TWI696210B - 使用了電漿之成膜方法 - Google Patents

使用了電漿之成膜方法 Download PDF

Info

Publication number
TWI696210B
TWI696210B TW105118413A TW105118413A TWI696210B TW I696210 B TWI696210 B TW I696210B TW 105118413 A TW105118413 A TW 105118413A TW 105118413 A TW105118413 A TW 105118413A TW I696210 B TWI696210 B TW I696210B
Authority
TW
Taiwan
Prior art keywords
silicon
gas
atoms
film
plasma
Prior art date
Application number
TW105118413A
Other languages
English (en)
Chinese (zh)
Other versions
TW201724174A (zh
Inventor
佐佐木和男
高藤哲也
片桐崇良
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201724174A publication Critical patent/TW201724174A/zh
Application granted granted Critical
Publication of TWI696210B publication Critical patent/TWI696210B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28229Making the insulator by deposition of a layer, e.g. metal, metal compound or poysilicon, followed by transformation thereof into an insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
TW105118413A 2015-06-19 2016-06-13 使用了電漿之成膜方法 TWI696210B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-123776 2015-06-19
JP2015123776A JP6523071B2 (ja) 2015-06-19 2015-06-19 プラズマを用いた成膜方法

Publications (2)

Publication Number Publication Date
TW201724174A TW201724174A (zh) 2017-07-01
TWI696210B true TWI696210B (zh) 2020-06-11

Family

ID=57713568

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105118413A TWI696210B (zh) 2015-06-19 2016-06-13 使用了電漿之成膜方法

Country Status (4)

Country Link
JP (1) JP6523071B2 (ko)
KR (2) KR101896153B1 (ko)
CN (1) CN106257618B (ko)
TW (1) TWI696210B (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6767885B2 (ja) * 2017-01-18 2020-10-14 東京エレクトロン株式会社 保護膜形成方法
CN106920753B (zh) * 2017-04-25 2020-04-03 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、阵列基板和显示器
JP6924943B2 (ja) * 2017-05-12 2021-08-25 東京エレクトロン株式会社 成膜方法及び成膜装置
KR102217171B1 (ko) 2018-07-30 2021-02-17 도쿄엘렉트론가부시키가이샤 성막 방법 및 성막 장치
JP7130548B2 (ja) * 2018-07-30 2022-09-05 東京エレクトロン株式会社 成膜方法及び成膜装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098185A (zh) * 2010-08-20 2013-05-08 应用材料公司 形成无氢含硅介电薄膜的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091337A (ja) * 1998-09-09 2000-03-31 Toshiba Microelectronics Corp 半導体装置及びその製造方法
JP5068458B2 (ja) * 2006-01-18 2012-11-07 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
KR100708881B1 (ko) * 2006-04-06 2007-04-18 서울시립대학교 산학협력단 실리콘 나노점 어레이 제조장치 및 그 제조방법과 이를이용한 다중 레벨 실리콘 비휘발성 메모리 제조방법
EP2139054A3 (en) * 2008-06-25 2011-08-31 Samsung Electronics Co., Ltd. Memory device and method of manufacturing the same
CN103270578B (zh) * 2010-12-30 2016-10-26 应用材料公司 使用微波等离子体的薄膜沉积
WO2014149682A1 (en) * 2013-03-19 2014-09-25 Applied Materials, Inc. Multilayer passivation or etch stop tft
JP6232219B2 (ja) * 2013-06-28 2017-11-15 東京エレクトロン株式会社 多層保護膜の形成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098185A (zh) * 2010-08-20 2013-05-08 应用材料公司 形成无氢含硅介电薄膜的方法

Also Published As

Publication number Publication date
JP6523071B2 (ja) 2019-05-29
JP2017011058A (ja) 2017-01-12
CN106257618B (zh) 2019-05-03
KR20180100513A (ko) 2018-09-11
CN106257618A (zh) 2016-12-28
KR101896153B1 (ko) 2018-09-07
KR20160150027A (ko) 2016-12-28
KR101926317B1 (ko) 2018-12-06
TW201724174A (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
TWI696210B (zh) 使用了電漿之成膜方法
US9051655B2 (en) Boron ionization for aluminum oxide etch enhancement
CN104409511B (zh) 半导体装置及其制造方法
KR101405175B1 (ko) 플라즈마 에칭 방법
US9865743B2 (en) Semiconductor device including oxide layer surrounding oxide semiconductor layer
CN107523800B (zh) 成膜方法和tft的制造方法
KR20170069991A (ko) 다층 보호막의 형성 방법 및 다층 보호막의 형성 장치
TWI445095B (zh) 薄膜電晶體的製造方法,薄膜電晶體
WO2013097472A1 (zh) 金属氧化物表面处理方法和薄膜晶体管的制备方法
CN112236854A (zh) 用于制造半导体装置的互连结构的方法
TW201906175A (zh) 薄膜電晶體
KR101593838B1 (ko) 다층의 산화물 박막 제조방법
KR20180115808A (ko) 절연막 및 그 제조 방법
CN107808824A (zh) 等离子体蚀刻方法
US20160181430A1 (en) IGZO Devices with Metallic Contacts and Methods for Forming the Same
KR20220020379A (ko) 박막 트랜지스터 구조들을 위한 유도 결합 고밀도 플라즈마 막들을 형성하는 방법
JP6965894B2 (ja) 半導体デバイスの製造方法
CN113169232A (zh) 薄膜晶体管及其制造方法
CN110073467A (zh) 用于提供低k间隔物的方法
TWI567823B (zh) 顯示面板與其製造方法
KR101970548B1 (ko) 산화물 절연막, 산화물 반도체 박막트랜지스터 소자 및 그 제조방법
US20230110474A1 (en) Selective silicon deposition
WO2018123660A1 (ja) 酸化物半導体tftを備えた半導体装置
WO2018123659A1 (ja) 半導体装置の製造方法および成膜装置
CN114008752A (zh) 氧化物半导体的加工方法及薄膜晶体管的制造方法