氧化物層相對於從前述p型半導體層側所射入之波長280nm的紫外光之透過率設為T且將前述金屬層相對於從前述透明導電性氧化物層側所射入之波長280nm的紫外光之反射率設為R時,前述p側接觸電極的前述反射率R1為R1=RT2
  6. 如請求項5所記載之半導體發光元件,其中前述透明導電性氧化物層為具有4nm以下的厚度的氧化銦錫層,前述金屬層係包含具有100nm以上的厚度的鋁層。
  7. 如請求項1至3中任一項所記載之半導體發光元件,其中(S1+S2)/S0≧0.7,R1≧0.6,R2≧0.8。
  8. 如請求項2或3所記載之半導體發光元件,其中前述p型接觸層的厚度係20nm以下。
TW109119119A 2019-06-11 2020-06-08 半導體發光元件 TWI741638B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-108417 2019-06-11
JP2019108417 2019-06-11
JP2019-189327 2019-10-16
JP2019189327A JP6780083B1 (ja) 2019-06-11 2019-10-16 半導体発光素子

Publications (2)

Publication Number Publication Date
TW202103341A TW202103341A (zh) 2021-01-16
TWI741638B true TWI741638B (zh) 2021-10-01

Family

ID=73022441

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109119119A TWI741638B (zh) 2019-06-11 2020-06-08 半導體發光元件

Country Status (3)

Country Link
US (1) US11404606B2 (zh)
JP (1) JP6780083B1 (zh)
TW (1) TWI741638B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811293B1 (ja) * 2019-08-21 2021-01-13 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
JP6839320B1 (ja) 2020-05-13 2021-03-03 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
JP6892538B1 (ja) * 2020-05-13 2021-06-23 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
US11600656B2 (en) 2020-12-14 2023-03-07 Lumileds Llc Light emitting diode device
TWI748856B (zh) * 2021-01-29 2021-12-01 錼創顯示科技股份有限公司 微型發光二極體及顯示面板
JP2022172792A (ja) * 2021-05-07 2022-11-17 日機装株式会社 窒化物半導体発光素子
JP7344936B2 (ja) 2021-07-30 2023-09-14 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
JP7217819B1 (ja) 2022-01-18 2023-02-03 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
JP7269414B1 (ja) 2022-04-28 2023-05-08 日機装株式会社 半導体発光素子および半導体発光素子の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041133A (ja) * 2004-07-26 2006-02-09 Matsushita Electric Ind Co Ltd 発光装置
JP2007103690A (ja) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd 半導体発光装置及びその製造方法
JP2018049958A (ja) * 2016-09-21 2018-03-29 豊田合成株式会社 発光素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027540A (ja) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd 半導体発光素子およびこれを用いた照明装置
JP2007103689A (ja) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd 半導体発光装置
DE102009034359A1 (de) * 2009-07-17 2011-02-17 Forschungsverbund Berlin E.V. P-Kontakt und Leuchtdiode für den ultravioletten Spektralbereich
WO2011077748A1 (ja) * 2009-12-24 2011-06-30 Dowaエレクトロニクス株式会社 バーチカル型iii族窒化物半導体発光素子およびその製造方法
US8822976B2 (en) * 2011-03-23 2014-09-02 Soko Kagaku Co., Ltd. Nitride semiconductor ultraviolet light-emitting element
JP2014096539A (ja) * 2012-11-12 2014-05-22 Tokuyama Corp 紫外発光素子、および発光構造体
KR20140086624A (ko) * 2012-12-28 2014-07-08 삼성전자주식회사 질화물 반도체 발광 소자
JP2015216352A (ja) * 2014-04-24 2015-12-03 国立研究開発法人理化学研究所 紫外発光ダイオードおよびそれを備える電気機器
JP2017139414A (ja) * 2016-02-05 2017-08-10 旭化成株式会社 紫外線発光素子及びそれを備えた装置
JP6805674B2 (ja) * 2016-09-21 2020-12-23 豊田合成株式会社 発光素子及びその製造方法
JP6871706B2 (ja) * 2016-09-30 2021-05-12 日機装株式会社 半導体発光素子の製造方法
JP6803411B2 (ja) * 2017-02-17 2020-12-23 Dowaエレクトロニクス株式会社 深紫外発光素子およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041133A (ja) * 2004-07-26 2006-02-09 Matsushita Electric Ind Co Ltd 発光装置
JP2007103690A (ja) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd 半導体発光装置及びその製造方法
JP2018049958A (ja) * 2016-09-21 2018-03-29 豊田合成株式会社 発光素子

Also Published As

Publication number Publication date
US20200395506A1 (en) 2020-12-17
US11404606B2 (en) 2022-08-02
JP6780083B1 (ja) 2020-11-04
JP2020205401A (ja) 2020-12-24
TW202103341A (zh) 2021-01-16

Similar Documents

Publication Publication Date Title
TWI741638B (zh) 半導體發光元件
TWI734445B (zh) 半導體發光元件以及半導體發光元件的製造方法
JP7307662B2 (ja) 半導体発光素子および半導体発光素子の製造方法
TWI753536B (zh) 半導體發光元件以及半導體發光元件的製造方法
JP7049186B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP7146589B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP2005210051A (ja) フリップチップ用窒化物半導体発光素子
TWI720493B (zh) 半導體發光元件以及半導體發光元件的製造方法
JP7312056B2 (ja) 半導体発光素子および半導体発光素子の製造方法
CN113675310B (zh) 半导体发光元件及半导体发光元件的制造方法
TWI795820B (zh) 半導體發光裝置以及半導體發光裝置的製造方法
TWI783475B (zh) 半導體發光元件以及半導體發光元件的製造方法
JP7146562B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP4411871B2 (ja) 窒化物半導体発光素子
TWI825869B (zh) 半導體發光元件
TW202315159A (zh) 半導體發光元件以及半導體發光元件的製造方法
JP6837593B1 (ja) 半導体発光素子および半導体発光素子の製造方法
JP2012178453A (ja) GaN系LED素子
TWI832544B (zh) 半導體發光元件以及半導體發光元件的製造方法
JP7296002B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP7296001B2 (ja) 半導体発光素子および半導体発光素子の製造方法