WO2018123659A1 - 半導体装置の製造方法および成膜装置 - Google Patents

半導体装置の製造方法および成膜装置 Download PDF

Info

Publication number
WO2018123659A1
WO2018123659A1 PCT/JP2017/045126 JP2017045126W WO2018123659A1 WO 2018123659 A1 WO2018123659 A1 WO 2018123659A1 JP 2017045126 W JP2017045126 W JP 2017045126W WO 2018123659 A1 WO2018123659 A1 WO 2018123659A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
layer
oxide semiconductor
substrate
Prior art date
Application number
PCT/JP2017/045126
Other languages
English (en)
French (fr)
Inventor
伸二 中島
錦 博彦
浩英 見村
齊藤 裕一
悠二郎 武田
正悟 村重
和泉 石田
達 岡部
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201780080973.2A priority Critical patent/CN110121765B/zh
Priority to US16/473,272 priority patent/US10879064B2/en
Publication of WO2018123659A1 publication Critical patent/WO2018123659A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device formed using an oxide semiconductor and a film forming apparatus used therefor.
  • An active matrix substrate used for a liquid crystal display device or the like includes a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel.
  • a switching element such as a thin film transistor (hereinafter, “TFT”) for each pixel.
  • TFT thin film transistor
  • amorphous silicon TFT a TFT having an amorphous silicon film as an active layer
  • polycrystalline silicon TFT a TFT having a polycrystalline silicon film as an active layer
  • an oxide semiconductor is sometimes used instead of amorphous silicon or polycrystalline silicon as a material for an active layer of a TFT.
  • Such a TFT is referred to as an “oxide semiconductor TFT”.
  • An oxide semiconductor has higher mobility than amorphous silicon. For this reason, the oxide semiconductor TFT can operate at a higher speed than the amorphous silicon TFT.
  • the oxide semiconductor layer is formed by a sputtering method (for example, Patent Document 1).
  • Patent Document 1 proposes to form a stacked semiconductor layer in which two oxide semiconductor films having different compositions are stacked by using a sputtering method as an active layer of an oxide semiconductor TFT.
  • Patent Document 2 discloses forming an oxide semiconductor film whose composition is continuously changed in the thickness direction as an active layer of the oxide semiconductor TFT.
  • Patent Document 2 refers to a MOCVD (Metal Organic Chemical Vapor Deposition) method as one method for forming such an oxide semiconductor film.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the composition of the oxide semiconductor layer is determined by the composition of the target used for the sputtering method, so that the degree of freedom in selecting a composition is small.
  • the composition of the oxide semiconductor film can be more easily changed by controlling the composition ratio of the MO gas, so that the range of selection of the composition of the oxide semiconductor layer is widened.
  • An embodiment of the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a semiconductor device including a highly reliable oxide semiconductor TFT having stable characteristics.
  • Another object of the present invention is to provide a novel film formation apparatus that can be applied to the formation of an oxide semiconductor film having a wide composition range and can form an oxide semiconductor film having high film characteristics.
  • a method of manufacturing a semiconductor device is a method of manufacturing a semiconductor device including a substrate and an oxide semiconductor TFT supported by the substrate and having an oxide semiconductor film as an active layer, (A) preparing a MO gas containing a first organometallic compound containing In and a second organometallic compound containing Zn; and (B) placing the substrate at 500 ° C. on the substrate placed in a chamber. Supplying a gas containing MO gas and oxygen in a state heated to the following temperature, and growing the oxide semiconductor film containing In and Zn on the substrate by a MOCVD method. ) Is performed in a state where plasma is formed in the chamber.
  • the pressure of the chamber is set to 3.3 ⁇ 10 2 Pa or more and less than 2.7 ⁇ 10 3 Pa.
  • the plasma in the step (B), is formed by a high-frequency electric field, and a power density for generating the plasma is 1440 W / m 2 or more and 4800 W / m 2 or less.
  • At least one of the first organometallic compound and the second organometallic compound includes a methyl group.
  • the substrate includes a glass substrate, and the amount of carbon components contained in the oxide semiconductor film is analyzed by secondary ion mass spectrometry when the composition in the depth direction of the oxide semiconductor film and the substrate is analyzed. Is 1/10 or less of the amount of the carbon component contained in the glass substrate.
  • the oxide semiconductor film does not substantially contain a carbon component.
  • the oxide semiconductor film is an In—Ga—Zn—O-based semiconductor film and has a stacked structure including a lower film, an intermediate transition film, and an upper film in this order from the substrate side.
  • the MO gas further includes a third organometallic compound containing Ga, and the step (B) includes (B1) the first organometallic compound at a flow rate of the MO gas supplied to the substrate.
  • the ratio of the third organometallic compound in the flow rate of the MO gas supplied to the substrate is changed, and the ratio of the first organometallic compound is changed from F1a.
  • the intermediate transition film is formed while continuously changing to F1b, and the ratio of the first organometallic compound and the third organometallic compound satisfies F3a ⁇ F3b and F1a> F1b, or F3a> F3b and F1a ⁇ F1b are satisfied.
  • a film forming apparatus is a film forming apparatus for forming an oxide semiconductor film on a substrate by an MOCVD method, and generates a gas including a plurality of organometallic compounds.
  • a first gas supply unit for supplying the MO gas; a second gas supply unit for supplying a gas containing oxygen into the chamber through the plurality of second gas passages;
  • a power supply unit that supplies power to a gas distribution showerhead, the power supply unit including a high-frequency power source connected to at least one of the support and the gas distribution showerhead, the support, and the The electric power supply unit and the first and the first are arranged so that the MO gas and the oxygen-containing gas are supplied into the chamber in a state where electric power is supplied to the gas distribution shower head and plasma is generated.
  • a control unit for controlling the two gas supply units.
  • a semiconductor device including a highly reliable oxide semiconductor TFT having stable characteristics can be manufactured.
  • a deposition apparatus that can be used for forming an oxide semiconductor film having a wide composition range and can form an oxide semiconductor film having high film characteristics can be used.
  • FIG. 6 is a schematic cross-sectional view for describing a method for forming an In—Ga—Zn—O-based semiconductor film of an example.
  • FIG. 6 is a schematic cross-sectional view for explaining a method for forming an In—Ga—Zn—O-based semiconductor film of a comparative example. It is a figure which shows the analysis result by TDS of each Example and a comparative example, and H 2 , H 2 O, CO desorbed from the In—Ga—Zn—O-based semiconductor film of each example and comparative example by a temperature rise. It shows the amount of O 2, CO 2.
  • (A)-(f) is a figure which shows the relationship between the flow rate ratio N of TMIn with respect to DEZ and TMGa, and the film-forming speed
  • (A) to (f) are diagrams showing the relationship between the flow rate ratio M of DEZ to TMIn and TMGa and the film forming speed, refractive index n, In ratio, Ga ratio, Zn ratio, and O ratio, respectively.
  • (A) is sectional drawing which shows an example of the oxide semiconductor TFT20 in the semiconductor device of 2nd Embodiment
  • (b) is an expanded sectional view of the oxide semiconductor layer 27 which is an active layer of TFT20.
  • FIG. 6 is a diagram showing current-voltage characteristics of TFTs of Example I and Comparative Example I.
  • FIG. It is a top view which shows typically the structure of the film-forming apparatus (plasma assist MOCVD apparatus) of 3rd Embodiment.
  • FIG. 6 is a diagram for explaining a composition range of an In—Ga—Zn—O-based semiconductor film. It is a figure which illustrates element distribution in the depth direction of the oxide semiconductor layer of the reference example formed by the sputtering method.
  • the MOCVD method is a method in which an organic metal is used as a raw material in a CVD process in which a thin film raw material is reacted at a high temperature to form a film on a substrate.
  • an organic metal material such as trimethylgallium is used as a raw material for trimethylindium and gallium (Ga) as a raw material for indium (In).
  • Organometallic raw materials are liquid and solid at room temperature, but they are vaporized by flowing carrier gas into the organometallic raw material under a certain pressure, and the organic metal gas (Metal Organic Gas, hereinafter referred to as “MO gas”) Become.
  • the MO gas causes decomposition / chemical reaction on a substrate heated to, for example, 1000 ° C. or more, and grows (deposits) on the substrate. In this way, film formation is performed.
  • the MOCVD method is used, for example, when a nitride semiconductor film such as GaN is formed on a Si wafer.
  • an oxide semiconductor TFT is usually formed on a glass substrate.
  • the substrate temperature needs to be set to a temperature sufficiently lower than the melting point of glass, for example, 500 ° C. or less, preferably 400 ° C. or less.
  • the MO gas is not sufficiently decomposed, and the methyl group of the MO gas tends to remain in the film. If the concentration of residual methyl groups in the oxide semiconductor film is increased, stable film characteristics cannot be obtained, and as a result, high TFT characteristics may not be stably realized.
  • the present inventor has studied in detail a formation method capable of reducing the residual methyl group concentration of the oxide semiconductor film based on the above findings. As a result, the inventors have found that an oxide semiconductor film having a lower residual methyl group concentration can be formed by using plasma in the film forming process by the MOCVD method, thereby increasing the degree of dissociation of MO gas.
  • the dissociation of MO gas is performed only by thermal energy, so the pressure in the reaction chamber (film formation pressure) is set high, and the film formation temperature is set to a high temperature to increase the degree of dissociation, It was necessary to increase the reactivity.
  • the MOCVD method using plasma referred to as “plasma MOCVD method” or “plasma assist MOCVD method”
  • plasma MOCVD method not only thermal energy but also plasma energy is used for dissociation of MO gas. Therefore, even when the substrate temperature is set to be equal to or lower than the melting point of glass, it is possible to increase the degree of dissociation of MO gas and increase the reactivity, and an oxide semiconductor film having a lower residual methyl group concentration can be formed.
  • the deposition pressure is set lower than that of the conventional MOCVD method, high reactivity can be realized, so that a favorable oxide semiconductor film can be formed. Therefore, when an oxide semiconductor film formed by a plasma MOCVD method is used, an oxide semiconductor TFT having stable characteristics can be manufactured.
  • the composition of the oxide semiconductor layer can be controlled more easily and with a high degree of freedom by adjusting the flow rate ratio of the source gases. For this reason, it becomes possible to further improve the characteristics and reliability of the oxide semiconductor TFT.
  • the semiconductor device manufactured in this embodiment only needs to include an oxide semiconductor TFT, and widely includes circuit boards such as an active matrix substrate, various display devices, electronic devices, and the like.
  • the manufacturing method of the semiconductor device of this embodiment includes a method of forming an oxide semiconductor film containing at least In and Zn.
  • the oxide semiconductor film is used as an active layer of the oxide semiconductor TFT.
  • an MO gas containing at least a first organometallic compound containing In and a second organometallic compound containing Zn is prepared.
  • the first organometallic compound is, for example, trimethylindium (In (CH 3 ) 3 , hereinafter “TMIn”)
  • the second organometallic compound is, for example, diethyl zinc (Zn (C 2 H 5 ) 2 , hereinafter “DEZ”.
  • the MO gas further contains trimethyl gallium (Ga (CH 3 ) 3 , hereinafter referred to as “TMGa”) as the third organometallic compound. May be included.
  • the MO gas can be generated, for example, by bubbling a liquid organometallic compound with a carrier gas, as in the conventional MOCVD method.
  • a substrate to be processed including a support substrate such as a glass substrate is placed in a chamber (reaction chamber).
  • the substrate to be processed is a substrate having a surface on which an oxide semiconductor film is formed.
  • a substrate to be processed is formed by forming a gate electrode and a gate insulating film on a glass substrate.
  • a glass substrate on which a base film is formed is used as a substrate to be processed.
  • the substrate to be processed is simply referred to as “substrate”.
  • a gas containing MO gas and oxygen is supplied to the surface of the substrate (MOCVD method) in a state where the substrate is heated below the melting point (eg, 500 ° C. or less) of the support substrate (eg, glass substrate).
  • MOCVD method a gas containing MO gas and oxygen is supplied to the surface of the substrate
  • RF power is applied in a state where MO gas and oxygen are contained in the chamber, or MO gas and oxygen are supplied in a state where plasma is formed in the chamber (plasma MOCVD method).
  • the MO gas is decomposed and reacted by heat and plasma in the chamber, and as a result, an oxide semiconductor film containing In and Zn grows on the substrate by the MOCVD method. In this manner, an oxide semiconductor film is formed.
  • the oxide semiconductor film is patterned by a known method to obtain an oxide semiconductor layer that becomes an active layer of the oxide semiconductor TFT.
  • the film forming pressure is typically set lower than the film forming pressure of the conventional MOCVD method (for example, 100 Torr or more). In the plasma MOCVD method, a high deposition rate can be secured even when the deposition pressure is low.
  • the pressure in the chamber in the film forming process is set to, for example, 2.5 Torr or more and less than 20 Torr, that is, 3.3 ⁇ 10 2 Pa or more and less than 2.7 ⁇ 10 3 Pa. If the exhaust capability with respect to the total flow rate of the source gas (MO gas, carrier gas, oxygen) is small, it may be difficult to maintain the film forming pressure below 2.5 Torr. In addition, the discharge may not be stable at 20 Torr or more.
  • the plasma is formed by, for example, a high frequency electric field.
  • the RF power for generating plasma can be set so that the power density is 14 W / m 2 or more. Specifically, the RF power is set to, for example, 100 W (about 480 W / m 2 ) or more. If the RF power is too low, the MO gas may dissociate halfway and adversely affect the film quality.
  • RF power is preferably 300 W (approximately 1440W / m 2) or more 1800W (approximately 8650W / m 2), more preferably up to 300 W (about 1440W / m 2) or more 1000W (approximately 4800W / m 2).
  • the MO gas is decomposed using not only heat but also plasma in the film forming process by the MOCVD method. For this reason, even if the substrate temperature is set to a relatively low temperature (500 ° C. or lower), metals such as In and Zn and organic groups such as methyl groups and ethyl groups are decomposed at a high rate (with high efficiency). It becomes possible. Accordingly, since the proportion of the organometallic compound that is deposited on the substrate without being decomposed can be reduced, the concentration of organic groups remaining in the oxide semiconductor film can be reduced, and a higher-quality oxide semiconductor film can be obtained.
  • the plasma MOCVD method is particularly advantageous when, for example, at least one of the first organometallic compound and the second organometallic compound contains a methyl group.
  • a weakly bonded methyl group tends to remain in the oxide semiconductor film.
  • the concentration of methyl groups in the oxide semiconductor film can be significantly reduced. As will be described later, this can be confirmed, for example, from the results of analysis of the oxide semiconductor film by secondary ion mass spectrometry (SIMS), thermal desorption gas analysis (TDS), or the like.
  • SIMS secondary ion mass spectrometry
  • TDS thermal desorption gas analysis
  • Oxide semiconductor films (herein, In—Ga—Zn—O-based semiconductor films) of Examples and Comparative Examples were formed, and the film characteristics were evaluated.
  • an oxide semiconductor film was formed by plasma MOCVD.
  • an oxide semiconductor film was formed by a conventional MOCVD method that does not use plasma and a sputtering method, respectively.
  • an oxide semiconductor film formation method and analysis results will be described with reference to the drawings.
  • FIG. 1A is a schematic cross-sectional view for explaining a method of forming an In—Ga—Zn—O-based semiconductor film of an example using a plasma MOCVD method.
  • a glass substrate was placed as a substrate 1 on a support (not shown) in the chamber, and the substrate 1 was heated to 350 ° C.
  • a radio frequency (RF) voltage was applied between a lower electrode and an upper electrode (not shown) located below and above the substrate 1, respectively.
  • the distance between the lower electrode and the upper electrode was 1000 mil (25.4 mm), and RF power of industrial frequency (13.56) MHz was applied between these electrodes.
  • the RF power was set to 1000W.
  • a source gas containing MO gas and a carrier gas (Ar gas here) and a gas containing oxygen (here oxygen gas) are predetermined in the chamber from above the substrate 1 in the normal direction of the substrate 1.
  • the flow rate was
  • the MO gas includes trimethylindium (TMIn), trimethylgallium (TMGa), and diethylzinc (DEZ).
  • the pressure in the chamber was 2.5 Torr.
  • the source gas was generated by the same method as the conventional MOCVD method.
  • TMIn, TMGa, and DEZ in a liquid state were each put into a raw material tank and vaporized by bubbling with a carrier gas (Ar gas).
  • the vaporized organometallic compound is mixed into the carrier gas and carried into the chamber.
  • the flow rate of Ar gas for bubbling each organometallic compound, the liquid temperature in the raw material tank, the back pressure, etc. were adjusted so that the flow rate ratio of TMIn, TMGa, and DEZ in the raw material gas was 1: 1: 1.
  • the flow rates of TMIn, TMGa, and DEZ in the source gas were each about 0.68 sccm, and the total flow rate of Ar gas in the source gas was 12 slm.
  • the source gas diffused into the chamber from a plurality of source gas supply ports provided at an 8 mm pitch in the upper part of the chamber.
  • the flow rate of O 2 gas was set to 12 slm, and similarly, the oxygen gas was diffused into the chamber from a plurality of oxygen gas supply ports provided at an 8 mm pitch in the upper part of the chamber.
  • the MO gas becomes a plasma state 3 by a high-frequency electric field, and the In—Ga— is formed on the substrate 1 by a chemical reaction between In, Zn, and Ga dissociated from the MO gas and oxygen.
  • a Zn—O based semiconductor was deposited. In this manner, an In—Ga—Zn—O-based semiconductor film 2A having a thickness of about 100 nm was formed.
  • Example 2 An In—Ga—Zn—O-based semiconductor film was formed in the same manner as in Example 1 except that the RF power for forming plasma in the chamber was set to 300 W.
  • Example 3 An In—Ga—Zn—O-based semiconductor film was formed by the same method as in Example 1 except that the RF power for forming plasma in the chamber was set to 100 W.
  • FIG. 1B is a schematic cross-sectional view for explaining a method of forming an In—Ga—Zn—O-based semiconductor film of Comparative Example 1 using a conventional MOCVD method that does not use plasma.
  • Comparative Example 1 As shown in FIG. 1B, a glass substrate was placed as the substrate 1 in the chamber, and the substrate 1 was heated to 350 ° C. Next, as in Example 1, source gas and oxygen gas were supplied into the chamber. The pressure in the chamber was set to 20 Torr. However, an In—Ga—Zn—O-based semiconductor film was deposited on the substrate 1 by MOCVD without applying RF power between the upper electrode and the lower electrode in the chamber (in a state where plasma was not formed). In this manner, an In—Ga—Zn—O-based semiconductor film 2B was formed.
  • XPS X-ray photoelectron spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • the composition of the In—Ga—Zn—O-based semiconductor film differs when the RF power for forming plasma changes even if the flow rate ratio of the source gas is the same.
  • the RF power is lowered, an In—Ga—Zn—O-based semiconductor film containing more Zn component can be obtained.
