TWI727941B - 脫氫酶催化的2,5-呋喃二甲酸(fdca)之製造 - Google Patents

脫氫酶催化的2,5-呋喃二甲酸(fdca)之製造 Download PDF

Info

Publication number
TWI727941B
TWI727941B TW105104651A TW105104651A TWI727941B TW I727941 B TWI727941 B TW I727941B TW 105104651 A TW105104651 A TW 105104651A TW 105104651 A TW105104651 A TW 105104651A TW I727941 B TWI727941 B TW I727941B
Authority
TW
Taiwan
Prior art keywords
cell
fdca
hmfca
dehydrogenase
amino acid
Prior art date
Application number
TW105104651A
Other languages
English (en)
Other versions
TW201638336A (zh
Inventor
朱斯納爾思哈拉德裘翰
Original Assignee
荷蘭商普拉克生物化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商普拉克生物化學股份有限公司 filed Critical 荷蘭商普拉克生物化學股份有限公司
Publication of TW201638336A publication Critical patent/TW201638336A/zh
Application granted granted Critical
Publication of TWI727941B publication Critical patent/TWI727941B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/04Oxygen as only ring hetero atoms containing a five-membered hetero ring, e.g. griseofulvin, vitamin C
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01003Aldehyde dehydrogenase (NAD+) (1.2.1.3)

Abstract

本發明係關於一種表現具有5-羥甲基-2-呋喃甲酸脫氫酶活性之多肽的細胞,以及係關於一種表現具有呋喃化合物運輸能力之多肽的細胞。本發明亦係關於一種用於2,5-呋喃-二甲酸(FDCA)之製造的方法,其中本發明之細胞係用於FDCA之呋喃前驅物之氧化。

Description

脫氫酶催化的2,5-呋喃二甲酸(FDCA)之製造
本發明係關於酵素學、分子遺傳學、生物轉變及發酵技術之領域。詳言之,本發明係關於將5-(羥甲基)-2-呋喃甲酸氧化成5-甲醯基-2-呋喃甲酸的脫氫酶,且係關於編碼此等脫氫酶之多核苷酸,及此等脫氫酶於羥甲基呋喃醛至2,5-呋喃二甲酸之生物轉變中的用途。
2,5-呋喃二甲酸(2,5-furandicarboxylic acid;FDCA)為可應用於聚酯之製造中單體化合物,該等聚酯具有巨大的經濟影響。該領域中極為重要的化合物為聚對苯二甲酸乙二酯(polyethyleneterephthalate;PET),其係由對苯二甲酸(terephthalic acid;PTA)及乙二醇製造。FDCA可替代聚酯PET中之PTA,在該狀況下得到聚乙烯呋喃二甲酸酯(polyethylenefurandicarboxylate;PEF)。PEF在大聚酯市場中在替換PET方面具有良好潛力。不僅因為相較於PET時PEF具有優異的性質,而且因為PEF可來源於可再生原料。FDCA可由糖以化學方式(De Jong 等人2012.In:Biobased Monomers,Polymers,and Materials;Smith,P.等人;ACS Symposium Series;American Chemical Society:Washington,DC)或以組合的化學-生物途徑(Wiercks等人2011.Appl Microbiol Biotechnol 92:1095-1105)製造。在後一種狀況下,使諸如葡萄糖或果糖的單體糖化學轉變成5-(羥甲基)-2-呋喃甲醛(5-(hydroxymethyl)-2-furaldehyde;HMF),隨後可將該5-(羥甲基)-2-呋喃甲醛藉由酶氧化成FDCA。
用於自HMF製造FDCA之生物途徑已基於巴西貪銅菌(Cupriavidus basilensis)HMF14之HMF降解菌株之分離而開發(Wierckx等人2010.Microbial Technology 3:336-343)。已鑑定編碼涉及巴西貪銅菌HMF14之HMF降解途徑的酶之一群基因,且相關基因係異源性地表現於螢光假單胞菌(Pseudomonas putida)菌株中(Koopman等人2010.PNAS 107:4919-4924),該螢光假單胞菌菌株由此獲得代謝HMF之能力。降解途徑中之第一氧化步驟涉及5-(羥甲基)-2-呋喃甲酸(5-(hydroxymethyl)-2-furoic acid;HMFCA)之形成,該5-(羥甲基)-2-呋喃甲酸繼而經氧化成5-甲醯基-2-呋喃甲酸(5-formyl-2-furoic acid;FFA)且進一步氧化成FDCA。在後續研究(Koopman等人 2010.Bioresource Technology 101:6291-6296;及WO2011/026913)中,僅將巴西貪銅菌HMF14的編碼酶HMF氧化還原酶之hmfH基因引入螢光假單胞菌中。該氧化還原酶主要在HMFCA充當氧化酶,但亦可氧化HMF或FFA。僅hmfH基因之異源表現允許螢光假單胞菌自HMF製造FDCA。在進一步最佳化研究中(Wierckx等人2011,同上;WO 2012/064195),使兩種另外的基因表現於螢光假單胞菌中,該等基因分別編碼HMFCA運輸蛋白及具有未知特異性之醛脫氫酶。
然而,相較於脫氫酶催化途徑而言,用於自HMF製造FDCA之氧化酶催化途徑具有若干固有缺點,該等缺點至少包括毒性H2O2之產生、缺乏自氧化步驟的能量增量及對O2之不良親和力以及對系統之相關的高氧要求。因此,本發明之一目標係藉由提供用於新穎脫氫酶催化途徑以供自呋喃前驅物(諸如HMF)製造FDCA之手段及方法,以及提供用於在此等方法中使用新穎HMFCA運輸蛋白之手段及方法來解決此等缺點。
在第一態樣中,本發明係關於一種包含表現構築體之細胞,該表現構築體用於表現編碼脫氫酶之核苷酸序列,該脫氫酶具有胺基酸序列,該胺基酸序列具有與SEQ ID NO:1至11之胺基酸序列中任一者至少45%的一致性,其中,相較於缺乏該表現構築體之相應 野生型細胞而言,該表現構築體可表現於該細胞中且該脫氫酶之表現向該細胞賦予或增大該細胞中將5-羥甲基-2-呋喃甲酸(5-hydroxymethyl-2-furancarboxylic acid;HMFCA)氧化成5-甲醯基-2-呋喃甲酸(5-formyl-2-furoic acid;FFA)之能力。較佳地,該細胞進一步具有:a)醛脫氫酶活性,該醛脫氫酶活性將呋喃醛氧化成相應呋喃羧酸,其中該細胞較佳地包含第二表現構築體,該第二表現構築體用於表現編碼醛脫氫酶之核苷酸序列,該醛脫氫酶包含胺基酸序列,該胺基酸序列具有與胺基酸序列SEQ ID NO:24、25、26、27、28、29及30中任一者至少45%的一致性,其中,相較於缺乏該第二表現構築體之相應野生型細胞而言,該第二表現構築體可表現於該細胞中且該醛脫氫酶之表現向該細胞賦予或增大該細胞中以下能力中之至少一種:i)將5-羥甲基呋喃醛(5-hydroxymethylfurfural;HMF)氧化成HMFCA、ii)將DFF氧化成FFA以及iii)將FFA氧化成FDCA;以及,b)將呋喃化合物運輸至該細胞中及/或運輸出該細胞之能力,其中該細胞較佳地包含第三表現構築體,該第三表現構築體用於表現編碼具有將至少HMFCA運輸至該細胞中之能力的多肽的核苷酸序列,該多肽包含胺基酸序列,該胺基酸序列具有與胺基酸序列SEQ ID NO:17、31、32、33及34中任一者至少 45%的一致性,其中,相較於缺乏該第三表現構築體之相應野生型細胞而言,該第三表現構築體可表現於該細胞中且該多肽之表現向該細胞賦予或增大該細胞中將至少HMFCA運輸至該細胞中之能力。
在另一態樣中,本發明係關於一種包含表現構築體之細胞,該表現構築體用於表現編碼具有將至少HMFCA運輸至該細胞中之能力的多肽之核苷酸序列,該多肽包含胺基酸序列,該胺基酸序列具有與SEQ ID NO:17之胺基酸序列至少86.5%的一致性,其中,相較於缺乏該表現構築體之相應野生型細胞而言,該表現構築體可表現於該細胞中且該多肽之表現向該細胞賦予或增大該細胞中該至少將至少HMFCA運輸至該細胞中之能力,且其中該細胞進一步包含用於將HMF轉化成FDCA之酶,其中用於將HMF轉化成FDCA之酶較佳地包括以下至少一者:a)將HMFCA氧化成FFA之醇脫氫酶,及將呋喃醛氧化成相應呋喃羧酸之醛脫氫酶活性;以及,b)將HMF、2,5-二羥基甲基呋喃、HMFCA、FFA及2,5-二甲醯基呋喃中之一或多者氧化成FDCA之氧化還原酶,及視情況,將呋喃醛氧化成相應呋喃羧酸之醛脫氫酶活性。
根據本發明之細胞較佳為微生物細胞,諸如細菌、酵母或絲狀真菌細胞。本發明之酵母或絲狀真菌細胞較佳係選自來自由以下各項組成之群的屬:念珠菌屬(Candida)、漢遜氏菌屬(Hansenula)、克魯維酵 母屬(Kluyveromyces)、畢赤酵母菌屬(Pichia)、酵母菌屬(Saccharomyces)、裂殖酵母屬(Schizosaccharomyces)、耶氏酵母屬(Yarrowia)、枝頂孢屬(Acremonium)、傘菌屬(Agaricus)、麴菌屬(Aspergillus)、短梗黴屬(Aureobasidium)、毀絲黴屬(Myceliophthora)、拉丁金色孢菌屬(Chrysosporium)、鬼傘屬(Coprinus)、隱球菌屬(Cryptococcus)、線黑粉酵母屬(Filibasidium)、梭黴菌屬(Fusarium)、腐質黴屬(Humicola)、巨座殼屬(Magnaporthe)、白黴菌屬(Mucor)、毀絲黴屬(Myceliophthora)、新美鞭菌屬(Neocallimastix)、紅黴菌屬(Neurospora)、擬青黴屬(Paecilomyces)、青黴菌屬(Penicillium)、單鞭毛菌屬(Piromyces)、原毛平革菌屬(Panerochaete)、側耳屬(Pleurotus)、裂褶菌屬(Schizophyllum)、籃狀菌屬(Talaromyces)、嗜熱子囊菌屬(Thermoascus)、梭孢殼菌屬(Thielavia)、彎頸黴屬(Tolypocladium)及木黴菌屬(Trichoderma),最佳為選自來自由以下各項組成之群的物種之酵母或絲狀真菌細胞:乳酸克魯維酵母菌(Kluyveromyces lactis)、啤酒酵母菌(S.cerevisiae)、多形漢遜氏菌(Hansenula polymorpha)、解脂耶氏酵母菌(Yarrowia lipolytica)、嗜甲醇畢赤酵母菌(Pichia pastoris)、黑色麴菌(Aspergillus niger)、泡盛麴菌(Aspergillus awamori)、臭麴菌(Aspergillus foetidus)、醬油麴菌(Aspergillus sojae)、薰煙麴菌(Aspergillus fumigatus)、愛默生籃狀菌(Talaromyces emersonii)、米麴菌(Aspergillus oryzae)、嗜熱毀絲黴菌(Myceliophthora thermophila)、里氏木黴菌(Trichoderma reesei)及產黃青黴菌(Penicillium chrysogenum)。本發明之細菌細胞較佳地選自來自由以下各項組成之群的屬:大腸桿菌屬(Escherichia)、念珠藻屬(Anabaena)、氣芽孢桿菌屬(Aeribacillus)、硫胺素芽孢桿菌屬(Aneurinibacillus)、伯克氏菌屬(Burkholderia)、慢生型根瘤菌屬(Bradyrhizobium)、柄桿菌屬(Caulobacter)、貪銅菌屬(Cupriavidus)、脫硫腸狀菌屬(Desulfotomaculum)、脫硫孢菌屬(Desulfurispora)、葡糖酸桿菌屬(Gluconobacter)、紅桿菌屬(Rhodobacter)、丙酸互營菌屬(Pelotomaculum)、假單胞菌屬(Pseudomonas)、副球菌屬(Paracoccus)、桿菌屬(Bacillus)、地芽孢桿菌屬(Geobacillus)、短芽胞桿菌屬(Brevibacillus)、短桿菌屬(Brevibacterium)、棒狀桿菌屬(Corynebacterium)、根瘤菌屬(Rhizobium)(中華 根瘤菌屬(Sinorhizobium))、黃桿菌屬(Flavobacterium)、克雷白氏菌屬(Klebsiella)、腸內桿菌屬(Enterobacter)、乳桿菌屬(Lactobacillus)、乳酸球菌屬(Lactococcus)、甲基桿菌屬(Methylobacterium)、勞爾氏菌屬(Ralstonia)、紅色無硫黃細菌屬(Rhodopseudomonas)、葡萄球菌屬(Staphylococcus)及鏈黴菌屬(Streptomyces),更佳為選自來自由以下各項組成之群的物種之細菌細胞:蒼白好氧小桿菌(A.pallidus)、新地站解硫胺素芽孢菌(A.terranovensis)、枯草芽孢桿菌(B.subtilis)、液化澱粉芽孢桿菌(B.amyloliquefaciens)、凝結芽孢桿菌(B.coagulans)、韓研所芽孢桿菌(B.kribbensis)、地衣芽孢桿菌(B.licheniformis)、潘地芽孢桿菌(B.puntis)、巨大芽孢桿菌(B.megaterium)、耐鹽芽孢桿菌(B.halodurans)、短小芽孢桿菌(B.pumilus)、熱紅短芽孢桿菌(B.thermoruber)、人參田地芽孢桿菌(B.panacihumi)、巴西貪銅菌(C.basilensis)、庫氏脫硫腸狀菌(D.kuznetsovii)、嗜熱脫硫腸狀菌(D.thermophila)、嗜熱地芽孢桿菌(G.kaustophilus)、氧化葡糖酸桿菌(Gluconobacter oxydans)、新月柄桿菌(Caulobacter crescentus)CB 15、扭脫甲基桿菌 (Methylobacterium extorquens)、類球紅桿菌(Rhodobacter sphaeroides)、丙酸互營菌(Pelotomaculum thermopropionicum)、產玉米黃質假單胞菌(Pseudomonas zeaxanthinifaciens)、螢光假單胞菌(Pseudomonas putida)、脫氮副球菌(Paracoccus denitrificans)、大腸桿菌(E.coli)、麩胺酸棒狀桿菌(C.glutamicum)、肉葡萄球菌(Staphylococcus carnosus)、變鉛青鏈黴菌(Streptomyces lividans)、苜蓿中華根瘤菌(Sinorhizobium melioti)及放射型根瘤菌(Rhizobium radiobacter)。
在另一態樣中,本發明係關於一種方法,該方法係用於製備具有如上文態樣所定義的HMFCA脫氫酶活性之多肽,及/或用於製備具有如上文態樣所定義的呋喃化合物運輸能力之多肽。該方法較佳包含以下步驟:在有助於多肽之表現的條件下培養如上文態樣所定義的細胞,及視情況回收多肽。
在另一態樣中,本發明係關於一種用於將HMFCA氧化成FFA之方法,該方法包含以下步驟:於HMFCA存在下,較佳在有助於HMFCA藉由細胞氧化之條件下,根據上文態樣中任一態樣來培育該細胞。
在又一態樣中,本發明係關於一種用於製造FDCA之方法,該方法包含以下步驟:在包含FDCA之 一或多種呋喃前驅物之培養基中,較佳在有助於FDCA之呋喃前驅物藉由細胞氧化成FDCA之條件下,根據上文態樣中任一態樣來培育該細胞,及視情況回收該FDCA,其中FDCA之至少一種呋喃前驅物較佳係選自由HMF、2,5-二羥基甲基呋喃(2,5-dihydroxymethyl furan;DHF,或HMF-OH)、HMFCA、FFA及2,5-二甲醯基呋喃(2,5-diformyl furan;DFF)組成之群,其中HMF最佳,其中FDCA之該等呋喃前驅物係自一或多種六碳糖、較佳自木質纖維素生物質獲得的一或多種六碳糖獲得,較佳係藉由酸催化脫水獲得,且其中該FDCA較佳係藉由包含酸或鹽沉澱繼之以冷卻結晶及/或溶劑萃取之方法自該培養基回收。
在另一態樣中,本發明係關於一種用於自一或多種FDCA單體製造聚合物之方法,該方法包含以下步驟:a)在根據上文態樣之方法中製備FDCA單體;以及自a)中獲得的該FDCA單體製造聚合物。
本發明亦係關於根據上文態樣中任何態樣之細胞用於將呋喃前驅物中之一或多者生物轉變成FDCA之用途,其中FDCA之至少一種呋喃前驅物較佳係選自由HMF、DHF、HMFCA、FFA及DFF組成之群,其中HMF最佳。
在一個其他態樣中,本發明係關於一種具有HMFCA脫氫酶活性之多肽,該多肽包含胺基酸序列, 該胺基酸序列具有與SEQ ID NO:1之胺基酸序列至少81.85%的序列一致性。在此態樣中,本發明亦係關於一種核酸分子,該核酸分子包含以下至少一者:a)核苷酸序列,該核苷酸序列編碼具有HMFCA脫氫酶活性之多肽,該多肽包含胺基酸序列,該胺基酸序列具有與SEQ ID NO:1之胺基酸序列至少81.85%的序列一致性;b)核苷酸序列,該核苷酸序列在SEQ ID NO:12或13中闡明;c)如(a)或(b)中所定義的核苷酸序列之片段,該片段之長度為10、15、20、30、50或100個核苷酸;d)核苷酸序列,該核苷酸序列之序列由於遺傳碼之簡並性而不同於b)或c)之核苷酸序列之序列;以及e)核苷酸序列,該核苷酸序列為如a)至c)中所定義的核苷酸序列之反轉補體,其中該核酸分子較佳為載體。在此態樣中,本發明進一步係關於一種包含此態樣之多肽及此態樣之核酸分子中之至少一者的細胞,其中該細胞較佳為培養細胞。
在最後態樣中,本發明係關於一種具有將至少HMFCA運輸至細胞中之能力的多肽,該多肽包含胺基酸序列,該胺基酸序列具有與SEQ ID NO:17之胺基酸序列至少86.5%的序列一致性。在此態樣中,本發明亦係關於一種核酸分子,該核酸分子包含以下至少一者:a)核苷酸序列,該核苷酸序列編碼具有將至少HMFCA運輸至細胞中之能力的多肽,該多肽包含胺基酸序列,該胺基酸序列具有與SEQ ID NO:17之胺基 酸序列至少86.5%的序列一致性;b)核苷酸序列,該核苷酸序列在SEQ ID NO:18中闡明;c)如(a)或(b)中所定義的核苷酸序列之片段,該片段之長度為10、15、20、30、50或100個核苷酸;d)核苷酸序列,該核苷酸序列之序列由於遺傳碼之簡並性而不同於b)或c)之核苷酸序列之序列;以及e)核苷酸序列,該核苷酸序列為如a)至d)中所定義的核苷酸序列之反轉補體,其中該核酸分子較佳為載體。在此態樣中,本發明進一步係關於一種包含此態樣之多肽及此態樣之核酸分子中之至少一者的細胞,其中該細胞較佳為培養細胞。
發明描述 定義
術語「同源性」、「序列一致性」及類似物在本文中可互換地使用。序列一致性在本文中定義為兩個或兩個以上胺基酸(多肽或蛋白質)序列或兩個或兩個以上核酸(多核苷酸)序列之間的關係,此係藉由將序列比較來判定。在此項技術中,「一致性」亦意指胺基酸或核酸序列之間的序列相關性程度,如依狀況而定,如藉由此等序列之串列之間的匹配來判定。兩個胺基酸序列之間的「相似性」係藉由將一個多肽之胺基酸序列及其保守胺基酸取代基與第二多肽之序列比較來判定。「一致性」及「相似性」可藉由已知方法容易地計算。
「序列一致性」及「序列相似性」可取決於兩個序列之長度藉由使用總體或局部比對演算法進行兩 個肽或兩個核苷酸序列之比對來判定。類似長度之序列較佳地使用總體比對演算法(例如,Needleman Wunsch)來比對,該演算法最佳地在整個長度上比對序列,而實質上不同長度之序列較佳使用局部比對演算法(例如,Smith Waterman)來比對。當序列(當藉由例如使用預設參數之程式GAP或BESTFIT最佳比對時)共用至少某一最小百分比之序列一致性(如下文所定義的),則該等序列可稱為「實質上一致」或「基本上類似」。GAP使用Needleman及Wunsch總體比對演算法以在兩個序列的整個長度(全長)上比對該等序列,從而最大化匹配之數目並最小空隙之數目。當兩個序列具有類似長度時,總體比對適合用於判定序列一致性。通常,使用GAP預設參數,其中空隙產生罰分=50(核苷酸)/8(蛋白質),且空隙伸展罰分=3(核苷酸)/2(蛋白質)。對核苷酸而言,所使用預設記分矩陣為nwsgapdna,且對蛋白質而言,預設記分矩陣為Blosum62(Henikoff & Henikoff,1992,PNAS 89,915-919)。針對序列一致性百分比之序列比對及記分可使用電腦程式來判定,該電腦程式諸如可購自Accelrys Inc.,9685 Scranton Road,San Diego,CA 92121-3752 USA之10.3版GCG Wisconsin Package,或使用開放源軟體來判定,該開放源軟體諸如在EmbossWIN 2.10.0版中的程式「needle」(使用總體Needleman Wunsch演算法) 或「water」(使用局部Smith Waterman演算法),其使用如對上文GAP相同的參數或使用預設設置(對『needle』及『water』兩者而言且對蛋白質比對及DNA比對兩者而言,預設Gap開口罰分為10.0,且預設空隙伸展罰分為0.5;預設記分矩陣對蛋白質而言為Blossum62且對DNA而言為DNAFull)。當序列具有實質上不同總長度時,局部比對較佳,該等局部比對諸如使用Smith Waterman演算法之彼等局部比對。
或者,相似性或一致性百分比可藉由使用諸如FASTA、BLAST等之演算法對公共資料庫進行搜索而判定。因此,本發明之核酸及蛋白質序列可進一步用作「查詢序列」,以便對公共資料庫進行搜索,從而例如鑑定其他家族成員或相關序列。此等搜索可使用Altschul等人(1990)J.Mol.Biol.215:403-10之BLASTn及BLASTx程式(2.0版)來進行。BLAST核苷酸搜索可利用NBLAST程式、記分=100、字長=12來進行,以獲得與本發明之氧化還原酶核酸分子同源的核苷酸序列。BLAST蛋白質搜索可利用BLASTx程式、記分=50、字長=3來進行,以獲得與本發明之蛋白質分子同源的胺基酸序列。為獲得用於比較目的的空隙化比對,可如Altschul等人,(1997)Nucleic Acids Res.25(17):3389-3402中所述利用Gapped BLAST。當利用BLAST及Gapped BLAST程式時,可使用各別程式(例如,BLASTx及BLASTn) 之預設參數。於http://www.ncbi.nlm.nih.gov/參見美國國家生物技術資訊中心之首頁。
視情況,在判定胺基酸相似性之程度方面,熟練技藝人士亦可考慮所謂「保守」胺基酸取代,如將對熟練技藝人士而言為明顯的。保守胺基酸取代係指具有類似側鏈之殘基的可互換性。例如,一組具有脂族側鏈之胺基酸為甘胺酸、丙胺酸、纈胺酸、白胺酸及異白胺酸;一組具有脂族羥基側鏈之胺基酸為絲胺酸及蘇胺酸;一組具有含醯胺側鏈之胺基酸為天冬醯胺酸及麩醯胺酸;一組具有芳族側鏈之胺基酸為苯基丙胺酸、酪胺酸及色胺酸;一組具有鹼性側鏈之胺基酸為離胺酸、精胺酸及組胺酸;且一組具有含硫側鏈之胺基酸為半胱胺酸及甲硫胺酸。較佳保守胺基酸取代群組為纈胺酸-白胺酸-異白胺酸、苯基丙胺酸-酪胺酸、離胺酸-精胺酸、丙胺酸-纈胺酸及天冬醯胺酸-麩醯胺酸。本文揭示的胺基酸序列之取代變異體為彼等胺基酸序列,其中所揭示序列中之至少一個殘基已移除且不同殘基插入該殘基之位置中。較佳地,胺基酸變化為保守的。用於天然存在胺基酸中每一者的較佳保守取代如下:Ala至ser;Arg至lys;Asn至gln或his;Asp至glu;Cys至ser或ala;Gln至asn;Glu至asp;Gly至pro;His至asn或gln;Ile至leu或val;Leu至ile或val;Lys至arg;gln或glu;Met至leu或ile;Phe至met,leu或tyr;Ser 至thr;Thr至ser;Trp至tyr;Tyr至trp或phe;以及Val至ile或leu。
如本文所使用,術語「選擇性地雜交(selectively hybridizing)」、「選擇性地雜交(hybridizes selectively)」及類似術語意欲描述用於雜交及洗滌之條件,在該等條件下,彼此至少66%、至少70%、至少75%、至少80%,更佳至少85%,甚至更佳至少90%,較佳至少95%,更佳至少98%或更大較佳至少99%同源的核苷酸序列典型保持彼此雜交。換言之,此等雜交序列可共用至少45%、至少50%、至少55%、至少60%、至少65、至少70%、至少75%、至少80%,更佳至少85%,甚至更佳至少90%,更佳至少95%,更佳至少98%或更大較佳至少99%序列一致性。
此等雜交條件之較佳非限制性實例為在6X氯化鈉/檸檬酸鈉(sodium chloride/sodium citrate;SSC)中於約45℃下雜交,繼之以在1 X SSC、0.1%SDS中於約50℃、較佳於約55℃、較佳於約60℃及甚至更佳於約65℃下之一或多次洗滌。
高度嚴格條件包括例如於約68℃下在5x SSC/5x丹哈特氏溶液/1.0%SDS中雜交及在0.2x SSC/0.1%SDS中於室溫下洗滌。或者,洗滌可在42℃下進行。
熟練技藝人士將知曉何種條件適用於嚴格及高度嚴格雜交條件。關於此等條件之另外的指導在此項 技術中可易於獲得,例如可在Sambrook等人,1989,Molecular Cloning,A Laboratory Manual,Cold Spring Harbor Press,N.Y.以及Ausubel等人(編),Sambrook及Russell(2001)「Molecular Cloning:A Laboratory Manual(第三版),Cold Spring Harbor Laboratory,Cold Spring Harbor Laboratory Press,New York 1995,Current Protocols in Molecular Biology,(John Wiley & Sons,N.Y.)中獲得。
當然,僅雜交至poly A序列(諸如mRNA之3'末端poly(A)束)或僅雜交至T(或U)殘基之互補伸長體的多核苷酸將不包括於本發明中用於特定地雜交至本發明之核酸之一部分的多核苷酸,因為此等多核苷酸將雜交至含有poly(A)伸長體或其補體的任何核酸分子(例如,實際上任何雙鏈cDNA純系)。
「核酸構築體」或「核酸載體」在本文中理解為意指由重組DNA技術之使用而產生的人造核酸分子。術語「核酸構築體」因此不包括天然存在的核酸分子,但核酸構築體可包含天然存在的核酸分子(其部分)。術語「表現載體」或「表現構築體」係指能夠在與此等序列相容的寄主細胞或寄主生物體中實現基因之表現的核苷酸序列。此等表現載體典型地包括至少適合的轉錄調控序列及視情況3'轉錄終止信號。亦可存在實現表現所必要的或有助於實現表現的另外的因素,諸如表 現強化子元件。表現載體將引入適合的寄主細胞中且能夠在寄主細胞之活體外細胞培養物中實現編碼序列之表現。表現載體將適合於在本發明之寄主細胞或生物體中的複製。
如本文所使用,術語「啟動子」或「轉錄調控序列」係指核酸片段,該等核酸片段起作用來控制一或多個編碼序列之轉錄,且位於相對於編碼序列之轉錄起始位點的轉錄方向之上游,且在結構上藉由用於DNA依賴性RNA聚合酶之結合位點、轉錄起始位點及任何其他DNA序列之存在而獲鑑定,該等其他DNA序列包括但不限於轉錄因子結合位點、抑制蛋白及活化子蛋白結合位點,以及熟習此項技術者所知的直接或間接調控自啟動子轉錄之量的核苷酸之任何其他序列。「構成性」啟動子為在大多數生理學及發育條件下、在大多數組織中為活性的啟動子。「可誘導」啟動子為例如藉由化學誘導物之應用而受生理學或發育方面調控的啟動子。
術語「可選擇標誌物」為一般技藝人士所熟悉的術語,且在本文中用於描述在表現時可用於選擇含有可選擇標誌物之一或多個細胞的任何遺傳實體。術語「報告基因」可與標誌物可互換地使用,但該術語係主要用於指代可見標誌物,諸如綠色螢光蛋白質(green fluorescent protein;GFP)。可選擇標誌物可顯性的或隱性的或雙向的。
如本文所使用,術語「可操作地連接」係指多核苷酸元件以功能關係之連接。當使核酸與另一核酸序列處於一功能關係時,即為將核酸「可操作地連接」。例如,若轉錄調控序列影響編碼序列之轉錄,則轉錄調控序列係可操作地連接至編碼序列。可操作地連接意指所連接的DNA序列典型地為鄰接的,且在接合兩個蛋白質編碼區所必需的情況下,為鄰接的並同處讀框中。
術語「蛋白質」或「多肽」可互換地使用,且係指由胺基酸鏈組成之分子,而無需參考特定作用模式、大小、三維結構或起源。
術語「基因」意指細胞中轉錄成RNA分子(例如,mRNA)的可操作地連接至適合的調控區(例如,啟動子)之區(轉錄區)的DNA片段。基因將通常包含若干可操作地連接的片段,諸如啟動子、5'前導序列、編碼區及包含多腺苷酸化位點之3'未轉譯序列(3'端)。「基因之表現」係指可操作地連接至適當調控區(尤其是啟動子)之DNA區轉錄至RNA中之過程,該DNA區為生物活性的,亦即,能夠轉譯至生物活性蛋白質或肽中。當用於指示給定(重組)核酸或多肽分子與給定寄主生物體或寄主細胞之間的關係時,術語「同源」係理解為意指核酸或多肽分子本質上係藉由相同物種之寄主細胞或生物體、較佳相同品種或菌株之寄主細胞或生物體製造。若與寄主細胞同源,則編碼多肽之核酸序列將典型地(並非必然地)可操作地連接至另一(異源)啟動子序列,且在適 用時,與在其自然環境中相比,可操作地連接至另一(異源)分泌信號序列及/或終止子序列。應理解,調控序列、信號序列、終止子序列等亦可與寄主細胞同源。在此情景中,僅使用「同源」序列元件允許「自選殖」遺傳修飾生物體(genetically modified organisms;GMO)之構造(自選殖係在本文中如歐盟個人資料保護指令(European Directive)98/81/EC附件II來定義)。當用於指示兩個核酸序列之相關性時,術語「同源」意指一個單鏈核酸序列可雜交至互補單鏈核酸序列。雜交之程度可取決於許多因素,包括序列之間的一致性量及雜交條件,諸如溫度及鹽濃度,如稍後所論述。
術語「異源」及「外源」在就核酸(DNA或RNA)或蛋白質而言使用時係指核酸或蛋白質,該核酸或蛋白質不是作為生物體、生物體中存在的細胞、基因組或DNA或RNA序列之部分天然存在,或該核酸或蛋白質係發現於與天然發現該核酸或蛋白質的情況不同的細胞中或基因組或DNA或RNA序列中的一或多個位置中。異源及外源核酸或蛋白質對於將其引入的細胞而言不是內源性的,但已自另一細胞獲得或以合成方式或以重組方式製造。通常,儘管並非必要,但此等核酸編碼蛋白質,亦即外源蛋白質,該等蛋白質在正常情況下並非藉由轉錄或表現DNA之細胞製造。類似地,外源RNA編碼在正常情況下並非在存在外源RNA之細胞中表現的蛋白質。異源/外源核酸及蛋白質亦可稱為外來核酸或 蛋白質。熟習此項技術者將認為是對表現任何核酸或蛋白質的細胞而言為外來的該任何核酸或蛋白質在本文中藉由術語異源或外源核酸或蛋白質涵蓋。術語異源及外源亦適用於核酸或胺基酸序列之非天然組合,亦即,其中組合序列中之至少兩者相對於彼此為外來的組合。
酶之「特異活性」在本文中係理解為意指每總體寄主細胞蛋白質量的特定酶之活性量,其通常以每mg總體寄主細胞蛋白質的酶活性為單位來表示。在本發明之情景中,特定酶之特異活性可相較於彼酶於(另外相同)野生型寄主細胞中之特異活性而言增加或減小。
「呋喃化合物」在本文中係理解為2,5-呋喃-二甲酸(2,5-furan-dicarboxylic acid;FDCA)以及具有可氧化成FDCA的呋喃基團之任何化合物,該化合物在本文中稱為「FDCA之前驅物」或「FDCA之呋喃前驅物」。FDCA之前驅物至少包括:5-羥甲基呋喃醛(5-hydroxymethylfurfural;HMF)、2,5-二羥基甲基呋喃(2,5-dihydroxymethyl furan;DHF或HMF-OH)或2,5-雙(羥甲基)呋喃(2,5-bis(hydroxymethyl)furan;BHF)、5-羥甲基-2-呋喃甲酸或5-羥甲基-2-呋喃甲酸(5-hydroxymethyl-2-furoic acid;HMFCA)、5-甲醯基-2-呋喃甲酸(5-formyl-2-furoic acid;FFA)及2,5-二甲醯基呋喃(2,5-diformyl furan;DFF)。應進一步理解,在「呋喃化合物」中,呋喃環或 其可取代側基中之任何者可在呋喃環中之任何可利用位置上例如由OH、C1-C10烷基、烷基、烯丙基、芳基或RO-醚部分(包括環基)取代。
對在公共序列資料庫中可取用的核苷酸或胺基酸序列之任何引用涉及如在此文件之申請日起可獲得的序列條目之版本。
發明詳述 表現HMFCA脫氫酶之細胞
在第一態樣中,本發明係關於一種細胞,該細胞具有將5-羥甲基-2-呋喃甲酸(5-hydroxymethyl-2-furancarboxylic acid;HMFCA)氧化成5-甲醯基呋喃甲酸(5-formylfuroic acid;FFA)之能力。將HMFCA氧化成FFA之能力較佳藉由利用核酸構築體進行細胞轉型而賦予至細胞或藉以在細胞增加該能力,該核酸構築體包含編碼脫氫酶之核苷酸序列,該脫氫酶具有將HMFCA氧化成FFA之能力。脫氫酶較佳為醇脫氫酶(亦即具有EC 1.1活性)。因此,該細胞較佳為包含表現構築體之細胞,該表現構築體用於表現編碼脫氫酶之核苷酸序列,該脫氫酶具有將HMFCA氧化成FFA之能力。在本發明之較佳細胞中,相較於缺乏表現構築體之相應細胞(例如,野生型細胞)而言,表現構築體可表現於細胞中且脫氫酶之表現較佳向細胞賦予或增大細胞中將HMFCA氧化成FFA之能力。相較於缺乏表現構築體之相應細胞而言,將HMFCA 氧化成FFA的酶之特異活性較佳在細胞中增加至少1.05、1.1、1.2、1.5、2.0、5.0、10、20、50或100倍。
具有將HMFCA氧化成FFA之能力的脫氫酶因此為具有HMFCA脫氫酶活性之醇脫氫酶。多肽是否具有HMFCA脫氫酶活性可藉由在不能將HMFCA氧化成FFA之適合寄主細胞中表現多肽且偵測多肽之表現是否向細胞賦予將HMFCA氧化成FFA之能力來測定。較佳地,如本文中實例IV所述來測定HMFCA脫氫酶活性,藉以編碼待測定HMFCA脫氫酶活性之多肽的核苷酸序列置換pBT'hmfH-adh中之巴西貪銅菌hmfH基因(描述於WO2012/064195中),此後,將包含待測定HMFCA脫氫酶活性之多肽之編碼序列的質體引入含有pJNNhmfT1(t)之螢光假單胞菌KT2440△gcd中(描述於WO2012064195中)。利用HMF培育表現待測定HMFCA脫氫酶活性之多肽的螢光假單胞菌轉型體,且以規則間隔抽取樣本以供FDCA之分析。相較於缺乏待測定HMFCA脫氫酶活性之多肽(及hmfH基因)的相應螢光假單胞菌轉型體,FDCA製造之增加係視為對多肽具有HMFCA脫氫酶活性之指示。
在本發明之細胞中表現的HMFCA脫氫酶較佳為依賴於選自以下各項之輔因子的脫氫酶:腺嘌呤二核苷酸(諸如NADH或NADPH)、黃素腺嘌呤二核苷酸(flavin adenine dinucleotide;FAD)、黃素單核 苷酸(flavin mononucleotide;FMN)及吡咯並喹啉奎諾酮(pyrroloquinoline quinolone;PQQ)。
在本發明之細胞中表現的HMFCA脫氫酶進一步較佳為醇脫氫酶,該醇脫氫酶(亦)具有將其他呋喃醇、較佳在2位具有羥基之呋喃醇氧化成相應醛之能力。因此,HMFCA脫氫酶較佳具有將5-羥甲基呋喃醛(5-hydroxymethylfurfural;HMF)氧化成2,5-二甲醯基呋喃(2,5-diformyl furan;DFF)之能力。
在一個實施例中,編碼具有將HMFCA氧化成FFA之能力的脫氫酶之核苷酸序列係選自由以下各項組成之群:(a)核苷酸序列,該核苷酸序列編碼具有HMFCA脫氫酶活性之多肽,該多肽包含胺基酸序列,該胺基酸序列具有與以下任一者之胺基酸序列至少45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、81.65、81.7、81.8、81.85、82、83、84、85、86、87、88、89、90、91、92、93、94、95、95、96、97、98、99或100%的序列一致性:SEQ ID NO:1(蒼白好氧小桿菌(Aeribacillus pallidus))、SEQ ID NO:2(韓研所芽孢桿菌(Bacillus kribbensis))、SEQ ID NO:3(嗜熱地芽孢桿菌(Geobacillus kaustophilus))、SEQ ID NO:4(新地站解硫胺素芽孢菌(Aneurinibacillus terranovensis))、SEQ ID NO:5(熱紅短芽孢桿菌(Brevibacillus thermoruber))、SEQ ID NO:6(波茨坦短芽胞桿菌(Brevibacillus panacihumi))、SEQ ID NO:7(桿菌屬FJAT-14578)、SEQ ID NO:8(庫氏脫硫腸狀菌(Desulfotomaculum kuznetsovii))、SEQ ID NO:9(嗜熱脫硫腸狀菌(Desulfurispora thermophila))、SEQ ID NO:10(桿菌屬L1(2012))及SEQ ID NO:11(丙酸互營菌(Pelotomaculum thermopropionicum));(b)核苷酸序列,該核苷酸序列之互補鏈雜交至(a)之核苷酸序列;以及,(c)核苷酸序列,該核苷酸序列之序列由於遺傳碼之簡並性而不同於(b)之核苷酸序列之序列。
本發明之較佳核苷酸序列因此編碼具有胺基酸序列之HMFCA脫氫酶,該胺基酸序列與可自芽孢桿菌目(Orders Bacillales)或梭菌目(Orders Clostridiales)之細菌獲得(或天然存在於該細菌中)的HMFCA脫氫酶之胺基酸序列一致。在一個較佳實施例中,細菌屬於芽孢桿菌科(Family Bacillaceae),細菌更佳屬於氣芽孢桿菌屬、地芽孢桿菌屬及桿菌屬,其中最佳為以下物種:蒼白好氧小桿菌、韓研所芽孢桿菌、嗜熱地芽孢桿菌、新地站解硫胺素芽孢、桿菌屬 FJAT-14578及桿菌屬L1(2012)。在另一較佳實施例中,細菌屬於類芽孢桿菌科(Family Paenibacillaceae),細菌更佳屬於硫胺素芽孢桿菌屬及短芽胞桿菌屬,其中最佳為以下物種:新地站解硫胺素芽孢菌、熱紅短芽孢桿菌及波茨坦短芽胞桿菌。在又一較佳實施例中,細菌屬於消化球菌科(Family Peptococcaceae),細菌更佳屬於脫硫腸狀菌屬、脫硫孢菌屬及丙酸互營菌屬,其中最佳為以下物種:庫氏脫硫腸狀菌、嗜熱脫硫腸狀菌及丙酸互營菌。
在一個實施例中,本發明之較佳核苷酸序列編碼來自嗜溫性細菌之HMFCA脫氫酶,該嗜溫性細菌亦即最佳於中等溫度下(典型地在20℃與45℃之間)生長的細菌。較佳地,本發明之核苷酸序列編碼在20℃與45℃之間的範圍中具有最佳活性及穩定性之嗜溫性HMFCA脫氫酶。此等嗜溫性脫氫酶之實例為例如來自韓研所芽孢桿菌(30℃)、新地站解硫胺素芽孢菌(40℃)、熱紅短芽孢桿菌(45℃)、波茨坦短芽胞桿菌(30℃)、桿菌屬FJAT-14578(30℃)及桿菌屬L1(2012)(30-50℃)之脫氫酶及與之相關的脫氫酶。
在一個實施例中,本發明之較佳核苷酸序列編碼來自嗜熱性細菌之HMFCA脫氫酶,該嗜熱性細菌亦即最佳於相對高溫度下(典型地在高於45℃與122℃之間)生長的細菌。較佳地,本發明之核苷酸序列因此編碼在高於45℃與122℃之間的範圍中具有最佳活性及穩 定性之嗜熱性HMFCA脫氫酶。此等嗜熱性脫氫酶之實例為例如來自蒼白好氧小桿菌(55℃)、嗜熱地芽孢桿菌(55℃)、庫氏脫硫腸狀菌(60℃)、嗜熱脫硫腸狀菌(50℃)、丙酸互營菌(55℃)及桿菌屬L1(2012)(30-50℃)之脫氫酶及與之相關的脫氫酶。
在一個實施例中,核苷酸序列編碼具有HMFCA脫氫酶活性之多肽,如該多肽天然存在的情況,例如,如該多肽可自野生型來源之生物體分離。或者,核苷酸序列可編碼上文定義的任何HMFCA脫氫酶之工程改造形式,且相較於相應天然存在HMFCA脫氫酶而言包含一或多個胺基酸取代、插入及/或缺失,但該等取代、插入及/或缺失皆在如本文中定義的一致性或相似性之範圍內。因此,在一個實施例中,本發明之核苷酸序列編碼HMFCA脫氫酶,該HMFCA脫氫酶之胺基酸序列至少在每一不可變位置中(在表2中以「*」指示該等位置)包含存在於一不可變位置中之胺基酸。較佳地,胺基酸序列亦在強烈保守位置中(在表2中以「:」指示該等位置)包含存在於一強烈保守位置中之胺基酸中之一者。更佳地,胺基酸序列亦進一步在較不強烈保守位置中(在表2中以「.」指示該等位置)包含存在於一較不強烈保守位置中之胺基酸中之一者。在此等不可變及保守位置外的胺基酸取代較不可能影響HMFCA脫氫酶活性。
本發明的編碼具有HMFCA脫氫酶活性之多肽的核苷酸序列可自真菌、酵母或細菌之基因組及/或cDNA獲得,該真菌、酵母或細菌例如屬於與上文所述來源生物體相同門、綱或屬之真菌、酵母或細菌,該獲得係使用此項技術中本身熟知的用於核苷酸序列之分離的方法來達成(參見,例如Sambrook及Russell(2001)「Molecular Cloning:A Laboratory Manual(第3版),Cold Spring Harbor Laboratory,Cold Spring Harbor Laboratory Press,New York)。本發明之核苷酸序列例如可在一方法中獲得,其中a)將簡併PCR引子(基於保守胺基酸序列來設計)用於適合生物體之基因組及/或cDNA上以產生PCR片段,該PCR片段包含編碼具有HMFCA脫氫酶活性之多肽的核苷酸序列之部分;b)將在a)中獲得的PCR片段用作探針以篩選生物體之cDNA及/或基因組文庫;以及c)製造cDNA或基因組DNA,該cDNA或基因組DNA包含編碼具有HMFCA脫氫酶活性之多肽的核苷酸序列。
為增加本發明之HMFCA脫氫酶在本發明之轉型細胞中以足夠量並以活性形式表現之可能性,本發明的編碼此等酶以及其他酶之核苷酸序列(參見下文)較佳適於最佳化該等酶之密碼子於所討論寄主細胞之彼者的使用。編碼多肽之核苷酸序列對寄主細胞之密碼子使用的適應性可表示為密碼子適應指數(codon adaptation index;CAI)。密碼子適應指數在本文中係定義為基因之密碼子使用對特定寄主細胞或生物體中高度表現基因之密碼子使用的相對的適應性之量測值。每一密碼子之相對適應性(w)為每一密碼子之使用率對最豐富密碼子針對同一胺基酸之使用率的比率。CAI指數係定義為此等相對適應性值之幾何平均值。排除非同義密碼子及終止密碼子(依賴於遺傳碼)。CAI值範圍在0至1,其中較高值指示最豐富密碼子之較高比例(參見Sharp及Li,1987,Nucleic Acids Research 15:1281-1295;亦參見:Jansen等人,2003,Nucleic Acids Res.31(8):2242-51)。經調適核苷酸序列較佳具有至少0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9之CAI。最佳者為如SEQ ID NO:13或14中所列的序列,該等序列已針對在螢光假單胞菌細胞中之表現而獲密碼子最佳化。
待利用用於表現編碼本發明之HMFCA脫氫酶的核苷酸序列之核酸構築體轉型的寄主細胞可原則上為任何寄主細胞,其中本發明之HMFCA脫氫酶可獲適合表現,較佳以功能形式亦即活性形式來表現。本發明之寄主細胞較佳為能夠將呋喃化合物主動或被動運輸至細胞中以及運輸出細胞的寄主。本發明之較佳寄主細胞缺乏或不具有可偵測的使羧基化呋喃化合物脫羧之活性,該等羧基化呋喃化合物尤其是HMFCA、FFA及 FDCA。此種寄主細胞較佳天然地缺乏使羧基化呋喃化合物脫羧之能力。
寄主細胞較佳為培養細胞,例如可在發酵方法、較佳在浸沈發酵中培養的細胞。
根據一實施例,根據本發明之寄主細胞為真核寄主細胞。較佳地,真核細胞為哺乳動物細胞、昆蟲細胞、植物細胞、真菌細胞或藻類細胞。較佳哺乳動物細胞包括中國倉鼠卵巢(Chinese hamster ovary;CHO)細胞、COS細胞、293細胞、PerC6細胞及融合瘤。較佳昆蟲細胞包括Sf9細胞及Sf21細胞以及該等細胞之衍生物。
然而,寄主細胞較佳為微生物細胞。細胞可為真核微生物細胞,較佳真菌細胞,諸如例如酵母或絲狀真菌細胞。較佳酵母寄主細胞包括例如來自酵母之細胞,該等酵母來自諸如念珠菌屬、漢遜氏菌屬、克魯維酵母屬、畢赤酵母菌屬、酵母菌屬、裂殖酵母屬及耶氏酵母屬之屬。酵母更佳來自諸如乳酸克魯維酵母菌、啤酒酵母菌、多形漢遜氏菌、解脂耶氏酵母菌及嗜甲醇畢赤酵母菌之物種。較佳絲狀真菌細胞包括例如來自絲狀真菌之細胞,該等絲狀真菌來自諸如以下各項之屬:枝頂孢屬、傘菌屬、麴菌屬、短梗黴屬、毀絲黴屬、拉丁金色孢菌屬、鬼傘屬、隱球菌屬、線黑粉酵母屬、梭黴菌屬、腐質黴屬、巨座殼屬、白黴菌屬、毀絲黴屬、新美鞭菌屬、紅黴菌屬、擬青黴屬、青黴菌屬、單鞭毛菌 屬、原毛平革菌屬、側耳屬、裂褶菌屬、籃狀菌屬、嗜熱子囊菌屬、梭孢殼菌屬、彎頸黴屬及木黴菌屬。較佳絲狀真菌細胞屬於以下各屬之物種:麴菌屬、毀絲黴屬、青黴菌屬、毀絲黴屬、籃狀菌屬或木黴菌屬,且物種最佳選自黑色麴菌、泡盛麴菌、臭麴菌、醬油麴菌、薰煙麴菌、愛默生籃狀菌、米麴菌、嗜熱毀絲黴菌、里氏木黴菌及產黃青黴菌。
微生物寄主細胞亦可為原核細胞,較佳細菌細胞。術語「細菌細胞」包括革蘭氏陰性微生物及革蘭氏陽性微生物兩者。適合的細菌可選自以下各屬:大腸桿菌屬、念珠藻屬、氣芽孢桿菌屬、硫胺素芽孢桿菌屬、伯克氏菌屬、慢生型根瘤菌屬、柄桿菌屬、貪銅菌屬、脫硫腸狀菌屬、脫硫孢菌屬、葡糖酸桿菌屬、紅桿菌屬、丙酸互營菌屬、假單胞菌屬、副球菌屬、桿菌屬、地芽孢桿菌屬、短芽胞桿菌屬、短桿菌屬、棒狀桿菌屬、根瘤菌屬(中華根瘤菌屬)、黃桿菌屬、克雷白氏菌屬、腸內桿菌屬、乳桿菌屬、乳酸球菌屬、甲基桿菌屬、勞爾氏菌屬、紅色無硫黃細菌屬、葡萄球菌屬及鏈黴菌屬。較佳地,細菌細胞係選自來自由以下各項組成之群的物種:蒼白好氧小桿菌、新地站解硫胺素芽孢菌、枯草芽孢桿菌、液化澱粉芽孢桿菌、凝結芽孢桿菌、韓研所芽孢桿菌、地衣芽孢桿菌、潘地芽孢桿菌、巨大芽孢桿菌、耐鹽芽孢桿菌、短小芽孢桿菌、熱紅短芽孢桿菌、人參田地芽孢桿菌、巴西貪銅菌、庫氏脫硫腸狀菌、嗜熱脫 硫腸狀菌、嗜熱地芽孢桿菌、氧化葡糖酸桿菌、新月柄桿菌CB 15、扭脫甲基桿菌、類球紅桿菌、丙酸互營菌、產玉米黃質假單胞菌、螢光假單胞菌、脫氮副球菌、大腸桿菌、麩胺酸棒狀桿菌、肉葡萄球菌、變鉛青鏈黴菌、苜蓿中華根瘤菌及放射型根瘤菌。在螢光假單胞菌物種中,菌株螢光假單胞菌S12及螢光假單胞菌KT2440較佳。
對根據本發明的在寄主細胞中製造的化合物之特定用途而言,寄主細胞之選擇可根據此等用途而進行。在例如根據本發明的在寄主細胞中製造的化合物欲用於食品應用的情況下,寄主細胞可選自諸如釀酒酵母之食品級生物體。特定用途包括但不限於食品應用、(動物)飼料應用、醫藥應用、諸如作物保護之農業應用及/或個人護理應用。
用於編碼本發明之HMFCA脫氫酶的核苷酸序列之表現的表現構築體較佳為對利用構築體轉型的寄主細胞為異源或外源的表現構築體。構築體在本文中係理解為當構築體包含在寄主細胞中並不天然存在的至少一個序列或序列元件時,及/或當構築體包含呈在寄主細胞中並不天然存在的一組合及/或次序的至少兩個序列元件時(即使該等元件自身在寄主細胞中天然存在),該構築體對包含該構築體之寄主細胞為異源或外源的。
在適當寄主細胞中用於編碼本發明之HMFCA脫氫酶的核苷酸序列之表現的載體及表現構築體在下文中更詳細地描述。
表現本發明之HMFCA脫氫酶的轉型細胞進一步較佳具有醛脫氫酶活性(亦即,具有EC 1.2活性)。較佳地,醛脫氫酶活性能夠轉化呋喃醛。醛脫氫酶活性更佳能夠將呋喃醛氧化成相應呋喃羧酸。更確切言之,醛脫氫酶活性較佳能夠實現以下至少一者:i)將HMF氧化成HMFCA,ii)將2,5-二甲醯基呋喃(2,5-diformyl furan;DFF)氧化成5-甲醯基-2-呋喃甲酸(5-formyl-2-furoic acid;FFA),且iii)將FFA氧化成FDCA。此呋喃醛脫氫酶活性可為細胞之內源活性,或此呋喃醛脫氫酶活性可為向細胞賦予的外源活性。較佳地,藉由利用第二表現構築體進行細胞之轉型而向細胞賦予或在細胞中增加呋喃醛脫氫酶活性。在本發明之較佳細胞中,相較於缺乏表現構築體之相應細胞(例如,野生型細胞)而言,第二表現構築體可表現於細胞中且呋喃醛脫氫酶之表現較佳向細胞賦予或增大細胞中將以下至少一者氧化之能力:i)將HMF氧化成HMFCA,ii)將DFF氧化成FFA,且iii)將FFA氧化成FDCA。相較於缺乏表現構築體之相應細胞而言,呋喃醛脫氫酶之特異活性較佳在細胞中增加至少1.05、1.1、1.2、1.5、2.0、5.0、10、20、50或100倍。 第二表現構築體較佳包含編碼多肽之核苷酸序列,該多肽:a)具有以下能力中之至少一者:i)將HMF氧化成HMFCA,ii)將DFF氧化成FFA,且iii)將FFA氧化成FDCA;且b)包含胺基酸序列,該胺基酸序列具有與SEQ ID NO:24、25、26、27、28、29以及30中任一者之胺基酸序列至少45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、95、96、97、98、99或100%的序列一致性。
多肽氧化i)將HMF氧化成HMFCA,ii)將DFF氧化成FFA,且iii)將FFA氧化成FDCA中至少一者之能力可藉由以下方式來測定:在螢光假單胞菌寄主細胞中、較佳在螢光假單胞菌KT2440寄主細胞中將編碼多肽之核苷酸序列連同來自巴西貪銅菌HMF 14之HmfH及HmfT1基因共表現,在10mM HMF中培育螢光假單胞菌細胞,且偵測相較於不表現多肽之相應螢光假單胞菌細胞而言累積FDCA之增加,例如如WO2012/064195之實例IV中所述。多肽將HMF氧化成HMFCA之能力亦可如Koopman等人2010,PNAS同上)所述來測定。表現來自巴西貪銅菌HMF14之 HmfT1基因的菌株在本文中係理解為表現具有SEQ ID NO:31之胺基酸序列的基因產物。
表現本發明之HMFCA脫氫酶的轉型細胞進一步較佳具有將呋喃化合物運輸至細胞中及/或運輸出細胞之能力。細胞較佳具有將作為用於FDCA之前驅物的呋喃化合物運輸至細胞中之能力及較佳將FDCA運輸出細胞之能力。此種呋喃化合物運輸能力可為細胞之內源能力及/或此等能力可為向細胞賦予的外源能力。因此,本發明之較佳細胞表現具有呋喃化合物運輸能力之多肽。更佳地,細胞表現具有HMFCA運輸能力之多肽。HMFCA運輸能力係理解為至少包括將HMFCA運輸至細胞中之能力。具有HMFCA運輸能力之多肽之表現將增加HMFCA向細胞中之運輸,從而增大HMFCA對於細胞內轉化成FDCA之可利用性。因此,可改良HMFCA生物轉化。
較佳地,藉由利用第三表現構築體進行細胞之轉型而向細胞賦予或在細胞中增加將呋喃化合物運輸至細胞中及/或運輸出細胞之能力。在本發明之較佳細胞中,相較於缺乏表現構築體之相應細胞(例如,野生型細胞)而言,第三表現構築體可表現於細胞中且呋喃化合物運輸蛋白之表現較佳向細胞賦予或增大細胞中將至少HMFCA運輸至細胞中之能力。第三表現構築體較佳包含編碼多肽之核苷酸序列,該多肽:a)具有至少HMFCA運輸能力;且 b)包含胺基酸序列,該胺基酸序列具有與SEQ ID NO:17、31、32、33及34中任一者之胺基酸序列至少45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、95、96、97、98、99或100%的序列一致性。
多肽將呋喃化合物、尤其HMFCA運輸至細胞中之能力可藉由以下方式來測定:在螢光假單胞菌寄主細胞中、較佳在螢光假單胞菌KT2440寄主細胞中將編碼運輸蛋白多肽之核苷酸序列連同來自巴西貪銅菌HMF 14之HmfH基因及編碼與來自巴西貪銅菌HMF 14之HMF降解操縱子(具有WO2012/064195之SEQ ID NO:19之胺基酸序列)相關聯的呋喃醛脫氫酶之基因共表現,在10mM HMF中培育螢光假單胞菌細胞,且偵測相較於不表現運輸蛋白多肽之相應螢光假單胞菌細胞而言累積FDCA之增加,例如如WO2012/064195之實例IV中所述。
在一個實施例中,核苷酸序列編碼具有HMFCA運輸能力之多肽,如該多肽天然存在的情況,例如,如該多肽可自野生型來源之生物體分離。或者,核苷酸序列可編碼如上文定義的具有HMFCA運輸能力之任何多肽之工程改造形式,且相較於相應天然存在的 具有HMFCA運輸能力之多肽而言包含一或多個胺基酸取代、插入及/或缺失,但該等取代、插入及/或缺失皆在如本文中定義的一致性或相似性之範圍內。因此,在一個實施例中,本發明之核苷酸序列編碼具有HMFCA運輸能力之多肽,該多肽之胺基酸序列至少在每一不可變位置中(在表3中以「*」指示該等位置)包含存在於一不可變位置中之胺基酸。較佳地,胺基酸序列亦在強烈保守位置中(在表3中以「:」指示該等位置)包含存在於一強烈保守位置中之胺基酸中之一者。更佳地,胺基酸序列亦進一步在較不強烈保守位置中(在表3中以「.」指示該等位置)包含存在於一較不強烈保守位置中之胺基酸中之一者。在此等不可變及保守位置外的胺基酸取代較不可能影響HMFCA運輸能力。
本發明的編碼具有HMFCA運輸能力之多肽的核苷酸序列可自真菌、酵母或細菌之基因組及/或cDNA獲得,該真菌、酵母或細菌例如屬於與上文所述來源生物體相同門、綱或屬之真菌、酵母或細菌,該獲得係使用此項技術中本身熟知的用於核苷酸序列之分離的方法,以與上文對編碼本發明之HMFCA脫氫酶的核苷酸序列所述類似的方式來達成。
表現呋喃化合物之運輸蛋白之細胞
在第二態樣中,本發明係關於一種表現編碼多肽之核苷酸序列的細胞,該多肽具有呋喃化合物運輸能力。細胞較佳利用表現構築體來轉型,該表現構築體 用於表現編碼多肽之核苷酸序列,該多肽具有呋喃化合物運輸能力。具有呋喃化合物運輸能力之多肽較佳為具有HMFCA運輸能力之多肽,該等能力至少包括將HMFCA運輸至細胞中之能力。細胞較佳包含表現構築體,該表現構築體用於表現編碼具有將至少HMFCA運輸至該細胞中之能力的多肽之核苷酸序列,該多肽包含胺基酸序列,該胺基酸序列具有與SEQ ID NO:17之胺基酸序列至少86.5、87、88、89、90、91、92、93、94、95、95、96、97、98、99或100%的一致性,其中,相較於缺乏該表現構築體之相應野生型細胞而言,該表現構築體可表現於該細胞中且該多肽之表現向該細胞賦予或增大該細胞中將至少HMFCA運輸至該細胞中之能力。多肽將呋喃化合物、尤其HMFCA運輸至細胞中之能力可如上所述來測定。
較佳地,本發明之此態樣的表現呋喃化合物的運輸蛋白之轉型細胞進一步包含用於將HMF轉化成FDCA之酶活性,其中用於將HMF轉化成FDCA之活性較佳包括以下至少一者:a)將HMFCA氧化成FFA之醇脫氫酶及將呋喃醛氧化成相應呋喃羧酸之醛脫氫酶活性;以及,b)將HMF、2,5-二羥基甲基呋喃、HMFCA、FFA及2,5-二甲醯基呋喃中之一或多者氧化成FDCA之氧化還原酶、較佳氧化酶,及視情況,將呋喃醛氧化成相應呋喃羧酸之醛脫氫酶活性。
將HMFCA氧化成FFA之醇脫氫酶及氧化呋喃醛之醛脫氫酶活性較佳如本文中上文中所定義。將HMF、2,5-二羥基甲基呋喃、HMFCA、FFA及2,5-二甲醯基呋喃中之一或多者氧化成FDCA之氧化還原酶為具有EC 1.1活性及EC 1.2活性兩者之氧化還原酶,如WO2011/026913所述。
除非另外指定,否則本發明之此態樣的表現呋喃化合物之運輸蛋白之轉型細胞進一步可具有如上文定義的本發明之第一態樣的表現HMFCA脫氫酶之細胞之特徵。
用於表現本發明之多肽的載體及構築體以及方法
本發明之另一態樣係關於核酸構築體,諸如包括選殖及表現載體之載體,該等核酸構築體包含本發明之多核苷酸,例如編碼本發明之HMFCA脫氫酶或運輸蛋白或其功能等效物之核苷酸序列,且係關於在適合的寄主細胞中,例如在本發明之多肽之表現發生的條件下生長、轉型或轉染此等載體之方法。如本文所使用,術語「載體」及「構築體」可互換地使用且係指包含本發明之多核苷酸並較佳能夠運輸本發明之多核苷酸的構築核酸分子。
本發明之多核苷酸可併入重組可複製載體中,例如併入選殖或表現載體中。載體可用於在相容寄主細胞中複製核酸。因此,在另一實施例中,本發明提供製成本發明之多核苷酸之方法,該方法藉由將本發明 之多核苷酸引入可複製載體中,將載體引入相容寄主細胞中,且在引起載體之複製的條件下使寄主細胞生長來製成該多核苷酸。可自寄主細胞回收載體。適合的寄主細胞在上文描述。
插入有本發明之表現基因盒或多核苷酸之載體可為任何載體,該載體可適宜地經受重組DNA程序,且載體之選擇將常常取決於欲引入有該載體之寄主細胞。
根據本發明之載體可為自主複製載體,亦即作為染色體外實體存在的載體(例如質體),該載體之複製不依賴於染色體複製。或者,載體可為當引入寄主細胞中時,整合至寄主細胞基因組中且連同已整合有該載體之染色體一起複製的載體。
一種類型之載體為「質體」,其係指其中可接合另外的DNA段之環狀雙鏈DNA環。另一類型之載體為病毒載體,其中另外的DNA段可接合至病毒基因組。某些載體能夠在引入有該等載體(例如具有細菌複製起點之細菌載體,及游離基因組哺乳動物載體)之寄主細胞中自主複製。其他載體(例如非游離基因組哺乳動物載體)在引入寄主細胞中時可整合至寄主細胞之基因組中,且藉此連同寄主基因組一起複製。此外,某些載體能夠引導與其可操作地連接之基因之表現。此等載體在本文中稱為「表現載體」。一般而言,表現載體在重組DNA技術中之實用性常常呈質體形式。術語「質體」及 「載體」可在本文中可互換地使用,因為質體為載體之最常用形式。然而,本發明意欲包括表現載體之此等其他形式,諸如黏質體、病毒載體(例如,複製缺陷性反轉錄病毒、腺病毒及腺相關病毒)及提供等效功能之噬菌體載體。
根據本發明之載體可活體外使用,例如用於RNA之製造或用於轉染或轉型寄主細胞。
本發明之載體可包含兩個或兩個以上本發明之多核苷酸,例如三個、四個或五個本發明之多核苷酸,例如用於過表現。
本發明之重組表現載體包含呈適用於在寄主細胞中表現核酸之形式的本發明之核酸,此意指重組表現載體包括基於待用於表現之寄主細胞選擇的一或多個調控序列,該調控序列可操作地連接至待表現的核酸序列。諸如啟動子、強化子或其他表現調控信號的「可操作地連接」至編碼序列之調控序列係以一方式定位,該方式使得編碼序列之表現在與控制序列相容之條件下達成,或該等序列經佈置以使得其共同起作用來用於該等序列之所欲目的,例如轉錄在啟動子處起始且經由編碼多肽之DNA序列進行。術語「調控序列」或「控制序列」意欲包括啟動子、強化子及其他表現控制元件(例如,多腺苷酸化信號)。此等調控序列描述於例如Goeddel;Gene Expression Technology:Methods in Enzymology 185,Academic Press, San Diego, CA(1990)中。術語調控序列或控制序列包括在許多類型之寄主細胞中引導核苷酸序列之持續型表現(constitutive expression)的彼等序列,及僅在某一寄主細胞中引導核苷酸序列之表現的彼等序列(例如,組織特異性調控序列)。
用於給定寄主細胞之載體或表現構築體可因此包含以下元件,該等元件相對於第一發明的編碼多肽之序列之編碼鏈自5'端至3'端以連續次序彼此可操作地連接:(1)啟動子序列,能夠在給定寄主細胞中引導編碼多肽之核苷酸序列之轉錄;(2)轉譯起始序列,諸如真核Kozak一致序列或原核核糖體結合位點/Shine-Dalgarno序列,(3)視情況,信號序列,能夠自給定寄主細胞向培養基中引導多肽之分泌;(4)本發明之DNA序列,編碼本發明之多肽的成熟及較佳活性形式;以及較佳地(5)轉錄終止區(終止子),能夠終止編碼多肽之核苷酸序列下游的轉錄。
在根據本發明的核苷酸序列之下游,可存在含有一或多個轉錄終止位點(例如,終止子)之3'未轉譯區。終止子之起點為較不關鍵的。終止子可例如對編碼多肽之DNA序列為原生的。然而,酵母終止子較佳用於酵母寄主細胞,而絲狀真菌終止子用於絲狀真菌寄主細胞。更佳地,終止子對寄主細胞(該寄主細胞中將表現編碼多肽之核苷酸序列)為內源性的。在轉錄區中,可存在用於轉譯之核糖體結合位點。由構築體表現的成熟轉錄 物之編碼部分將包括在待轉譯的多肽之開始處的轉譯起始AUG及適當地定位於該多肽之結束處的終止密碼子。
本發明之多核苷酸之增強表現亦可藉由異源調控區(例如,啟動子區、分泌前導序列區及/或終止子區)之選擇來達成,該等異源調控區可用於增加所關注蛋白質自表現寄主之表現且在需要時增加其分泌量,及/或提供用於本發明之多肽之表現的可誘導控制。
熟習此項技術者應瞭解,表現載體之設計可取決於諸如對待轉型寄主細胞之選擇、所欲蛋白質之表現量等的因素。本發明之載體(諸如表現載體)可引入寄主細胞中以進而製造由如本文所述的核酸所編碼的蛋白質或肽(例如,本發明之HMFCA脫氫酶或運輸蛋白、其突變形式、片段、變異體或其功能等效物、融合蛋白質等)。
如上文所述,術語「控制序列」或「調控序列」在本文中係定義為包括至少對多肽之表現可為必要及/或有利的任何組分。任何控制序列可對本發明的編碼多肽之核酸序列為原生或外來的。此等控制序列可包括但不限於啟動子、前導序列、最佳轉譯起始序列(如Kozak,1991,J.Biol.Chem.266:19867-19870所述)或原核Shine-Delgarno序列、分泌信號序列、pro肽序列、多腺苷酸化序列、轉錄終止子。最低限度上,控制序列典型地包括啟動子及轉譯起始及停止信號。
穩定轉型微生物為已具有所引入的一或多個DNA片段以使得所引入分子在生長培養物中得以維持、複製及離析之微生物。穩定轉型可歸因於多個或單一染色體整合或藉由諸如質體載體之染色體外元件達成。質體載體能夠引導由特定DNA片段編碼的多肽之表現。
表現可為持續型或藉由可誘導(或可抑制型)啟動子來調控,該等啟動子允許編碼特定多肽之功能相關DNA片段之高轉錄量。
不管用於本發明之多肽之表現的確切機制,預期的是,藉由此項技術中已知的方法,藉由編碼此等多肽之基因於另一寄主細胞中之引入,此表現為可轉譯的。如本文中定義的遺傳元件包括具有用於諸如蛋白質之產物,確切言之酶、缺輔基蛋白或反義RNA的可表現編碼序列之核酸(通常DNA或RNA),其表現相關多肽或調控相關多肽之表現。所表現的蛋白質可充當酶,抑制或去抑制酶活性或控制酶之表現,或充當化合物(例如代謝物)之運輸蛋白。編碼此等可表現序列之重組DNA可為染色體的(藉由例如同源重組而整合至寄主細胞染色體中)或染色體外的(例如,由一或多個質體、黏質體及能夠自我複製之其他載體運載)。應理解,根據本發明的用於轉型寄主細胞之重組DNA除結構基因及轉錄因子之外可包括表現控制序列,包括啟動子、抑制蛋白及強化子,該等控制序列起作用來控制用於蛋白質、缺輔 基蛋白或反義RNA之編碼序列之表現或去抑制。例如,此等控制序列可插入野生型寄主細胞中,以促進已編碼在寄主細胞基因組中的選定多肽之過表現,或替代地該等控制序列可用於控制染色體外編碼多肽之合成。重組DNA可藉由任何手段引入寄主細胞中,該等手段包括但不限於質體、黏質體、噬菌體、酵母人工染色體或介導遺傳元件於寄主細胞中之轉移的其他載體。此等載體可包括複製起點連同同側作用控制元件,該等控制元件控制載體及由載體運載的遺傳元件之複製。可選擇標誌物可存在於載體上以輔助已引入有遺傳元件之寄主細胞之鑑定。用於將遺傳元件引入寄主細胞中之手段(例如選殖)為熟練技藝人士所熟知的。可利用染色體外多複本質體載體來插入根據本發明之遺傳元件。遺傳元件於寄主細胞中之質體攜帶引入涉及利用限制酶初始分裂質體載體,繼之以編碼根據本發明之目標酶物種之質體及遺傳元件之接合。在接合重組質體之重新環化後,利用感染(例如,包裝在噬菌體λ中)或用於質體轉移之其他機制(例如,電穿孔、顯微注射等)來將質體轉移至寄主細胞中。適用於遺傳元件於寄主細胞中之插入的質體為熟練技藝人士所熟知。其他基因選殖方法包括但不限於遺傳物質於染色體中之直接整合。此可藉由各種手段來發生,該等手段包括在由寄主染色體之同源DNA序列側接的非複製質體上選殖本文所述的遺傳元件;在將該重組質體轉型至寄主中後,遺傳元件可藉由DNA重組而引入 染色體中。若整合DNA片段含有諸如抗生素耐性之可選擇標誌物,則可回收此等重組菌株。或者,遺傳元件可不使用非複製質體而直接引入寄主細胞之染色體中。此可藉由以下方式來進行:以合成方式製造根據本發明之遺傳元件之DNA片段,該等DNA片段亦含有寄主染色體之同源DNA序列。再次,若此等合成DNA片段亦含有可選擇標誌物,則遺傳元件可插入寄主染色體中。
本發明進一步係關於用於製備本發明的具有HMFCA脫氫酶活性之多肽及/或本發明的具有呋喃化合物運輸能力之多肽的方法,該方法包含在有助於多肽之表現的條件下培養根據本發明之細胞,及視情況回收所表現多肽;以及係關於一種可藉由此方法獲得的多肽。
用於呋喃化合物之氧化的方法
在另一態樣中,本發明係關於用於氧化呋喃化合物之方法。詳言之,本發明係關於其中氧化FDCA之呋喃前驅物之方法。本發明之方法可包含產生產物的單一氧化反應步驟(例如,HMFCA至FFA之氧化)。或者,本發明之方法可包含多於一個氧化反應步驟,每一步驟產生一中間物,其中最後中間物為最終產物。其中HMF在逐次氧化步驟中氧化成FDCA的此等一系列步驟之實例包括例如:1)首先將HMF氧化成HMFCA,在第二步驟中,將該HMFCA氧化成FFA,然後最終將該FFA氧化成FDCA,或替代地如由Dijkman等人(2014,Angew.Chem.53(2014)6515-8)2) 所述,首先將HMF氧化成DFF,在第二步驟中將該DFF氧化成FFA,然後最終將該FFA氧化成FDCA。因此,在本發明之較佳方法中,在一系列步驟中將FDCA之一或多種呋喃前驅物氧化成最終FDCA。
在一個實施例中,本發明係關於包含至少HMFCA至FFA之氧化的方法。較佳地,方法為用於將HMFCA氧化成FFA之方法,其中該方法包含以下步驟:於HMFCA存在下培育細胞,其中該細胞為表現如本文中上文所定義的HMFCA脫氫酶之細胞,或表現多肽之細胞,該多肽具有呋喃化合物運輸能力且進一步包含如本文中上文所定義的HMFCA脫氫酶或氧化酶活性。細胞較佳於HMFCA存在下,在有助於藉由該細胞氧化HMFCA之條件下(如例如下文所指定)培育。
在另一實施例中,本發明係關於用於製造FDCA之方法。用於製造FDCA之方法較佳包含以下步驟:在包含FDCA之一或多種呋喃前驅物之培養基中培育細胞,其中該細胞為表現如本文中上文所定義的HMFCA脫氫酶之細胞,或表現多肽之細胞,該多肽具有呋喃化合物運輸能力且進一步包含如本文中上文所定義的HMFCA脫氫酶或氧化酶活性。細胞較佳於HMFCA存在下,在有助於藉由該細胞將FDCA之呋喃前驅物氧化成FDCA之條件下(如例如下文所指定)培育。
較佳在該方法中,FDCA之至少一種呋喃前驅物係選自由HMF、DHF、HMFCA、FFA及DFF組成之群,其中HMF最佳。FDCA之呋喃前驅物較佳自一或多種六碳糖獲得,較佳藉由酸催化脫水,例如藉由於酸之存在下加熱以習知方式獲得。自果糖產生HMF之技術為良好確立且穩固的(參見,例如van Putten等人,2013,Chem.Rev.113,1499-1597)。亦可利用富含葡萄糖之原料,但HMF之熱化學形成自果糖更有效地進行。因此,另一酶促步驟可包括使用葡萄糖異構酶將葡萄糖轉化成果糖。後一方法在食品工業中為良好確立的,例如用於自水解澱粉製造高果糖玉米糖漿(high fructose corn syrup;HFCS)。葡萄糖亦可使用觸媒及溶劑之組合而化學異構化成果糖,如中van Putten等人(2013,同上)所述。
六碳糖將通常自生物質獲得。術語「生物質」係理解為意指來自農業(包括植物物質(諸如作物殘渣)及動物物質)、林業(諸如木材資源)及包括漁業及水產養殖之相關行業的生物學起源之產品、廢料及殘渣之生物可降解部分,以及工業及都市廢料(諸如都市固體廢料或廢紙)之生物可降解部分。在一較佳實施例中,生物質為植物生物質,更佳(可發酵)己糖/葡萄糖/富含糖之生物質(諸如例如甘蔗)、含澱粉生物質(例如,小麥粒或玉米稈,或甚至穀粒,諸如玉米、小麥、大麥或其混合物)。 較佳者為天然富含聚果糖之農業作物(例如,鬼子姜或菊苣根)。
六碳糖可藉由此等生物質之水解而獲得用於生物質之水解的方法在此項技術中為本身已知的,且包括例如蒸氣及/或諸如葡萄糖澱粉酶之醣酶的使用。
適用於本發明之方法的生物質之另一較佳類型為所謂的「第二代」木質纖維素原料,該木質纖維素原料在欲以更可持續方式製造大體積FDCA的情況下為較佳的。木質纖維素原料可自專用能量作物獲得,該等專用能量作物例如生長於邊際土地,因此不會與食品作物直接競爭。或者,木質纖維素原料可作為副產物獲得,該等副產物例如都市固體廢料、廢紙、木材殘渣(包括鋸木場及造紙廠廢棄物),且可視為是作物殘渣。作物殘渣之實例包括來自甘蔗之蔗渣以及若干種玉米及小麥廢料。在玉米副產物之狀況下,三種廢料為纖維、玉米穗軸及蒿桿。此外,林業生物質可用作原料。為將第二代原料轉化成本發明之發酵產物,需要使纖維素及半纖維素作為單醣釋放。為此,應用熱化學方法(通常稱為預處理)、酶促方法或兩種方法學之組合。預處理可用於完全釋出糖,或用於製成更可易於達到後續酶促作用的聚合化合物。不同類型之預處理包括液體熱水、蒸汽爆裂、酸預處理、鹼預處理及離子液體預處理。各種化合物之相對量將取決於所使用原料及所使用預處理兩者。對單醣糖類自此等木質纖維素原料之釋放而言,使用適當的 醣酶,包括例如阿拉伯糖酶、木聚糖酶、聚葡萄糖酶、澱粉酶、纖維素分解酶、聚葡萄糖酶及類似物。
本發明之方法進一步較佳包含以下步驟:回收方法中製造的氧化產物,諸如FDCA或HMFCA。較佳地,氧化產物自培養基回收,在該培養基中,培育進行氧化步驟之細胞。諸如FDCA、HMFCA等之氧化產物可藉由例如(酸或鹽)沉澱、後續冷卻結晶及結晶氧化產物(例如,結晶FDCA)之分離而自反應混合物或培養基回收。然而,其他回收方法為適合的,該等其他回收方法諸如此項技術中已知的酸或鹽沉澱及溶劑萃取。用於FDCA之回收的鹽沉澱可例如使用諸如例如Mg2+之二價(金屬)陽離子來進行。
氧化反應較佳係於對細胞及細胞中所含有的氧化還原酶最佳之溫度下進行。因此,在嗜熱性細胞及酶之狀況下,溫度較佳為45℃或更高,例如在45℃與122℃之間的範圍內,例如高於50℃、55℃、60℃或65℃。然而,在含有來自嗜中溫性生物之酶的嗜溫性細胞之狀況下,氧化反應較佳係於相對溫和溫度下進行,該溫度例如10℃-80℃、更佳20℃-45℃、最佳約25℃-40℃。
氧化反應較佳係於FDCA呈中性形式或呈完全解離形式之pH下進行,以使得可控制鹽形成。鑒於FDCA中兩個酸部分之存在,存在兩個單獨較佳pH範圍。在反應期間之pH可為pH 1至6、較佳pH 1至4、 最佳pH 1至3。或者,在反應期間的pH可為pH 5至9、較佳pH 5至8、最佳pH 5至7。熟練技藝人士將理解,寄主細胞之需求將亦影響用於方法之適合pH值之選擇。對特定寄主細胞適當的pH值之選擇在熟練技藝人士之能力範圍內,且可自標準教科書得到。對包括例如螢光假單胞菌S12菌株或KT2440菌株之螢光假單胞菌而言,較佳pH範圍為pH 5至7。
反應時間可為6h-150h、更佳6h-18h。氧較佳係自氧源供應至反應培養基中之細胞,該氧源諸如分子氧,例如作為純氧或於空氣中或水中,或取決於呋喃氧化酶之需求而自不同氧源供應至該細胞。空氣可便利地用作分子氧之來源。
反應器可為任何適合的(充氣)生物反應器。反應器可分批操作、連續操作或較佳以饋料批次方式操作。
本發明的用於氧化呋喃化合物之方法可有利地應用於自原料消除呋喃化合物,在該等原料中,呋喃化合物係視為有害的,該等原料諸如用於發酵以供生物燃料及生物化學品之製造的原料。更佳地,用於氧化呋喃化合物之方法係應用於作為用於聚酯(塑膠)之製造的單體前驅物的FDCA之生物製造,其中FDCA可替代聚酯PET中之PTA,在該狀況下得到基於生物的聚乙烯呋喃二甲酸酯(polyethylenefurandicarboxylate;PEF)。FDCA亦可用作多種有價值化合物之底物,包括 例如用作用於以下者之製造的底物:丁二酸、2,5-雙(胺基甲基)四氫呋喃、2,5-二羥基甲基-四氫呋喃、2,5-二羥基甲基呋喃及2,5-呋喃二甲醛。FDCA可用於塗料之製造,例如用於酸醇樹脂及熱塑性塗料。FDCA亦可用作生物燃料中之二甲苯等效物及用作溶劑。FDCA可經酯化,且酯可用作塑化劑。FDCA可轉化成其二醇,該二醇可用於類PET聚酯及聚胺甲酸酯。FDCA進一步可轉化成其二胺,該二胺可用作鏈伸長劑,且該二胺可轉化成二異氰酸酯,該二異氰酸酯可用於聚胺甲酸酯之製造。
因此,在另一態樣中,本發明係關於一種用於自一或多種FDCA單體製造聚合物之方法,該方法包含以下步驟:a)在如上所述的本發明之氧化方法中製備FDCA單體;以及,b)自a)中獲得的FDCA單體製造聚合物。聚合物較佳為聚乙烯呋喃二甲酸酯(polyethylenefurandicarboxylate;PEF)。
在又一態樣中,本發明係關於本發明之細胞用於將呋喃前驅物中之一或多者生物轉變成FDCA之用途,其中該細胞為表現如本文中上文所定義的HMFCA脫氫酶之細胞,或表現多肽之細胞,該多肽具有呋喃化合物運輸能力且進一步包含如本文中上文所定義的HMFCA脫氫酶或氧化酶活性。較佳地,生物轉變成FDCA的FDCA之至少一種呋喃前驅物係選自由 HMF、DHF、HMFCA、FFA及DFF組成之群,其中HMF最佳。
HMFCA脫氫酶多肽及編碼HMFCA脫氫酶之核酸
在另一態樣中,本發明係關於一種具有HMFCA脫氫酶活性之多肽。具有HMFCA脫氫酶活性之多肽包含胺基酸序列或由胺基酸序列組成,該胺基酸序列具有與SEQ ID NO:1(蒼白好氧小桿菌)之胺基酸序列至少81.65、81.7、81.8、81.85、82、83、84、85、86、87、88、89、90、91、92、93、94、95、95、96、97、98、99或100%的序列一致性,但另外如本文中上文所定義。多肽較佳為分離多肽。
本發明進一步係關於一種核酸分子,該核酸分子包含以下至少一者:a)核苷酸序列,該核苷酸序列編碼具有HMFCA脫氫酶活性之多肽,該多肽包含胺基酸序列或由胺基酸序列組成,該胺基酸序列具有與SEQ ID NO:1之胺基酸序列至少81.65、81.7、81.8、81.85、82、83、84、85、86、87、88、89、90、91、92、93、94、95、95、96、97、98、99或100%的序列一致性;b)核苷酸序列,該核苷酸序列在SEQ ID NO:12或13中闡明;c)如(a)或(b)中定義的核苷酸序列之片段,該片段之長度為10、15、20、30、50或100個核苷酸; d)核苷酸序列,該核苷酸序列之序列由於遺傳碼之簡並性而不同於b)或c)之核苷酸序列之序列;以及e)核苷酸序列,該核苷酸序列為如a)至d)中所定義的核苷酸序列之反轉補體。
本發明之另一態樣係關於載體,包括選殖及表現載體,該等載體包含如本部分中上文a)至e)中所定義的核苷酸序列,該等載體另外如本文中上文所述。
在又一態樣中,本發明係關於一種包含以下至少一者之細胞:i)如本部分中上文所定義的具有HMFCA脫氫酶活性之多肽,及ii)如本部分中上文所定義的核酸分子。細胞較佳為包含如本部分中上文a)至e)中所定義的核苷酸序列或包含此核苷酸序列之載體的細胞,或利用該核苷酸序列或該載體轉型的細胞。細胞較佳為分離細胞或培養細胞,細胞較佳另外如本文中上文所述,且細胞較佳包含本文中上文所述的遺傳修飾中之一或多者。細胞可應用於如上文所述的任何方法、方法及用途中。
呋喃化合物運輸蛋白多肽及編碼此等運輸蛋白多肽之核酸
在又一態樣中,本發明係關於一種具有呋喃化合物運輸能力之多肽。多肽較佳至少具有將HMFCA運輸至細胞中之能力。多肽較佳包含胺基酸序列或由胺基酸序列組成,該胺基酸序列具有與SEQ ID NO:17(蒼白好氧小桿菌)之胺基酸序列至少86.5、87、88、 89、90、91、92、93、94、95、95、96、97、98、99或100%的序列一致性,但另外如本文中上文所定義。多肽較佳為分離多肽。
本發明進一步係關於一種核酸分子,該核酸分子包含以下至少一者:a)核苷酸序列,該核苷酸序列編碼具有將至少HMFCA運輸至細胞中之能力的多肽,該多肽包含胺基酸序列或由胺基酸序列組成,該胺基酸序列具有與SEQ ID NO:17之胺基酸序列至少86.5、87、88、89、90、91、92、93、94、95、95、96、97、98、99或100%的序列一致性;b)核苷酸序列,該核苷酸序列在SEQ ID NO:18中闡明;c)如(a)或(b)中定義的核苷酸序列之片段,該片段之長度為10、15、20、30、50或100個核苷酸;d)核苷酸序列,該核苷酸序列之序列由於遺傳碼之簡並性而不同於b)或c)之核苷酸序列之序列;以及e)核苷酸序列,該核苷酸序列為如a)至d)中所定義的核苷酸序列之反轉補體。
本發明之另一態樣係關於載體,包括選殖及表現載體,該等載體包含如本部分中上文a)至e)中所定義的核苷酸序列,該等載體另外如本文中上文所述。
在又一態樣中,本發明係關於一種包含以下至少一者之細胞:i)如本部分中上文所定義的具有呋喃 化合物運輸能力之多肽,及ii)如本部分中上文所定義的核酸分子。細胞較佳為包含如本部分中上文a)至e)中所定義的核苷酸序列或包含此核苷酸序列之載體的細胞,或利用該核苷酸序列或該載體轉型的細胞。細胞較佳為分離細胞或培養細胞,細胞較佳另外如本文中上文所述,且細胞較佳包含本文中上文所述的遺傳修飾中之一或多者。細胞可應用於如上文所述的任何方法、方法及用途中。
在本文件及其發明申請專利範圍中,動詞「包含」及其動詞變化係以其非限制性意義來使用,以便意指跟隨該詞之後的項受包括,但並不排除未確切提及的項。另外,藉由不定冠詞「一」對要素之提及並不排除存在多於一個該要素之可能性,除非上下文清楚地要求該等要素中之唯一一者。不定冠詞「一」因此通常意指「至少一個」。
本說明書中所引用之全部專利及文獻據此以全文引用方式併入。
提供以下實例僅係為說明性之目的,而非意欲以任何方式限制本發明之範疇。
第1A圖:HMF藉由螢光假單胞菌CA2046(螢光假單胞菌之生物轉變;空心圓:HMF(5-羥甲基呋喃醛);空心正方形:HMFCA(5-羥甲基呋喃甲酸); 實心菱形:FDCA(2,5-呋喃二甲酸);實心灰色圓:OD600。
第1B圖:HMF藉由螢光假單胞菌CA2101之生物轉變;空心圓:HMF(5-羥甲基呋喃醛);空心正方形:HMFCA(5-羥甲基呋喃甲酸);實心菱形:FDCA(2,5-呋喃二甲酸);實心灰色圓:OD600。
第2圖:HMF藉由螢光假單胞菌CA2111之生物轉變,該螢光假單胞菌CA2111共表現YiaY與來自巴西貪銅菌HMF14之Aldh及HmfT1;空心圓:HMF(5-羥甲基呋喃醛);空心正方形:HMFCA(5-羥甲基呋喃甲酸);實心菱形:FDCA(2,5-呋喃二甲酸);實心灰色圓:OD600。展示重複培養物之平均值。
第3圖:HMF藉由螢光假單胞菌CA2112之生物轉變,該螢光假單胞菌CA2112共表現YiaY與來自巴西貪銅菌HMF14之Aldh及HmfT1;空心圓:HMF(5-羥甲基呋喃醛);空心正方形:HMFCA(5-羥甲基呋喃甲酸);實心菱形:FDCA(2,5-呋喃二甲酸);實心灰色圓:OD600。展示重複培養物之平均值。
第4圖. 藉由螢光假單胞菌CA21780之HMF生物轉變,該螢光假單胞菌CA21780共表現來自韓研所芽孢桿菌DSM17871之YiaY及來自巴西貪銅菌之Aldh及HmfT1。HMF-OH為二羥基甲基呋喃,在本文中亦稱為「DHF」。
第5圖. 藉由螢光假單胞菌CA21781之HMF生物轉變,該螢光假單胞菌CA21781共表現來自新地站解硫胺素芽孢菌DSM18919之YiaY及來自巴西貪銅菌之Aldh及HmfT1。HMF-OH為二羥基甲基呋喃,在本文中亦稱為「DHF」。
第6圖. 藉由螢光假單胞菌CA21783之HMF生物轉變,該螢光假單胞菌CA21783共表現來自波茨坦短芽胞桿菌W25之YiaY及來自巴西貪銅菌之Aldh及HmfT1。HMF-OH為二羥基甲基呋喃,在本文中亦稱為「DHF」。
實例 一般方法 菌株及質體
螢光假單胞菌S12△gcd或螢光假單胞菌KT2440△gcd(螢光假單胞菌S12(ATCC 700801)之缺乏葡萄糖脫氫酶之突變體,相應地為螢光假單胞菌KT2440(DSM6125))或野生型螢光假單胞菌S12係用作寄主,以用於yiaY基因自蒼白好氧小桿菌菌株CA1828之表現(參見下文)。大腸桿菌菌株TG90係用於一般選殖目的。
對蒼白好氧小桿菌基因之游離基因組表現而言,使用源自pBBR1MCS之pBT’mcs(Koopman 等人,2010a,Biores Technol 101:6291-6196)。在pBT’mcs中,目標基因之表現自持續型tac啟動子驅動。
培養基&培養條件
嗜中溫生物無機鹽培養基(mesophile mineral salts medium;MMM)含有以下(每公升去礦物質水):15.52g之K2HPO4、6.52g之NaH2PO4、2.0g之(NH4)2SO4、0.1g之MgCl2 6H20、10mg之EDTA、2mg之ZnSO4 7H20、1mg之CaCl2 2H20、5mg之FeSO4 7H20、0.2mg之Na2MoO4 2H20、0.2mg之CuSO4 5H20、0.4mg之CoCl2 6H20及1mg之MnCl2.2H20,按指定補充有碳源。
嗜熱生物無機鹽培養基(thermophile mineral salts medium;TMM)含有以下(每公升去礦物質水):10g之Bis-Tris、10μM FeSO4.7H2O、4mM三(羥甲基)甲基甘胺酸、1.32mM K2HPO4、9.53mM NH4Cl、0.2g酵母萃、5g之NaCl、1.47g之Na2SO4、0.08g之NaHCO3、0.25g之KCl、1.87g之MgCl2.6H2O、0.41g之CaCl2.2H2O、0.008g之SrCl2.6H2O、0.008g之H3BO3、0.90g之NaNO3及1ml之維生素溶液(硫胺素,0.1g/L;核黃素,0.1g/L;菸鹼酸,0.5g/L;泛酸,0.1g/L;吡哆胺-HCl,0.5g/L;吡哆醛-HCl,0.5g/L;D- 生物素,0.1g/L;葉酸,0.1g/L;對胺基苯甲酸,0.1g/L;鈷胺,0.1g/L)。按指定補充碳源。
關於用於嗜中溫生物之繁殖的完全培養基,使用Luria-Bertani(LB)培養液:10g/l Bacto trypton(Difco)、5g/l酵母萃(Difco)、10g/l NaCl。對於平板培養而言,利用1.5%(w/v)之瓊脂(Difco)固化LB。對運載源自pBT’mcs之質體的大腸桿菌、螢光假單胞菌S12或螢光假單胞菌KT2440轉型體之選擇而言,將50μg/ml之康黴素(kanamycin;Km)添加至培養基。自Sigma-Aldrich購買抗生素。在30℃下培養螢光假單胞菌;在37℃下培養大腸桿菌。
關於用於嗜熱生物之繁殖的完全培養基,使用TGP培養液:17g/L胰化蛋白、3g/L大豆蛋白腖、5g/L NaCl、2.5g/L K2HPO4、4g/L甘油及4g/L Na-丙酮酸酯(pH7)。對於平板培養而言,利用1.5%(w/v)之瓊脂(Difco)固化TGP。在60℃培養蒼白好氧小桿菌。
測定&分析方法 細胞乾重(cell dry weight;CDW)量測:
藉由使用Biowave細胞密度計(WPA Ltd)或μQuant MQX200通用微板分光光度計(Biotek),使用平底96孔微板(Greiner)在600nm(OD600)下量測光學密度來測定細菌培養物之CDW含量。對螢 光假單胞菌而言,1.0之OD600相應於0.56g CDW/L(Biowave)或1.4g CDW/L(μQuant)。
HPLC分析:
如由Koopman等人(2010a,Biores Technol 101:6291-6196)所述,藉由RP-HPLC分析呋喃化合物(FDCA、HMF、HMF-醇、HMFCA及FFA)。
化學品
在Eurolabs Ltd(Poynton,UK)購買5-羥甲基呋喃醛(5-Hydroxymethylfurfural;HMF)。分別自Immunosource B.V.(Halle-Zoersel,Belgium)、Matrix Scientific(Columbia SC,USA)購買FDCA及5-羥甲基-呋喃甲酸(5-hydroxymethyl-furoic acid;HMFCA)之分析標準。自Sigma-Aldrich Chemie B.V.(Zwijndrecht,The Netherlands)購買所有其他化學品。
分子及遺傳技術:
使用MasterPureTM革蘭氏陽性DNA純化套組(Epicentre)自蒼白好氧小桿菌CA1828分離基因組DNA。利用JETSTAR Maxi質體純化套組(GENOMED,ITK diagnostics)分離質體DNA。利用DNA Clean&ConcentratorTM(Zymo research)分離俘獲瓊脂糖之DNA片段。根據製造商 之說明書,利用Phusion Flash PCR Master Mix(Thermo Scientific)進行PCR反應。藉由Sigma-Aldrich合成寡核苷酸引子(在實例中指定)。使用基因脈波器電穿孔裝置(BioRad)將質體DNA引入電勝任細胞中。根據Sambrook及Russell(2001,同上)進行其他標準分子生物學技術。
實例I:代謝HMF之蒼白好氧小桿菌菌株之分離
將堆肥(15g)與15ml之0.9%(w/v)NaCl溶液混合,且在750rpm及80℃下培育40min。在搖瓶中,於60℃及180rpm下,在補充有0.65g/L之HMF之TMM中培育所得堆肥漿料3天。以規則間隔將培養物轉移至新鮮TMM-HMF,且塗覆於固體TMM-HMF上。將單一菌落重新條紋塗覆(re-streaked)於TMM-HMF板及TGP板上,且重新測定該等菌落代謝HMF以及FDCA之能力。藉由16SrDNA定序將代謝HMF及FDCA兩者的兩種分離物(菌株CA1809及CA1828)鑑定為蒼白好氧小桿菌,且選用於進一步研究。
實例II:降解HMF之蒼白好氧小桿菌分離物中新穎、脫氫酶催化HMF異化路徑之鑑定
經由PacBio定序對蒼白好氧小桿菌菌株CA1809及CA1828之基因組定序,且進行自動化ORF命名及註記。在所注記基因組中,同源物經鑑定具有巴西貪銅菌HMF14之hmfABCDE基因,該等 hmfABCDE基因構成呋喃甲酸降解群集(Koopman等人,2010,Proc Nat Acad Sci USA 107:4919-4924)。
考慮到菌株CA1809及CA1828代謝除HMF之外的FDCA之能力強烈地暗示:HMF如在巴西貪銅菌HMF14中經由FDCA代謝。然而,意外地未發現巴西貪銅菌HMF14之hmfFGH群集之同源物,該同源物構成經由FDCA自HMF至呋喃甲酸之降解路徑。此結果暗示:HMF至FDCA之氧化的替代路徑,且可能向呋喃甲酸之後續脫羧作用存在於蒼白好氧小桿菌分離物中。採集包含編碼氧化活性及脫羧活性兩者之基因的基因群集之基因組產生對推定HMF降解群集之鑑定,該推定HMF降解群集包含編碼醇脫氫酶、醛脫氫酶及兩種脫羧酶之基因(表1A和B)。共同地,此等基因編碼用於HMF經由羥甲基呋喃甲酸(hydroxymethylfuroic acid;HMFCA)至FDCA之氧化的推定路徑,如巴西貪銅菌HMF14中的情況,但涉及用於HMFCA至甲醯基呋喃甲酸(formylfuroic acid;FFA)之氧化的醇脫氫酶活性而非氧化酶活性。
Figure 105104651-A0202-12-0063-1
Figure 105104651-A0202-12-0064-2
Figure 105104651-A0202-12-0064-3
實例III:在螢光假單胞菌S12中表現來自蒼白好氧小桿菌之YiaY賦予將HMF氧化成FDCA之能力
在產生pBT'amcs之質體pKW007中將yiaY基因選殖為1988-bp合成XbaI-SalI片段(SEQ ID NO:15),該片段包括來自凝結芽孢桿菌DSM1之PldhL1啟動子區。將質體pKW007引入螢光假單胞菌KT2440△gcd(CA1877),從而產生螢光假單胞菌CA2101。運載pBT'mcs之螢光假單胞菌 KT2440△gcd(菌株CA2046)作為空載體對照物來測試。
在含有10ml之MM+80mM甘油及2mM葡萄糖的補充有50mg/L康黴素之100ml搖瓶中生長螢光假單胞菌菌株CA2101及CA2046。在對數期結束時收穫細胞(OD600
Figure 105104651-A0202-12-0065-119
4),洗滌且再懸浮於補充有19.4g/L之K2HPO4、8.15g/L之NaH2PO4、80mM甘油及50mg/L康黴素之MM中。在100ml Erlenmeyer燒瓶中利用HMF培育所洗滌細胞懸浮液之等分試樣(10ml)(處於1-2之OD600),且以規則間隔抽取樣本以供FDCA之分析。第1A圖展示:在空載體對照物中HMF快速氧化成羥甲基呋喃甲酸(hydroxymethylfuroic acid;HMFCA),而總體上缺乏FDCA形成。當表現YiaY時(第1B圖),累積HMFCA係緩慢氧化成FDCA,從而證明YiaY作為氧化HMFCA之脫氫酶的功能性。
實例IV:HMF經由來自蒼白好氧小桿菌之YiaY及來自巴西貪銅菌HMF14之Aldh及HmfT1的共表現至FDCA之最佳化氧化
合成蒼白好氧小桿菌CA1828之yiaY基因,其包括核糖體結合位點TAGGAAAGGAAGATTAACCC(SEQ ID NO:21)。利用KpnI及XbaI消化yiaY片段(SEQ ID NO:16)以置換pBT'hmfH-adh中之hmfH基因 (WO2012064195),從而產生質體pKW010。將質體pKW010引入藏有pJNNhmfT1(t)(WO2012064195)之螢光假單胞菌S12△gcd中從而產生螢光假單胞菌CA2111,且將質體pKW010引入螢光假單胞菌KT2440△gcd(亦藏有pJNNhmfT1(t))中從而產生螢光假單胞菌CA2112。因此,由yiaY編碼的氧化HMFCA之醇脫氫酶可與來自巴西貪銅菌HMF14之HMF脫氫酶及HMFCA運輸蛋白一起共表現,以消除HMF氧化成HMFCA及HMFCA吸收之瓶頸。
在含有10ml之MM+80mM甘油及2mM葡萄糖的補充有50mg/L康黴素、30mg/L之建它黴素及100μM之水楊酸之100ml搖瓶中生長螢光假單胞菌CA2111及CA2112。在對數期結束時收穫細胞(OD600
Figure 105104651-A0202-12-0066-120
4),洗滌且再懸浮於MM 50mg/L之康黴素、30mg/L之建它黴素及10μM之水楊酸中。在100ml Erlenmeyer燒瓶中利用HMF培育所洗滌細胞懸浮液之等分試樣(10ml)(處於1-2之OD600),且以規則間隔抽取樣本以供FDCA之分析。第2及3圖展示:HMF快速氧化成HMFCA,該HMFCA進一步氧化成FDCA。顯然,YiaY與Aldh及HmfT1之共表現顯著地加速HMF至FDCA之氧化。
實例V:用於HMF經由嗜溫性HMFCA醇脫氫酶及來自巴西貪銅菌HMF14之Aldh及HmfT1的共表現至FDCA之氧化的最佳化菌株之構造
合成韓研所芽孢桿菌DSM17871、熱紅短芽孢桿菌423、桿菌屬FJAT-14578及桿菌屬L1(2012)yiaY同源物,該等同源物包括含有間隔序列TAGGAAAGGAAGATTAACCC(SEQ ID NO:21)之核糖體結合位點以及用於限制酶(KpnI,相應地NheI;與XbaI相容)之識別位點以供選殖(SEQ ID NO:19、36、38及39)。
合成新地站解硫胺素芽孢菌DSM18919及波茨坦短芽胞桿菌W25之yiaY同源物,該等同源物包括含有間隔序列GAATTCCACATGACAAGGGGAGACCGC(SEQ ID NO:40)之核糖體結合位點以及用於限制酶(KpnI,相應地XbaI)之識別位點以供選殖(SEQ ID NO:35及37)。使用http://www.kazusa.or.jp/codon/之螢光假單胞菌密碼子使用表,經由胺基酸序列之反轉譯(http://www.bioinformatics.org/sms2/rev_trans.html)獲得用於韓研所芽孢桿菌酶(SEQ ID NO:19)、熱紅短芽孢桿菌酶(SEQ ID NO:36)及兩種桿菌屬酶(SEQ ID NO:38及39)之編碼核苷酸序列。使用GeneArt之大腸桿菌序列最佳化工具 (https://www.thermofisher.com/nl/en/home/life-science/cloning/gene-synthesis/geneart-gene-synthesis/geneoptimizer.html),經由胺基酸序列之反轉譯獲得用於新地站解硫胺素芽孢菌及人參田地芽孢桿菌酶之編碼核苷酸序列。
利用KpnI及NheI(與pBT'hmfH-adh中之XbaI相容)消化韓研所芽孢桿菌、熱紅短芽孢桿菌、桿菌屬FJAT-14578及桿菌屬L1(2012)yiaY同源物片段,以置換pBT'hmfH-adh中之hmfH基因(WO2012064195),從而產生質體pKW2210、pKW2212、pKW2214及pKW2215。利用KpnI及XbaI消化新地站解硫胺素芽孢菌及人參田地芽孢桿菌之yiaY同源物片段,以置換pBT'hmfH-adh中之hmfH基因(WO2012064195),從而產生質體pKW2211及pKW2213。
將質體pKW2210、pKW2211、pKW2212、pKW2213、pKW2214及pKW2215引入螢光假單胞菌KT2440△gcd_pJNNhmfT1(CA1965)中,從而分別產生螢光假單胞菌CA21780、CA21781、CA21782、CA21783、CA21784及CA21785,以用於YiaY同源物在包括aldhhmfT1之最佳化寄主背景中之表現。對效能評估而言,在含有10ml之MM+80mM甘油及2mM葡萄糖的補充有50mg/L康黴素、30mg/L之建它黴 素及100μM之水楊酸之100ml搖瓶中生長螢光假單胞菌菌株CA21780、CA21781、CA21782、CA21783、CA21784及CA21785。在對數期結束時收穫細胞(OD600
Figure 105104651-A0202-12-0069-121
4),洗滌且再懸浮於MM 50mg/L之康黴素、30mg/L之建它黴素及10μM之水楊酸中。在100ml Erlenmeyer燒瓶中利用HMF培育所洗滌細胞懸浮液之等分試樣(10ml)(1-2之OD600),且以規則間隔抽取樣本以供FDCA之分析。分別在第4、5及6圖中展示螢光假單胞菌CA21780、CA21781及CA21783之結果。所有三種轉型菌株皆自HMF製造FDCA。然而,不同菌株展示在HMFCA之暫態累積及HMF至二羥基甲基呋喃(HMF-OH或DHF)之部分還原方面的明顯差異。亦發現菌株螢光假單胞菌CA21782、CA21784及CA21785自HMF製造FDCA,從而證明所有六種醇脫氫酶作為氧化HMFCA之酶之功能性。
實例VI:表現蒼白好氧小桿菌proP編碼之HMFCA運輸蛋白的螢光假單胞菌菌株之構造
使用引子proP(f)(gccgaattcATGAAGAATATCGCTAATACG;SEQ ID NO:22)及proP(r)(gccgctagcTTATTTGAGGTTTCCTTTTGTTTCC;SEQ ID NO:23),藉由PCR自蒼白好氧小桿菌CA1828之基因組DNA擴增proP基因(SEQ ID NO: 18)。將PCR產物作為1350-bp EcoRI-NheI片段(SEQ ID NO:20)引入pJNNmcs(t)中,從而產生pJNNproP(t)。將質體pBT’hmfH_aldh及pJNNproP(t)逐次引入螢光假單胞菌KT2440△gcd(CA1877)中,從而產生螢光假單胞菌CA21783。在含有10ml之MM+80mM甘油及2mM葡萄糖的補充有50mg/L康黴素、30mg/L之建它黴素及100μM之水楊酸之100ml搖瓶中培養螢光假單胞菌CA21783。在對數期結束時收穫細胞(OD600
Figure 105104651-A0202-12-0070-118
4),洗滌且再懸浮於MM 50mg/L之康黴素、30mg/L之建它黴素及10μM之水楊酸中。在100ml Erlenmeyer燒瓶中利用HMF培育所洗滌細胞懸浮液之等分試樣(10ml)(1-2之OD600),且以規則間隔抽取樣本以供FDCA之分析。顯然,相較於不表現proP之相應對照菌株而言,proP編碼之HMFCA運輸蛋白之表現顯著地加速HMF至FDCA之氧化。
Figure 105104651-A0202-12-0070-4
Figure 105104651-A0202-12-0071-5
Figure 105104651-A0202-12-0072-6
Figure 105104651-A0202-12-0073-7
Adh_Bp=SEQ ID NO:6(波茨坦短芽胞桿菌);Adh_Bk=SEQ ID NO:2(韓研所芽孢桿菌);Adh_Bt=SEQ ID NO:5(熱紅短芽孢桿菌);Adh_At=SEQ ID NO:4(新地站解硫胺素芽孢菌);YiaY=SEQ ID NO:1(蒼白好氧小桿菌);Adh_Gk=SEQ ID NO:3(嗜熱地芽孢桿菌);Adh_Bsp=SEQ ID NO:7(桿菌屬FJAT-14578);Adh_BspL1=SEQ ID NO:10(桿菌屬L1(2012));Adh_Pt=SEQ ID NO:11(丙酸互營菌);Adh_Dk=SEQ ID NO:8(庫氏脫硫腸狀菌);以及Adh_Dt=SEQ ID NO:9(嗜熱脫硫腸狀菌)。比對下方之符號指示:*=不變位置;:=強烈保守位置;.=較不強烈保守位置;無符號指示非保守位置。
Figure 105104651-A0202-12-0074-8
Figure 105104651-A0202-12-0075-9
Figure 105104651-A0202-12-0076-10
Figure 105104651-A0202-12-0077-11
<110> 荷蘭商‧普拉克生物化學股份有限公司(Purac Biochem B.V.)
<120> 脫氫催化的2,5-喃二甲酸(FDCA)之製造
<150> EP15155401
<151> 2015-02-17
<160> 40
<170> PatentIn 3.3版
<210> 1
<211> 392
<212> PRT
<213> 蒼白好氧小桿菌
<400> 1
Figure 105104651-A0305-02-0080-66
Figure 105104651-A0305-02-0081-1
Figure 105104651-A0305-02-0082-2
<210> 2
<211> 383
<212> PRT
<213> 韓研所芽孢桿菌
<400> 2
Figure 105104651-A0305-02-0082-67
Figure 105104651-A0305-02-0083-3
Figure 105104651-A0305-02-0084-4
<210> 3
<211> 391
<212> PRT
<213> 嗜熱地芽孢桿菌
<400> 3
Figure 105104651-A0305-02-0084-68
Figure 105104651-A0305-02-0085-5
Figure 105104651-A0305-02-0086-6
<210> 4
<211> 390
<212> PRT
<213> 新地站解硫胺素芽孢菌
<400> 4
Figure 105104651-A0305-02-0086-69
Figure 105104651-A0305-02-0087-7
Figure 105104651-A0305-02-0088-8
<210> 5
<211> 390
<212> PRT
<213> 熱紅短芽孢桿菌
<400> 5
Figure 105104651-A0305-02-0088-70
Figure 105104651-A0305-02-0089-9
Figure 105104651-A0305-02-0090-10
<210> 6
<211> 379
<212> PRT
<213> 波茨坦短芽胞桿菌
<400> 6
Figure 105104651-A0305-02-0091-71
Figure 105104651-A0305-02-0092-12
<210> 7
<211> 383
<212> PRT
<213> 芽孢桿菌屬FJAT-14578
<400> 7
Figure 105104651-A0305-02-0093-72
Figure 105104651-A0305-02-0094-13
Figure 105104651-A0305-02-0095-14
<210> 8
<211> 384
<212> PRT
<213> 庫氏脫硫腸狀菌
<400> 8
Figure 105104651-A0305-02-0095-73
Figure 105104651-A0305-02-0096-15
Figure 105104651-A0305-02-0097-16
<210> 9
<211> 377
<212> PRT
<213> 嗜熱脫硫腸狀菌
<400> 9
Figure 105104651-A0305-02-0097-74
Figure 105104651-A0305-02-0098-17
Figure 105104651-A0305-02-0099-18
<210> 10
<211> 383
<212> PRT
<213> 芽孢桿菌屬L1(2012)
<400> 10
Figure 105104651-A0305-02-0099-75
Figure 105104651-A0305-02-0100-19
Figure 105104651-A0305-02-0101-20
<210> 11
<211> 387
<212> PRT
<213> 丙酸互營菌
<400> 11
Figure 105104651-A0305-02-0101-76
Figure 105104651-A0305-02-0102-21
Figure 105104651-A0305-02-0103-22
<210> 12
<211> 1176
<212> DNA
<213> 蒼白好氧小桿菌
<400> 12
Figure 105104651-A0305-02-0103-77
Figure 105104651-A0305-02-0104-23
<210> 13
<211> 1179
<212> DNA
<213> 人工
<220>
<223> 螢光假單胞菌中最佳化之用於表現的合成密碼子
<400> 13
Figure 105104651-A0305-02-0104-79
Figure 105104651-A0305-02-0105-24
<210> 14
<211> 1152
<212> DNA
<213> 人工
<220>
<223> 螢光假單胞菌中最佳化之用於表現的合成密碼子
<400> 14
Figure 105104651-A0305-02-0105-80
Figure 105104651-A0305-02-0106-25
<210> 15
<211> 1994
<212> DNA
<213> 人工
<220>
<223> 合成XbaI-SalI片段
<400> 15
Figure 105104651-A0305-02-0106-81
Figure 105104651-A0305-02-0107-26
<210> 16
<211> 1258
<212> DNA
<213> 人工
<220>
<223> 合成XbaI-SalI片段
<400> 16
Figure 105104651-A0305-02-0108-82
<210> 17
<211> 446
<212> PRT
<213> 蒼白好氧小桿菌
<400> 17
Figure 105104651-A0305-02-0109-83
Figure 105104651-A0305-02-0110-27
Figure 105104651-A0305-02-0111-28
<210> 18
<211> 1338
<212> DNA
<213> 蒼白好氧小桿菌
<400> 18
Figure 105104651-A0305-02-0111-85
Figure 105104651-A0305-02-0112-29
<210> 19
<211> 1184
<212> DNA
<213> 人工
<220>
<223> 具最佳化韓研所芽孢桿菌YiaY密碼子之合成KpbI-NheI片段
<400> 19
Figure 105104651-A0305-02-0112-88
Figure 105104651-A0305-02-0113-30
<210> 20
<211> 1359
<212> DNA
<213> 人工
<220>
<223> 具蒼白好氧小桿菌proP編碼序列之EcoRI-NheI PCR片段
<400> 20
Figure 105104651-A0305-02-0113-90
Figure 105104651-A0305-02-0114-31
<210> 21
<211> 20
<212> DNA
<213> 人工
<220>
<223> 核糖體結合位點
<400> 21
Figure 105104651-A0305-02-0114-91
<210> 22
<211> 30
<212> DNA
<213> 人工
<220>
<223> PCR引子proP(f)
<400> 22
Figure 105104651-A0305-02-0114-92
<210> 23
<211> 34
<212> DNA
<213> 人工
<220>
<223> PCR引子proP(r)
<400> 23
Figure 105104651-A0305-02-0115-93
<210> 24
<211> 500
<212> PRT
<213> 巴西貪銅菌
<400> 24
Figure 105104651-A0305-02-0115-94
Figure 105104651-A0305-02-0116-95
Figure 105104651-A0305-02-0117-96
<210> 25
<211> 479
<212> PRT
<213> 伯克氏菌CCGE1002
<400> 25
Figure 105104651-A0305-02-0118-97
Figure 105104651-A0305-02-0119-34
Figure 105104651-A0305-02-0120-35
<210> 26
<211> 483
<212> PRT
<213> 草根圍伯克氏菌C4D1M
<400> 26
Figure 105104651-A0305-02-0120-98
Figure 105104651-A0305-02-0121-36
Figure 105104651-A0305-02-0122-38
<210> 27
<211> 483
<212> PRT
<213> 固氮螺菌屬B510
<400> 27
Figure 105104651-A0305-02-0123-99
Figure 105104651-A0305-02-0124-39
Figure 105104651-A0305-02-0125-40
<210> 28
<211> 480
<212> PRT
<213> 螢光假單胞菌
<400> 28
Figure 105104651-A0305-02-0125-100
Figure 105104651-A0305-02-0126-41
Figure 105104651-A0305-02-0127-42
Figure 105104651-A0305-02-0128-43
<210> 29
<211> 486
<212> PRT
<213> 沼澤紅假單胞菌
<400> 29
Figure 105104651-A0305-02-0128-102
Figure 105104651-A0305-02-0129-44
Figure 105104651-A0305-02-0130-45
<210> 30
<211> 485
<212> PRT
<213> 雄芝氏溝鞭藻玫瑰杆菌DFL 12
<400> 30
Figure 105104651-A0305-02-0130-103
Figure 105104651-A0305-02-0131-46
Figure 105104651-A0305-02-0132-47
Figure 105104651-A0305-02-0133-48
<210> 31
<211> 447
<212> PRT
<213> 巴西貪銅菌
<400> 31
Figure 105104651-A0305-02-0133-104
Figure 105104651-A0305-02-0134-49
Figure 105104651-A0305-02-0135-51
<210> 32
<211> 449
<212> PRT
<213> 巴西貪銅菌
<400> 32
Figure 105104651-A0305-02-0135-105
Figure 105104651-A0305-02-0136-52
Figure 105104651-A0305-02-0137-106
Figure 105104651-A0305-02-0138-55
<210> 33
<211> 449
<212> PRT
<213> 耐輻射甲基桿菌
<400> 33
Figure 105104651-A0305-02-0138-107
Figure 105104651-A0305-02-0139-56
Figure 105104651-A0305-02-0140-57
<210> 34
<211> 443
<212> PRT
<213> 嗜酸嗜熱古菌
<400> 34
Figure 105104651-A0305-02-0140-108
Figure 105104651-A0305-02-0141-58
Figure 105104651-A0305-02-0142-59
Figure 105104651-A0305-02-0143-60
<210> 35
<211> 1240
<212> DNA
<213> 人工
<220>
<223> 用於表現新地站解硫胺素芽孢菌之醇脫氫的合成KpnI-NheI片段
<400> 35
Figure 105104651-A0305-02-0143-110
Figure 105104651-A0305-02-0144-61
<210> 36
<211> 1205
<212> DNA
<213> 人工
<220>
<223> 用於表現熱紅短芽孢桿菌之醇脫氫的合成KpnI-NheI片段
<400> 36
Figure 105104651-A0305-02-0144-111
Figure 105104651-A0305-02-0145-62
<210> 37
<211> 1228
<212> DNA
<213> 人工
<220>
<223> 用於表現波茨坦短芽胞桿菌之醇脫氫的合成KpnI-NheI片段
<400> 37
Figure 105104651-A0305-02-0145-114
Figure 105104651-A0305-02-0146-63
<210> 38
<211> 1184
<212> DNA
<213> 人工
<220>
<223> 用於表現芽孢桿菌屬FJAT-14578之醇脫氫的合成KpnI-NheI片段
<400> 38
Figure 105104651-A0305-02-0146-115
Figure 105104651-A0305-02-0147-64
<210> 39
<211> 1184
<212> DNA
<213> 人工
<220>
<223> 用於表現芽孢桿菌屬L1(2012)之醇脫氫的合成KpnI-NheI片段
<400> 39
Figure 105104651-A0305-02-0147-118
Figure 105104651-A0305-02-0148-65
<210> 40
<211> 27
<212> DNA
<213> 人工
<220>
<223> 含有間隙子no.2的核糖體結合位點
<400> 40
Figure 105104651-A0305-02-0148-119

Claims (21)

  1. 一種用於將5-羥甲基-2-呋喃甲酸(HMFCA)氧化成5-甲醯基-2-呋喃甲酸(FFA)之方法,該方法包含以下步驟:於HMFCA存在下培育一細胞,其中該細胞包含一表現構築體,該表現構築體用於表現編碼一脫氫酶之一核苷酸序列,該脫氫酶具有一胺基酸序列,該胺基酸序列具有與SEQ ID NO:1至11之胺基酸序列中任一者至少70%的一致性,且其中,相較於缺乏該表現構築體之一相應野生型細胞而言,該表現構築體可表現於該細胞中且該脫氫酶之表現向該細胞賦予或增大該細胞中將HMFCA氧化成FFA之能力。
  2. 如請求項1所述之方法,其中該培育細胞之步驟發生在有助於HMFCA藉由該細胞氧化之條件下。
  3. 一種用於製造2,5-呋喃二甲酸(FDCA)之方法,該方法包含以下步驟:在包含FDCA之一或多種呋喃前驅物之一培養基中,在有助於FDCA之呋喃前驅物藉由一細胞氧化成FDCA之條件下培育該細胞,及選擇性地回收該FDCA,其中該細胞包含一表現構築體,該表現構築體用於表現編碼一脫氫酶之一核苷酸序列,該脫氫酶具有一胺基酸序列,該胺 基酸序列具有與SEQ ID NO:1至11之胺基酸序列中任一者至少70%的一致性,其中,相較於缺乏該表現構築體之一相應野生型細胞而言,該表現構築體可表現於該細胞中且該脫氫酶之表現向該細胞賦予或增大該細胞中將HMFCA氧化成FFA之能力。
  4. 如請求項3所述之製造FDCA之方法,其中該FDCA係藉由包含酸或鹽沉澱繼之以冷卻結晶及/或溶劑萃取之一方法自該培養基回收。
  5. 一種用於自一或多種FDCA單體製造一聚合物之方法,該方法包含以下步驟:a)在如請求項3或4所述之方法中製備一FDCA單體;以及,b)自a)中獲得的該FDCA單體製造一聚合物。
  6. 一種將細胞用於一或多種呋喃前驅物至FDCA之生物轉變的用途,其中FDCA之至少一種呋喃前驅物係選自由HMF、DHF、HMFCA、FFA及DFF組成之群,其中該細胞包含一表現構築體,該表現構築體用於表現編碼一脫氫酶之一核苷酸序列,該脫氫酶具有一胺基酸序列,該胺基酸序列具有與SEQ ID NO:1至11之胺基酸序列中任一者至少70%的一致性,且其中,相較於缺乏該表現構築體之一相應野生型細胞而言,該表現構築體可表現於該 細胞中且該脫氫酶之表現向該細胞賦予或增大該細胞中將HMFCA氧化成FFA之能力。
  7. 一種包含一表現構築體之細胞,該表現構築體用於表現編碼一脫氫酶之一核苷酸序列,該脫氫酶具有一胺基酸序列,該胺基酸序列具有與SEQ ID NO:1之胺基酸序列至少81.65%的一致性,其中,相較於缺乏該表現構築體之一相應野生型細胞而言,該表現構築體可表現於該細胞中且該脫氫酶之表現向該細胞賦予或增大該細胞中將HMFCA氧化成5-甲醯基-2-呋喃甲酸(FFA)之能力,且其中該細胞進一步具有以下至少一者:a)一醛脫氫酶活性,該醛脫氫酶活性將呋喃醛氧化成相應呋喃羧酸;以及,b)將呋喃化合物運輸至該細胞中及/或運輸出該細胞之能力。
  8. 如請求項7所述之細胞,其中該細胞包含一第二表現構築體,該第二表現構築體用於表現編碼一醛脫氫酶之一核苷酸序列,該醛脫氫酶包含一胺基酸序列,該胺基酸序列具有與胺基酸序列SEQ ID NO:24、25、26、27、28、29及30中任一者至少70%的一致性,其中,相較於缺乏該第二表現構築體之一相應野生型細胞而言,該第二表現構築體可表現於該 細胞中且該醛脫氫酶之表現向該細胞賦予或增大該細胞中以下能力中之至少一者:i)將5-羥甲基呋喃醛(HMF)氧化成HMFCA、ii)將DFF氧化成FFA以及iii)將FFA氧化成FDCA。
  9. 如請求項7或8所述之細胞,其中該細胞包含一第三表現構築體,該第三表現構築體用於表現編碼具有將至少HMFCA運輸至該細胞中之該能力的一多肽的一核苷酸序列,該多肽包含一胺基酸序列,該胺基酸序列具有與胺基酸序列SEQ ID NO:17、31、32、33及34中任一者至少55%的一致性,其中,相較於缺乏該第三表現構築體之一相應野生型細胞而言,該第三表現構築體可表現於該細胞中且該多肽之表現向該細胞賦予或增大該細胞中將至少HMFCA運輸至該細胞中之該能力。
  10. 如請求項7所述之細胞,其中該細胞為一微生物細胞。
  11. 如請求項10所述之細胞,其中該細胞為一酵母或絲狀真菌細胞,該酵母或絲狀真菌細胞選自一來自由以下各項組成之群的屬:念珠菌屬、漢遜氏菌屬、克魯維酵母屬、畢赤酵母菌屬、酵母菌屬、裂殖酵母屬、耶氏酵母屬、枝頂孢屬、傘菌屬、麴菌屬、短梗黴屬、毀絲黴屬、拉丁金色孢菌屬、鬼傘屬、隱 球菌屬、線黑粉酵母屬、梭黴菌屬、腐質黴屬、巨座殼屬、白黴菌屬、毀絲黴屬、新美鞭菌屬、紅黴菌屬、擬青黴屬、青黴菌屬、單鞭毛菌屬、原毛平革菌屬、側耳屬、裂褶菌屬、籃狀菌屬、嗜熱子囊菌屬、梭孢殼菌屬、彎頸黴屬及木黴菌屬。
  12. 如請求項11所述之細胞,其中該細胞為一酵母或絲狀真菌細胞,該酵母或絲狀真菌細胞選自一來自由以下各項組成之群的物種:乳酸克魯維酵母菌、啤酒酵母菌、多形漢遜氏菌、解脂耶氏酵母菌、嗜甲醇畢赤酵母菌、黑色麴菌、泡盛麴菌、臭麴菌、醬油麴菌、薰煙麴菌、愛默生籃狀菌、米麴菌、嗜熱毀絲黴菌、里氏木黴菌及產黃青黴菌。
  13. 如請求項11所述之細胞,其中該細胞為一細菌細胞,該細菌細胞選自一來自由以下各項組成之群的屬:大腸桿菌屬、念珠藻屬、氣芽孢桿菌屬、硫胺素芽孢桿菌屬、伯克氏菌屬、慢生型根瘤菌屬、柄桿菌屬、貪銅菌屬、脫硫腸狀菌屬、脫硫孢菌屬、葡糖酸桿菌屬、紅桿菌屬、丙酸互營菌屬、假單胞菌屬、副球菌屬、桿菌屬、地芽孢桿菌屬、短芽胞桿菌屬、短桿菌屬、棒狀桿菌屬、根瘤菌屬(中華根瘤菌屬)、黃桿菌屬、克雷白氏菌屬、腸內桿菌屬、乳桿菌屬、乳酸球菌屬、甲基桿菌屬、勞爾氏菌屬、紅色無硫黃 細菌屬、葡萄球菌屬及鏈黴菌屬。
  14. 如請求項13所述之細胞,其中該細胞為一細菌細胞,該細菌細胞選自一來自由以下各項組成之群的物種:蒼白好氧小桿菌、新地站解硫胺素芽孢菌、枯草芽孢桿菌、液化澱粉芽孢桿菌、凝結芽孢桿菌、韓研所芽孢桿菌、地衣芽孢桿菌、潘地芽孢桿菌、巨大芽孢桿菌、耐鹽芽孢桿菌、短小芽孢桿菌、熱紅短芽孢桿菌、人參田地芽孢桿菌、巴西貪銅菌、庫氏脫硫腸狀菌、嗜熱脫硫腸狀菌、嗜熱地芽孢桿菌、氧化葡糖酸桿菌、新月柄桿菌CB 15、扭脫甲基桿菌、類球紅桿菌、丙酸互營菌、產玉米黃質假單胞菌、螢光假單胞菌、脫氮副球菌、大腸桿菌、麩胺酸棒狀桿菌、肉葡萄球菌、變鉛青鏈黴菌、苜蓿中華根瘤菌及放射型根瘤菌。
  15. 一種具有HMFCA脫氫酶活性之多肽,該多肽包含一胺基酸序列,該胺基酸序列具有與SEQ ID NO:1之胺基酸序列至少81.65%的序列一致性。
  16. 一種核酸分子,該核酸分子包含以下至少一者:a)一核苷酸序列,該核苷酸序列編碼如請求項8所定義之一多肽; b)一核苷酸序列,該核苷酸序列具有SEQ ID NO:12或13;c)一核苷酸序列,該核苷酸序列之序列由於遺傳碼之簡併性而不同於b)之一核苷酸序列之序列;以及,d)一核苷酸序列,該核苷酸序列為如a)至c)中所定義的一核苷酸序列之反轉補體。
  17. 如請求項16所述之核酸分子,其中該核酸分子為一載體。
  18. 一種細胞,該細胞包含以下至少一者:如請求項15所定義的多肽及如請求項16或17所定義的一核酸分子。
  19. 如請求項3所述之製造FDCA之方法,其中FDCA之至少一種呋喃前驅物係選自由HMF、2,5-二羥基甲基呋喃(DHF)、HMFCA、FFA及2,5-二甲醯基呋喃(DFF)組成之群。
  20. 如請求項3或19所述之製造FDCA之方法,其中FDCA之該等呋喃前驅物係自一或多種六碳糖糖獲得。
  21. 如請求項20所述之製造FDCA之方法,其中該一或多種六碳糖自木質纖維素生物質獲得,選擇性地藉由酸催化脫水獲得。
TW105104651A 2015-02-17 2016-02-17 脫氫酶催化的2,5-呋喃二甲酸(fdca)之製造 TWI727941B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15155401 2015-02-17
EP15155401.1 2015-02-17

Publications (2)

Publication Number Publication Date
TW201638336A TW201638336A (zh) 2016-11-01
TWI727941B true TWI727941B (zh) 2021-05-21

Family

ID=52469748

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105104651A TWI727941B (zh) 2015-02-17 2016-02-17 脫氫酶催化的2,5-呋喃二甲酸(fdca)之製造

Country Status (13)

Country Link
US (1) US10457965B2 (zh)
EP (1) EP3259349B1 (zh)
JP (2) JP2018504904A (zh)
KR (1) KR20170116051A (zh)
CN (1) CN107250368A (zh)
AU (1) AU2016220612B2 (zh)
BR (1) BR112017017525A2 (zh)
CA (1) CA2975226A1 (zh)
DK (1) DK3259349T3 (zh)
ES (1) ES2817001T3 (zh)
MX (1) MX2017010459A (zh)
TW (1) TWI727941B (zh)
WO (1) WO2016133384A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018526998A (ja) * 2015-09-21 2018-09-20 ピュラック バイオケム ビー. ブイ. Fdcaの真菌による生産
SG11201805514VA (en) 2016-01-13 2018-07-30 Stora Enso Oyj Processes for the preparation of 2,5-furandicarboxylic acid and intermediates and derivatives thereof
EP3378931A1 (en) * 2017-03-21 2018-09-26 Purac Biochem B.V. Fdca-decarboxylating monooxygenase-deficient host cells for producing fdca
CN108977472B (zh) * 2017-06-02 2021-06-29 中国科学院大连化学物理研究所 一种串联酶法制备2,5-呋喃二甲酸的方法
JP7158462B2 (ja) 2017-07-12 2022-10-21 ストラ エンソ オーユーイー 精製2,5-フランジカルボン酸経路生成物
CN109234245B (zh) * 2018-09-21 2022-04-22 南京农业大学 一种吲哚乙醛脱氢酶基因ald2及其过表达和应用
CN109536466B (zh) * 2018-11-19 2022-04-22 华南理工大学 醛脱氢酶及其基因、重组菌构建及其在呋喃羧酸合成中的应用
JP2022523540A (ja) 2019-03-01 2022-04-25 ブラスケム エス.エー. 4-ヒドロキシメチルフルフラールおよびその誘導体のインビボ合成のための方法
CN109750015B (zh) * 2019-03-27 2023-05-23 云南师范大学 一种热稳性提高的木聚糖酶突变体及其应用
CN110272402B (zh) * 2019-07-15 2021-02-26 南京林业大学 一种化学反应和生物反应耦合生产2,5-呋喃二甲酸的方法
CN110408659B (zh) * 2019-08-20 2023-08-22 华南理工大学 一种可控合成呋喃羧酸的方法
CN110591995A (zh) * 2019-09-12 2019-12-20 华南理工大学 一种共表达重组菌及其在合成呋喃羧酸中的应用
CN110819565B (zh) * 2019-11-20 2021-04-13 青岛农业大学 一株具有抑制植物病原菌作用的耐盐芽孢杆菌bw9及其应用
CN110724654B (zh) * 2019-11-22 2020-09-29 南京科技职业学院 一株生产5-羟甲基-2呋喃甲酸的铜绿假单胞菌及其应用
CN113956537B (zh) * 2020-07-21 2023-04-18 中国科学院宁波材料技术与工程研究所 增塑剂及其制备方法
CN116024184B (zh) * 2022-07-26 2024-03-15 南京科技职业学院 醛脱氢酶突变体及其在制备5-羟甲基-2-呋喃甲酸中的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2598792A1 (en) * 2005-03-02 2006-09-08 Metanomics Gmbh Process for the production of fine chemicals
ES2744466T3 (es) * 2009-09-02 2020-02-25 Purac Biochem Bv Polipéptidos con actividad oxidorreductasa y sus usos
CN101899145B (zh) * 2010-07-28 2012-07-11 江南大学 一种2,5-呋喃二甲酸基聚酯的制备方法
NL2006359C2 (en) * 2011-03-08 2012-04-24 Bird Engineering B V Genetically modified cell and process for use of said cell.
JP2018526998A (ja) * 2015-09-21 2018-09-20 ピュラック バイオケム ビー. ブイ. Fdcaの真菌による生産

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Willem P Dijkman, et al. " Enzyme-catalyzed Oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic Acid" Angew Chem Int Ed Engl., 2014 Jun 16, Vol:53, No:25, Page:6515-6518 *

Also Published As

Publication number Publication date
EP3259349B1 (en) 2020-06-17
CA2975226A1 (en) 2016-08-25
AU2016220612A1 (en) 2017-08-17
TW201638336A (zh) 2016-11-01
CN107250368A (zh) 2017-10-13
WO2016133384A1 (en) 2016-08-25
JP2018504904A (ja) 2018-02-22
AU2016220612B2 (en) 2021-09-30
JP2021101708A (ja) 2021-07-15
KR20170116051A (ko) 2017-10-18
MX2017010459A (es) 2018-04-24
BR112017017525A2 (pt) 2018-04-17
EP3259349A1 (en) 2017-12-27
DK3259349T3 (da) 2020-08-10
US10457965B2 (en) 2019-10-29
ES2817001T3 (es) 2021-04-06
US20180030488A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
TWI727941B (zh) 脫氫酶催化的2,5-呋喃二甲酸(fdca)之製造
JP6372889B2 (ja) オキシドレダクターゼ活性を有するポリペプチドおよびその使用
US11034979B2 (en) Fungal production of FDCA
EP2308959A1 (en) Novel microorganism and its use in lignocellulose detoxifixcation
CN110651034A (zh) 用于制备fdca的fdca-脱羧单加氧酶-缺陷的宿主细胞
WO2019008131A1 (en) PSEUDOMONAS PUTIDA RECOMBINANT FOR THE PRODUCTION OF D-XYLONATE FROM D-XYLOSE

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees