TWI711808B - 氣體溫度測量方法及氣體導入系統 - Google Patents

氣體溫度測量方法及氣體導入系統 Download PDF

Info

Publication number
TWI711808B
TWI711808B TW105138343A TW105138343A TWI711808B TW I711808 B TWI711808 B TW I711808B TW 105138343 A TW105138343 A TW 105138343A TW 105138343 A TW105138343 A TW 105138343A TW I711808 B TWI711808 B TW I711808B
Authority
TW
Taiwan
Prior art keywords
gas
pipe
valve
piping
pressure rise
Prior art date
Application number
TW105138343A
Other languages
English (en)
Other versions
TW201732245A (zh
Inventor
木村英利
松井裕
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201732245A publication Critical patent/TW201732245A/zh
Application granted granted Critical
Publication of TWI711808B publication Critical patent/TWI711808B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/40Mixers using gas or liquid agitation, e.g. with air supply tubes
    • B01F33/406Mixers using gas or liquid agitation, e.g. with air supply tubes in receptacles with gas supply only at the bottom
    • B01F33/4062Mixers using gas or liquid agitation, e.g. with air supply tubes in receptacles with gas supply only at the bottom with means for modifying the gas pressure or for supplying gas at different pressures or in different volumes at different parts of the bottom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/024Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving gases

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

提供一種可測量配管內之氣體溫度的氣體溫度測量方法。
基於第2配管的內部體積、將氮氣導入至第1配管內及第2配管內時之第1配管內的氣體之壓力上升率、將氮氣僅導入至第1配管內時之第1配管內的氣體之壓力上升率、置換為SI單位系統後之所導入氮氣流量以及置換為絕對溫度後之氮氣溫度來計算出第1配管內之氣體溫度。

Description

氣體溫度測量方法及氣體導入系統
本發明係關於一種氣體溫度測量方法及氣體導入系統。
由於在半導體元件之製造工序中,多會使用處理氣體所生成之電漿,故關係到電漿生成之參數便會是重要的參數。作為關係到電漿生成之參數除了例如處理室之減壓度、所施加之高頻電力的頻率以外,還有處理氣體之流量。雖然處理氣體流量會藉由FCS(Flow Control System)(註冊商標)或MFC(Mass Flow Controller)等的氣體流量控制器來加以控制,但氣體流量控制器之流量設定值與氣體流量控制器實際上所控制之流量會因為製造誤差或經時劣化等,而有不一致的情況。從而,便會在氣體流量控制器出貨時或定期維護時進行氣體流量控制器的校正。
作為氣體流量控制器的校正方法已知有一種方法,係將設定流量之氣體流向串聯地連接於氣體流量控制器而內部體積為已知之擴建槽(buildup tank),從擴建槽之氣體溫度及氣體壓力來計算出實際流量,並與設定流量來加以比較(例如,參照專利文獻1)。又,亦已知有一種方法,係在將氣體流入至配置於氣體流量控制器下游而內部體積為已知的配管時,以相異的時間點來測量配管中之氣體溫度及氣體壓力,而從所測量出之氣體溫度及氣體壓力來求出各時間點所流入之氣體的質量,並從該等氣體質量的差距來檢測氣體流量控制器之絕對流量(例如,參照專利文獻2)。
進一步地,作為計算出處理室之體積的方法,已知有一種方法,係首先將既定流量之氣體導入至內容體積為已知的配管,之後從配管來將氣體導入至處理室,而基於配管內之氣體壓力與處理室內之氣體壓力的改變量 來推算出處理室之體積。
上述氣體流量控制器之校正方法或處理室之體積的計算方法都是將氣體溫度視為與室溫或配管之溫度相同。
【先前技術文獻】 【專利文獻】
專利文獻1:日本特開2012-32983號公報
專利文獻2:日本特開2006-337346號公報
然而,配管內或擴建槽內之實際的氣體溫度會有與室溫或配管溫度相異的情況。在此情況,便無法正確地進行氣體流量控制器之校正或處理室體積之計算。另一方面,由於配管大多是被收納在氣體箱等,而難以追加配置溫度感應器,故會有難以直接測量配管內之氣體溫度的問題。
本發明之目的在於提供一種可測量配管內之氣體溫度的氣體溫度測量方法及氣體導入系統。
為了達成上述目的,本發明之氣體溫度測量方法,係配管之氣體溫度測量方法,該配管為兩端分別連接於氣體供給源及減壓器,且藉由從該氣體供給源側依序配置之開閉自如的第1閥、第2閥及第3閥來區隔出該第1閥及該第2閥之間的第1配管以及該第2閥及該第3閥之間的第2配管,該第2配管之內部體積為已知,該方法具有:測量將既定流量之氣體導入至該第1配管及該第2配管時,該第1配管內氣體的第1壓力上升率之步驟;測量將既定流量之氣體僅導入至該第1配管時,該第1配管內氣體的第2壓力上升率之步驟;以及基於該第2配管之內部體積、該第1壓力上升率以及該第2壓力上升率來計算出該第1配管內之氣體溫度之步驟。
為了達成上述目的,本發明之氣體導入系統,係具備有:氣體供給源;減壓器;兩端分別連接於該氣體供給源及該減壓器之配管;在該配管中從該氣體供給源側依序配置之開閉自如的第1閥、第2閥以及第3閥;以及控制部的氣體導入系統;該配管係藉由該第1閥、該第2閥及該第3閥來區隔出在 該第1閥及該第2閥之間的第1配管以及在該第2閥及該第3閥之間的第2配管;該第2配管之內部體積為已知;該控制部係測量將既定流量的氣體導入至該第1配管及該第2配管時的該第1配管內氣體的第1壓力上升率,及測量將既定流量之氣體僅導入至該第1配管時的該第1配管內氣體的第2壓力上升率,而基於該第2配管之內部體積、該第1壓力上升率以及該第2壓力上升率來計算出該第1配管內之氣體溫度。
根據本發明,由於會基於第2配管之內部體積、第1配管內及第2配管內氣體的第1壓力上升率、第1配管內氣體的第2壓力上升率來計算出第1配管內之氣體溫度,故即便不在第1配管配置溫度感應器等,仍可測量出第1配管內之氣體溫度。
10‧‧‧氣體導入系統
12‧‧‧配管
12a‧‧‧第1配管
12b‧‧‧第2配管
13‧‧‧第1閥
14‧‧‧第2閥
15‧‧‧第3閥
16‧‧‧真空泵
17‧‧‧氣體流量控制器
19‧‧‧壓力計
20‧‧‧控制器
圖1係概略地顯示實行本發明實施形態相關之氣體溫度測量方法的氣體導入系統之構成的圖式。
圖2係顯示本發明實施形態相關之氣體溫度測量方法的流程圖。
圖3係顯示實行圖2之氣體溫度測量方法時之壓力上升率的圖表。
以下,便參照圖式,就本發明實施形態來詳細地說明。
圖1係概略地顯示實行本發明實施形態相關之氣體溫度測量方法的氣體導入系統之構成的圖式。
圖1中,氣體導入系統10係具備有:兩端分別連接於未圖式之氣體供給源及處理室11的配管12;在配管12中從氣體供給源側(圖中左側)依序配置之開閉自如的第1閥13、第2閥14以及第3閥15;透過處理室11來與配管12連接之真空泵16(減壓器);配置於第1閥13及第2閥14之間的FCS17(氣體流量控制器);在第1閥13及第2閥14之間安裝在從配管12來分歧的支管18之壓力計19;以及控制氣體導入系統10之各構成要素動作之控制器20(控制部)。配管12中,第1閥13及第2閥之間的部分係構成第1配管12a,第2閥14及第3閥15 之間的部分係構成第2配管12b。第1配管12a係配置有加熱器21,第2配管12b係配置有加熱器22。壓力計19會測量第1配管12a內之氣體壓力。又,第1閥13、FCS17、第1配管12a及壓力計19會被收納於氣體箱23內。氣體導入系統10係在氣體供給源所供給之氣體會藉由FCS17來控制流量的情況下被導入至處理室11內。真空泵16會將處理室11內及透過處理室11來將第1配管12a內及第2配管12b內減壓。
另外,如上述,作為計算出處理室11之體積的方法已知有一種方法,係首先將既定量之氣體導入至配管12,之後從配管12來將氣體導入至處理室11,而基於配管12內之氣體壓力與處理室11內之氣體壓力的改變量來推算出處理室11之體積。雖在此方法係在體積之推算中需要配管12內之氣體溫度,但由於第1配管12a係被收納於氣體箱23,故難以配置溫度感應器,而無法藉由溫度感應器來直接測量第1配管12a內之氣體溫度。本實施形態便對應於此,而不在第1配管12a配置溫度感應器來測量第1配管12a內之氣體溫度。
氣體導入系統10中,關於在僅關閉第3閥15,並以流量Q(sccm)來將氣體導入至第1配管12a及第2配管12b時,第1配管12a(及第2配管12b)內氣體之壓力上升率b1係會基於氣體狀態方程式而使得以下公式(1)成立。在此,V1係第1配管12a之內部體積,V2係第2配管12b之內部體積,Tu係導入至第1配管12a及第2配管12b的氣體溫度,Tk係第1配管12a內之氣體溫度。
Figure 105138343-A0202-12-0004-1
又,氣體導入系統10中,關於不僅第3閥15亦關閉第2閥14,並以流量Q來將氣體僅導入至第1配管12a時,第1配管12a內氣體的壓力上升率b2係會基於氣體狀態方程式來使得以下公式(2)成立。
Figure 105138343-A0202-12-0004-2
在此,便讓上述公式(1)、(2)以消去第1配管12a之內部體積V1的方式來解聯立,並在將流量Q置換為SI單位系統之流量Q0,而伴隨流量Q置換為SI單位系統來將所導入氣體之溫度Tu置換為絕對溫度T0時,則第1配管12a內之氣體溫度Tk便會如以下公式(3)所示。
Figure 105138343-A0305-02-0007-1
又,第1配管12a之內部體積V1係如以下公式(4)所示。
Figure 105138343-A0305-02-0007-3
本實施形態中係使用上述公式(3)來計算出第1配管12a內之氣體溫度Tk
圖2係顯示本發明實施形態相關之氣體溫度測量方法的流程圖。本方法係在控制器20中藉由CPU會實行程式來加以實現。又,第2配管12b之內部體積V2係從事前測量或設計圖式便已得知。
圖2中,首先係藉由加熱器21、22來加熱第1配管12a及第2配管12b,以讓導入至第1配管12a內及第2配管12b的氣體溫度Tu與室溫的差距成為既定溫度差以上的溫度,例如100℃。接著,便關閉第1閥13,另一方面則開啟第2閥14及第3閥15,而透過處理室11藉由真空泵16來將第1配管12a及第2配管12b減壓(步驟S201)。另外,亦可設置將第1配管12a及第2配管12b與真空泵16直接連接之分流管或是與其他真空泵連接之其他分流管,並藉由該分流管來將第1配管12a內及第2配管12b內直接減壓。
接著,便關閉第3閥15,並藉由壓力計19來測量第1配管12a內及第2配管12b內之壓力P1。之後,開啟第1閥13並從氣體供給源來將氣體,例如氮氣 (N2)導入至第1配管12a內及第2配管12b內(步驟S202)。所導入氮氣之流量會藉由FCS17來控制為既定流量,例如200sccm。
接著,便藉由壓力計19來測量第1配管12a內及第2配管12b內之壓力P2。進一步地,基於為了使得第1配管12a內及第2配管12b內之壓力從壓力P1到達壓力P2所需要的時間T1及壓力差P2-P1,來計算測量出所導入之氮氣在第1配管12a內(及第2配管12b內)的氣體之壓力上升率b1(步驟S203)。之後,便關閉第1閥13並開啟第3閥15,而透過處理室11藉由真空泵16來將第1配管12a內及第2配管12b內減壓(步驟S204)。
接著,便判斷氣體之壓力上升率b1的測量次數是否未達3次(步驟S205),若是未達3次,便回到步驟S202,若為3次以上,則關閉第2閥14,並藉由壓力計19來測量第1配管12a內的壓力P3。之後,便開啟第1閥13並從氣體供給源來將氮氣僅導入至第1配管12a內(步驟S206)。此時,所導入氮氣之流量亦會藉由FCS17來控制為既定流量,例如200sccm。另外,亦可在導入氮氣前藉由真空泵16來將第1配管12a再次減壓。
接著,便藉由壓力計19來測量第1配管12a內之壓力P4。進一步地,基於為了使得第1配管12a內之壓力從壓力P3到達壓力P4所需要的時間T2及壓力差P4-P3,來計算測量出所導入氮氣在第1配管12a內氣體的壓力上升率b2(步驟S207)。之後,便關閉第1閥13並開啟第2閥14及第3閥15,而透過處理室11藉由真空泵16來將第1配管12a內減壓(步驟S208)。
接著,便判斷氣體之壓力上升率b2的測量次數是否未達3次(步驟S209),若是未達3次,便回到步驟S202,若為3次以上,則使用已知之第2配管12b的內部體積V2、步驟S203所測量之氣體的壓力上升率b1、步驟S207所測量之氣體的壓力上升率b2、置換為SI單位系統後之氮氣流量Q0以及置換為絕對溫度後之氮氣溫度T0,並基於上述公式(3)來計算出第1配管12a內之氣體溫度Tk(步驟S210),而結束本方法。
由於根據圖2之氣體溫度測量方法,便可基於第2配管12b的內部體積V2、將氮氣導入至第1配管12a內及第2配管12b內時之第1配管12a內氣體的壓力上升率b1、將氮氣僅導入至第1配管12a內時之第1配管12a內氣體的壓力上升率b2、置換為SI單位系統後之所導入氮氣流量Q0以及置換為絕對溫度後 之氮氣溫度T0,來計算出第1配管12a內之氣體溫度Tk,故可不在第1配管12a配置溫度感應器等而測量第1配管12a內之氣體溫度Tk
又,圖2之氣體溫度測量方法中,係加熱第1配管12a及第2配管12b,以將導入至第1配管12a內及第2配管12b內之氣體溫度Tu與室溫之差距成為既定溫度差以上的溫度,例如100℃。藉此,所導入氣體的溫度便難以受到外部氣溫或室溫之影響,因此,便可在穩定的狀態下來測量氣體的壓力上升率b1及氣體的壓力上升率b2。其結果,便可測量正確的氣體的壓力上升率b1及氣體的壓力上升率b2
進一步地,由於圖2之氣體溫度測量方法中,係在重覆測量氣體的壓力上升率b1時及在重覆測量氣體的壓力上升率b2時,進一步地在氣體的壓力上升率b1的測量後,而於進行首次氣體的壓力上升率b2的測量前,將第1配管12a內及第2配管12b內減壓,故可使得氣體的壓力上升率b1及氣體的壓力上升率b2的測量條件幾乎為相同,因此,便可防止重複測量之氣體的壓力上升率b1及氣體的壓力上升率b2會不均勻而使得可靠性下降的情事。
另外,雖圖2之氣體溫度測量方法中係藉由加熱器21、22來加熱第1配管12a及第2配管12b,但由於導入至第1配管12a內及第2配管12b內的氣體溫度Tu並未被用於上述公式(3),故在產率優先的情況,亦可不藉由加熱器21、22來加熱第1配管12a及第2配管12b。
以上,雖已就本發明實施形態來加以說明,但本發明並不限於上述實施形態。
例如,雖圖2之氣體溫度測量方法中,係先重複在將氮氣導入至第1配管12a內及第2配管12b內時之氣體的壓力上升率b1之測量,之後再重複將氮氣僅導入至第1配管12a內時之氣體的壓力上升率b2之測量,但亦可先重複將氮氣僅導入至第1配管12a內時之氣體的壓力上升率b2之測量,之後再重複在將氮氣導入至第1配管12a內及第2配管12b內時之氣體的壓力上升率b1之測量。
本實施形態中,雖未特別限制處理室11,但只要為需要測量體積之處理室的話,便可相當於處理室11,例如,乾蝕刻裝置之處理室或成膜裝置之處理室便可相當於處理室11。
又,本發明之目的係可藉由將記錄有實現上述實施形態之機能的軟體的程式碼之記憶媒體供給至氣體導入系統10所具備之控制器20,而讓控制器20之CPU讀取出記憶媒體所儲存之程式碼而實行來加以達成。
在此情況,從記憶媒體所讀取出之程式碼本身便會實現上述實施形態之機能,而程式碼及記憶有該程式碼的記憶媒體便會構成本發明。
又,用以供給程式碼的記憶媒體只要為例如RAM、NV-RAM、軟碟(註冊商標)片、硬碟、磁光碟、CD-ROM、CD-R、CD-RW、DVD(DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)等的光碟、磁帶、非揮發性的記憶卡、其他ROM等的可記憶上述程式碼者即可。或者,上述程式碼亦可藉由從網際網路、商用網絡,或是區域網路等所連接之未圖示的其他電腦或資料庫等下載來供給至控制器20。
又,藉由實行控制器20所讀取出之程式碼,不僅可實現上述實施形態之機能,更可基於該程式碼的指示來讓CPU上所驅動之OS(作業系統)等進行實際處理的一部分或全部,且亦包含有藉由該處理來實現上述實施形態之機能的情況。
進一步地,在從記憶媒體所讀取出之程式碼會被匯入至插入到控制器20之機能擴充板或連接於控制器20之機能擴充單元所設置之記憶體後,便會基於該程式碼的指示,來讓該機能擴充板或機能擴充單元所具備之CPU等進行實際處理的一部分或全部,且亦包含有藉由該處理來實現上述實施形態之機能的情況。
上述程式碼的形態可由目的碼、藉由解譯器來實行之程式碼、供給至OS之指令碼資料等的形態所構成。
[實施例]
接著,便就本發明實施例來加以說明。
在此,便藉由FCS17來將氣體供給源所導入之氮氣流量控制為200sccm,而實行圖2之氣體溫度測量方法。
圖3係顯示實行圖2之氣體溫度測量方法時的壓力上升率之圖表。在此,係在步驟S203及步驟S207中,於第1配管12a內的壓力到達約60Torr時,便停止氮氣之導入,並直接地實行接續的步驟S204及步驟S208。
圖3中,將氮氣導入至第1配管12a內及第2配管12b內時之第1配管12a內的氣體之壓力上升率b1係15.447Torr/秒,15.436Torr/秒,15.448Torr/秒,將氮氣僅導入至第1配管12a內時之第1配管12a內的壓力上升率b2係30.533Torr/秒,30.546Torr/秒,30.534Torr/秒。由於本實施例中,各壓力上升率b1及壓力上升率b2的不一致較少,故使用各個最開始的測量結果。又,由於第2配管12b之內部體積V2從設計圖式看來係計算為0.10511L,將200sccm之流量Q置換為SI單位系統後之流量Q0為2.54093Torr‧L/秒,故能基於上述公式(3)來計算出第1配管12a內之氣體溫度Tk為80.1℃。又,基於上述公式(4),來計算出第1配管12a之內部體積V1為0.10863L。為了確認計算結果的正確性,便使用所計算出之第1配管12a內的氣體溫度Tk(80.1℃)、第1配管12a的內部體積V1及第2配管12b的內部體積V2的總計值(0.21374L),而基於下述公式(5)來逆推流量Q,便得到200.6sccm的流量Q。這與藉由FCS17所控制之流量Q(200sccm)幾乎一致。
[公式(5)]Q=(V1+V2)b1...(5)
由上述,便確認了圖2之氣體溫度測量方法所計算出之第1配管12a內的氣體溫度Tk為幾乎正確。
S201‧‧‧全配管減壓
S202‧‧‧N2氣體導入至第1配管、第2配管
S203‧‧‧測量壓力上升率
S204‧‧‧減壓第1配管、第2配管
S205‧‧‧測量次數未達3次?
S206‧‧‧僅導入N2氣體至第1配管
S207‧‧‧測量壓力上升率
S208‧‧‧減壓第1配管
S209‧‧‧測量次數未達3次?
S210‧‧‧計算出第1配管之氣體溫度

Claims (8)

  1. 一種氣體溫度測量方法,係配管之氣體溫度測量方法,該配管為兩端分別連接於氣體供給源及減壓器,且藉由從該氣體供給源側依序配置之開閉自如的第1閥、第2閥及第3閥來區隔出該第1閥及該第2閥之間的第1配管以及該第2閥及該第3閥之間的第2配管,該第2配管之內部體積為已知,該方法具有:測量將既定流量之氣體導入至該第1配管及該第2配管時,該第1配管內氣體的第1壓力上升率之步驟;測量將該既定流量之氣體僅導入至該第1配管時,該第1配管內氣體的第2壓力上升率之步驟;以及基於該第2配管之內部體積、該第1壓力上升率以及該第2壓力上升率來計算出該第1配管內之氣體溫度之步驟。
  2. 如申請專利範圍第1項之氣體溫度測量方法,其係基於以下公式來計算出該第1配管內之氣體溫度;
    Figure 105138343-A0305-02-0013-4
    其中,TK:該第1配管內之氣體溫度,b1:該第1壓力上升率,b2:該第2壓力上升率,V2:該第2配管之內部體積,Q0:該所導入氣體的既定流量(SI單位系統),T0:該所導入氣體之絕對溫度。
  3. 如申請專利範圍第1項之氣體溫度測量方法,其係加熱該所導入氣體而將該所導入氣體之溫度及室溫的差距設定為既定溫度差以上。
  4. 如申請專利範圍第2項之氣體溫度測量方法,其係加熱該所導入氣體而將該所導入氣體之溫度及室溫的差距設定為既定溫度差以上。
  5. 如申請專利範圍第1至4項中任一項之氣體溫度測量方法,其係進一步地具有:在該第1壓力上升率之測量及該第2壓力上升率之測量之間將該第1配管及該第2配管減壓的步驟。
  6. 如申請專利範圍第1至4項中任一項之氣體溫度測量方法,其係將測 量該第1壓力上升率的步驟以及測量該第2壓力上升率的步驟的任一者均複數次重複地實行。
  7. 如申請專利範圍第5項之氣體溫度測量方法,其係將測量該第1壓力上升率的步驟以及測量該第2壓力上升率的步驟的任一者均複數次重複地實行。
  8. 一種氣體導入系統,係具備有:氣體供給源;減壓器;兩端分別連接於該氣體供給源及該減壓器之配管;在該配管中從該氣體供給源側依序配置之開閉自如的第1閥、第2閥以及第3閥;以及控制部的氣體導入系統;該配管係藉由該第1閥、該第2閥及該第3閥來區隔出在該第1閥及該第2閥之間的第1配管以及在該第2閥及該第3閥之間的第2配管;該第2配管之內部體積為已知;該控制部係測量將既定流量的氣體導入至該第1配管及該第2配管時的該第1配管內氣體的第1壓力上升率,及測量將該既定流量之氣體僅導入至該第1配管時的該第1配管內氣體的第2壓力上升率,而基於該第2配管之內部體積、該第1壓力上升率以及該第2壓力上升率來計算出該第1配管內之氣體溫度。
TW105138343A 2015-11-25 2016-11-23 氣體溫度測量方法及氣體導入系統 TWI711808B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015229665A JP6554404B2 (ja) 2015-11-25 2015-11-25 ガス温度測定方法及びガス導入システム
JP2015-229665 2015-11-25

Publications (2)

Publication Number Publication Date
TW201732245A TW201732245A (zh) 2017-09-16
TWI711808B true TWI711808B (zh) 2020-12-01

Family

ID=58721837

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105138343A TWI711808B (zh) 2015-11-25 2016-11-23 氣體溫度測量方法及氣體導入系統

Country Status (4)

Country Link
US (1) US10090178B2 (zh)
JP (1) JP6554404B2 (zh)
KR (1) KR102156956B1 (zh)
TW (1) TWI711808B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110639352B (zh) * 2019-11-02 2023-10-20 孙发喜 立式多级吸收塔

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502026A (ja) * 1995-11-17 1999-02-16 エムケイエス・インストゥルメンツ・インコーポレーテッド 気体マス・フロー測定システム
TW201229704A (en) * 2010-07-30 2012-07-16 Fujikin Kk Calibration method of flow rate controller for gas supply device and flow rate measuring method
TW201245670A (en) * 2011-01-06 2012-11-16 Fujikin Kk Flow rate measuring device of flow controller for gas supply device and method for measuring flow rate
US20140332114A1 (en) * 2011-12-20 2014-11-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas supply method and gas supply apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394122A (ja) * 1989-09-07 1991-04-18 Ngk Insulators Ltd 放射性固体廃棄物容器の空隙容積の測定方法及び放射性固体廃棄物の固定方法
JP3532586B2 (ja) * 1993-01-20 2004-05-31 トキコテクノ株式会社 ガス充填装置
JP2715903B2 (ja) * 1994-03-16 1998-02-18 日本電気株式会社 温度モニタ
KR100300474B1 (ko) * 1998-06-12 2002-02-28 최인영 유량계측기의유량보정및관리장치
JP4195819B2 (ja) 2003-01-17 2008-12-17 忠弘 大見 弗化水素ガスの流量制御方法及びこれに用いる弗化水素ガス用流量制御装置
JP4648098B2 (ja) 2005-06-06 2011-03-09 シーケーディ株式会社 流量制御機器絶対流量検定システム
JP2010180826A (ja) 2009-02-06 2010-08-19 Honda Motor Co Ltd 燃料供給制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502026A (ja) * 1995-11-17 1999-02-16 エムケイエス・インストゥルメンツ・インコーポレーテッド 気体マス・フロー測定システム
TW201229704A (en) * 2010-07-30 2012-07-16 Fujikin Kk Calibration method of flow rate controller for gas supply device and flow rate measuring method
TW201245670A (en) * 2011-01-06 2012-11-16 Fujikin Kk Flow rate measuring device of flow controller for gas supply device and method for measuring flow rate
US20140332114A1 (en) * 2011-12-20 2014-11-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas supply method and gas supply apparatus

Also Published As

Publication number Publication date
JP6554404B2 (ja) 2019-07-31
KR102156956B1 (ko) 2020-09-16
JP2017096794A (ja) 2017-06-01
TW201732245A (zh) 2017-09-16
KR20170061076A (ko) 2017-06-02
US10090178B2 (en) 2018-10-02
US20170148653A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
US8150646B2 (en) Methods for delivering a process gas
JP4944037B2 (ja) 質量流量センサ用レイノルズ数補正関数
JP5512517B2 (ja) 異なる体積を提供可能な質量流量検証装置及び関連する方法
TWI329191B (zh)
WO2012014375A1 (ja) ガス供給装置用流量制御器の校正方法及び流量計測方法
US7881886B1 (en) Methods for performing transient flow prediction and verification using discharge coefficients
TWI782196B (zh) 用於基於壓力衰減速率來進行質量流驗證的方法、系統及設備
US20170370763A1 (en) Methods, systems, and apparatus for mass flow verification based on choked flow
US10316835B2 (en) Method of determining output flow rate of gas output by flow rate controller of substrate processing apparatus
CN110234965B (zh) 流量测定方法以及流量测定装置
TWI711808B (zh) 氣體溫度測量方法及氣體導入系統
JP6762218B2 (ja) 流量算出システム及び流量算出方法
JP7411479B2 (ja) 複数のチャンバ圧力センサを校正する方法
TWI837862B (zh) 用於基於壓力衰減速率來進行質量流驗證的方法、電子裝置製造系統及非暫態電腦可讀儲存媒體
Duarte Franco et al. Characterization of a static expansion standard for calibrating medium and high vacuum pressure gauges
JP6775403B2 (ja) 流体特性測定システム
JP7249030B2 (ja) 流量測定装置内の容積測定方法および流量測定装置
TW200839870A (en) Methods for performing actual flow verification
JP2020057671A (ja) 活性ガス供給システムとそれを用いた半導体製造装置
JP2018116583A (ja) 流量測定方法及び流量制御方法