  • the Zn component enters the film with weak bonds, and thus is easily decomposed and desorbed when heated (see analysis results by TDS).
  • TDS analysis results by TDS
  • TDS Temperature desorption gas analysis
  • each sample of the example and comparative example (glass substrate having an In—Ga—Zn—O-based semiconductor film on the surface) is placed in the chamber of the TDS apparatus, and the temperature is 80 to 450 ° C. under high vacuum. The temperature rose. The gas desorbed by the temperature increase was analyzed. H 2 , O 2 , H 2 O and the like having typical compositions are quantified by a calibration curve, but the amount of CH 3 groups and the like can be compared with relative values from the signal intensity.
  • FIG. 2 to 4 are diagrams showing analysis results by TDS.
  • FIG. 2 shows the amounts of H 2 , H 2 O, CO, O 2 , and CO 2 desorbed from the In—Ga—Zn—O-based semiconductor films of each Example and Comparative Example (quantified by a calibration curve).
  • FIG. 3A shows CH 3 , C 2 H 5 , C 3 H 7, C released from the In—Ga—Zn—O-based semiconductor films of Example 1, Comparative Example 1 and Comparative Example 2 by heating. 4 H 9, shows the amount (equivalent amount) of C 6 H 5.
  • FIG. 3B is a diagram showing the amount (converted amount) of CH 3 desorbed from the In—Ga—Zn—O-based semiconductor film of each example and comparative example by a temperature rise.
  • FIG. 4 is a diagram showing the amounts (converted amounts) of In, Ga, and Zn desorbed from the In—Ga—Zn—O-based semiconductor film of each example and comparative example by a temperature rise.
  • the In—Ga—Zn—O-based semiconductor film (Comparative Example 2) formed by the sputtering method does not substantially contain an organic group.
  • Trace amounts of organic groups have been detected. This is considered to be due to the measurement limit. That is, it is considered that the In—Ga—Zn—O-based semiconductor film of Example 1 in which organic groups of the same level as those in Comparative Example 2 were detected does not substantially contain organic groups.
  • the In—Ga—Zn—O-based semiconductor film is formed by the plasma MOCVD method (Examples 1 to 3), and compared with the case where the MOCVD method is used (Comparative Example 1). It was confirmed that the residual concentration of methyl groups in the —Ga—Zn—O-based semiconductor film was reduced. Therefore, it was found that using the In—Ga—Zn—O-based semiconductor films of Examples 1 to 3 can produce TFTs having more stable characteristics than those using the conventional MOCVD method (Comparative Example 1). .
  • Example 1 the water content in the In—Ga—Zn—O-based semiconductor film was reduced as compared with Comparative Example 1 and other examples.
  • impurities such as hydrogen, moisture, and hydroxyl are intentionally removed from the oxide semiconductor film by a heating step, so that the oxide semiconductor film has a high quality. It is known to increase the density (see, for example, JP 2011-222984 A).
  • Example 1 the amount of moisture in the film that affects the characteristics can be greatly reduced as compared with Comparative Example 1, so that the TFT characteristics can be more effectively stabilized.
  • the residual concentration such as methyl groups and the water content in the In—Ga—Zn—O-based semiconductor film of Example 1 are both about the same as when formed by sputtering (Comparative Example 2). It has been found that the film has excellent film characteristics equivalent to that of a film formed by sputtering.
  • the film quality can be further improved by increasing the RF power for forming plasma (for example, 400 W or more, preferably 800 W or more).
  • the In—Ga—Zn—O-based semiconductor film of Example 1 has a Zn component with a strong bond equal to or higher than that of the In—Ga—Zn—O-based semiconductor film (Comparative Example 2) formed by sputtering. I understand that it contains.
  • the RF power in Example 1 is 1000 W, it is considered that the same effect can be obtained if the RF power is, for example, 600 W (about 2900 W / m 2 ) or more and 1200 W (about 5500 W / m 2 ) or less.
  • the preferred RF power range may vary depending on the type of MO gas, flow rate ratio, composition, and the like.
  • FIGS. 5A to 5C are diagrams showing the measurement results of the film formation rate, composition ratio, and refractive index of the In—Ga—Zn—O-based semiconductor films of Example 1 and Comparative Example 1, respectively.
  • FIG. 5A shows the result of forming an In—Ga—Zn—O-based semiconductor film on a film formation rate measurement wafer by the method of Example 1 and Comparative Example 1 and measuring the film formation rate.
  • the composition ratio shown in FIG. 5B is an XPS measurement result (see Table 1).
  • FIG. 5C shows the result of measuring the refractive index of an In—Ga—Zn—O-based semiconductor film formed on the refractive index measurement wafer by the methods of Example 1 and Comparative Example 1.
  • the composition ratios of the In—Ga—Zn—O-based semiconductor films of Example 1 and Comparative Example 1 are substantially the same, but the Example 1 It can be seen that the In—Ga—Zn—O-based semiconductor film has a higher refractive index. This is presumably because the use of plasma resulted in the formation of a film that could have stronger coupling, resulting in a higher refractive index.
  • Example 4 a glass substrate having an In—Zn—O-based semiconductor film on the surface
  • an In—Zn—O-based semiconductor film was formed on a glass substrate by MOCVD without using plasma by supplying the same type of gas as Sample A at the same flow rate ratio. In this way, Sample B of Comparative Example 3 was produced.
  • composition analysis in the depth direction of Sample A and Sample B was performed by SIMS.
  • 6A and 6B are diagrams showing the composition analysis results by SIMS of Sample A and Sample B, respectively.
  • the horizontal axis represents the number of measurement cycles and corresponds to the depth from the sample surface.
  • the vertical axis is intensity.
  • the glass substrate contains impurities such as SiO 2 , Fe, and C. For this reason, in a glass substrate, although it is a small amount, a carbon component is detected.
  • In and Zn—O based semiconductor film contains In and Zn at a high ratio, but no carbon component was detected, and the carbon content was the detection limit. It is considered as follows (that is, substantially free of carbon component).
  • the ratio of the carbon component in the In—Zn—O-based semiconductor film is significantly smaller than the ratio of the carbon component as an impurity in the glass substrate.
  • the ratio of the carbon component in the glass substrate is 1/2 or less, and in this example, 1/10 or less.
  • the In—Zn—O-based semiconductor film contains carbon components in substantially the same ratio as the glass substrate. Therefore, it is confirmed that when an oxide semiconductor film is formed using a plasma MOCVD method, the carbon component content can be significantly reduced as compared with the case where the MOCVD method is used.
  • the composition of the oxide semiconductor film can be controlled by adjusting the flow rate ratio of the source gases.
  • an In—Ga—Zn—O-based semiconductor film was formed as a sample film 1 to 20 on a glass substrate under the conditions shown in Table 2.
  • the carrier gas Ar gas in this case
  • the flow rate was adjusted.
  • the flow ratio shown in Table 2 is a value for 0.68 sccm.
  • the flow rate of each organometallic compound is 1.36 sccm (0.68 sccm ⁇ 2).
  • the substrate temperature during film formation was set in a range of 350 ° C. or higher and 400 ° C. or lower.
  • the flow rate of oxygen gas supplied into the chamber, the pressure in the chamber, the distance between electrodes, and the RF power were constant.
  • sample films 1 to 20 were formed on the Si wafer under the same conditions as described above.
  • composition analysis by XPS was performed on the sample films 1 to 20 formed on the glass substrate.
  • the analysis results are shown in Table 3. Further, spectroscopic ellipsometry was performed on the sample films 1 to 20 formed on the Si wafer, and the refractive index n, thickness, and film formation speed of each sample film were measured. Table 3 shows the measurement results.
  • FIGS. 7A to 7F are diagrams showing the relationship between the flow rate ratio N of TMIn to DEZ and TMGa and the film formation speed, refractive index n, In ratio, Ga ratio, Zn ratio, and O ratio, respectively.
  • Measurement results are indicated by white squares ⁇ .
  • the In ratio of the oxide semiconductor film can be controlled by the flow ratio N of TMIn to DEZ and TMGa. It can also be seen that increasing the flow ratio N of TMIn to DEZ and TMGa increases the deposition rate and provides a film with a high refractive index.
  • FIGS. 8A to 8F are diagrams showing the relationship between the flow rate ratio M of DEZ with respect to TMIn and TMGa and the deposition rate, refractive index n, In ratio, Ga ratio, Zn ratio, and O ratio, respectively.
  • the measurement results of ⁇ M) are indicated by white squares ⁇ .
  • the Zn ratio of the oxide semiconductor film can be controlled by the flow ratio M of DEZ to TMIn and TMGa. It can also be seen that increasing the flow ratio M of DEZ to TMIn and TMGa increases the deposition rate and provides a film with a high refractive index.
  • the composition and characteristics of the oxide semiconductor film change depending on the flow rate ratio in the source gas. Therefore, it is confirmed that the composition and characteristics of the oxide semiconductor film can be controlled by adjusting the flow ratio in the source gas.
  • the flow rate ratio of the source gas for forming the oxide semiconductor film having a desired composition can be calculated.
  • the composition ratios of In, Ga, Zn and O are respectively Z + a ⁇ TMI + b ⁇ TMG + c ⁇ DeZ (Z, a to c: coefficient, TMI: TMIn flow ratio, TMG: TMGa flow ratio, DeZ: DEZ Flow rate), and the value of each coefficient is obtained by the method of least squares. From the obtained formula, a flow rate ratio for forming an In—Ga—Zn—O-based semiconductor film having a desired composition is calculated.
  • an In—Ga—Zn—O-based semiconductor film is formed as the oxide semiconductor film, but the oxide semiconductor contained in the oxide semiconductor film and the oxide semiconductor layer of the TFT is In—Ga—Zn—. It is not limited to O-based semiconductors.
  • the oxide semiconductor may be an amorphous oxide semiconductor or a crystalline oxide semiconductor having a crystalline portion.
  • the crystalline oxide semiconductor include a polycrystalline oxide semiconductor, a microcrystalline oxide semiconductor, and a crystalline oxide semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface.
  • oxide semiconductor film formed by plasma MOCVD or an oxide semiconductor layer of a TFT may have a stacked structure of two or more layers.
  • the oxide semiconductor film may include an amorphous oxide semiconductor layer and a crystalline oxide semiconductor layer.
  • a plurality of crystalline oxide semiconductor layers having different crystal structures may be included.
  • a plurality of amorphous oxide semiconductor layers may be included.
  • the energy gap of the oxide semiconductor included in the upper layer is preferably larger than the energy gap of the oxide semiconductor included in the lower layer.
  • the energy gap of the lower oxide semiconductor may be larger than the energy gap of the upper oxide semiconductor.
  • the oxide semiconductor film may contain at least one metal element of In, Ga, and Zn, for example.
  • the oxide semiconductor film includes, for example, an In—Ga—Zn—O-based semiconductor (eg, indium gallium zinc oxide).
  • Such an oxide semiconductor film can be formed using an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor.
  • the In—Ga—Zn—O-based semiconductor may be amorphous or crystalline.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (more than 20 times that of an a-Si TFT) and low leakage current (less than one hundredth of that of an a-Si TFT).
  • the TFT is suitably used as a driving TFT (for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels) and a pixel TFT (a TFT provided in the pixel).
  • a driving TFT for example, a TFT included in a driving circuit provided on the same substrate as the display area around a display area including a plurality of pixels
  • a pixel TFT a TFT provided in the pixel
  • the oxide semiconductor film may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
  • an In—Sn—Zn—O-based semiconductor eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO
  • the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • the oxide semiconductor film includes an In—Al—Zn—O based semiconductor, an In—Al—Sn—Zn—O based semiconductor, a Zn—O based semiconductor, an In—Zn—O based semiconductor, and a Zn—Ti—O based semiconductor.
  • Cd—Ge—O based semiconductor Cd—Pb—O based semiconductor, CdO (cadmium oxide), Mg—Zn—O based semiconductor, In—Ga—Sn—O based semiconductor, In—Ga—O based semiconductor, A Zr—In—Zn—O based semiconductor, an Hf—In—Zn—O based semiconductor, an Al—Ga—Zn—O based semiconductor, a Ga—Zn—O based semiconductor, or the like may be included.
  • the semiconductor device according to the second embodiment includes an oxide semiconductor TFT having a stacked structure as an active layer.
  • Patent Document 1 discloses forming an oxide semiconductor layer having a stacked structure by a sputtering method for the purpose of forming a highly reliable oxide semiconductor TFT having high mobility.
  • the present inventor formed an oxide semiconductor layer having a two-layer structure by sputtering, and examined the element distribution in the depth direction by Auger electron spectroscopy. The results are shown in FIG.
  • the semiconductor film was the upper layer.
  • FIG. 17 it can be seen that an interface is clearly formed between two layers having different compositions.
  • the present inventor has found that the generation of interface states can be suppressed by providing an intermediate transition layer whose composition changes continuously between two oxide semiconductor films (upper layer and lower layer) having different compositions.
  • the intermediate transition layer can be easily formed by using, for example, a plasma MOCVD method.
  • the composition of the intermediate transition layer continuously changes in the depth direction so as to smoothly connect the difference in composition of metal elements (for example, In and Ga) between the upper layer and the lower layer.
  • FIG. 9A is a cross-sectional view showing an example of the oxide semiconductor TFT 20 in the semiconductor device of this embodiment
  • FIG. 9B is an enlarged cross-sectional view of the oxide semiconductor layer 27 that is an active layer of the TFT 20. .
  • the TFT 20 includes a support substrate 21, a gate electrode 23 supported on the support substrate 21, an oxide semiconductor layer 27, a gate insulating layer 25 disposed between the oxide semiconductor layer 27 and the gate electrode 23, A source electrode 28 and a drain electrode 29 electrically connected to the oxide semiconductor layer 27 are provided.
  • the TFT 20 is covered with, for example, an insulating layer (passivation film) 35.
  • the TFT 20 is, for example, a channel etch type bottom gate structure TFT.
  • the gate electrode 23 is disposed on the support substrate 21 side of the oxide semiconductor layer 27.
  • the gate insulating layer 25 covers the gate electrode 23, and the oxide semiconductor layer 27 is disposed so as to overlap the gate electrode 23 with the gate insulating layer 25 interposed therebetween.
  • the source electrode 28 and the drain electrode 29 are each disposed in contact with the upper surface of the oxide semiconductor layer 27.
  • the oxide semiconductor layer 27 has a channel region 27c and a source contact region 27s and a drain contact region 27d located on both sides of the channel region 27c.
  • the source electrode 28 and the drain electrode 29 are formed in contact with the source contact region 27s and the drain contact region 27d, respectively.
  • the “channel region 27 c” is located between the source contact region 27 s and the drain contact region 27 d in the oxide semiconductor layer 27 when viewed from the normal direction of the support substrate 21, and a channel is formed. It refers to the area that contains the portion to be processed.
  • a channel can be formed in the channel region 27 c in the vicinity of the gate insulating layer 25 in the first layer 31.
  • the structure of the oxide semiconductor TFT in this embodiment is not limited to the structure shown in the drawing.
  • an etch stop type bottom gate TFT may be used.
  • an etch stop layer 37 is disposed on at least a portion of the oxide semiconductor layer 27 to be a channel region so as to be in contact with the upper surface of the oxide semiconductor layer 27.
  • the source electrode 28 and the drain electrode 29 are each disposed on the etch stop layer 37 so as to be in contact with the upper surface of the oxide semiconductor layer 27.
  • the oxide semiconductor TFT may have a top gate structure.
  • the oxide semiconductor layer 27 has a stacked structure including a lower layer 27L, an intermediate transition layer 33, and an upper layer 27U in this order from the support substrate 21 side.
  • a layer located on the gate insulating layer 25 side of the lower layer 27L and the upper layer 27U may be referred to as a “first layer 31” and the other as a “second layer 32”.
  • the first layer 31 (here, the lower layer 27L) can function as a channel layer in which a channel is formed.
  • the mobility of the first layer 31 is higher than the mobility of the second layer 32.
  • the second layer 32 (here, the upper layer 27U) can function as a blocking layer having higher etching resistance or barrier properties than the channel layer.
  • the intermediate transition layer 33 is disposed between the first layer 31 and the second layer 32 so as to be in contact with both the first layer 31 and the second layer 32.
  • the first layer 31 is the lowermost layer of the oxide semiconductor layer 27 and may be in contact with the upper surface of the gate insulating layer 25.
  • the second layer 32 is the uppermost layer of the oxide semiconductor layer 27 and may constitute the upper surface of the oxide semiconductor layer 27.
  • the upper surface of the second layer 32 may be in contact with the source electrode 28, the drain electrode 29, and the insulating layer 35 (or the etch stop layer 37).
  • the upper layer is the first layer 31 and the lower layer is the second layer 32.
  • the oxide semiconductor layer 27 includes, for example, In, Zn, and Ga.
  • the oxide semiconductor layer 27 may be an In—Ga—Zn—O-based semiconductor film.
  • the first layer 31 and the second layer 32 may have different compositions. “Different compositions” means that the types or composition ratios of metal elements contained in each layer are different.
  • the first layer 31 has a composition suitable as a channel layer. For example, it is a high mobility layer containing a large amount of a relatively low resistance metal element such as In or Zn and having a high mobility.
  • the second layer 32 has a composition that can have a high barrier property. For example, it is a highly reliable layer containing a large amount of Ga. By providing the second layer 32, impurities such as hydrogen entering from the opening of an insulating film such as a passivation film enter the first layer 31 in the manufacturing process of the TFT 20 or after the TFT 20 is manufactured.
  • the second layer 32 can also function as a protective layer and a sacrificial layer for the first layer 31 that is a channel layer in a source / drain separation step or the like.
  • the composition of the intermediate transition layer 33 continuously changes from the composition of the first layer 31 to the composition of the second layer 32. That is, the intermediate transition layer 33 has a composition that changes so as to continuously connect the composition difference between the first layer 31 and the second layer 32 so that the interface state due to the composition difference does not occur.
  • the oxide semiconductor layer 27 of this embodiment may further include a layer other than the above three layers.
  • the present embodiment in the oxide semiconductor layer 27 having a stacked structure including a high mobility layer, there is no interface state between the upper layer 27U and the lower layer 27L. Reduction in reliability can be suppressed. Therefore, the TFT 20 having high mobility and excellent reliability can be realized. Furthermore, according to the present embodiment, it is possible to further increase the composition difference between the first layer 31 and the second layer 32 while ensuring reliability. Therefore, the composition of the first layer 31 and the second layer 32 can be set to a more suitable composition according to the respective functions, so that the TFT characteristics and reliability can be improved more effectively.
  • the oxide semiconductor layer 27 is formed by, for example, a plasma MOCVD method.
  • the intermediate transition layer 33 having a smooth composition change can be easily formed by performing the film forming process while changing the flow rate ratio in the source gas.
  • the composition of the first layer 31 and the second layer 32 can be selected with a high degree of freedom by adjusting the flow ratio in the source gas.
  • composition and thickness of each layer of oxide semiconductor layer 27 A preferable composition of each of the layers 31 to 33 will be described by using an example in which the oxide semiconductor layer 27 is an In—Ga—Zn—O-based semiconductor layer.
  • the atomic ratio (composition ratio) of In to all elements mainly constituting the oxide semiconductor is abbreviated as “In ratio”.
  • the In ratio of the In—Ga—Zn—O-based semiconductor layer is the ratio of the number of In atoms to the total number of atoms of In, Ga, Zn, and O (oxygen).
  • the atomic ratio (composition ratio) of Ga, Zn, and O with respect to all elements mainly constituting the oxide semiconductor is abbreviated as “Ga ratio”, “Zn ratio”, and “O ratio”.
  • the In ratio is [In] / ([In ] + [Ga] + [Zn] + [O]).
  • the Ga ratio in the first layer 31 is preferably smaller than the Ga ratio in the second layer 32. Thereby, the mobility of the first layer 31 can be made higher than that of the second layer 32, and the stability of the second layer 32 can be made higher than that of the first layer 31.
  • the Ga ratio of the intermediate transition layer 33 continuously increases from the first layer 31 side toward the second layer 32 side.
  • the difference in Ga ratio between the first layer 31 and the second layer 32 is not particularly limited, but is, for example, 5% or more, preferably 10% or more.
  • the difference in Ga ratio is large (for example, 15% or more), a more remarkable effect can be obtained by providing the intermediate transition layer 33.
  • the In ratio in the first layer 31 may be larger than the In ratio in the second layer 32.
  • the difference in In ratio between the first layer 31 and the second layer 32 is not particularly limited, but is, for example, 5% or more, preferably 10% or more.
  • the difference in In ratio is large (for example, 20% or more)
  • the Ga ratio is from the first layer 31 side.
  • the In ratio may increase continuously toward the second layer 32 side, and the In ratio may decrease continuously from the first layer 31 side toward the second layer 32 side.
  • the preferred composition of the first layer 31 to be the channel layer is as follows.
  • the Ga ratio is, for example, 0% or more and less than 15% (0 ⁇ [Ga] / ([In] + [Ga] + [Zn] + [O]) ⁇ 0.15).
  • the sum of the In ratio and the Zn ratio of the first layer 31 is larger than the Ga ratio ([In] + [Zn]> [Ga]).
  • the In ratio may be less than 70% ([In] / ([In] + [Ga] + [Zn] + [O]) ⁇ 0.7).
  • the sum of the In ratio and the Zn ratio may be less than 70% (([In] + [Zn]) / ([In] + [Ga] + [Zn] + [O]) ⁇ 0.7. ).
  • the In ratio is higher than the Ga ratio and the Zn ratio ([In]> [Ga], [In]> [Zn]).
  • the thickness of the first layer 31 is not particularly limited, but is, for example, more than 0 nm and 20 nm or less. Preferably they are 5 nm or more and 10 nm or less. If it is 10 nm or less, the on-characteristic can be improved. If the thickness is 5 nm or more, electrons move preferentially in the first layer 31 over the intermediate transition layer 33, so that a TFT with high mobility can be realized.
  • the preferred composition of the second layer 32 is as follows.
  • the Ga ratio is, for example, more than 9% and less than 40% (0.09 ⁇ [Ga] / ([In] + [Ga] + [Zn] + [O]) ⁇ 0.4).
  • the In ratio is preferably smaller than the Ga ratio ([In] ⁇ [Ga]).
  • the sum of the In ratio and the Zn ratio of the second layer 32 may be equal to or less than the Ga ratio ([In] + [Zn] ⁇ [Ga]).
  • the thickness of the second layer 32 is not particularly limited, but is, for example, 20 nm or more and 50 nm or less. If it is 20 nm or more, it can function more effectively as a blocking layer (protective layer, barrier layer), so that the reliability can be further improved. On the other hand, when the thickness is 50 nm or less, an increase in the resistance component generated in the oxide semiconductor layer 27 can be suppressed, so that a decrease in mobility of the TFT 20 can be suppressed.
  • the second layer 32 (upper layer 27U) functions as a protective layer in the source / drain separation step. For this reason, it is preferable to set the Ga ratio of the second layer 32 higher (for example, 20% or more) and / or to further increase the thickness of the second layer 32 (for example, 30 nm or more).
  • the intermediate transition layer 33 only needs to have a composition change that smoothly (continuously) connect the difference in composition ratio between the first layer 31 and the second layer 32.
  • the thickness of the intermediate transition layer 33 is not particularly limited, but may be adjusted so that the total thickness of the oxide semiconductor layer 27 is, for example, not less than 40 nm and not more than 70 nm.
  • the intermediate transition layer 33 may be thicker than the first layer 31 and the second layer 32.
  • the thickness of the intermediate transition layer 33 may be, for example, 5 nm to 50 nm, preferably 10 nm to 30 nm. If it is less than 10 nm, it may be difficult to smooth the composition change depending on the difference in the composition ratio between the first layer 31 and the second layer 32.
  • the thickness of the intermediate transition layer 33 is 10 nm or more, more preferably 20 nm or more, the generation of the interface state due to the composition difference can be suppressed more reliably.
  • the thickness is 50 nm or less, an increase in the thickness of the oxide semiconductor layer 27 and an increase in a resistance component generated in the oxide semiconductor layer 27 can be suppressed.
  • the oxide semiconductor layer 27 is obtained, for example, by forming a laminated film containing In, Sn, and Zn by plasma MOCVD and patterning the stacked film.
  • a film that becomes the lower layer 27L (here, the first layer 31) of the oxide semiconductor layer 27 is a “lower film”
  • a film that becomes the intermediate transition layer 33 of the oxide semiconductor layer 27 is an “intermediate transition film”
  • a film that forms the upper layer 27U (here, the second layer 32) of the oxide semiconductor layer 27 is referred to as an “upper film”.
  • a three-layer stacked film having the above-described composition is formed by adjusting the flow ratio of the organometallic compound in the source gas.
  • the lower film and the upper film can be formed by depositing with a flow rate ratio of the source gas set to a predetermined value (the flow rate ratio is constant).
  • the intermediate transition film can be formed by depositing while continuously changing the flow rate ratio of the source gas. For example, it is possible to continuously change the flow rate ratio of the source gas supplied onto the substrate by setting the flow rate stepwise and supplying the source gas as it is even when the flow rate is switched. is there.
  • a substrate on which a laminated film is to be formed is placed in a chamber (between the lower electrode and the upper electrode).
  • a carrier gas such as argon or nitrogen
  • the MO gas includes a first organometallic compound containing In, a second organometallic compound containing Zn, and a third organometallic compound containing Ga.
  • the first organometallic compound may be TMIn
  • the second organometallic compound may be DEZ
  • the third organometallic compound may be TMGa.
  • film formation is performed in a state where the flow ratio of the first organometallic compound, the second organometallic compound, and the third organometallic compound in the MO gas is set to a predetermined value, and the lower layer 27L of the oxide semiconductor layer 27 is formed. A lower membrane is obtained.
  • the ratio of the first organometallic compound to the entire MO gas when forming the lower film is F1a
  • the ratio of the second organometallic compound is F2a
  • the ratio of the third organometallic compound is F3a.
  • TMIn: DEZ: TMGa is set to 6: 6: 1
  • F1a 6/13
  • F2a 6/13
  • F3a 1/13.
  • the ratio of the first organometallic compound and the second organometallic compound can also change.
  • the ratio of the third organometallic compound may be changed, and the ratio of the first organometallic compound may be continuously changed from F1a to F1b.
  • the lower layer of the oxide semiconductor layer 27 becomes the channel layer (first layer 31)
  • film formation is performed while increasing the ratio of the third organometallic compound (that is, F3a ⁇ F3b).
  • the ratio of the first organometallic compound may be decreased (that is, F1a> F1b).
  • the lower layer of the oxide semiconductor layer 27 serves as a blocking layer (second layer 32)
  • film formation is performed while reducing the ratio of the third organometallic compound (that is, F3a> F3b).
  • the ratio of the first organometallic compound may be increased (that is, F1a ⁇ F1b).
  • the oxide semiconductor layer 27 is formed with the first organometallic compound ratio set to F1b, the second organometallic compound ratio set to F2b, and the third organometallic compound ratio set to F3b.
  • An upper film to be the upper layer 27U is formed on the intermediate transition film. In this way, a laminated film composed of three layers is formed.
  • the stacked film is, for example, an amorphous In—Ga—Zn—O-based semiconductor film (part of which may be crystallized). Thereafter, the stacked film is patterned to obtain the oxide semiconductor layer 27.
  • FIG. 11A illustrates the ratio of the third organometallic compound in the entire MO gas in the above film forming process. Only the film that becomes the channel layer (first layer 31) is formed in a state in which the flow rate ratio of the MO gas is kept constant, and the film that becomes the intermediate transition layer 33 and the second layer 32 has the flow rate ratio of the MO gas. You may form, changing.
  • the ratio of the third organometallic compound in the film forming step in this case is illustrated in FIG.
  • each of the second layer 32 and the intermediate transition layer 33 is a layer whose composition changes continuously (composition transition layer).
  • the second layer which is located on the first layer 31 side regards the part having a Ga ratio of 15% or less as the intermediate transition layer 33, and functions the part having the Ga ratio exceeding 15% as a blocking layer. 32.
  • the change of the flow rate ratio of FIG. 11 (a) and (b) is an illustration.
  • the flow rate ratio of the MO gas may be changed in one step, but it may be changed preferably in two steps or more, more preferably in three steps or more. In that case, the amount of change and the deposition time may be different at each stage.
  • the formation method of the oxide semiconductor layer 27 is not limited to the above.
  • it can be formed by a conventional MOCVD method that does not use plasma.
  • an organic group such as a methyl group tends to remain in the oxide semiconductor film, and desired TFT characteristics may not be obtained.
  • the plasma MOCVD method is more preferable because an oxide semiconductor film with reduced residual amount of methyl groups or the like can be formed.
  • the gate electrode 23 is formed on the support substrate 21, and then the gate insulating layer 25 is formed in this order.
  • the support substrate 21 for example, a glass substrate, a silicon substrate, a heat-resistant plastic substrate (resin substrate), or the like can be used.
  • the gate electrode 23 is formed by forming a gate conductive film (thickness: for example, 50 nm or more and 500 nm or less) on a substrate (for example, a glass substrate) 21 by a sputtering method and patterning the conductive film.
  • the material of the conductive film for gate is not particularly limited.
  • a film containing a metal such as aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper (Cu), or an alloy thereof, or a metal nitride thereof It can be used as appropriate.
  • the gate insulating layer 25 can be formed by, for example, a CVD method or the like.
  • a silicon oxide (SiO 2 ) layer, a silicon nitride (SiNx) layer, a silicon oxynitride (SiOxNy; x> y) layer, a silicon nitride oxide (SiNxOy; x> y) layer, or the like is used as appropriate.
  • the gate insulating layer 25 may have a stacked structure.
  • a silicon nitride layer, a silicon nitride oxide layer, or the like is formed on the substrate side (lower layer) to prevent diffusion of impurities and the like from the support substrate 21, and insulation is ensured on the upper layer (upper layer).
  • a silicon oxide layer, a silicon oxynitride layer, or the like may be formed.
  • a stacked film is used in which a SiO 2 film having a thickness of 50 nm is an upper layer and a SiNx film having a thickness of 300 nm is a lower layer.
  • an insulating layer containing oxygen eg, an oxide layer such as SiO 2
  • oxygen vacancies are generated in the oxide semiconductor layer 27.
  • oxygen vacancies can be recovered by oxygen contained in the oxide layer, so that oxygen vacancies in the oxide semiconductor layer 27 can be reduced.
  • an oxide semiconductor layer 27 having a stacked structure is formed over the gate insulating layer 25.
  • the oxide semiconductor layer 27 is formed by the above-described method using, for example, a plasma MOCVD method. After the oxide semiconductor layer 27 is formed, heat treatment may be performed at a temperature of 350 ° C. or higher (eg, 450 ° C.) in an air atmosphere.
  • an etch stop layer 37 is obtained by forming an insulating film over the oxide semiconductor layer 27 and patterning it.
  • the etch stop layer 37 is, for example, a SiO 2 layer (thickness: 150 nm, for example).
  • the etch stop layer 37 covers a portion to be a channel region in the oxide semiconductor layer 27 and has an opening on a portion to be a source contact and drain contact region.
  • the source electrode 28 and the drain electrode 29 are formed.
  • a source conductive film is formed on the etch stop layer 37 and in the opening of the etch stop layer 37 by sputtering, for example.
  • the source electrode 28 and the drain electrode 29 are obtained by patterning the source conductive film.
  • the source electrode 28 and the drain electrode 29 are in contact with the oxide semiconductor layer 27 (source contact region and drain contact region) in the opening.
  • the source conductive film may have a single layer structure or a laminated structure.
  • a Ti film (thickness: 30 nm), an Al or Cu film (thickness: 300 nm), and a Ti film (thickness 50 nm) are stacked in this order from the oxide semiconductor layer 27 side as the source conductive film.
  • a laminated film is formed.
  • a source conductive film is formed so as to cover the oxide semiconductor layer 27 without forming the etch stop layer 37.
  • the source conductive film is patterned to obtain the source electrode 28 and the drain electrode 29 (source / drain separation).
  • the surface of a portion to be a channel region in the oxide semiconductor layer 27 may be etched (overetching). For example, part or all of the upper layer of the oxide semiconductor layer 27 that serves as the channel region may be removed.
  • N 2 O gas pressure for example, 100Pa or more 300Pa or less, the plasma power density 0.2 W / cm 2 or more 1.5 W / cm 2 or less, the processing time 5 ⁇ 100 sec, the substrate temperature for example 200 ° C. or higher 450 ° C. or less, It is preferably set to 200 ° C. or higher and 350 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C. or lower.
  • the insulating layer 35 is an inorganic insulating layer such as a silicon oxide (SiO 2 ) film, a silicon nitride (SiNx) film, a silicon oxynitride (SiOxNy; x> y) film, a silicon nitride oxide (SiNxOy; x> y) film, or the like. It may be.
  • a SiO 2 layer having a thickness of, for example, 300 nm is formed by a CVD method. Then, you may heat-process at the temperature of 200 to 350 degreeC, for example. Accordingly, oxygen vacancies generated in the oxide semiconductor layer 27 when the insulating layer 35 is formed can be reduced.
  • a planarizing layer such as an organic insulating layer may be further provided on the insulating layer 35. In this way, the TFT 20 is manufactured.
  • the TFT structure to which the channel structure of this embodiment can be applied is not particularly limited.
  • the TFT 20 illustrated in FIG. 9 has a top contact structure in which the source and drain electrodes are in contact with the upper surface of the semiconductor layer, but may have a bottom contact structure in which the source and drain electrodes are in contact with the lower surface of the semiconductor layer.
  • the TFT of this embodiment may have a channel etch structure or an etch stop structure.
  • the etch stop layer is not formed on the channel region, and the lower surface of the end of the source and drain electrodes on the channel side is in contact with the upper surface of the oxide semiconductor layer.
  • a channel etch type TFT is formed, for example, by forming a conductive film for a source / drain electrode on an oxide semiconductor layer and performing source / drain separation. In the source / drain separation step, the surface portion of the channel region may be etched.
  • an etch stop layer is formed on the channel region.
  • the lower surfaces of the end portions on the channel side of the source and drain electrodes are located, for example, on the etch stop layer.
  • an etch stop type TFT forms a conductive film for source / drain electrodes on the oxide semiconductor layer and the etch stop layer, It is formed by performing source / drain separation.
  • the etch stop type TFT by covering the side surface of the semiconductor layer with the etch stop layer, generation of the film residue described above can be suppressed. However, when the side surface of the semiconductor layer is constricted, the coverage of the etch stop layer on the side surface of the semiconductor layer is lowered, and a highly reliable TFT may not be obtained.
  • the TFT 20 described above is a bottom gate structure TFT in which the gate electrode 23 is disposed between the oxide semiconductor layer 27 and the support substrate 21, but the gate electrode 23 is disposed on the opposite side of the oxide semiconductor layer 27 from the support substrate 21.
  • the top gate structure TFT may be disposed.
  • the oxide semiconductor layer 27 of this embodiment can be suitably applied to a channel etch type TFT having a top contact structure.
  • process damage to the first oxide semiconductor layer can be suppressed in the source / drain separation step or the like, so that a more remarkable effect can be obtained.
  • This embodiment can be applied to an active matrix substrate of a display device, for example.
  • at least a part of a plurality of TFTs provided on the active matrix substrate may be an oxide semiconductor TFT having the above-described stacked structure.
  • the TFT 20 may be a pixel TFT disposed in each pixel and / or a TFT (circuit TFT) constituting a monolithic driver. Since the structure of the active matrix substrate is known, the description thereof is omitted.
  • Examples and Comparative Examples Since the TFT of Example I including an oxide semiconductor layer having a three-layer structure was fabricated and its characteristics were evaluated, the method and results will be described.
  • Example I ⁇ Method for Forming Oxide Semiconductor Layer in TFT of Example I and Comparative Example I>
  • an etch stop type bottom gate structure TFT was formed on a glass substrate (see FIG. 10).
  • the oxide semiconductor layer was formed using a plasma MOCVD method.
  • the setting value of the flow ratio TMIn: TMGa: DEZ of the organometallic compound in the MO gas is changed stepwise from 6: 1: 6 to 1: 3: 1, and the In—Ga—Zn—O based semiconductor film Grew.
  • the set value of the flow rate ratio was changed in five steps from the Depo-01 step to the Depo-05 step (the flow rate setting was constant in each step).
  • the setting of the flow ratio is changed between processes (for example, the setting of the flow ratio is changed from 6: 1: 6: to 4: 1: 4 between the Depo-01 process and the Depo-02 process). Are continuously fed into the chamber. Therefore, the actual flow rate ratio of the MO gas supplied into the chamber changes continuously.
  • an upper film (thickness: about 16 nm) to be the second layer 32 was formed.
  • Table 4 shows the film formation time, oxygen gas flow rate, MO gas flow rate ratio TMIn: TMGa: DEZ, pressure in the chamber, RF power, distance between the electrodes, and substrate temperature in the Depo-01 to Depo-05 steps.
  • an oxide semiconductor layer was formed using a sputtering method, and a TFT of Comparative Example I was manufactured.
  • FIG. 12 is a diagram illustrating a composition analysis result of the oxide semiconductor layer in Example I.
  • FIG. The horizontal axis represents the etching time and corresponds to the depth from the sample surface.
  • the vertical axis represents the atomic ratio.
  • Si having a metallic bond state is “Si (pure)”
  • Si having an oxide bond state is “Si (SiO 2 )”
  • all bonds are formed.
  • Si including the state is expressed as “Si (total)”.
  • a carbon (C) component is shown near the surface of the oxide semiconductor layer in Example I and Comparative Example I due to measurement problems.
  • These oxide semiconductor layers contain substantially no carbon component (the oxide semiconductor layer formed by sputtering (Comparative Example I) originally does not contain carbon, but the carbon component is detected by this analysis. It is clear from that).
  • the first layer 31 and the second layer 32 of the oxide semiconductor layer include regions having a substantially constant composition, and in the intermediate transition layer 33, the composition continuously changes. ing.
  • the first layer 31 has more In and Zn components than the Ga component
  • the second layer 32 has more Ga and Zn components than the In component.
  • FIG. 13 is a diagram showing a result of analysis of part of the oxide semiconductor layer 91 and the gate insulating film 92 in the TFT of Comparative Example I. As shown in FIG. 13, in Comparative Example I, the composition ratio is constant in the thickness direction of the oxide semiconductor layer.
  • the film forming apparatus of this embodiment is a plasma assist type MOCVD apparatus.
  • the film forming apparatus of this embodiment can be used for forming the oxide semiconductor film described in the first and second embodiments.
  • the film forming apparatus of this embodiment can be used for manufacturing various semiconductor devices including an oxide semiconductor film.
  • it is preferably applied when an oxide semiconductor film is formed over a supporting substrate having a relatively low melting point (500 ° C. or lower) such as a glass substrate.
  • the semiconductor device may be an active matrix substrate including, for example, an oxide semiconductor TFT.
  • FIG. 15 is a cross-sectional view schematically showing the configuration of the film forming apparatus (plasma assist MOCVD apparatus) of the present embodiment.
  • the film forming apparatus 100 includes a chamber 111, a conductive support 113 that supports a substrate to be processed (hereinafter simply referred to as “substrate”) in the chamber 111, and a chamber 111 that is disposed above the substrate.
  • the gas distribution shower head 117 and the support body 113 also serve as an upper electrode and a lower electrode for generating plasma, respectively.
  • the chamber 111 is further provided with a heating means 115 for heating the substrate.
  • a heater may be disposed inside the support 113 as the heating means 115.
  • a plurality of first gas passages 118 and a plurality of second gas passages 119 are formed in the gas distribution shower head 117 at intervals. These gas passages 118 and 119 extend from the outside of the chamber 111 into the chamber 111 inside the gas distribution shower head 117.
  • the first gas supply unit supplies a source gas containing MO gas and carrier gas into the chamber 111 via the first gas passage 118.
  • the second gas supply unit supplies a gas containing oxygen into the chamber 111 via the second gas passage 119.
  • the power supply unit 121 includes a high frequency power source 122 connected to at least one of the support body 113 and the gas distribution shower head 117.
  • a high-frequency power source 122 is connected to the gas distribution shower head 117, and the support body 113 is grounded. By supplying electric power between the support 113 and the gas distribution shower head 117, plasma can be formed in the chamber 111.
  • the gas passages 118 and 119 of the gas distribution shower head 117 are connected to the gas generation unit 123.
  • the gas generator 123 generates MO gas containing an organometallic compound.
  • the gas generation unit 123 various known MO gas generation means can be used.
  • the source gas containing the carrier gas and the MO gas may be generated by bubbling the carrier gas into a tank containing a liquid organometallic compound.
  • the gas generation unit 123 may include a flow rate control unit that controls the flow rate ratio of each organometallic compound.
  • the film forming apparatus 100 includes a control unit.
  • the control unit is configured to supply a gas containing MO gas and oxygen into the chamber 111 while supplying plasma between the support 113 and the gas distribution shower head 117 to generate plasma during film formation.
  • the operation of the power supply unit 121 and the first and second gas supply units is controlled.
  • the organometallic compound and oxygen enter a plasma state and become chemically active, and thus react in the chamber 111 or on the substrate surface and deposit on the substrate surface.
  • the film forming apparatus 100 further includes a pressure control unit that controls the pressure in the chamber 111 and a temperature control unit that controls the temperature of the substrate on the support 113.
  • the pressure control unit includes a pressure gauge 125 that measures the pressure in the chamber 111 and a vacuum pump 127 connected in the chamber 111.
  • a conventional MOCVD apparatus is premised on forming a film at a high temperature.
  • Japanese translations of PCT publication No. 2013-503490 discloses an MOCVD apparatus for forming a group III nitride film on a Si wafer.
  • the substrate temperature is about 1000 ° C., for example.
  • the film forming apparatus 100 of this embodiment it is possible to increase the degree of decomposition of the MO gas by using plasma. Accordingly, even when the substrate temperature is set to a relatively low temperature (500 ° C. or lower, preferably 400 ° C. or lower), a high-quality oxide semiconductor film in which the concentration of impurities (particularly carbon caused by methyl groups) is reduced is formed. it can. Therefore, a glass substrate having a low melting point can be used as the support substrate.
  • the MO gas is supplied from above the chamber 111 in the normal direction of the substrate via the plurality of first gas passages 118. For this reason, compared with the case where MO gas is supplied to a board
  • the MO gas plasma is considered to be a film forming species that contributes to film deposition by the metal species itself and a metal component with a methyl group.
  • a radical is a film-forming species (for example, in an a-Si film-forming process in plasma CVD, a long-life SiH 3 radical having a long diffusion length is the main film-forming species).
  • the diffusion distance of the film formation species may be short.
  • the plasma area where the MO gas is decomposed is separated from the film formation area, so that there is a problem that the metal component does not easily contribute to film formation.
  • the film forming apparatus 100 as shown in FIG. 1A, since the substrate 1 as the substrate to be processed is located in or just under the plasma area, the plasma film forming species by the MO gas is used for film forming. Easy to contribute.
  • the composition of the oxide semiconductor film can be selected with a high degree of freedom as compared with the sputtering method. It is easy to form a stacked structure of oxide semiconductor films having different compositions by adjusting the flow ratio of the source gases.
  • the composition ratio In: Ga: Zn is 1: X: Y
  • the composition range 94 of a general sputtering target is 0 ⁇ X ⁇ 5, and 0 ⁇ Y ⁇ 5 (see FIG. 16).
  • an In—Ga—Zn—O-based semiconductor film having a composition of 5 ⁇ Y by increasing the DEZ flow rate ratio in the source gas or 5 ⁇ X by increasing the TMGa flow rate ratio can be easily obtained. Can be formed.
  • Each component in the film forming apparatus 100 may have the same configuration as that of the MOCVD apparatus disclosed in, for example, JP 2013-503490 A.
  • the entire disclosure of JP 2013-503490 A is incorporated herein by reference.
  • the Japanese translations of PCT publication No. 2013-503490 have a mechanism for rotating the support, but the film forming apparatus 100 does not presuppose film formation on a heat-resistant substrate such as a Si wafer. Is unnecessary.
  • the MOCVD apparatus disclosed in JP 2013-503490 A describes means for forming plasma in the chamber, which is used for cleaning a gas distribution shower head or the like or for etching residues. It is used to make chlorine gas for plasma into a plasma state. Unlike the film forming apparatus 100, the source gas is not brought into a plasma state during film formation.
  • Embodiments of the present invention can be widely applied to various semiconductor devices having oxide semiconductor TFTs.
  • circuit boards such as active matrix substrates, liquid crystal display devices, organic electroluminescence (EL) display devices and inorganic electroluminescence display devices, display devices such as MEMS display devices, imaging devices such as image sensor devices, image input devices,
  • EL organic electroluminescence
  • MEMS organic electroluminescence
  • imaging devices such as image sensor devices
  • image input devices image input devices
  • the present invention is also applied to various electronic devices such as fingerprint readers and semiconductor memories.

Abstract

半導体装置の製造方法は、基板(1)と、基板(1)に支持された、酸化物半導体膜を活性層とする酸化物半導体TFTとを備えた半導体装置の製造方法であって、(A)Inを含む第1の有機金属化合物、およびZnを含む第2の有機金属化合物を含むMOガスを用意する工程と、(B)チャンバー内に設置した基板(1)に、基板(1)を500℃以下の温度に加熱した状態で、MOガスおよび酸素を含むガスを供給し、基板(1)上にInおよびZnを含む酸化物半導体膜(2A)をMOCVD法により成長させる工程とを含み、工程(B)は、チャンバー内にプラズマ(3)を形成した状態で行われる。

Description

半導体装置の製造方法および成膜装置
 本発明は、酸化物半導体を用いて形成された半導体装置の製造方法、およびそれに用いる成膜装置に関する。
 液晶表示装置等に用いられるアクティブマトリクス基板は、画素毎に薄膜トランジスタ(Thin Film Transistor;以下、「TFT」)などのスイッチング素子を備えている。このようなスイッチング素子としては、従来から、アモルファスシリコン膜を活性層とするTFT(以下、「アモルファスシリコンTFT」)や多結晶シリコン膜を活性層とするTFT(以下、「多結晶シリコンTFT」)が広く用いられている。
 近年、TFTの活性層の材料として、アモルファスシリコンや多結晶シリコンに代わって、酸化物半導体を用いる場合がある。このようなTFTを「酸化物半導体TFT」と称する。酸化物半導体は、アモルファスシリコンよりも高い移動度を有している。このため、酸化物半導体TFTは、アモルファスシリコンTFTよりも高速で動作することが可能である。
 酸化物半導体層は、多くの場合、スパッタ法を用いて形成される(例えば特許文献1)。特許文献1は、酸化物半導体TFTの活性層として、スパッタ法を用いて、組成の異なる2つの酸化物半導体膜を積み重ねた積層半導体層を形成することを提案している。
 また、特許文献2は、酸化物半導体TFTの活性層として、厚さ方向に連続的に組成を変化させた酸化物半導体膜を形成することを開示している。特許文献2は、このような酸化物半導体膜の形成方法の1つとして、MOCVD(metal organic chemical vapor deposition)法に言及している。
特開2013-41945号公報 特開2015-79947号公報
 高いTFT特性を確保しつつ信頼性に優れた酸化物半導体TFTを得るためには、例えば、酸化物半導体層の組成、厚さなどを制御することが重要である。しかしながら、スパッタ法で酸化物半導体層を形成する場合には、スパッタ法に用いるターゲットの組成によって酸化物半導体層の組成が決まるため、組成の選択の自由度が小さい。また、形成しようとする酸化物半導体の組成に合せてターゲットを準備する必要があり、製造コストが高くなるおそれがある。
 一方、MOCVD法を適用すると、MOガスの組成比を制御することで、酸化物半導体膜の組成をより容易に変化させることができるので、酸化物半導体層の組成の選択の幅が広がる。
 しかしながら、本発明者が検討したところ、MOCVD法によると、所望の膜特性を有する酸化物半導体膜を安定して形成することが困難であり、実用性に問題があることが分かった。このため、信頼性の高い酸化物半導体TFTを得ることは難しい。詳細は後述する。
 本発明の一実施形態は上記事情に鑑みてなされたものであり、その目的は、安定した特性を有する、信頼性の高い酸化物半導体TFTを備えた半導体装置の製造方法を提供することにある。また、広い組成範囲の酸化物半導体膜の形成に適用可能であり、かつ、高い膜特性を有する酸化物半導体膜を形成し得る新規の成膜装置を提供することにある。
 本発明による一実施形態の半導体装置の製造方法は、基板と、前記基板に支持された、酸化物半導体膜を活性層とする酸化物半導体TFTとを備えた半導体装置の製造方法であって、(A)Inを含む第1の有機金属化合物、およびZnを含む第2の有機金属化合物を含むMOガスを用意する工程と、(B)チャンバー内に設置した前記基板に、前記基板を500℃以下の温度に加熱した状態で、前記MOガスおよび酸素を含むガスを供給し、前記基板上にInおよびZnを含む前記酸化物半導体膜をMOCVD法により成長させる工程とを含み、前記工程(B)は、前記チャンバー内にプラズマを形成した状態で行われる。
 ある実施形態において、前記工程(B)では、前記チャンバーの圧力を3.3×10Pa以上2.7×10Pa未満に設定する。
 ある実施形態において、前記工程(B)では、前記プラズマは高周波電界により形成され、前記プラズマを発生させる電力密度は1440W/m以上4800W/m以下である。
 ある実施形態において、前記第1の有機金属化合物および前記第2の有機金属化合物の少なくとも一方はメチル基を含む。
 ある実施形態において、前記基板はガラス基板を含み、前記酸化物半導体膜および前記基板の深さ方向の組成を二次イオン質量分析法で分析すると、前記酸化物半導体膜に含まれる炭素成分の量は、前記ガラス基板に含まれる炭素成分の量の1/10以下である。
 ある実施形態において、前記酸化物半導体膜は、炭素成分を実質的に含まない。
 ある実施形態において、前記酸化物半導体膜は、In-Ga-Zn-O系半導体膜であり、かつ、前記基板側から下膜、中間遷移膜、上膜をこの順で含む積層構造を有しており、前記MOガスは、Gaを含む第3の有機金属化合物をさらに含み、前記工程(B)は、(B1)前記基板に供給する前記MOガスの流量における前記第1の有機金属化合物の割合をF1a、前記第2の有機金属化合物の割合をF2a、前記第3の有機金属化合物の割合をF3aに設定した状態で、前記基板上に前記下膜を形成する工程と、(B2)前記基板に供給する前記MOガスの流量における、前記第3の有機金属化合物の割合をF3aからF3bに連続的に変化させながら、前記下膜上に前記中間遷移膜を形成する工程と、(B3)前記基板に供給する前記MOガスの流量における、前記第1の有機金属化合物の割合をF1b、前記第2の有機金属化合物の割合をF2b、前記第3の有機金属化合物の割合をF3bに設定した状態で、前記中間遷移膜上に前記上膜を形成する工程とを包含する。
 ある実施形態において、前記工程(B2)では、前記基板に供給する前記MOガスの流量における、前記第3の有機金属化合物の割合を変化させるとともに、前記第1の有機金属化合物の割合をF1aからF1bに連続的に変化させながら前記中間遷移膜を形成し、前記第1の有機金属化合物および前記第3の有機金属化合物の割合は、F3a<F3b、かつ、F1a>F1bを満たすか、または、F3a>F3b、かつ、F1a<F1bを満たす。
 本発明による一実施形態の成膜装置は、基板上に、MOCVD法により酸化物半導体膜を形成するための成膜装置であって、複数の有機金属化合物を含むMOガスを生成するガス生成部と、チャンバーと、前記チャンバー内に前記基板を支持する導電性の支持体と、前記基板を加熱する加熱手段と、前記チャンバー内において前記基板の上方に配置されたガス分配シャワーヘッドであって、その内部を延びる複数の第1ガス通路および複数の第2ガス通路が間隔を空けて形成されている、導電性のガス分配シャワーヘッドと、前記複数の第1ガス通路を介して前記チャンバー内に前記MOガスを供給する第1ガス供給部と、前記複数の第2ガス通路を介して前記チャンバー内に酸素を含むガスを供給する第2ガス供給部と、前記支持体と前記ガス分配シャワーヘッドとの間に電力を供給する電力供給部であって、前記支持体および前記ガス分配シャワーヘッドの少なくとも一方に接続された高周波電源を含む、電力供給部と、前記支持体と前記ガス分配シャワーヘッドとの間に電力を供給してプラズマを生成した状態で、前記チャンバー内に前記MOガスおよび前記酸素を含むガスが供給されるように、前記電力供給部および前記第1および第2ガス供給部を制御する制御部とを備える。
 本発明の一実施形態によると、安定した特性を有する、信頼性の高い酸化物半導体TFTを備えた半導体装置を製造できる。また、広い組成範囲の酸化物半導体膜の形成に適用可能であり、かつ、高い膜特性を有する酸化物半導体膜を形成し得る成膜装置を適用できる。
実施例のIn-Ga-Zn-O系半導体膜の形成方法を説明するための模式的な断面図である。 比較例のIn-Ga-Zn-O系半導体膜の形成方法を説明するための模式的な断面図である。 各実施例および比較例のTDSによる分析結果を示す図であり、各実施例および比較例のIn-Ga-Zn-O系半導体膜から昇温によって脱離したH2、H2O、CO、O、COの量を示す図である。 各実施例および比較例のTDSによる分析結果を示す図であり、(a)は、実施例1および比較例1、2のIn-Ga-Zn-O系半導体膜から昇温によって脱離したCH、C2、C7、9、の相対比が分かる検出量を示す図であり、(b)は、各実施例および比較例のIn-Ga-Zn-O系半導体膜から昇温によって脱離したCHの相対比が分かる検出量を示す図である。 各実施例および比較例のTDSによる分析結果を示す図であり、各実施例および比較例のIn-Ga-Zn-O系半導体膜から昇温によって脱離したIn、GaおよびZnの相対比が分かる検出量を示す図である。 (a)~(c)は、それぞれ、実施例1および比較例1のIn-Ga-Zn-O系半導体膜の成膜速度、組成比および屈折率の測定結果を示す図である。 (a)および(b)は、それぞれ、実施例4および比較例3の試料のSIMSによる組成分析結果を示す図である。 (a)~(f)は、それぞれ、DEZおよびTMGaに対するTMInの流量比Nと成膜速度、屈折率n、In比率、Ga比率、Zn比率、O比率との関係を示す図である。 (a)~(f)は、それぞれ、TMInおよびTMGaに対するDEZの流量比Mと成膜速度、屈折率n、In比率、Ga比率、Zn比率、O比率との関係を示す図である。 (a)は、第2の実施形態の半導体装置における酸化物半導体TFT20の一例を示す断面図であり、(b)はTFT20の活性層である酸化物半導体層27の拡大断面図である。 第2の実施形態における他の酸化物半導体TFTを示す断面図である。 (a)および(b)は、それぞれ、酸化物半導体膜の成膜工程における、MOガス全体に占める第3の有機金属化合物の割合の変化を例示する図である。 実施例IのTFTにおける酸化物半導体層の深さ方向における組成分析結果を示す図である。 比較例IのTFTにおける酸化物半導体層の深さ方向における組成分析結果を示す図である。 実施例Iおよび比較例IのTFTの電流―電圧特性を示す図である。 第3の実施形態の成膜装置(プラズマアシストMOCVD装置)の構成を模式的に示す平面図である。 In-Ga-Zn-O系半導体膜の組成範囲を説明するための図である。 スパッタ法で形成された参考例の酸化物半導体層の深さ方向における元素分布を例示する図である。
 MOCVD法は、薄膜原料を高温中で反応させて基板上に成膜するCVDプロセスのうち、その原料に有機金属を用いる方法をいう。例えばインジウム(In)の原料として、トリメチルインジウム、ガリウム(Ga)の原料として、トリメチルガリウムなどの有機金属原料が用いられる。有機金属原料は常温では液体・固体であるが、有機金属原料中に、ある一定の圧力下でキャリアガスを流入させることにより気化し、有機金属ガス(Metal Organic Gas、以下「MOガス」)となる。MOガスは、例えば1000℃以上に加熱された基板上で、分解・化学反応を生じ、基板上に成長(堆積)する。このようにして、成膜が行われる。MOCVD法は、例えばSiウェハ上にGaNなどの窒化物半導体膜を形成する際に用いられる。
 本発明者が検討したところ、上述した従来のMOCVD法を酸化物半導体TFTの製造プロセスに適用すると、安定して所望のTFT特性が得られない場合があることを見出した。理由は以下のように推察された。
 例えばアクティブマトリクス基板では、酸化物半導体TFTは、通常、ガラス基板上に形成される。MOCVD法でガラス基板上に酸化物半導体膜を形成しようとすると、基板温度をガラスの融点よりも十分に低い温度、例えば500℃以下、好ましくは400℃以下に設定する必要がある。しかしながら、この温度範囲では、MOガスが十分に分解されず、MOガスのメチル基が膜中に残留しやすくなる。酸化物半導体膜における残留メチル基の濃度が高くなると、安定した膜特性が得られず、その結果、高いTFT特性を安定して実現できない可能性がある。
 本発明者は、上記知見に基づいて、酸化物半導体膜の残留メチル基濃度を低減することの可能な形成方法を詳細に検討した。この結果、MOCVD法による成膜工程にプラズマを利用することで、MOガスの解離度を高め、残留メチル基濃度のより低い酸化物半導体膜を形成できることを見出し、本願発明に想到した。
 従来のMOCVD法では、MOガスの解離を熱エネルギーのみで行うため、反応室内の圧力(成膜圧力)を高く設定し、かつ、成膜温度を高温に設定して解離度を高めることにより、反応性を上げる必要があった。これに対し、プラズマを利用したMOCVD法(「プラズマMOCVD法」、または「プラズマアシストMOCVD法」と呼ぶ)では、MOガスの解離に対して、熱エネルギーだけでなくプラズマエネルギーも用いる。このため、基板温度をガラスの融点以下に設定した場合であっても、MOガスの解離度を高めて反応性を上げることが可能となり、残留メチル基濃度のより低い酸化物半導体膜を形成できる。また、成膜圧力を従来のMOCVD法より低く設定しても、高い反応性を実現できるので、良好な酸化物半導体膜を形成しることが可能である。従って、プラズマMOCVD法で形成した酸化物半導体膜を用いると、安定した特性を有する酸化物半導体TFTを製造できる。
 さらに、原料ガスの流量比を調整することにより、より容易に、かつ、高い自由度で、酸化物半導体層の組成を制御できる。このため、酸化物半導体TFTの特性および信頼性をさらに向上させることが可能になる。
 (第1の実施形態)
 以下、半導体装置の製造方法の第1の実施形態を説明する。本実施形態で製造する半導体装置は、酸化物半導体TFTを備えていればよく、アクティブマトリクス基板などの回路基板、各種表示装置、電子機器などを広く含む。
 本実施形態の半導体装置の製造方法は、少なくともInおよびZnを含む酸化物半導体膜の形成方法を含む。酸化物半導体膜は、酸化物半導体TFTの活性層として用いられる。
 まず、Inを含む第1の有機金属化合物、およびZnを含む第2の有機金属化合物を少なくとも含むMOガスを用意する。第1の有機金属化合物は、例えばトリメチルインジウム(In(CH、以下「TMIn」)、第2の有機金属化合物は、例えばジエチル亜鉛(Zn(C、以下「DEZ」)であってもよい。酸化物半導体膜としてIn-Ga-Zn-O系半導体膜を形成する場合には、MOガスは、第3の有機金属化合物としてトリメチルガリウム(Ga(CH、以下「TMGa」)をさらに含んでいてもよい。MOガスは、従来のMOCVD法と同様に、例えば液体状態の有機金属化合物をキャリアガスでバブリングすることによって生成され得る。
 続いて、ガラス基板などの支持基板を含む被処理基板を、チャンバー(反応室)内に設置する。被処理基板は、酸化物半導体膜が形成される表面を有する基板である。ボトムゲート構造を有する酸化物半導体TFTを製造する場合には、被処理基板として、ガラス基板上にゲート電極およびゲート絶縁膜を形成したものを用いる。トップゲート構造を有する酸化物半導体TFTを製造する場合には、例えば、ガラス基板上に下地膜が形成されたものを被処理基板として用いる。以下、被処理基板を、単に「基板」と呼ぶ。
 次いで、支持基板(例えばガラス基板)の融点以下(例えば500℃以下)に基板を加熱した状態で、基板の表面にMOガスおよび酸素を含むガスを供給する(MOCVD法)。または、チャンバー内にMOガス及び酸素を含んだ状態でRF電力を印加するか、あるいは、チャンバー内にプラズマを形成した状態にMOガス及び酸素を供給する(プラズマMOCVD法)。これにより、MOガスは、チャンバー内で熱およびプラズマによって分解・反応され、その結果、基板上に、InおよびZnを含む酸化物半導体膜がMOCVD法により成長する。このようにして、酸化物半導体膜が形成される。
 この後、酸化物半導体膜を公知の方法でパターニングすることにより、酸化物半導体TFTの活性層となる酸化物半導体層を得る。
 プラズマMOCVD法では、チャンバー内の圧力(成膜圧力)が高すぎると、プラズマ状態を維持することが困難な場合がある。このため、成膜圧力は、典型的には、従来のMOCVD法の成膜圧力(例えば100Torr以上)よりも低く設定される。プラズマMOCVD法では、成膜圧力が低くても、高い成膜速度を確保できる。
 プラズマMOCVD法においては、成膜工程でのチャンバー内の圧力は、例えば2.5Torr以上20Torr未満、すなわち3.3×10Pa以上2.7×10Pa未満に設定される。原料ガス(MOガス、キャリアガス、酸素)の総流量に対する排気能力が小さいと、成膜圧力を2.5Torr未満に維持することが難しい場合がある。また、20Torr以上では放電が安定しない可能性がある。
 プラズマは、例えば高周波電界により形成される。プラズマを発生させるRF電力は、電力密度が14W/m以上となるように設定され得る。具体的には、RF電力は、例えば100W(約480W/m)以上に設定される。RF電力が低すぎると、MOガスが中途半端に解離し、膜質に悪影響を及ぼす場合がある。RF電力は、好ましくは300W(約1440W/m)以上1800W(約8650W/m)以下、より好ましくは300W(約1440W/m)以上1000W(約4800W/m)以下である。
 本実施形態では、MOCVD法による成膜工程において、熱だけでなく、プラズマを利用してMOガスを分解させる。このため、基板温度を比較的低い温度(500℃以下)に設定しても、In、Znなどの金属と、メチル基、エチル基などの有機基とを高い速度で(高い効率で)分解することが可能になる。従って、有機金属化合物のうち分解されずに基板上に堆積される割合を小さくできるので、酸化物半導体膜に残留する有機基の濃度を低減でき、より良質な酸化物半導体膜が得られる。
 プラズマMOCVD法は、例えば第1の有機金属化合物および第2の有機金属化合物の少なくとも一方がメチル基を含む場合に特に有利である。従来のMOCVD法によると、弱結合のメチル基は酸化物半導体膜内に残留しやすい。これに対し、本実施形態では、酸化物半導体膜内のメチル基の濃度を大幅に低減することが可能である。このことは、後述するように、例えば酸化物半導体膜を二次イオン質量分析法(SIMS)、昇温脱離ガス分析法(TDS:Thermal Desorption Spectrometry)などによる分析結果から確認できる。
 [実施例および比較例]
 実施例および比較例の酸化物半導体膜(ここではIn-Ga-Zn-O系半導体膜)を形成し、それらの膜特性の評価を行った。実施例1~3では、プラズマMOCVD法で酸化物半導体膜を形成した。比較例1および2では、それぞれ、プラズマを利用しない従来のMOCVD法、および、スパッタ法で酸化物半導体膜を形成した。以下、図面を参照しながら、酸化物半導体膜の形成方法および分析結果を説明する。
 <実施例1~3および比較例1、2の酸化物半導体膜の形成方法>
 ・実施例1
 図1Aは、プラズマMOCVD法を用いた実施例のIn-Ga-Zn-O系半導体膜の形成方法を説明するための模式的な断面図である。
 図1Aに示すように、チャンバー内の支持台(不図示)上に、基板1としてガラス基板を載置し、基板1を350℃に加熱した。また、チャンバー内にプラズマを形成するために、基板1の下方および上方にそれぞれ位置する下部電極および上部電極(不図示)間に高周波(RF)電圧を印加した。ここでは、下部電極と上部電極との距離(電極間距離)を1000mil(25.4mm)とし、これらの電極間に工業用周波数(13.56)MHzのRF電力を印加した。RF電力は1000Wに設定した。
 この状態でチャンバー内に、基板1の上方から基板1の法線方向に、MOガスおよびキャリアガス(ここではArガス)を含む原料ガスと、酸素を含むガス(ここでは酸素ガス)とを所定の流量で供給した。MOガスは、トリメチルインジウム(TMIn)、トリメチルガリウム(TMGa)、ジエチル亜鉛(DEZ)を含む。チャンバー内の圧力は2.5Torrとした。
 原料ガスの生成は、従来のMOCVD法と同様の方法で行った。ここでは、液体状態のTMIn、TMGaおよびDEZをそれぞれ原料槽に入れ、キャリアガス(Arガス)でバブリングすることで気化させた。気化した有機金属化合物は、キャリアガス内に混入し、チャンバー内に運ばれる。原料ガスにおけるTMIn、TMGaおよびDEZの流量比が1:1:1になるように、各有機金属化合物をバブリングさせるArガスの流量、原料槽内の液体温度、背圧などを調整した。具体的には、原料ガスにおけるTMIn、TMGaおよびDEZの流量をそれぞれ約0.68sccm、原料ガスにおけるArガスの合計流量を12slmとした。原料ガスは、チャンバーの上部に8mmピッチで設けられた複数の原料ガス用供給口からチャンバー内に拡散した。また、Oガスの流量を12slmとし、同様に、チャンバーの上部に8mmピッチで設けられた複数の酸素ガス用供給口からチャンバー内に拡散した。
 チャンバー内の上部電極と下部電極との間では、MOガスは高周波電界によってプラズマ状態3となり、MOガスから解離したIn、ZnおよびGaと酸素との化学反応により、基板1上にIn-Ga-Zn-O系半導体が堆積した。このようにして、厚さ約100nmのIn-Ga-Zn-O系半導体膜2Aを形成した。
 ・実施例2
  チャンバー内にプラズマを形成するためのRF電力を300Wに設定した点以外は、実施例1と同様の方法で、In-Ga-Zn-O系半導体膜を形成した。
 ・実施例3
  チャンバー内にプラズマを形成するためのRF電力を100Wに設定した点以外は、実施例1と同様の方法で、In-Ga-Zn-O系半導体膜を形成した。
 ・比較例1
 図1Bは、プラズマを利用しない従来のMOCVD法を用いた比較例1のIn-Ga-Zn-O系半導体膜の形成方法を説明するための模式的な断面図である。
 比較例1では、図1Bに示すように、チャンバー内に基板1としてガラス基板を載置し、基板1を350℃に加熱した。次いで、実施例1と同様に、原料ガスおよび酸素ガスをチャンバー内に供給した。チャンバー内の圧力を20Torrに設定した。ただし、チャンバー内の上部電極および下部電極間にRF電力を印加せずに(プラズマを形成しない状態で)、MOCVD法によりIn-Ga-Zn-O系半導体膜を基板1上に堆積した。このようにして、In-Ga-Zn-O系半導体膜2Bを形成した。
 ・比較例2
 比較例2として、公知のスパッタ法により、In:Ga:Zn=1:1:1の組成を有するターゲットを用いて、ガラス基板上にIn-Ga-Zn-O系半導体膜を形成した。
 <膜特性の測定>
・X線光電子分光(XPS)測定
 実施例1~3および比較例1、2のIn-Ga-Zn-O系半導体膜に対してX線光電子分光(XPS)測定を行った。XPS測定結果および成膜条件を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~実施例3の分析結果から、原料ガスの流量比が同じであっても、プラズマを形成するRF電力が変わると、In-Ga-Zn-O系半導体膜の組成が異なることが分かる。具体的には、RF電力が低くなると、Zn成分がより多く含まれたIn-Ga-Zn-O系半導体膜が得られる。ただし、低いRF電力で成膜を行うと、Zn成分は弱結合で膜中に入るため、加熱すると分解・脱離しやすい(TDSによる分析結果参照)。RF電力を最適化することにより、より強結合でZn成分を含む膜を形成できる(TDSによる分析結果参照)。
 ・昇温脱離ガス分析(TDS)
 次いで、実施例1~3および比較例1、2で形成されたIn-Ga-Zn-O系半導体膜に含まれるメチル基などの有機基の量を、昇温脱離ガス分析(TDS:Thermal Desorption Spectrometry)により調べた。TDSとは、高真空下で試料を加熱し、試料から脱離したガスを温度毎に分析する手法である。TDSによると、試料から放出されるガスの脱離量および脱離温度の比較が可能である。また、真空雰囲気下であることから水素や水も感度よく分析できる。
 ここでは、TDS装置のチャンバー内に、実施例および比較例の各試料(In-Ga-Zn-O系半導体膜を表面に有するガラス基板)を載置し、高真空下で80~450℃まで昇温した。昇温によって脱離したガスの分析を行った。代表的な組成を有するH2、O2、H2O等は検量線によって定量化されるが、CH3基等の量は信号強度からの相対数値で比較することが可能である。
 図2~図4は、TDSによる分析結果を示す図である。図2は、各実施例および比較例のIn-Ga-Zn-O系半導体膜から昇温によって脱離したH2、H2O、CO、O、COの量(検量線によって定量化された値)を示す図である。図3(a)は、実施例1、比較例1および比較例2のIn-Ga-Zn-O系半導体膜から昇温によって脱離したCH、C2、C7、9、の量(換算量)を示す図である。図3(b)は、各実施例および比較例のIn-Ga-Zn-O系半導体膜から昇温によって脱離したCHの量(換算量)を示す図である。図4は、各実施例および比較例のIn-Ga-Zn-O系半導体膜から昇温によって脱離したIn、GaおよびZnの量(換算量)を示す図である。
 なお、スパッタ法で形成したIn-Ga-Zn-O系半導体膜(比較例2)は有機基を実質的に含まないが、図3(a)および(b)に示す結果では、メチル基などの微量の有機基が検出されている。これは測定限界によるものと考えられる。つまり、比較例2と同程度の有機基が検出された実施例1のIn-Ga-Zn-O系半導体膜も、実質的に有機基を含まないと考えられる。
 図3に示す結果から、プラズマMOCVD法でIn-Ga-Zn-O系半導体膜を形成することにより(実施例1~3)、MOCVD法で形成された場合(比較例1)よりも、In-Ga-Zn-O系半導体膜中のメチル基の残留濃度が低減されることが確認された。従って、実施例1~3のIn-Ga-Zn-O系半導体膜を用いると、従来のMOCVD法を用いた場合(比較例1)よりも、安定した特性を有するTFTを製造できることが分かった。
 また、図2および図3に示すように、実施例1では、比較例1や他の実施例よりも、In-Ga-Zn-O系半導体膜中の水分の含有量も低減された。In-Ga-Zn-O等の酸化物半導体の膜質を改善するために、加熱工程によって、水素、水分、水酸基等の不純物を酸化物半導体膜より意図的に排除し、酸化物半導体膜を高密度化させることが知られている(例えば特開2011-222984号公報参照)。このことから分かるように、実施例1では、特性に影響を与える膜中の水分量を、比較例1よりも大きく低減できるので、TFT特性をより効果的に安定化できる。特に、実施例1のIn-Ga-Zn-O系半導体膜中のメチル基等の残留濃度および水分の含有量は、いずれも、スパッタ法で形成された場合(比較例2)と同程度まで低減されており、スパッタ法で形成された膜と同等の優れた膜特性を有することが分かった。
 従って、プラズマを形成するためのRF電力を高めることにより(例えば400W以上、好ましくは800W以上)、膜質をさらに改善できることが確認された。
 さらに、図4に示す結果から、各実施例および各比較例のIn-Ga-Zn-O系半導体膜からZn成分が解離する温度に差が生じることが分かった。MOCVD法で形成されたIn-Ga-Zn-O系半導体膜(比較例1)および実施例2、3のIn-Ga-Zn-O系半導体膜では、450℃までの昇温でZn成分が解離する傾向がある。これに対し、実施例1のIn-Ga-Zn-O系半導体膜では、Zn成分の解離がほとんど見られなかった。このことから、実施例1のIn-Ga-Zn-O系半導体膜は、スパッタ法によるIn-Ga-Zn-O系半導体膜(比較例2)と同等またはそれ以上の強い結合でZn成分を含むことが分かる。実施例1におけるRF電力は1000Wであるが、RF電力が例えば600W(約2900W/m)以上1200W(約5500W/m)以下であれば、同様の効果が得られると考えられる。なお、MOガスの種類、流量比、組成などにより、好適なRF電力の範囲は変わり得る。
 図5(a)~(c)は、それぞれ、実施例1および比較例1のIn-Ga-Zn-O系半導体膜の成膜速度、組成比および屈折率の測定結果を示す図である。図5(a)は、成膜速度測定用ウェハ上に、実施例1および比較例1の方法でIn-Ga-Zn-O系半導体膜を形成し、その成膜速度を測定した結果である。図5(b)に示す組成比は、XPS測定結果である(表1参照)。図5(c)は、屈折率測定用ウェハ上に、実施例1および比較例1の方法でIn-Ga-Zn-O系半導体膜を形成し、その屈折率を測定した結果である。
 図5(a)に示すように、プラズマMOCVD法を用いると、従来のMOCVD法よりも成膜速度を大きくできることが分かる。これは、プラズマを利用することで、MOガスの解離速度が大きくなり、かつ、より強い結合を有し得る膜を形成されるからと考えられる。
 また、図5(b)および(c)に示す結果から、実施例1および比較例1のIn-Ga-Zn-O系半導体膜の組成比は略同じであるにも関わらず、実施例1のIn-Ga-Zn-O系半導体膜の方が高い屈折率を有することが分かる。これは、プラズマを利用することで、より強い結合を有し得る膜が形成された結果、屈折率が高くなったと考えられる。
 [酸化物半導体膜中の炭素成分の分析]
 プラズマMOCVD法によって形成された酸化物半導体膜中のメチル基の残留量を調べるために、二次イオン質量分析法(SIMS)により酸化物半導体膜中の炭素成分の含有量を測定した。以下、試料の作製方法および分析結果を説明する。
 ガラス基板上に、TMIn、DEZおよびArガス(キャリアガス)を含む原料ガスと酸素ガスとを供給し、プラズマMOCVD法によりIn-Zn-O系半導体膜を形成した。このようにして、実施例4の試料A(表面にIn-Zn-O系半導体膜を有するガラス基板)を作製した。また、比較のため、ガラス基板上に、試料Aと同じ種類のガスを同じ流量比で供給し、プラズマを利用しないMOCVD法によりIn-Zn-O系半導体膜を形成した。このようにして、比較例3の試料Bを作製した。
 次いで、SIMSにより、試料Aおよび試料Bの深さ方向における組成分析を行った。
 図6(a)および(b)は、それぞれ、試料Aおよび試料BのSIMSによる組成分析結果を示す図である。横軸は、測定サイクル数であり、試料表面からの深さに対応する。縦軸は強度である。これらの分析結果では、ガラス基板はSiO、Fe、Cなどの不純物を含んでいる。このため、ガラス基板では、少量ではあるが炭素成分が検出される。
 図6(a)から、試料Aでは、In-Zn-O系半導体膜中にInおよびZnが高い比率で含まれているが、炭素成分は検出されておらず、炭素の含有量は検出限界以下(すなわち、実質的に炭素成分を含まない)と考えられる。In-Zn-O系半導体膜中における炭素成分の比率は、ガラス基板における不純物としての炭素成分の比率よりも大幅に小さい。ガラス基板における炭素成分の比率の1/2以下、この例では1/10以下である。一方、図6(b)から分かるように、試料Bでは、In-Zn-O系半導体膜中にガラス基板と略同じ比率で炭素成分が含まれている。従って、プラズマMOCVD法を用いて酸化物半導体膜を形成すると、MOCVD法を用いた場合よりも、炭素成分の含有量を大幅に低減できることが確認される。
 なお、ここでは、In-Zn-O系半導体膜を例に説明したが、プラズマMOCVD法によって形成されたIn-Ga-Zn-O系半導体膜をSIMSで分析しても上記と同様の結果が得られる。
 [原料ガスにおける有機金属化合物の流量比と酸化物半導体膜の組成との関係]
 前述したように、本実施形態では、原料ガスの流量比を調整することにより、酸化物半導体膜の組成を制御することが可能である。
 以下、In-Ga-Zn-O系半導体膜を形成する場合を例に、有機金属化合物の流量比と酸化物半導体膜の組成との関係を調べたので、その結果を説明する。
 まず、表2に示す条件で、サンプル膜1~20として、In-Ga-Zn-O系半導体膜をガラス基板上に形成した。各サンプル膜の成膜工程では、原料ガスにおける流量比TMIn:TMGa:DEZが所定の比となるように、液体状の各有機金属化合物のバブリングを行う際のキャリアガス(ここではArガス)の流量を調整した。また、流量比TMIn:TMGa:DEZ=1:1:1(サンプル膜1)のときの各有機金属化合物の流量を0.68sccmとした。表2に示す流量比は、0.68sccmに対する値である。例えばTMIn:TMGa:DEZ=2:2:2(サンプル膜12)では、各有機金属化合物の流量は1.36sccm(0.68sccm×2)である。また、成膜時の基板温度を350℃以上400℃以下の範囲に設定した。チャンバー内に供給する酸素ガスの流量、チャンバー内の圧力、電極間距離、RF電力は一定とした。さらに、上記と同様の条件で、Siウェハ上にもサンプル膜1~20を形成した。
 ガラス基板上に形成されたサンプル膜1~20に対し、XPSによる組成分析を行った。分析結果を表3に示す。また、Siウェハ上に形成されたサンプル膜1~20に対し、分光偏光解析(spectroscopic ellipsometry)を行い、各サンプル膜の屈折率n、厚さ、成膜速度を測定した。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 この結果から、原料ガスにおける流量比と、酸化物半導体膜の組成および特性との関係を調べた。
 一例として、TMGaおよびDEZの流量が等しいサンプル膜1~6、12~16の測定結果に基づいて、TMInの流量比と膜特性との関係を調べた。図7(a)~(f)は、それぞれ、DEZおよびTMGaに対するTMInの流量比Nと成膜速度、屈折率n、In比率、Ga比率、Zn比率、O比率との関係を示す図である。これらの図では、サンプル膜1~6(TMIn:TMGa:DEZ=N:1:1)の測定結果を黒四角◆、サンプル膜12~16(TMIn:TMGa:DEZ=2×N:2:2)の測定結果を白四角◇で示している。この結果から、DEZおよびTMGaに対するTMInの流量比Nによって、酸化物半導体膜のIn比率を制御できることが確認される。また、DEZおよびTMGaに対するTMInの流量比Nを大きくすると、成膜速度が大きくなること、および、屈折率の高い膜が得られることも分かる。
 同様に、TMGaおよびTMInの流量が等しいサンプル膜1、7~11および17~20の測定結果に基づいて、DEZの流量比と膜特性との関係を調べた。図8(a)~(f)は、それぞれ、TMInおよびTMGaに対するDEZの流量比Mと成膜速度、屈折率n、In比率、Ga比率、Zn比率、O比率との関係を示す図である。これらの図では、サンプル膜1、7~11(TMIn:TMGa:DEZ=1:1:M)の測定結果を黒四角◆、サンプル膜17~20(TMIn:TMGa:DEZ=2:2:2×M)の測定結果を白四角◇で示している。この結果から、TMInおよびTMGaに対するDEZの流量比Mによって、酸化物半導体膜のZn比率を制御できることが確認される。また、TMInおよびTMGaに対するDEZの流量比Mを大きくすると、成膜速度が大きくなること、および、屈折率の高い膜が得られることも分かる。
 図7および図8に例示するように、原料ガスにおける流量比によって、酸化物半導体膜の組成および特性が変化する。従って、原料ガスにおける流量比を調整することで、酸化物半導体膜の組成および特性を制御できることが確認される。
 また、表2および表3に示す結果に基づいて、所望の組成を有する酸化物半導体膜を形成するための原料ガスの流量比を算出することができる。例えば、In、Ga、ZnおよびOの組成比を、それぞれ、Z+a×TMI+b×TMG+c×DeZ(Z、a~c:係数、TMI:TMInの流量比、TMG:TMGaの流量比、DeZ:DEZの流量比)とし、最小二乗法により、各係数の値を求める。得られた式から、所望の組成のIn-Ga-Zn-O系半導体膜を形成するための流量比が算出される。一例として、350℃の基板温度で一般的なIn:Ga:Zn=1:1:1のIn-Ga-Zn-O系半導体膜(In:Ga:Zn:O=12.4:13.8:13.6:60.2atomic%)を形成するための流量比TMIn:TMGa:DEZを求めると、3.5:1.8:3であった。
 [酸化物半導体について]
 上記の実施例では、酸化物半導体膜としてIn-Ga-Zn-O系半導体膜を形成したが、酸化物半導体膜およびTFTの酸化物半導体層に含まれる酸化物半導体はIn-Ga-Zn-O系半導体に限定されない。
 酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。
 プラズマMOCVD法で形成される酸化物半導体膜またはTFTの酸化物半導体層(以下、単に「酸化物半導体膜」と記す)は、2層以上の積層構造を有していてもよい。酸化物半導体膜が積層構造を有する場合には、酸化物半導体膜は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよい。また、複数の非晶質酸化物半導体層を含んでいてもよい。酸化物半導体膜が上層と下層とを含む2層構造を有する場合、上層に含まれる酸化物半導体のエネルギーギャップは、下層に含まれる酸化物半導体のエネルギーギャップよりも大きいことが好ましい。ただし、これらの層のエネルギーギャップの差が比較的小さい場合には、下層の酸化物半導体のエネルギーギャップが上層の酸化物半導体のエネルギーギャップよりも大きくてもよい。
 非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成などは、例えば特開2014-007399号公報に記載されている。参考のために、特開2014-007399号公報の開示内容の全てを本明細書に援用する。
 酸化物半導体膜は、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、酸化物半導体膜は、例えば、In-Ga-Zn-O系の半導体(例えば酸化インジウムガリウム亜鉛)を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような酸化物半導体膜は、In-Ga-Zn-O系の半導体を含む酸化物半導体膜から形成され得る。
 In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。
 なお、結晶質In-Ga-Zn-O系の半導体の結晶構造は、例えば、上述した特開2014-007399号公報、特開2012-134475号公報、特開2014-209727号公報などに開示されている。参考のために、特開2012-134475号公報および特開2014-209727号公報の開示内容の全てを本明細書に援用する。In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(a-SiTFTに比べ20倍超)および低いリーク電流(a-SiTFTに比べ100分の1未満)を有しているので、駆動TFT(例えば、複数の画素を含む表示領域の周辺に、表示領域と同じ基板上に設けられる駆動回路に含まれるTFT)および画素TFT(画素に設けられるTFT)として好適に用いられる。
 酸化物半導体膜は、In-Ga-Zn-O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn-Sn-Zn-O系半導体(例えばIn-SnO-ZnO;InSnZnO)を含んでもよい。In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、酸化物半導体膜は、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体、Al-Ga-Zn-O系半導体、Ga-Zn-O系半導体などを含んでいてもよい。
 (第2の実施形態)
 以下、第2の実施形態の半導体装置を説明する。本実施形態の半導体装置は、活性層として積層構造を有する酸化物半導体TFTを備える。
 前述したように、酸化物半導体TFTの活性層として、組成の異なる酸化物半導体膜を積み重ねた構造(積層構造)を有する酸化物半導体層を用いることが提案されている。例えば特許文献1は、高い移動度を有する高信頼性の酸化物半導体TFTを形成する目的で、積層構造を有する酸化物半導体層をスパッタ法で形成することを開示している。
 しかしながら、本発明者が検討したところ、スパッタ法を用いて積層構造を有する酸化物半導体層を形成すると、膜質の異なる2つの酸化物半導体膜間に生じる界面準位によって、安定したTFT特性が得られない場合があることが分かった。これは、酸化物半導体TFTの信頼性を低下させる要因となる。
 本発明者は、参考例として、スパッタ法で2層構造の酸化物半導体層を形成し、オージェ電子分光分析法により、その深さ方向における元素分布を調べた。結果を図17に示す。この参考例では、In:Ga:Zn=1:1:1のIn-Ga-Zn-O系半導体膜を下層、In:Ga:Zn=1:3:2のIn-Ga-Zn-O系半導体膜を上層とした。図17に矢印で示すように、組成の異なる2層の間に明確に界面が形成されていることが分かる。
 本発明者は、組成の異なる2つの酸化物半導体膜(上層および下層)の間に、組成が連続的に変化する中間遷移層を設けることで、界面準位の発生を抑制できることを見出した。中間遷移層は、例えばプラズマMOCVD法を用いることにより、容易に形成され得る。中間遷移層の組成は、上層と下層との金属元素(例えばInやGa)の組成差を滑らかにつなぐように、深さ方向に連続的に変化する。このような積層構造を有する酸化物半導体層を用いることにより、界面準位のTFT特性への影響が低減された、信頼性に優れた酸化物半導体TFTを提供することが可能になる。
 図面を参照しながら、本実施形態の半導体装置の構成をより具体的に説明する。
 図9(a)は、本実施形態の半導体装置における酸化物半導体TFT20の一例を示す断面図であり、図9(b)はTFT20の活性層である酸化物半導体層27の拡大断面図である。
 TFT20は、支持基板21と、支持基板21上に支持されたゲート電極23と、酸化物半導体層27と、酸化物半導体層27とゲート電極23との間に配置されたゲート絶縁層25と、酸化物半導体層27に電気的に接続されたソース電極28およびドレイン電極29とを備える。TFT20は、例えば絶縁層(パッシベーション膜)35で覆われている。
 TFT20は、例えばチャネルエッチ型のボトムゲート構造TFTである。ゲート電極23は、酸化物半導体層27の支持基板21側に配置されている。ゲート絶縁層25はゲート電極23を覆っており、酸化物半導体層27は、ゲート絶縁層25を介してゲート電極23と重なるように配置されている。また、ソース電極28およびドレイン電極29は、それぞれ、酸化物半導体層27の上面と接するように配置されている。
 酸化物半導体層27は、チャネル領域27cと、チャネル領域27cの両側に位置するソースコンタクト領域27sおよびドレインコンタクト領域27dとを有している。ソース電極28およびドレイン電極29は、それぞれ、ソースコンタクト領域27sおよびドレインコンタクト領域27dと接するように形成されている。本明細書では、「チャネル領域27c」は、支持基板21の法線方向から見たとき、酸化物半導体層27のうちソースコンタクト領域27sおよびドレインコンタクト領域27dとの間に位置し、チャネルが形成される部分を含む領域を指す。本実施形態では、チャネル領域27cのうち、第1層31におけるゲート絶縁層25近傍にチャネルが形成され得る。
 本実施形態における酸化物半導体TFTの構造は図示する構造に限定されない。例えば、図10に示すように、エッチストップ型のボトムゲート構造TFTであってもよい。エッチストップ型の酸化物半導体TFTでは、酸化物半導体層27の少なくともチャネル領域となる部分上に、酸化物半導体層27の上面と接するようにエッチストップ層37が配置されている。ソース電極28およびドレイン電極29は、それぞれ、エッチストップ層37上に、酸化物半導体層27の上面と接するように配置されている。図示しないが、酸化物半導体TFTはトップゲート構造を有していてもよい。
 酸化物半導体層27は、図9(b)に示すように、支持基板21側から、下層27Lと、中間遷移層33と、上層27Uとをこの順で有する積層構造を有している。本明細書では、下層27Lおよび上層27Uのうちゲート絶縁層25側に位置する層を「第1層31」、他方を「第2層32」と呼ぶことがある。第1層31(ここでは下層27L)は、チャネルが形成されるチャネル層として機能し得る。第1層31の移動度は、第2層32の移動度よりも高い。第2層32(ここでは上層27U)は、チャネル層よりも高いエッチング耐性またはバリア性を有するブロッキング層として機能し得る。中間遷移層33は、第1層31と第2層32との間に、第1層31および第2層32の両方と接するように配置されている。第1層31は、酸化物半導体層27の最下層であり、ゲート絶縁層25の上面と接していてもよい。第2層32は酸化物半導体層27の最上層であり、酸化物半導体層27の上面を構成していてもよい。第2層32の上面は、ソース電極28、ドレイン電極29、および絶縁層35(またはエッチストップ層37)と接していてもよい。なお、トップゲート構造TFTでは、上層が第1層31、下層が第2層32となる。
 酸化物半導体層27は、例えば、In、ZnおよびGaを含む。酸化物半導体層27は、In-Ga-Zn-O系半導体膜であってもよい。
 第1層31と第2層32とは異なる組成を有していてもよい。「組成が異なる」とは、各層に含まれる金属元素の種類または組成比が異なることをいう。第1層31は、チャネル層として好適な組成を有する。例えばIn、Znなどの比較的低抵抗な金属元素を多く含み、高い移動度を有する高移動度層である。第2層32は、高いバリア性を有し得る組成を有する。例えばGaを多く含む高信頼性層である。第2層32を設けることで、TFT20の製造プロセスにおいて、またはTFT20の製造後に、パッシベーション膜などの絶縁膜の開口部等から侵入した水素等の不純物が第1層31に侵入し、第1層31に酸素欠損が生じることを抑制できる。従って、水素等の不純物に起因する第1層31の低抵抗化を抑制でき、所望のTFT特性を確保できる。また、チャネルエッチ型TFTの場合、第2層32は、ソース・ドレイン分離工程等において、チャネル層である第1層31の保護層および犠牲層としても機能し得る。
 中間遷移層33の組成は、第1層31の組成から第2層32の組成へ連続的に変化する。つまり、中間遷移層33は、これらの組成差による界面準位が生じないように、第1層31と第2層32の組成差を連続的につなぐように変化する組成を有する。なお、本実施形態の酸化物半導体層27は、上記3つの層以外の層をさらに含んでいてもよい。
 前述したように、積層構造を有する従来の酸化物半導体層を用いると、上層と下層との界面に生じる界面準位によって、高い信頼性を有するTFTが得られないという問題があった。これに対し、本実施形態では、移動度の高い層を含む積層構造を有する酸化物半導体層27において、上層27Uと下層27Lとの間に界面準位が存在しないため、界面準位に起因する信頼性の低下を抑制できる。従って、高い移動度を有し、かつ、信頼性に優れたTFT20を実現できる。さらに、本実施形態によると、信頼性を確保しつつ、第1層31と第2層32との組成差をより大きくすることが可能になる。従って、第1層31および第2層32の組成を、それぞれの機能に応じたより好適な組成に設定できるので、TFT特性および信頼性をより効果的に向上できる。
 後述するように、酸化物半導体層27は、例えばプラズマMOCVD法で形成される。プラズマMOCVD法を用いると、原料ガスにおける流量比を変化させながら成膜工程を行うことにより、なめらかな組成変化を有する中間遷移層33を容易に形成できる。また、原料ガスにおける流量比を調整することで、第1層31および第2層32の組成を高い自由度で選択できる。
 <酸化物半導体層27の各層の組成および厚さ>
 酸化物半導体層27がIn-Ga-Zn-O系半導体層である場合を例に、各層31~33の好ましい組成を説明する。
 以下の説明では、酸化物半導体を主に構成する全ての元素に対するInの原子数比(組成比)を「In比率」と略する。例えばIn-Ga-Zn-O系半導体層のIn比率は、In、Ga、ZnおよびO(酸素)の合計原子数に対するInの原子数の割合である。同様に、酸化物半導体を主に構成する全ての元素に対するGa、Zn、Oの原子数比(組成比)を「Ga比率」、「Zn比率」、「O比率」と略する。Inの原子数を[In]、Gaの原子数を[Ga]、Znの原子数を[Zn]、Oの原子数を[O]と表記すると、In比率は、[In]/([In]+[Ga]+[Zn]+[O])で表される。
 In-Ga-Zn-O系半導体膜では、Ga比率が高くなると、膜中の酸素比率が高くなり、より安定で信頼性の高い膜ができる。しかし、絶縁性の高いGa成分が多くなるため半導体特性は低くなる。反対に、Ga比率が低い、すなわち低抵抗なIn、Znの比率が高いと、高い半導体特性を実現し得るが、信頼性が低くなる。従って、第1層31におけるGa比率は、第2層32におけるGa比率よりも小さいことが好ましい。これにより、第1層31の移動度を第2層32よりも高くできるとともに、第2層32の安定性を第1層31よりも高くできる。この場合、中間遷移層33のGa比率は、第1層31側から第2層32側に向かって連続的に増加する。第1層31および第2層32のGa比率の差は、特に限定しないが、例えば5%以上、好ましくは10%以上である。Ga比率の差が大きいと(例えば15%以上)、中間遷移層33を設けることによって、より顕著な効果が得られる。
 第1層31におけるIn比率は、第2層32におけるIn比率よりも大きくてもよい。第1層31および第2層32のIn比率の差は、特に限定しないが、例えば5%以上、好ましくは10%以上である。In比率の差が大きいと(例えば20%以上)、中間遷移層33を設けることでより顕著な効果が得られる。第1層31では第2層32よりもIn比率が高く、第2層32では第1層31よりもGa比率が高い場合、中間遷移層33では、例えば、Ga比率が第1層31側から第2層32側に向かって連続的に増加し、In比率が第1層31側から第2層32側に向かって連続的に減少してもよい。
 チャネル層となる第1層31の好ましい組成は次の通りである。Ga比率は、例えば0%以上15%未満である(0≦[Ga]/([In]+[Ga]+[Zn]+[O])<0.15)。第1層31のIn比率およびZn比率の合計は、Ga比率よりも大きい([In]+[Zn]>[Ga])。In比率は70%未満であってもよい([In]/([In]+[Ga]+[Zn]+[O])<0.7)。あるいは、In比率およびZn比率の合計は70%未満であってもよい(([In]+[Zn])/([In]+[Ga]+[Zn]+[O])<0.7)。好ましくは、In比率は、Ga比率およびZn比率よりも高い([In]>[Ga]、[In]>[Zn])。
 第1層31の厚さは、特に限定しないが、例えば0nm超20nm以下である。好ましくは5nm以上10nm以下である。10nm以下であれば、オン特性を高めることができる。5nm以上であれば、中間遷移層33よりも第1層31を電子が優先的に移動するため、高い移動度のTFTを実現できる。
 第2層32の好ましい組成は次の通りである。Ga比率は、例えば9%超40%未満である(0.09<[Ga]/([In]+[Ga]+[Zn]+[O])<0.4)。In比率はGa比率よりも小さいことが好ましい([In]<[Ga])。第2層32のIn比率およびZn比率の合計は、Ga比率以下であってもよい([In]+[Zn]≦[Ga])。
 第2層32の厚さは、特に限定しないが、例えば20nm以上50nm以下である。20nm以上であれば、ブロッキング層(保護層、バリア層)としてより効果的に機能し得るので、信頼性をさらに高めることができる。一方、50nm以下であれば、酸化物半導体層27に生じる抵抗成分の増大を抑えることができるので、TFT20の移動度の低下を抑制できる。
 なお、TFT20がチャネルエッチ型TFTの場合、ソース・ドレイン分離工程において、第2層32(上層27U)は保護層として機能する。このため、第2層32のGa比率をさらに高く設定する(例えば20%以上)、および/または、第2層32の厚さをさらに大きくすることが好ましい(例えば30nm以上)。
 中間遷移層33は、第1層31と第2層32との組成比の差を滑らかに(連続的に)つなぐ組成変化を有していればよい。中間遷移層33の厚さは、特に限定しないが、酸化物半導体層27全体の厚さが例えば40nm以上70nm以下となるように調整されてもよい。中間遷移層33は、第1層31および第2層32よりも厚くてもよい。中間遷移層33の厚さは、例えば、5nm以上50nm以下、好ましくは10nm以上30nm以下であってもよい。10nm未満であれば、第1層31と第2層32との組成比の差によっては、組成変化を滑らかにすることが難しい場合がある。中間遷移層33の厚さが10nm以上、より好ましくは20nm以上であれば、より確実に組成差による界面準位の生成を抑制できる。一方、50nm以下であれば、酸化物半導体層27の厚さの増大および酸化物半導体層27に生じる抵抗成分の増大を抑制できる。
 <酸化物半導体層27の形成方法>
 次いで、酸化物半導体層27を形成する方法の一例を、酸化物半導体層27がIn-Ga-Zn-O系半導体層である場合を例に説明する。
 酸化物半導体層27は、例えばプラズマMOCVD法でIn、SnおよびZnを含む積層膜を形成し、これをパターニングすることによって得られる。積層膜のうち、酸化物半導体層27の下層27L(ここでは第1層31)となる膜を「下膜」、酸化物半導体層27の中間遷移層33となる膜を「中間遷移膜」、酸化物半導体層27の上層27U(ここでは第2層32)となる膜を「上膜」と呼ぶ。プラズマMOCVD法において、原料ガスにおける有機金属化合物の流量比を調整することで、上述した組成を有する3層構造の積層膜を形成する。下膜および上膜は、原料ガスの流量比を所定の値に設定して(流量比は一定)堆積することによって形成できる。中間遷移膜は、原料ガスの流量比を連続的に変化させながら堆積することによって形成できる。例えば、流量比を段階的に設定し、流量比の切り替え時にも原料ガスをそのまま基板上に供給することで、基板上に供給される原料ガスの流量比を連続的に変化させることが可能である。
 より具体的には、まず、積層膜を形成しようとする基板をチャンバー内(下部電極と上部電極との間)に設置する。前述の実施形態で説明したように、チャンバー内にMOガス以外のキャリアーガス(アルゴンや窒素等)や状況によっては酸素を供給し、圧力および基板温度を調整する。また、チャンバー内に、MOガスを含む原料ガスおよび酸素を含むガスを供給と同時に、チャンバー内にプラズマを生成するためのRF電力を、チャンバー内の下部電極と上部電極との間に印加する。MOガスは、Inを含む第1の有機金属化合物、Znを含む第2の有機金属化合物およびGaを含む第3の有機金属化合物を含む。第1の有機金属化合物はTMIn、第2の有機金属化合物はDEZ、第3の有機金属化合物はTMGaであってもよい。
 まず、MOガスにおける第1の有機金属化合物、第2の有機金属化合物および第3の有機金属化合物の流量比を所定の値に設定した状態で成膜を行い、酸化物半導体層27の下層27Lとなる下膜を得る。下膜を形成する際のMOガス全体に対する第1の有機金属化合物の割合をF1a、第2の有機金属化合物の割合をF2a、第3の有機金属化合物の割合をF3aとする。例えばTMIn:DEZ:TMGaを6:6:1に設定する場合、F1a=6/13、F2a=6/13、F3a=1/13となる。
 次いで、第3の有機金属化合物の割合をF3aからF3bに連続的に変化させながら成膜を行い、中間遷移層33となる中間遷移膜を下膜上に形成する。これに伴い、第1の有機金属化合物および前記第2の有機金属化合物の割合も変化し得る。例えば、第3の有機金属化合物の割合を変化させるとともに、第1の有機金属化合物の割合をF1aからF1bに連続的に変化させてもよい。
 酸化物半導体層27の下膜がチャネル層(第1層31)となる場合には、第3の有機金属化合物の割合を増加させながら成膜を行う(すなわちF3a<F3b)。併せて、第1の有機金属化合物の割合を減少させてもよい(すなわちF1a>F1b)。酸化物半導体層27の下膜がブロッキング層(第2層32)となる場合には、第3の有機金属化合物の割合を減少させながら成膜を行う(すなわちF3a>F3b)。併せて、第1の有機金属化合物の割合を増加させてもよい(すなわちF1a<F1b)。
 続いて、第1の有機金属化合物の割合をF1b、第2の有機金属化合物の割合をF2b、第3の有機金属化合物の割合をF3bに設定した状態で成膜を行い、酸化物半導体層27の上層27Uとなる上膜を中間遷移膜上に形成する。このようにして、3層からなる積層膜が形成される。積層膜は、例えばアモルファスIn-Ga-Zn-O系半導体膜(一部が結晶化されていてもよい)である。この後、積層膜のパターニングを行い、酸化物半導体層27を得る。
 上記の成膜工程において、MOガス全体に占める第3の有機金属化合物の割合を図11(a)に例示する。なお、チャネル層(第1層31)となる膜のみをMOガスの流量比を一定に維持した状態で形成し、中間遷移層33および第2層32となる膜を、MOガスの流量比を変化させながら形成してもよい。この場合の成膜工程における第3の有機金属化合物の割合を図11(b)に例示する。少なくともチャネル層となる膜を、MOガスにおける流量比を一定として形成することで、高い移動度を有するTFTを実現することが可能である。
 図11(b)に示すように、MOガスの流量比を変化させながら第2層32を形成すると、第2層32の組成は連続的に変化する。第2層32の組成は、中間遷移層33の組成と同じ方向に連続的に変化してもよい。例えば、第2層32のGa比率は、中間遷移層33側から第2層32の表面に向かって連続的に増加してもよい。この場合、第2層32および中間遷移層33は、いずれも、組成が連続的に変化する層(組成遷移層)となる。組成遷移層のうち、第1層31側に位置し、Ga比率が15%以下の部分を中間遷移層33とみなし、Ga比率が15%超となる部分を、ブロッキング層として機能する第2層32とみなすことができる。
 なお、図11(a)および(b)の流量比の変化は例示である。中間遷移層を形成する際にMOガスの流量比は1段階で変化させてもよいが、好ましくは2段階以上、より好ましくは3段階以上で変化させてもよい。その場合、各段で変化量や堆積時間を異ならせてもよい。
 酸化物半導体層27の形成方法は上記に限定されない。例えば、プラズマを利用しない従来のMOCVD法で形成することも可能である。しかしながら、前述の実施形態で説明したように、MOCVD法では、酸化物半導体膜内にメチル基などの有機基が残留しやすく、所望のTFT特性が得られない場合がある。プラズマMOCVD法によると、メチル基などの残留量が低減された酸化物半導体膜を形成できるため、より好ましい。
 ここで、再び図10を参照しながら、酸化物半導体層27を活性層とするTFT20の製造方法の一例を説明する。
 まず、支持基板21上に、ゲート電極23を形成し、続いて、ゲート絶縁層25をこの順で形成する。
 支持基板21としては、例えばガラス基板、シリコン基板、耐熱性を有するプラスチック基板(樹脂基板)などを用いることができる。
 ゲート電極23は、基板(例えばガラス基板)21上に、スパッタ法などによって、ゲート用導電膜(厚さ:例えば50nm以上500nm以下)を形成し、これをパターニングすることによって形成される。ゲート用導電膜の材料は特に限定しない。アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属又はその合金、若しくはその金属窒化物を含む膜を適宜用いることができる。
 ゲート絶縁層25は、例えばCVD法等によって形成され得る。ゲート絶縁層25としては、酸化珪素(SiO)層、窒化珪素(SiNx)層、酸化窒化珪素(SiOxNy;x>y)層、窒化酸化珪素(SiNxOy;x>y)層等を適宜用いることができる。ゲート絶縁層25は積層構造を有していてもよい。例えば、基板側(下層)に、支持基板21からの不純物等の拡散防止のために窒化珪素層、窒化酸化珪素層等を形成し、その上の層(上層)に、絶縁性を確保するために酸化珪素層、酸化窒化珪素層等を形成してもよい。ここでは、厚さ50nmのSiO膜を上層、厚さ300nmのSiNx膜を下層とする積層膜を用いる。このように、ゲート絶縁層25の最上層(すなわち酸化物半導体層と接する層)として、酸素を含む絶縁層(例えばSiOなどの酸化物層)を用いると、酸化物半導体層27に酸素欠損が生じた場合に、酸化物層に含まれる酸素によって酸素欠損を回復することが可能となるので、酸化物半導体層27の酸素欠損を低減できる。
 続いて、ゲート絶縁層25上に、積層構造を有する酸化物半導体層27を形成する。酸化物半導体層27の形成は、例えばプラズマMOCVD法を用いて上述した方法で行う。酸化物半導体層27を形成した後、大気雰囲気中、350℃以上(例えば450℃)の温度で熱処理を行ってもよい。
 次いで、酸化物半導体層27上に、絶縁膜を形成し、パターニングすることにより、エッチストップ層37を得る。エッチストップ層37は、例えばSiO層(厚さ:例えば150nm)である。エッチストップ層37は、酸化物半導体層27のうちチャネル領域となる部分を覆い、かつ、ソースコンタクトおよびドレインコンタクト領域となる部分上に開口部を有する。
 続いて、ソース電極28およびドレイン電極29を形成する。まず、例えばスパッタ法などによって、エッチストップ層37上およびエッチストップ層37の開口部内にソース用導電膜を形成する。ソース用導電膜をパターニングすることにより、ソース電極28およびドレイン電極29を得る。ソース電極28およびドレイン電極29は、開口部内で酸化物半導体層27(ソースコンタクト領域およびドレインコンタクト領域)と接する。ソース用導電膜は、単層構造を有していてもよいし、積層構造を有していてもよい。ここでは、ソース用導電膜として、酸化物半導体層27の側からTi膜(厚さ:30nm)、AlまたはCu膜(厚さ:300nm)、およびTi膜(厚さ50nm)をこの順で積み重ねた積層膜を形成する。
 なお、チャネルエッチ型TFTの場合には、エッチストップ層37を形成せず、酸化物半導体層27を覆うようにソース用導電膜を形成する。次いで、ソース用導電膜のパターニングを行い、ソース電極28およびドレイン電極29を得る(ソース・ドレイン分離)。このとき、酸化物半導体層27のうちチャネル領域となる部分の表面がエッチングされる場合がある(オーバーエッチング)。例えば、酸化物半導体層27のチャネル領域となる部分の上層の一部または全部が除去されることがある。
 続いて、酸化物半導体層27のチャネル領域に対し酸化処理を行う。ここでは、NOガスを用いたプラズマ処理を行う。処理条件は特に限定されない。NOガスの圧力を例えば100Pa以上300Pa以下、プラズマパワー密度を0.2W/cm以上1.5W/cm以下、処理時間を5~100sec、基板温度を例えば200℃以上450℃以下、好ましくは200℃以上350℃以下、より好ましくは200℃以上300℃以下に設定する。
 次に、TFT10上に絶縁層35を形成する。絶縁層35は、例えば、酸化珪素(SiO)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等の無機絶縁層であってもよい。ここでは、絶縁層35として、CVD法により、厚さが例えば300nmのSiO層を形成する。この後、例えば200℃以上350℃未満の温度で熱処理を行ってもよい。これにより、絶縁層35の形成時に酸化物半導体層27に生じた酸素欠損を低減できる。
 図示しないが、絶縁層35上に、有機絶縁層などの平坦化層をさらに設けてもよい。このようにして、TFT20が製造される。
 <TFT構造について>
 本実施形態のチャネル構造を適用可能なTFTの構造は特に限定されない。図9に示すTFT20は、ソースおよびドレイン電極が半導体層の上面と接するトップコンタクト構造を有しているが、ソースおよびドレイン電極が半導体層の下面と接するボトムコンタクト構造を有していてもよい。
 また、本実施形態のTFTはチャネルエッチ構造を有してもよいし、エッチストップ構造を有していてもよい。チャネルエッチ型のTFTでは図9に示すように、チャネル領域上にエッチストップ層が形成されておらず、ソースおよびドレイン電極のチャネル側の端部下面は、酸化物半導体層の上面と接するように配置されている。チャネルエッチ型のTFTは、例えば酸化物半導体層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。ソース・ドレイン分離工程において、チャネル領域の表面部分がエッチングされる場合がある。
 エッチストップ型のTFTでは、図10に示すように、チャネル領域上にエッチストップ層が形成されている。ソースおよびドレイン電極のチャネル側の端部下面は、例えばエッチストップ層上に位置する。エッチストップ型のTFTは、例えば酸化物半導体層のチャネル領域となる部分を覆うエッチストップ層を形成した後、酸化物半導体層およびエッチストップ層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。エッチストップ型のTFTでは、エッチストップ層で半導体層の側面を覆うことで、上述した膜残りの発生を抑制できる。しかしながら、半導体層の側面にくびれが生じていると、半導体層側面上でエッチストップ層の被覆性が低下し、信頼性の高いTFTが得られないことがある。
 上述したTFT20は、酸化物半導体層27と支持基板21との間にゲート電極23が配置されたボトムゲート構造TFTであるが、酸化物半導体層27の支持基板21と反対側にゲート電極23が配置されたトップゲート構造TFTであってもよい。
 本実施形態の酸化物半導体層27は、トップコンタクト構造を有するチャネルエッチ型のTFTに好適に適用され得る。このようなTFTに適用すると、ソース・ドレイン分離工程などにおいて、第1の酸化物半導体層に対するプロセスダメージを抑制できるので、より顕著な効果が得られる。
 本実施形態は、例えば表示装置のアクティブマトリクス基板に適用され得る。本実施形態をアクティブマトリクス基板に適用する場合、アクティブマトリクス基板に設けられる複数のTFTの少なくとも一部が、上述した積層構造を有する酸化物半導体TFTであればよい。例えば、各画素に配置される画素TFTおよび/またはモノリシックドライバを構成するTFT(回路TFT)がTFT20であってもよい。アクティブマトリクス基板の構造は公知であるため、説明を省略する。
 [実施例および比較例]
 3層構造を有する酸化物半導体層を備えた実施例IのTFTを作製し、その特性を評価したので、その方法及び結果を説明する。
 <実施例Iおよび比較例IのTFTにおける酸化物半導体層の形成方法>
 実施例Iでは、ガラス基板上に、エッチストップ型のボトムゲート構造TFTを形成した(図10参照)。
 酸化物半導体層の形成は、プラズマMOCVD法を用いて行った。ここでは、MOガスにおける有機金属化合物の流量比TMIn:TMGa:DEZの設定値を6:1:6から1:3:1まで段階的に変化させて、In-Ga-Zn-O系半導体膜を成長させた。流量比の設定値は、Depo-01工程~Depo-05工程まで5段階で変化させた(各工程では流量比の設定は一定)。MOガスは、工程間で流量比の設定を切り替える間(例えばDepo-01工程とDepo-02工程との間に流量比の設定を6:1:6:から4:1:4に切り替える間)も連続してチャンバー内に供給する。従って、チャンバー内に供給されるMOガスの実際の流量比は連続的に変化する。
 Depo-01工程では第1層31となる下膜(厚さ:約16nm)、Depo-02~Depo-04工程では中間遷移層33となる中間遷移膜(厚さ:約16nm)、Depo-05工程では第2層32となる上膜(厚さ:約16nm)をそれぞれ形成した。Depo-01工程~Depo-05工程における成膜時間、酸素ガス流量、MOガスの流量比TMIn:TMGa:DEZ、チャンバー内の圧力、RF電力、電極間の距離、基板温度を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 比較のため、スパッタ法を用いて酸化物半導体層を形成し、比較例IのTFTを製造した。スパッタ法では、In:Ga:Zn=1:2:1のターゲットを用い、組成比が一定の酸化物半導体層を形成した。
 <酸化物半導体層の組成分析>
 オージェ電子分光分析により、実施例Iおよび比較例Iにおける酸化物半導体層の深さ方向における元素分布を調べた。
 図12は、実施例Iにおける酸化物半導体層の組成分析結果を示す図である。横軸は、エッチング時間であり、試料表面からの深さに対応する。縦軸は原子比率である。図12において、金属性の結合状態を有するSiを「Si(pure)」、酸化物性の結合状態を有するSi(SiOを構成している金属)を「Si(SiO)」、全ての結合状態を含むSiを「Si(total)」と表記している。なお、図12および図13に示す分析結果では、測定上の問題から、実施例Iおよび比較例Iにおける酸化物半導体層の表面近傍に炭素(C)成分が示されているが、実際には、これらの酸化物半導体層は炭素成分を実質的に含んでいない(スパッタ法で形成した酸化物半導体層(比較例I)は、本来、炭素を含まないが、この分析で炭素成分が検出されてしまうことから明らかである)。
 図12から分かるように、実施例Iでは、酸化物半導体層の第1層31および第2層32は、組成が略一定の領域を含み、中間遷移層33では、組成が連続的に変化している。また、第1層31では、InおよびZn成分がGa成分よりも多く、第2層32では、GaおよびZn成分がIn成分よりも多い。
 図13は、比較例IのTFTにおける酸化物半導体層91、およびゲート絶縁膜92の一部の分析結果を示す図である。図13に示すように、比較例Iでは、酸化物半導体層の厚さ方向で組成比が一定である。
 <TFT特性の評価>
 次いで、実施例Iおよび比較例IのTFTの電流―電圧特性(Id-Vg特性)を調べた。結果を図14に示す。また、各TFTの閾値電圧Vthおよび移動度μを表5に示す。
Figure JPOXMLDOC01-appb-T000005
 この結果から、プラズマMOCVD法を用いて酸化物半導体層を形成することにより、所望のTFT特性を実現し得ることが確認された。実施例IのTFTは、比較例IのTFTよりも高い移動度を有することが分かる。これは、実施例IのTFTは、比較例Iの酸化物半導体層よりもIn比率の高い層(チャネル層)を有するからと考えられる。
 (第3の実施形態)
 第3の実施形態では、酸化物半導体膜の形成に適用可能な成膜装置を説明する。本実施形態の成膜装置は、プラズマアシスト型のMOCVD装置である。本実施形態の成膜装置は、第1および第2の実施形態で説明した酸化物半導体膜の形成に使用され得る。
 本実施形態の成膜装置は、酸化物半導体膜を含む種々の半導体装置の製造に用いられ得る。特に、ガラス基板などの融点が比較的低い(500℃以下)支持基板上に酸化物半導体膜を形成するときに好適に適用される。半導体装置は、例えば酸化物半導体TFTを備えたアクティブマトリクス基板であってもよい。
 図15は、本実施形態の成膜装置(プラズマアシストMOCVD装置)の構成を模式的に示す断面図である。
 成膜装置100は、チャンバー111と、チャンバー111内に被処理基板(以下、単に「基板」とする)を支持する導電性の支持体113と、チャンバー111内において基板の上方に配置された、導電性のガス分配シャワーヘッド117と、支持体113とガス分配シャワーヘッド117との間に電力を供給する電力供給部121と、チャンバー111内にMOガスを供給する第1ガス供給部と、チャンバー111内に酸素を含むガスを供給する第2ガス供給部とを備える。ガス分配シャワーヘッド117および支持体113は、それぞれ、プラズマを生成するための上部電極および下部電極を兼ねている。
 チャンバー111には、さらに、基板を加熱する加熱手段115が設けられている。加熱手段115として、ヒーターが支持体113の内部に配置されていてもよい。ガス分配シャワーヘッド117には、複数の第1ガス通路118および複数の第2ガス通路119が間隔を空けて形成されている。これらのガス通路118、119は、ガス分配シャワーヘッド117の内部において、チャンバー111の外部からチャンバー111内に延びている。第1ガス供給部は、MOガスおよびキャリアガスを含む原料ガスを、第1ガス通路118を介して、チャンバー111内に供給する。第2ガス供給部は、酸素を含むガスを、第2ガス通路119を介してチャンバー111内に供給する。
 電力供給部121は、支持体113およびガス分配シャワーヘッド117の少なくとも一方に接続された高周波電源122を含む。この例では、ガス分配シャワーヘッド117に高周波電源122が接続され、支持体113は接地されている。支持体113とガス分配シャワーヘッド117との間に電力を供給することにより、チャンバー111内にプラズマを形成できる。
 ガス分配シャワーヘッド117のガス通路118、119は、ガス生成部123に接続されている。ガス生成部123は、有機金属化合物を含むMOガスを生成する。ガス生成部123として、公知の種々のMOガスの生成手段を用いることができる。例えば、液状の有機金属化合物が収容された槽内にキャリアガスをバブリングさせることで、キャリアガスおよびMOガスを含む原料ガスを生成してもよい。ガス生成部123は、各有機金属化合物の流量比を制御する流量制御部を備えていてもよい。
 図示していないが、成膜装置100は制御部を備えている。制御部は、成膜時に、支持体113とガス分配シャワーヘッド117との間に電力を供給してプラズマを生成した状態で、チャンバー111内にMOガスおよび酸素を含むガスが供給されるように、電力供給部121および第1および第2ガス供給部の動作を制御する。これにより、有機金属化合物および酸素はプラズマ状態となり、化学的に活性となるので、チャンバー111内または基板表面で反応し、基板表面に堆積する。
 成膜装置100は、チャンバー111内の圧力を制御する圧力制御部、支持体113上の基板の温度を制御する温度制御部をさらに備えていることが好ましい。圧力制御部は、チャンバー111内の圧力を測定する圧力計125と、チャンバー111内に接続された真空ポンプ127とを含む。
 従来のMOCVD装置は、高温で成膜することを前提としている。例えば特表2013-503490号公報には、Siウェハ上にIII族窒化物膜を形成するためのMOCVD装置が開示されている。基板温度は例えば1000℃程度である。
 これに対し、本実施形態の成膜装置100では、プラズマを援用することにより、MOガスの分解度を高めることが可能である。従って、基板温度を比較的低温(500℃以下、好ましくは400℃以下)に設定しても、不純物(特にメチル基に起因する炭素)の濃度が低減された、良質な酸化物半導体膜を形成できる。従って、支持基板として、融点の低いガラス基板などを用いることが可能である。
 また、成膜装置100では、複数の第1ガス通路118を介して、チャンバー111の上方から基板の法線方向にMOガスを供給する。このため、例えばチャンバーの側面から基板に水平方向にMOガスを供給する場合と比べて、基板表面により均質にMOガスを供給することが可能である。従って、基板上に複数の酸化物半導体TFTを形成する際に、これらのTFT特性のばらつきを低減できる。
 また、MOガスによるプラズマは、通常プロセスのプラズマCVDにおける成膜プロセスとは異なり、金属種自身やメチル基が付いた金属成分が、膜堆積に寄与する成膜種になると考えられる。このため、例えばラジカルが成膜種である場合(例えば、プラズマCVDにおけるa-Siの成膜プロセスでは、拡散距離の長い、長寿命のSiHラジカル等が主たる成膜種である)と比べて、成膜種の拡散距離が短い可能性がある。従って、例えばリモートプラズマMOVD装置を用いると、MOガスが分解されるプラズマエリアが成膜エリアと離れているため、効果的に金属成分が成膜に寄与しにくいという問題がある。これに対し、成膜装置100では、図1Aに示すように、被処理基板である基板1がプラズマエリアの中もしくは直下に位置しているので、MOガスによるプラズマの成膜種が成膜に寄与しやすい。
 さらに、成膜装置100を用いると、スパッタリング法と比べて、酸化物半導体膜の組成を高い自由度で選択できる。原料ガスの流量比を調整することで、異なる組成を有する酸化物半導体膜の積層構造を形成することも容易である。例えばIn-Ga-Zn-O系半導体膜を形成する場合、組成比In:Ga:Znを1:X:Yとすると、一般的なスパッタターゲットの組成範囲94は、0<X<5、かつ、0<Y<5である(図16参照)。これに対し、本実施形態によると、物理的な安定領域以上の遷移状態と考えられる組成範囲も実現できる。例えば、原料ガスにおけるDEZの流量比を増加させることで5≦Y、あるいは、TMGaの流量比を増加させることで5≦Xとなる組成を有するIn-Ga-Zn-O系半導体膜を容易に形成できる。
 成膜装置100における各構成要素は、例えば特表2013-503490号公報に開示されているMOCVD装置と同様の構成を有していてもよい。参考のため、特表2013-503490号公報の開示内容の全てを本願明細書に援用する。ただし、特表2013-503490号公報は、支持体を回転させる機構を有するが、成膜装置100は、Siウェハのような耐熱性基板上への成膜を前提としていないため、そのような機構は不要である。なお、特表2013-503490号公報のMOCVD装置には、チャンバー内にプラズマを形成する手段が記載されているが、これは、ガス分配シャワーヘッド等の洗浄または残留物のエッチングを目的として、洗浄用の塩素ガスをプラズマ状態にするために用いられる。成膜装置100のように、成膜時に原料ガスをプラズマ状態にするものではない。
 本発明の実施形態は、酸化物半導体TFTを有する種々の半導体装置に広く適用され得る。例えばアクティブマトリクス基板等の回路基板、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置および無機エレクトロルミネセンス表示装置、MEMS表示装置等の表示装置、イメージセンサー装置等の撮像装置、画像入力装置、指紋読み取り装置、半導体メモリ等の種々の電子装置にも適用される。
1          :基板
2A、2B      :In-Ga-Zn-O系半導体膜
21         :基板
23         :ゲート電極
25         :ゲート絶縁層
27         :酸化物半導体層
27L        :下層
27U        :上層
27c        :チャネル領域
27d        :ドレインコンタクト領域
27s        :ソースコンタクト領域
28         :ソース電極
29         :ドレイン電極
31         :第1層
32         :第2層
33         :中間遷移層
35         :絶縁層
37         :エッチストップ層
100        :成膜装置
111        :チャンバー
113        :支持体
115        :加熱手段
117        :ガス分配シャワーヘッド
118        :第1ガス通路
119        :第2ガス通路
121        :電力供給部
122        :高周波電源
123        :ガス生成部
125        :圧力計
127        :真空ポンプ

Claims (9)

  1.  基板と、前記基板に支持された、酸化物半導体膜を活性層とする酸化物半導体TFTとを備えた半導体装置の製造方法であって、
      (A)Inを含む第1の有機金属化合物、およびZnを含む第2の有機金属化合物を含むMOガスを用意する工程と、
      (B)チャンバー内に設置した前記基板に、前記基板を500℃以下の温度に加熱した状態で、前記MOガスおよび酸素を含むガスを供給し、前記基板上にInおよびZnを含む前記酸化物半導体膜をMOCVD法により成長させる工程と
    を含み、
     前記工程(B)は、前記チャンバー内にプラズマを形成した状態で行われる、半導体装置の製造方法。
  2.  前記工程(B)では、前記チャンバーの圧力を3.3×10Pa以上2.7×10Pa未満に設定する、請求項1に記載の半導体装置の製造方法。
  3.  前記工程(B)では、前記プラズマは高周波電界により形成され、前記プラズマを発生させる電力密度は1440W/m以上4800W/m以下である、請求項1または2に記載の半導体装置の製造方法。
  4.  前記第1の有機金属化合物および前記第2の有機金属化合物の少なくとも一方はメチル基を含む、請求項1から3のいずれかに記載の半導体装置の製造方法。
  5.  前記基板はガラス基板を含み、
     前記酸化物半導体膜および前記基板の深さ方向の組成を二次イオン質量分析法で分析すると、前記酸化物半導体膜に含まれる炭素成分の量は、前記ガラス基板に含まれる炭素成分の量の1/10以下である、請求項4に記載の半導体装置の製造方法。
  6.  前記酸化物半導体膜は、炭素成分を実質的に含まない、請求項4または5に記載の半導体装置の製造方法。
  7.  前記酸化物半導体膜は、In-Ga-Zn-O系半導体膜であり、かつ、前記基板側から下膜、中間遷移膜、上膜をこの順で含む積層構造を有しており、
     前記MOガスは、Gaを含む第3の有機金属化合物をさらに含み、
     前記工程(B)は、
      (B1)前記基板に供給する前記MOガスの流量における前記第1の有機金属化合物の割合をF1a、前記第2の有機金属化合物の割合をF2a、前記第3の有機金属化合物の割合をF3aに設定した状態で、前記基板上に前記下膜を形成する工程と、
      (B2)前記基板に供給する前記MOガスの流量における、前記第3の有機金属化合物の割合をF3aからF3bに連続的に変化させながら、前記下膜上に前記中間遷移膜を形成する工程と、
      (B3)前記基板に供給する前記MOガスの流量における、前記第1の有機金属化合物の割合をF1b、前記第2の有機金属化合物の割合をF2b、前記第3の有機金属化合物の割合をF3bに設定した状態で、前記中間遷移膜上に前記上膜を形成する工程と
    を包含する、請求項1から6のいずれかに記載の半導体装置の製造方法。
  8.  前記工程(B2)では、前記基板に供給する前記MOガスの流量における、前記第3の有機金属化合物の割合を変化させるとともに、前記第1の有機金属化合物の割合をF1aからF1bに連続的に変化させながら前記中間遷移膜を形成し、
     前記第1の有機金属化合物および前記第3の有機金属化合物の割合は、F3a<F3b、かつ、F1a>F1bを満たすか、または、F3a>F3b、かつ、F1a<F1bを満たす、請求項7に記載の半導体装置の製造方法。
  9.  基板上に、MOCVD法により酸化物半導体膜を形成するための成膜装置であって、
     複数の有機金属化合物を含むMOガスを生成するガス生成部と、
     チャンバーと、
     前記チャンバー内に前記基板を支持する導電性の支持体と、
     前記基板を加熱する加熱手段と、
     前記チャンバー内において前記基板の上方に配置されたガス分配シャワーヘッドであって、その内部を延びる複数の第1ガス通路および複数の第2ガス通路が間隔を空けて形成されている、導電性のガス分配シャワーヘッドと、
     前記複数の第1ガス通路を介して前記チャンバー内に前記MOガスを供給する第1ガス供給部と、
     前記複数の第2ガス通路を介して前記チャンバー内に酸素を含むガスを供給する第2ガス供給部と、
     前記支持体と前記ガス分配シャワーヘッドとの間に電力を供給する電力供給部であって、前記支持体および前記ガス分配シャワーヘッドの少なくとも一方に接続された高周波電源を含む、電力供給部と、
     前記支持体と前記ガス分配シャワーヘッドとの間に電力を供給してプラズマを生成した状態で、前記チャンバー内に前記MOガスおよび前記酸素を含むガスが供給されるように、前記電力供給部および前記第1および第2ガス供給部を制御する制御部と
    を備える、成膜装置。
PCT/JP2017/045126 2016-12-27 2017-12-15 半導体装置の製造方法および成膜装置 WO2018123659A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780080973.2A CN110121765B (zh) 2016-12-27 2017-12-15 半导体装置的制造方法和成膜装置
US16/473,272 US10879064B2 (en) 2016-12-27 2017-12-15 Method for manufacturing semiconductor device and film forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016253392 2016-12-27
JP2016-253392 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123659A1 true WO2018123659A1 (ja) 2018-07-05

Family

ID=62707485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045126 WO2018123659A1 (ja) 2016-12-27 2017-12-15 半導体装置の製造方法および成膜装置

Country Status (3)

Country Link
US (1) US10879064B2 (ja)
CN (1) CN110121765B (ja)
WO (1) WO2018123659A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172055A (ja) * 1994-12-20 1996-07-02 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体結晶の成長方法およびその装置
JP2001168040A (ja) * 1999-12-13 2001-06-22 Fuji Xerox Co Ltd 窒化物半導体素子及びその製造方法
JP2006165531A (ja) * 2004-11-10 2006-06-22 Canon Inc 電界効果型トランジスタの製造方法
JP2015079947A (ja) * 2013-09-13 2015-04-23 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686210B1 (en) * 1998-09-07 2004-02-03 Texas Instruments Incorporated Methods for controlling the crystallographic texture of thin films with anisotropic ferroelectric polarization or permittivity
US8529699B2 (en) * 2008-09-16 2013-09-10 Stanley Electric Co., Ltd. Method of growing zinc-oxide-based semiconductor and method of manufacturing semiconductor light emitting device
JP5731244B2 (ja) 2010-03-26 2015-06-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
CN103339715B (zh) 2010-12-03 2016-01-13 株式会社半导体能源研究所 氧化物半导体膜以及半导体装置
TWI565067B (zh) * 2011-07-08 2017-01-01 半導體能源研究所股份有限公司 半導體裝置及其製造方法
JP5052693B1 (ja) 2011-08-12 2012-10-17 富士フイルム株式会社 薄膜トランジスタ及びその製造方法、表示装置、イメージセンサー、x線センサー並びにx線デジタル撮影装置
US9312257B2 (en) * 2012-02-29 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102071545B1 (ko) 2012-05-31 2020-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2014024808A1 (en) * 2012-08-10 2014-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2014157019A1 (en) 2013-03-25 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102294507B1 (ko) 2013-09-06 2021-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9716003B2 (en) * 2013-09-13 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US9502242B2 (en) * 2014-02-05 2016-11-22 Applied Materials, Inc. Indium gallium zinc oxide layers for thin film transistors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172055A (ja) * 1994-12-20 1996-07-02 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体結晶の成長方法およびその装置
JP2001168040A (ja) * 1999-12-13 2001-06-22 Fuji Xerox Co Ltd 窒化物半導体素子及びその製造方法
JP2006165531A (ja) * 2004-11-10 2006-06-22 Canon Inc 電界効果型トランジスタの製造方法
JP2015079947A (ja) * 2013-09-13 2015-04-23 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Also Published As

Publication number Publication date
CN110121765A (zh) 2019-08-13
CN110121765B (zh) 2023-04-28
US10879064B2 (en) 2020-12-29
US20200194254A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
KR102308442B1 (ko) 반도체 장치 및 그 제작방법
CN103765596B (zh) 薄膜晶体管
US8349669B2 (en) Thin film transistors using multiple active channel layers
TWI550722B (zh) 於基板上形成矽層之方法、形成矽氧化物層之方法及具有其之金屬氧化物薄膜電晶體元件
KR101376970B1 (ko) 질소 가스를 사용한 아연 타겟의 반응성 스퍼터링을 통해서 생성된 박막 반도체 재료
US8525170B2 (en) Thin film transistor and manufacturing method thereof
WO2009129391A2 (en) Low temperature thin film transistor process, device property, and device stability improvement
KR20140085406A (ko) 어모퍼스 실리콘막의 성막 방법 및 성막 장치
KR20150133235A (ko) 다층 패시베이션 또는 식각 정지 tft
US20150380561A1 (en) Metal oxide tft stability improvement
TW201536945A (zh) 結晶性層疊結構體,半導體裝置
US7186663B2 (en) High density plasma process for silicon thin films
TWI541900B (zh) 絕緣膜及其製造方法
US20230238432A1 (en) Laminate, semiconductor device, and method for manufacturing laminate
US20080132080A1 (en) Method of avoiding haze formation on surfaces of silicon-containing PECVD-deposited thin films
WO2018123659A1 (ja) 半導体装置の製造方法および成膜装置
WO2018123660A1 (ja) 酸化物半導体tftを備えた半導体装置
TWI779254B (zh) 薄膜電晶體的製造方法
JP4640281B2 (ja) バリヤメタル層及びその形成方法
KR101827514B1 (ko) 박막 트랜지스터 및 그 제조 방법
US10748759B2 (en) Methods for improved silicon nitride passivation films
WO2020257314A1 (en) Method of forming inductively coupled high density plasma films for thin film transistor structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP