TWI693978B - 鑄模設備 - Google Patents

鑄模設備 Download PDF

Info

Publication number
TWI693978B
TWI693978B TW108106580A TW108106580A TWI693978B TW I693978 B TWI693978 B TW I693978B TW 108106580 A TW108106580 A TW 108106580A TW 108106580 A TW108106580 A TW 108106580A TW I693978 B TWI693978 B TW I693978B
Authority
TW
Taiwan
Prior art keywords
electromagnetic
mold
core material
casting
electromagnetic brake
Prior art date
Application number
TW108106580A
Other languages
English (en)
Other versions
TW201936292A (zh
Inventor
岡田信宏
大賀信太郎
塚口友一
Original Assignee
日商新日鐵住金股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商新日鐵住金股份有限公司 filed Critical 日商新日鐵住金股份有限公司
Publication of TW201936292A publication Critical patent/TW201936292A/zh
Application granted granted Critical
Publication of TWI693978B publication Critical patent/TWI693978B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

[課題]在連續鑄造中,即使在提升生產性的情況下,仍可穩定地確保鑄片的品質。 [解決手段]提供一種鑄模設備,其具備有:連續鑄造用的鑄模;第1水箱及第2水箱,將用以冷卻前述鑄模的冷卻水進行蓄水;電磁攪拌裝置,對前述鑄模內的熔融金屬賦予如在水平面內產生迴旋流的電磁力;及電磁制動器裝置,對來自浸漬噴嘴之吐向前述鑄模內的熔融金屬之吐出流賦予制動前述吐出流之方向的電磁力;在前述鑄模之長邊鑄模板的外側面,前述第1水箱、前述電磁攪拌裝置、前述電磁制動器裝置、及前述第2水箱是以收納於從前述長邊鑄模板的上端到下端之間的方式,從上方朝向下方按照前述順序設置,且前述電磁攪拌裝置的芯材高度H1及前述電磁制動器裝置的芯材高度H2滿足0.80≦H1/H2≦2.33。

Description

鑄模設備
本發明是有關於一種鑄模設備,其具備在連續鑄造中所使用的鑄模、及對該鑄模內的熔融金屬賦予電磁力的電磁力產生裝置。
在連續鑄造中,是將暫時貯留於餵槽(tundish)的熔融金屬(例如熔鋼)從上方經由浸漬噴嘴注入鑄模內,然後將外周面已冷卻凝固的鑄片從鑄模的下端拉出,藉此連續地進行鑄造。鑄片當中,外周面的凝固部位稱作凝固殼(shell)。
在此,熔融金屬中含有為了防止浸漬噴嘴之吐出孔堵塞,而與熔融金屬一起供給之非活性氣體(例如Ar氣體)的氣體氣泡、或非金屬介在物等,若鑄造後的鑄片殘存有該等雜質,會成為製品品質劣化的原因。一般而言,該等雜質的比重小於熔融金屬的比重,所以在連續鑄造中大多會上浮於熔融金屬內而被去除。因此,如果增加鑄造速度,則前述雜質的上浮分離變得無法充分進行,有鑄片的品質降低的傾向。就像這樣,在連續鑄造中,在生產性與鑄片品質之間有取捨關係,亦即若追求生產性則鑄片品質惡化、若以鑄片品質為優先則生產性降低的關係。
近年來,對汽車用外部材料等之一部分製品 的品質要求年趨嚴謹。因此在連續鑄造中,為了確保品質,傾向於犠牲生產性來進行作業。有鑑於如此的情況,在連續鑄造中,確保鑄片的品質並且提升生產性的技術是有需求的。
另一方面,已知連續鑄造中之鑄模內的熔融金屬之流動會對鑄片的品質造成大幅影響。因此,藉由適切地控制鑄模內的熔融金屬之流動,可保有期望之鑄片的品質並且實現高速穩定的作業,亦即可提升生產性。
為了控制鑄模內的熔融金屬之流動,已開發一種使用對該鑄模內的熔融金屬賦予電磁力之電磁力產生裝置的技術。再者,方便起見,在本說明書中,亦將包含有鑄模及電磁力產生裝置之鑄模周邊的構件群叫作鑄模設備。
具體而言,作為電磁力產生裝置,廣為使用的是電磁制動器裝置及電磁攪拌裝置。在此,電磁制動器裝置是藉由對熔融金屬施加靜磁場,而在該熔融金屬中產生制動力來抑制該熔融金屬之流動的裝置。另一方面,電磁攪拌裝置是藉由對熔融金屬施加動磁場,而在該熔融金屬中產生稱作勞倫茲力的電磁力,來對該熔融金屬賦予如在鑄模的水平面內迴旋的流動模式的裝置。
電磁制動器裝置一般而言是設置成在熔融金屬中產生制動力,且前述制動力使從浸漬噴嘴噴出的吐出流的流勢變弱。在此,來自浸漬噴嘴的吐出流藉由衝擊鑄模的內壁,而形成朝向上方向(亦即熔融金屬之液面存在 的方向)的上升流及朝向下方向(亦即鑄片被拉出的方向)的下降流。因此,藉由利用電磁制動器裝置使吐出流的流勢變弱,上升流的流勢會變弱,可抑制熔融金屬之液面的變動。又,由於吐出流衝擊凝固殼的流勢也會變弱,因此也可發揮抑制該凝固殼之再度溶解所引起的鑄漏(breakout)的效果。像這樣,電磁制動器裝置經常使用在以高速穩定的鑄造為目的的情形中。進而,由於藉由電磁制動器裝置而抑制由吐出流所形成的下降流的流速,因此可促進熔融金屬中之雜質的上浮分離,得到提升鑄片之內部品質(以下亦叫作內質)的效果。
另一方面,就電磁制動器裝置的缺點來說,可舉例如下:由於在凝固殼界面之熔融金屬的流速成為低速,因此有表面品質惡化的情況。又,由於由吐出流所形成的上升流變得難以到達液面,因此液面溫度降低而產生結皮,恐怕會產生內質缺陷。
電磁攪拌裝置如上述,是對熔融金屬賦予規定的流動模式,亦即,在熔融金屬內產生攪拌流。藉此,由於促進在凝固殼界面的熔融金屬之流動,因此可抑制上述Ar氣體氣泡或非金屬介在物等雜質被捕捉到凝固殼內,可提升鑄片的表面品質。另一方面,就電磁攪拌裝置的缺點來說,可舉例如下:藉由攪拌流衝擊鑄模內壁,與上述來自浸漬噴嘴的吐出流同樣地產生上升流及下降流,因此會有因為該上升流在液面捲入粉體,該下降流將雜質往鑄模下方沖走,而使鑄片的內質惡化的情況。
如以上所說明,從確保鑄片品質的觀點來看,電磁制動器裝置及電磁攪拌裝置分別存在有優點及缺點。因此,以同時提升鑄片之表面品質及內質為目的,已開發有以下技術:使用對鑄模設置電磁制動器裝置及電磁攪拌裝置雙方的鑄模設備、或對鑄模設置複數個電磁攪拌裝置的鑄模設備,來進行連續鑄造的技術。
例如,專利文獻1中揭示有:在鑄模上部(更詳細地說是彎液面(meniscus)近旁)設置電磁攪拌裝置,並且在比鑄模更下方設置電磁制動器裝置的鑄模設備。專利文獻1中記載,藉由如此的構成可得到以下效果:可藉由電磁攪拌裝置來提升鑄片的表面品質,並且可藉由電磁制動器裝置來減低進行高速鑄造之際會變得顯著的往鑄片內之介在物的入侵(亦即,可提升內質)。又,例如,專利文獻2中揭示有:在上下方向上設置2段的電磁攪拌裝置的鑄模設備。專利文獻2中記載,藉由如此的構成可得到以下效果:藉由使電磁力作用於彎液面近旁之熔融金屬的上段的電磁攪拌裝置,可提升鑄片的表面品質,並且藉由使電磁力作用於來自浸漬噴嘴之吐出流的下段的電磁攪拌裝置,可提升鑄片的內質。
又,專利文獻3中記載有如下的連續鑄造裝置:在鑄模的上部將電磁攪拌裝置EMS接地,並將電磁制動器裝置LMF設置成其芯材的上端來到從鑄模上部算起規定距離的位置。又,專利文獻4中記載有關於鋼的連續鑄造方法、使用了電磁攪拌線圈及電磁制動器裝置的構成。
先行技術文獻 專利文獻
專利文獻1:日本特開平第6-226409號公報
專利文獻2:日本特開第2000-61599號公報
專利文獻3:日本特開第2015-27687號公報
專利文獻4:日本特開第2002-45953號公報
然而,在專利文獻1所揭示的鑄模設備中,電磁制動器裝置的下端比鑄模位於更下方。由於由電磁制動器產生的電磁力(制動力)是因應於熔融金屬的流速而作用,因此如此的設置位置,與將電磁制動器裝置設置在浸漬噴嘴的吐出孔附近的情況相比,作用於熔融金屬的電磁力恐怕會變得非常小。也就是說,專利文獻1所記載之在高速鑄造時由電磁制動器裝置所帶來的提升鑄片之內質的效果,可能是有限的。針對此點,本案發明者假設一般的鑄造條件(鑄片尺寸或品種、浸漬噴嘴的位置等)而進行數值分析模擬等,經檢討後之結果,重新查明到若在專利文獻1所記載的位置設置電磁制動器裝置,會產生以下問題:當為了提升生產性而增加鑄造速度時,可適宜地防止介在物之入侵的鑄造速度僅到1.6m/min左右,若鑄造速度超過1.6m/min左右,則很難有效地防止介在物之入侵。
又,在專利文獻2所揭示的鑄模設備中,不使用電磁制動器裝置,而是藉由電磁攪拌裝置來使向上的 力作用於吐出流,藉此減低吐出流的流勢。然而,藉由電磁攪拌所產生的電磁力是與吐出流的流速變動無關地作用,因此可想到的是很難藉由電磁攪拌裝置來穩定地控制吐出流的流速。根據本案發明者檢討的結果,重新查明到若欲使用專利文獻2所記載的鑄模設備來控制鑄模內的熔融金屬之流動,會產生以下問題:起因於上述電磁攪拌裝置之吐出流的控制困難性,該熔融金屬的流動容易變得不穩定,鑄片的內質容易變動。
又,專利文獻3、專利文獻4所記載的技術皆是鑄造速度為1.5m/min以下之低速的技術,並非設想高速鑄造的技術。
就像這樣,針對可確保鑄片的品質並且提升生產性的電磁力產生裝置之適切的構成,尚有檢討的餘地。因此,本發明是有鑑於上述問題而作成,本發明之目的在於提供一種在連續鑄造中,即使在提升生產性的情況下仍可穩定地確保鑄片的品質之新的且經改良的鑄模設備。
本案發明者嘗試在連續鑄造中,使用組合了電磁制動器裝置與電磁攪拌裝置的鑄模設備來穩定鑄模內的熔融金屬之流動,藉此確保鑄片的品質並且提升生產性。然而,該等裝置並不是單純地設置雙方裝置就能簡單地獲得雙方裝置的優點。例如,就像從上述對在凝固殼界面之熔融金屬的流速所造成的影響也能知道的,該等裝置也有造成消 除彼此效果之影響的一面。因此,在使用電磁制動器裝置及電磁攪拌裝置雙方的連續鑄造中,相較於分別單獨地使用該等裝置的情況,鑄片的品質(表面品質及內質)惡化的情況並不少。
因此,發明者反覆進行數值分析模擬及實機測試、努力檢討後的結果,終於發現在使用電磁制動器裝置及電磁攪拌裝置之連續鑄造中,若要更有效地發揮提升鑄片品質的效果、且要在提升生產性的情況下仍可確保鑄片的品質,適切地規定該等裝置之構成及設置位置是重要的。
亦即,為了解決上述課題,根據本發明的某個觀點,提供一種鑄模設備,其具備有:連續鑄造用的鑄模;第1水箱及第2水箱,將用以冷卻前述鑄模的冷卻水進行蓄水;電磁攪拌裝置,對前述鑄模內的熔融金屬賦予如在水平面內產生迴旋流的電磁力;及電磁制動器裝置,對來自浸漬噴嘴之吐向前述鑄模內的熔融金屬之吐出流賦予制動前述吐出流之方向的電磁力;在前述鑄模之長邊鑄模板的外側面,前述第1水箱、前述電磁攪拌裝置、前述電磁制動器裝置、及前述第2水箱從上方朝向下方按照此順序設置,且前述電磁攪拌裝置的芯材高度H1及前述電磁制動器裝置的芯材高度H2滿足下述數式(101)所示的關係。在此,鑄造速度亦可為2.0m/min以下。
[數1]
Figure 108106580-A0305-02-0010-1
又,在該鑄模設備中,前述電磁攪拌裝置的芯材高度H1及前述電磁制動器裝置的芯材高度H2,亦可滿足下述數式(103)所示的關係。在此,鑄造速度亦可為2.2m/min以下。
Figure 108106580-A0305-02-0010-2
又,前述電磁攪拌裝置的芯材高度H1及前述電磁制動器裝置的芯材高度H2,亦可為滿足下述數式(105)所示的關係之高度。在此,鑄造速度亦可為2.4m/min以下。
Figure 108106580-A0305-02-0010-3
又,前述電磁攪拌裝置的芯材高度H1及前述電磁制動器裝置的芯材高度H2,亦可為滿足下述數式(2)所示的關係之高度。
[數4]
Figure 108106580-A0305-02-0011-5
又,前述電磁制動器裝置亦可由分割制動器所構成。
如以上所說明,根據本發明,在連續鑄造中,即使在提升生產性的情況下也可確保鑄片的品質。
1:連續鑄造機
2:熔鋼
3:鑄片
3a:凝固殼
3b:未凝固部
4:盛桶
5:餵槽
6:浸漬噴嘴
7:二次冷卻裝置
8:鑄片切斷機
9:二次冷卻帶
9A:垂直部
9B:彎曲部
9C:水平部
10:鑄模設備
11:支承輥
12:夾輥
13:輥輪組
14:鑄片
15:台輥
110:鑄模
111:長邊鑄模板(鑄模板)
112:短邊鑄模板(鑄模板)
121:長邊側支承板(支承板)
122:短邊側支承板(支承板)
123:寬度方向支承板(支承板)
124:軟鐵
130:上部水箱(水箱)
140:下部水箱(水箱)
150:電磁攪拌裝置
151:殼體
152:電磁攪拌芯材(鐵芯)
153:線圈
160:電磁制動器裝置
161:殼體
162:電磁制動器芯材(鐵芯)
163:線圈
164:端部
165:連結部
170:電磁力產生裝置
H0、H1、H2、H3、H4:芯材高度
W、W0、W1、W2、W3:寬度
X、Y、Z:方向
圖1是概略地顯示本實施形態之連續鑄造機之一構成例的側截面圖。
圖2是本實施形態之鑄模設備在Y-Z平面上的截面圖。
圖3是鑄模設備之在圖2所示的A-A截面的截面圖。
圖4是鑄模設備之在圖3所示的B-B截面的截面圖。
圖5是鑄模設備之在圖3所示的C-C截面的截面圖。
圖6是用以說明藉由電磁制動器裝置對熔鋼賦予之電磁力的方向的圖。
圖7是顯示當凝固殼的厚度成為4mm或5mm時,鑄造速度(m/min)與從熔鋼液面算起的距離(mm)之間的關係的圖。
圖8是顯示藉由數值分析模擬所得到的,當鑄造速度為1.4m/min時之芯材高度比值H1/H2與氣孔指數之間的關係的圖表。
圖9是顯示藉由數值分析模擬所得到的,當鑄造速度為2.0m/min時之芯材高度比值H1/H2與氣孔指數之間的 關係的圖表。
圖10是顯示藉由數值分析模擬所得到的鑄造速度與內質指數之間的關係的圖表。
以下,參考附加圖式,針對本發明之適宜的實施形態詳細地加以說明。再者,於本說明書及圖式,針對實質上具有相同之功能構成的構成要件,是藉由附加相同的符號來省略重複的說明。
再者,在本說明書所示的各圖式中,為了說明,有時會將一部分的構成構件的大小誇大表現。各圖式中所圖示的各構件的相對大小,並不一定正確地表現出實際的構件間的大小關係。
又,以下是針對以熔鋼作為熔融金屬的實施形態為一例加以說明。但,本發明不限定於如此的例子,本發明亦可適用於對其他金屬的連續鑄造。
(1.連續鑄造機的構成)
參考圖1,說明本發明之適宜的一實施形態的連續鑄造機之構成,及連續鑄造方法。圖1是概略地顯示本實施形態之連續鑄造機之一構成例的側截面圖。
如圖1所示,本實施形態之連續鑄造機1是使用連續鑄造用的鑄模110來連續鑄造熔鋼2,而用以製造扁塊(slab)等之鑄片3的裝置。連續鑄造機1具備有鑄模110、盛桶4、餵槽5、浸漬噴嘴6、二次冷卻裝置7及鑄片切斷機8。
盛桶4是用以將熔鋼2從外部搬送至餵槽5之可動式的容器。盛桶4配置於餵槽5的上方,盛桶4內的熔鋼2供給至餵槽5。餵槽5配置於鑄模110的上方,貯留熔鋼2而去除該熔鋼2中的介在物。浸漬噴嘴6是從餵槽5的下端朝向鑄模110往下方延伸,且其前端浸漬於鑄模110內的熔鋼2。該浸漬噴嘴6將已於餵槽5中去除介在物的熔鋼2往鑄模110內連續供給。
鑄模110為因應於鑄片3的寬度及厚度之四角筒狀,例如組裝成以一對長邊鑄模板(對應於後述圖2所示的長邊鑄模板111)從兩側夾住一對短邊鑄模板(對應於後述圖4~圖6所示的短邊鑄模板112)。長邊鑄模板及短邊鑄模板(以下有時統稱為鑄模板)為例如設置有供冷卻水流動的水路之水冷銅板。鑄模110讓與如此的鑄模板接觸的熔鋼2冷卻,以製造鑄片3。鑄片3隨著朝向鑄模110下方移動,內部之未凝固部3b的凝固持續進行,外殼之凝固殼3a的厚度漸漸地變厚。包含有如此的凝固殼3a及未凝固部3b的鑄片3,是從鑄模110的下端被拉出。
再者,在以下說明中,上下方向(亦即從鑄模110拉出鑄片3的方向)亦稱為Z軸方向。又,與Z軸方向垂直的平面(水平面)內之相互正交的2方向,亦分別稱為X軸方向及Y軸方向。又,將X軸方向定義為水平面內與鑄模110的長邊平行的方向,將Y軸方向定義為水平面內與鑄模110的短邊平行的方向。又,在以下說明中,在表現各構件的大小時,有時也把該構件之Z軸方向的長度叫作高 度,把該構件之X軸方向或Y軸方向的長度叫作寬度。
在此,圖1中雖為了避免圖式變得複雜而省略圖示,但在本實施形態中,鑄模110之長邊鑄模板的外側面設置有電磁力產生裝置。該電磁力產生裝置是具備有電磁攪拌裝置及電磁制動器裝置的裝置。在本實施形態,藉由一邊驅動該電磁力產生裝置一邊進行連續鑄造,可確保鑄片的品質並且在更高速下鑄造。針對該電磁力產生裝置之構成及相對於鑄模110的設置位置等,參考圖2~圖5於後敘述。
二次冷卻裝置7設置於鑄模110下方的二次冷卻帶9,一邊支撐及搬送從鑄模110下端拉出的鑄片3一邊使其冷卻。此二次冷卻裝置7具有配置於鑄片3之厚度方向兩側的複數對支撐輥(例如支承輥11、夾輥12及輥輪組(segment roll)13)、及對鑄片3噴射冷卻水的複數個噴霧噴嘴(未圖示)。
設置於二次冷卻裝置7的支撐輥是在鑄片3的厚度方向兩側成對配置,且作為支撐並搬送鑄片3的支撐搬送機構而發揮功能。藉由利用該支撐輥從厚度方向兩側支撐鑄片3,可防止二次冷卻帶9中之凝固途中的鑄片3之鑄漏或鼓脹(bulging)。
支撐輥即支承輥11、夾輥12及輥輪組13,形成二次冷卻帶9中之鑄片3的搬送路徑(路線)。前述路線如圖1所示,在鑄模110的正下方為垂直,接下來彎曲成曲線狀,最終成為水平。在二次冷卻帶9中,該路線為垂直的 部分稱作垂直部9A,為彎曲的部分稱作彎曲部9B,為水平的部分稱作水平部9C。具有這樣的路線的連續鑄造機1被稱為垂直彎曲型的連續鑄造機1。再者,本發明並不限定於圖1所示之垂直彎曲型的連續鑄造機1,亦可適用於彎曲型或垂直型等其他各種的連續鑄造機。
支承輥11為設置於鑄模110正下方之垂直部9A的無驅動式輥,支撐剛從鑄模110拉出後的鑄片3。剛從鑄模110拉出後的鑄片3由於呈凝固殼3a為較薄的狀態,所以為了防止鑄漏或鼓脹,必須以比較短的間隔(輥距(roll pitch))來支撐。因此,作為支承輥11,希望使用的是可縮短輥距之小徑的輥。在圖1所示的例子中,於垂直部9A之鑄片3的兩側,由小徑的輥所構成的3對支承輥11是以比較窄的輥距來設置。
夾輥12為藉由馬達等的驅動機構而旋轉的驅動式輥,且具有將鑄片3從鑄模110拉出的功能。夾輥12分別配置於垂直部9A、彎曲部9B及水平部9C中適切的位置。鑄片3是藉由從夾輥12所傳達的力而被從鑄模110拉出,且沿著上述路線被搬送。再者,夾輥12的配置並不限定於圖1所示之例,可任意地設定其配置位置。
輥輪組13(也叫作導輥)為設置於彎曲部9B及水平部9C的無驅動式輥,且沿著上述路線支撐及引導鑄片3。輥輪組13可根據路線上的位置、及、根據設置於鑄片3的F面(Fixed面,在圖1是左下側的面)與L面(Loose面,在圖1是右上側的面)中之哪一面,而以各自相異的輥 徑或輥距來配置。
鑄片切斷機8配置於上述路線之水平部9C的終端,將沿著該路線搬送的鑄片3依規定的長度切斷。已切斷之厚板狀的鑄片14是藉由台輥(table roll)15被搬送到下一製程之設備。
以上已參考圖1,針對本實施形態之連續鑄造機1的整體構成進行說明。再者,在本實施形態中,只要是對鑄模110設置上述電磁力產生裝置,並使用該電磁力產生裝置來進行連續鑄造即可,連續鑄造機1中之該電磁力產生裝置以外的構成,可與一般的、以往的連續鑄造機相同。因此,連續鑄造機1的構成並不限定於圖示的構成,可使用所有的構成來作為連續鑄造機1。
(2.電磁力產生裝置)
(2-1.電磁力產生裝置的構成)
參考圖2~圖5,詳細地說明對上述鑄模110設置的電磁力產生裝置之構成。圖2~圖5是顯示本實施形態之鑄模設備之一構成例的圖。
圖2是本實施形態之鑄模設備10之Y-Z平面上的截面圖。圖3是鑄模設備10之在圖2所示的A-A截面的截面圖。圖4是鑄模設備10之在圖3所示的B-B截面的截面圖。圖5是鑄模設備10之在圖3所示的C-C截面的截面圖。再者,鑄模設備10在Y軸方向上具有相對於鑄模110的中心對稱的構成,因此在圖2、圖4及圖5中,僅圖示對應於一邊的長邊鑄模板111的部位。又,在圖2、圖4及圖5中, 為容易理解,鑄模110內的熔鋼2也一併圖示。
參考圖2~圖5,本實施形態之鑄模設備10是構成為:在鑄模110的長邊鑄模板111的外側面,隔著支承板121(backup plate)而設置有2個水箱130、140、及電磁力產生裝置170。
鑄模110如上述,組裝成以一對長邊鑄模板111從兩側夾住一對短邊鑄模板112。鑄模板111、112由銅板構成。但,本實施形態並不限定於如此的例子,鑄模板111、112可由一般用作連續鑄造機之鑄模的各種材料所形成。
在此,在本實施形態中,是以鋼鐵扁塊之連續鑄造為對象,且其鑄片尺寸是寬度(亦即X軸方向的長度)800~2300mm左右,厚度(亦即Y軸方向的長度)200~300mm左右。也就是說,鑄模板111、112亦具有對應於該鑄片尺寸的大小。亦即,長邊鑄模板111至少具有比鑄片3的寬度800~2300mm更長的X軸方向的寬度,短邊鑄模板112具有與鑄片3的厚度200~300mm大致相同的Y軸方向的寬度。
又,詳細內容雖於後述,但在本實施形態中,為了更有效地得到電磁力產生裝置170所帶來的鑄片3之品質提升的效果,是以Z軸方向的長度盡可能地設得較長的方式來構成鑄模110。一般而言,已知在鑄模110內之熔鋼2的凝固進行時,因為凝固收縮,鑄片3會從鑄模110的內壁分離,而有該鑄片3的冷卻變得不充分的情形。因 此,鑄模110的長度從熔鋼液面算起,最長1000mm左右也就是極限了。考慮到如此的情況,在本實施形態中,是以具有比該1000mm大得多的Z軸方向之長度的方式,來形成該鑄模板111、112,以使從熔鋼液面到鑄模板111、112的下端為止的長度成為1000mm左右。
支承板121、122是由例如不鏽鋼所構成,為了補強鑄模110的鑄模板111、112,而設置成覆蓋該鑄模板111、112的外側面。以下,為了區別,亦將設置於長邊鑄模板111的外側面的支承板121叫作長邊側支承板121,且將設置於短邊鑄模板112的外側面的支承板122叫作短邊側支承板122。
由於電磁力產生裝置170是隔著長邊側支承板121對鑄模110內的熔鋼2賦予電磁力,因此至少長邊側支承板121可藉由非磁性體(例如非磁性的不鏽鋼等)形成。但,在長邊側支承板121之與後述電磁制動器裝置160的鐵芯(芯材)162(以下也稱作電磁制動器芯材162)的端部164相向的部位,為了確保電磁制動器裝置160之磁束密度,而埋設有磁性體的軟鐵124。
於長邊側支承板121,進一步設置有朝向與該長邊側支承板121垂直的方向(亦即Y軸方向)延伸的一對支承板123。如圖3~圖5所示,電磁力產生裝置170設置在前述一對支承板123之間。就像這樣,支承板123可規定電磁力產生裝置170之寬度(亦即X軸方向的長度)及X軸方向之設置位置。換言之,是以電磁力產生裝置170可對鑄 模110內之熔鋼2的期望之範圍賦予電磁力的方式,來決定支承板123的安裝位置。以下,為了區別,亦將該支承板123叫作寬度方向支承板123。寬度方向支承板123亦與支承板121、122同樣地由例如不鏽鋼所形成。
水箱130、140將用以冷卻鑄模110的冷卻水進行蓄水。在本實施形態中,如圖示,將一邊的水箱130設置於從長邊鑄模板111的上端離開規定之距離的區域,將另一邊的水箱140設置於從長邊鑄模板111的下端離開規定之距離的區域。藉由像這樣將水箱130、140分別設置在鑄模110的上部及下部,可在該水箱130、140之間確保用以設置電磁力產生裝置170的空間。以下,為了區別,亦將設置於長邊鑄模板111上部的水箱130叫作上部水箱130,且將設置於長邊鑄模板111下部的水箱140叫作下部水箱140。
在長邊鑄模板111的內部、或長邊鑄模板111與長邊側支承板121之間,形成有供冷卻水通過的水路(未圖示)。該水路是延伸設置到水箱130、140為止。藉由未圖示的泵,冷卻水從一邊的水箱130、140朝向另一邊的水箱130、140(例如,下部水箱140朝向上部水箱130)通過該水路而流動。藉此,長邊鑄模板111被冷卻,且鑄模110內部的熔鋼2隔著該長邊鑄模板111被冷卻。再者,雖省略圖示,但對短邊鑄模板112也是同樣地設置有水箱及水路,該短邊鑄模板112藉由冷卻水流動而被冷卻。
電磁力產生裝置170具備有電磁攪拌裝置 150及電磁制動器裝置160。如圖所示,電磁攪拌裝置150及電磁制動器裝置160是設置於水箱130、140之間的空間。在該空間內,電磁攪拌裝置150設置於上方,電磁制動器裝置160設置於下方。再者,針對電磁攪拌裝置150及電磁制動器裝置160的高度、以及電磁攪拌裝置150及電磁制動器裝置160在Z軸方向上的設置位置,於下述(2-2.電磁力產生裝置之設置位置的詳細)中詳細說明。
電磁攪拌裝置150藉由對鑄模110內的熔鋼2施加動磁場,而對該熔鋼2賦予電磁力。電磁攪拌裝置150是以如下方式驅動:將本身所設置之長邊鑄模板111的寬度方向(亦即X軸方向)之電磁力賦予熔鋼2。於圖4,以粗線箭頭模擬地顯示藉由電磁攪拌裝置150對熔鋼2賦予的電磁力之方向。在此,設置於省略圖示之長邊鑄模板(亦即,與圖示之長邊鑄模板111相向的另一邊的長邊鑄模板)的電磁攪拌裝置150是以如下方式驅動:沿著其本身所設置之長邊鑄模板111的寬度方向,賦予與圖示方向反方向的電磁力。像這樣,一對電磁攪拌裝置150以在水平面內產生迴旋流的方式被驅動。根據電磁攪拌裝置150,藉由生成如此的迴旋流,凝固殼界面中之熔鋼2會流動,可得到往凝固殼3a之氣泡或介在物的捕捉受到抑制的洗淨效果,可使鑄片3的表面品質優化。
說明電磁攪拌裝置150之詳細的構成。電磁攪拌裝置150是由以下構件所構成:殼體151、收納於該殼體151內的鐵芯(芯材)152(以下也叫作電磁攪拌芯材 152)、對該電磁攪拌芯材152捲繞導線而構成的複數個線圈153。
殼體151為具有大致長方體形狀之中空的構件。殼體151的大小可依如下條件適當地決定:可藉由電磁攪拌裝置150對熔鋼2之期望的範圍賦予電磁力,亦即,設置於內部的線圈153可相對於熔鋼2配置於適切的位置。例如,殼體151之X軸方向的寬度W4,亦即電磁攪拌裝置150之X軸方向的寬度W4,是以在X軸方向的任一位置上都能對鑄模110內的熔鋼2賦予電磁力的方式,決定成比鑄片3的寬度更大。例如,W4為1800mm~2500mm左右。又,在電磁攪拌裝置150,由於是從線圈153通過殼體151的側壁而對熔鋼2賦予電磁力,因此作為殼體151的材料,可使用例如非磁性體不鏽鋼、或FRP(Fiber Reinforced Plastics,纖維強化塑膠)等之非磁性且可確保強度的構件。
電磁攪拌芯材152為具有大致長方體形狀之實心的構件,且在殼體151內是設置成其長邊方向與長邊鑄模板111的寬度方向(亦即X軸方向)呈大致平行。電磁攪拌芯材152例如是藉由將電磁鋼板加以積層而形成。
藉由以X軸方向為中心軸對電磁攪拌芯材152捲繞導線而形成線圈153。作為該導線,可使用例如截面為10mm×10mm,且內部具有直徑5mm左右的冷卻水路之銅製導線。施加電流時,是使用該冷卻水路來冷卻該導線。該導線是藉由絕緣紙等事先對其表層進行絕緣處理, 而可層狀地捲繞。例如,一個線圈153是藉由將該導線捲繞2~4層左右而形成的。具有同樣構成的線圈153以具有規定之間隔的方式朝X軸方向並排設置。
線圈153分別連接於未圖示的交流電源。藉由該交流電源,而以相鄰之線圈153的電流之相位適當地偏移的方式對該線圈153施加電流,藉此,可對熔鋼2賦予像是產生迴旋流的電磁力。再者,該交流電源之驅動可藉由以處理器等所構成的控制裝置(未圖示)按照規定的程式動作而適當地控制。藉由該控制裝置,可適當地控制對各個線圈153施加的電流量、或對各個線圈153施加電流的時機等,而可控制欲給予熔鋼2的電磁力的強度。作為驅動前述交流電源的方法,由於可適用一般的電磁攪拌裝置所使用的各種公知的方法,所以此處省略其詳細的說明。
電磁攪拌芯材152之X軸方向的寬度W1可依如下條件適當地決定:可藉由電磁攪拌裝置150對熔鋼2之期望的範圍賦予電磁力,亦即,線圈153可相對於熔鋼2配置於適切的位置。例如,W1為1800mm左右。
電磁制動器裝置160藉由對鑄模110內的熔鋼2施加靜磁場,而對該熔鋼2賦予電磁力。在此,圖6是用以說明藉由電磁制動器裝置160對熔鋼2賦予之電磁力的方向的圖。在圖6中是概略地圖示鑄模110近旁的構成之X-Z平面上的截面。又,在圖6中是以虛線模擬地顯示電磁攪拌芯材152及後述之電磁制動器芯材162之端部164的位置。
如圖6所示,可在浸漬噴嘴6之相向於短邊鑄模板112的位置設置一對吐出孔。電磁制動器裝置160是以對熔鋼2賦予電磁力的方式驅動,而前述電磁力是抑制來自浸漬噴嘴6之該吐出孔的該熔鋼2之流動(吐出流)的方向之電磁力。於圖6,以細線箭頭模擬地顯示吐出流的方向,並且以粗線箭頭模擬地顯示藉由電磁制動器裝置160對熔鋼2賦予之電磁力的方向。根據電磁制動器裝置160,藉由產生抑制如此的吐出流之方向的電磁力,可抑制下降流,得到促進氣泡或介在物之上浮分離的效果,且使鑄片3的內質優化。
針對電磁制動器裝置160之詳細的構成加以說明。電磁制動器裝置160是由以下構件所構成:殼體161、其一部分收納於該殼體161內的電磁制動器芯材162、及對該電磁制動器芯材162之在殼體161內的部位捲繞導線而構成的複數個線圈163。
殼體161為具有大致長方體形狀之中空的構件。殼體161的大小可依以下條件適當地決定:可藉由電磁制動器裝置160對熔鋼2之期望的範圍賦予電磁力,亦即,設置於內部的線圈163可相對於熔鋼2配置於適切的位置。例如,殼體161之X軸方向的寬度W4,亦即電磁制動器裝置160之X軸方向的寬度W4,是以可在X軸方向之期望的位置上對鑄模110內的熔鋼2賦予電磁力的方式,決定成比鑄片3的寬度更大。在圖示的例子中,殼體161的寬度W4是與殼體151的寬度W4大致相同。但,本實施形態並 不限定於如此的例子,電磁攪拌裝置150的寬度與電磁制動器裝置160的寬度亦可為不同。
又,在電磁制動器裝置160中,由於是從線圈163通過殼體161的側壁而對熔鋼2賦予電磁力,因此殼體161與殼體151同樣,可藉由例如非磁性體不鏽鋼或FRP等之非磁性且可確保強度的材料而形成。
電磁制動器芯材162為具有大致長方體形狀之實心的構件,且是由設置有線圈163的一對端部164、及同樣地為具有大致長方體形狀之實心的構件且連結該一對端部164的連結部165所構成。電磁制動器芯材162構成為設置有一對端部164,前述一對端部164是從連結部165往Y軸方向且朝向長邊鑄模板111的方向突出。供一對端部164設置的位置,可設置於欲對熔鋼2賦予電磁力的位置,亦即通過如下區域的位置:來自浸漬噴嘴6之一對吐出孔的吐出流分別被線圈163施加磁場的區域(亦參考圖6)。電磁制動器芯材162例如是藉由將電磁鋼板加以積層而形成。
藉由以Y軸方向為中心軸對電磁制動器芯材162的端部164捲繞導線,而形成線圈163。該線圈163的構造與上述電磁攪拌裝置150的線圈153相同。關於各端部164,分別是複數個線圈163以具有規定之間隔的方式朝Y軸方向並排設置。
線圈163分別連接於未圖示的直流電源。藉由該直流電源對各線圈163施加直流電流,可藉此對熔鋼2 賦予減弱吐出流之流勢的電磁力。再者,該直流電源之驅動可藉由處理器等所構成的控制裝置(未圖示)按照規定的程式動作而適當地控制。藉由該控制裝置,可適當地控制對各線圈163施加的電流量等,而可控制欲給予熔鋼2的電磁力的強度。作為驅動前述直流電源的方法,由於可適用一般的電磁制動器裝置所使用的各種公知的方法,所以此處省略其詳細的說明。
電磁制動器芯材162之X軸方向的寬度W0、端部164之X軸方向的寬度W2、及X軸方向上之端部164間的距離W3,可依如下條件適當地決定:可藉由電磁攪拌裝置150對熔鋼2之期望的範圍賦予電磁力,亦即,線圈163可相對於熔鋼2配置於適切的位置。例如,W0為1600mm左右,W2為500mm左右,W3為350mm左右。
在此,例如像上述專利文獻1所記載的技術,作為電磁制動器裝置,存在有具有單獨的磁極、且在鑄模寬度方向上產生一樣的磁場者。在具有如此構成的電磁制動器裝置中,由於在寬度方向上賦予一樣的電磁力,因此無法詳細地控制電磁力被賦予的範圍,而有適切的鑄造條件受到限制的缺點。
相對於此,在本實施形態中,如上述,是以具有2個端部164的方式,亦即以具有2個磁極的方式來構成電磁制動器裝置160。換言之,在本實施形態中,由於具有2個磁極,電磁制動器裝置160是構成為分割制動器。根據如此的構成,例如在驅動電磁制動器裝置160時,該 等2個磁極會分別作為N極及S極發揮功能,且可藉由上述控制裝置來控制對線圈163之電流的施加,而在鑄模110的寬度方向(亦即X軸方向)之大致中心近旁的區域使磁束密度大致成為零。此磁束密度大致為零的區域是幾乎不對熔鋼2賦予電磁力的區域,且是可確保從電磁制動器裝置160所引起之制動力中釋放的所謂熔鋼流之流出(runout)的區域。藉由確保如此的區域,可對應於範圍更廣的鑄造條件。
再者,在圖示之構成例中,電磁制動器裝置160雖構成為具有2個磁極,但本實施形態並不限定於如此的例子。電磁制動器裝置160亦可構成為具有3個以上的端部164,且具有3個以上的磁極。在此情況下,藉由分別適當地調整施加於各端部164之線圈163的電流量,可更詳細地控制電磁制動器之對熔鋼2的電磁力之施加。
(2-2.電磁力產生裝置之設置位置的詳細)
針對電磁攪拌裝置150及電磁制動器裝置160的高度,以及電磁攪拌裝置150及電磁制動器裝置160之Z軸方向上的設置位置加以說明。
於電磁攪拌裝置150及電磁制動器裝置160,可以說電磁攪拌芯材152及電磁制動器芯材162各自的高度愈大,賦予電磁力的性能愈高。例如,電磁制動器裝置160的性能是依以下項目而定:電磁制動器芯材162的端部164之在X-Z平面上的截面積(Z軸方向的高度H2×X軸方向的寬度W2)、施加之直流電流的值、及線圈 163的捲繞數。因此,在電磁攪拌裝置150及電磁制動器裝置160一起設置於鑄模110的情況下,在有限的設置空間中,如何設定電磁攪拌芯材152及電磁制動器芯材162的設置位置,更詳細而言是如何設定電磁攪拌芯材152及電磁制動器芯材162的高度之比值,從更有效地發揮各裝置之性能以提升鑄片3之品質的觀點來看,是非常重要的。
在此,如同上述專利文獻1、2亦揭示過的,以往曾經提案在連續鑄造中使用電磁攪拌裝置及電磁制動器裝置雙方的方法。然而實際上,就算組合電磁攪拌裝置及電磁制動器裝置雙方,比起分別單獨地使用電磁攪拌裝置或電磁制動器裝置的情況,鑄片的品質更惡化的情況也不少。這是因為其並非單純地設置雙方裝置,即可簡單地得到雙方裝置的優點者,根據各裝置的構成或設置位置等,有可能發生互相消除各自之優點的情況。於上述專利文獻1、2,亦未明示其具體的裝置構成,且亦未明示兩裝置之鐵芯(芯材)的高度。也就是說,在以往的方法中,稱不上是可藉由設置電磁攪拌裝置及電磁制動器裝置雙方而充分地得到鑄片之品質提升的效果。
相對於此,在本實施形態中,如以下所說明的,規定了電磁攪拌芯材152及電磁制動器芯材162之適切的高度之比值,即使高速鑄造也能確保鑄片3的品質。藉此,可確保鑄片3的品質並且提升生產性。
在此,連續鑄造之鑄造速度雖根據鑄片尺寸或品種而大幅相異,但一般在0.6~2.0m/min左右,超過 1.6m/min的連續鑄造則叫作高速鑄造。以往,針對要求高品質的汽車用外部材料等,在鑄造速度超過1.6m/min這種高速鑄造中,由於難以確保品質,所以一般的鑄造速度在1.4m/min左右。
因此,有鑑於上述情況,在本實施形態中,將例如以下情形設定成具體的目標:即使在鑄造速度超過1.6m/min的高速鑄造下,仍確保鑄片3的品質與以往以較慢的鑄造速度來進行連續鑄造時相同或更高。以下,針對可滿足該目標之本實施形態的電磁攪拌芯材152及電磁制動器芯材162之高度的比值,詳細地加以說明。
如上述,在本實施形態中,為了確保在鑄模110之Z軸方向的中央部設置電磁攪拌裝置150及電磁制動器裝置160的空間,而將水箱130、140分別配置在鑄模110的上部及下部。在此,電磁攪拌芯材152位於比熔鋼液面更上方也無法得到其效果。因此,電磁攪拌芯材152應設置得比熔鋼液面更下方。又,為了對吐出流有效地施加磁場,電磁制動器芯材162宜位於浸漬噴嘴6的吐出孔附近。如上述,在配置了水箱130、140的情況下,由於浸漬噴嘴6的吐出孔成為比下部水箱140位於更上方,所以電磁制動器芯材162也應該設置得比下部水箱140更上方。因此,可藉由設置電磁攪拌芯材152及電磁制動器芯材162而得到效果的空間(以下也叫作有效空間)之高度H0,是從熔鋼液面到下部水箱140的上端為止的高度(參考圖2)。
在本實施形態中,為了最有效地活用該有效 空間,而將電磁攪拌芯材152設置成該電磁攪拌芯材152的上端與熔鋼液面成為大致相同的高度。此時,令電磁攪拌裝置150之電磁攪拌芯材152的高度為H1,令殼體151的高度為H3,令電磁制動器裝置160之電磁制動器芯材162的高度為H2,令殼體161的高度為H4,下述數式(1)成立。
Figure 108106580-A0305-02-0029-6
換言之,必須滿足上述數式(1),並且規定電磁攪拌芯材152的高度H1與電磁制動器芯材162的高度H2之比值H1/H2(以下又叫作芯材高度比值H1/H2)。以下,針對高度H0~H4分別加以說明。
(關於有效空間的高度H0)
如上述,於電磁攪拌裝置150及電磁制動器裝置160,可以說電磁攪拌芯材152及電磁制動器芯材162各自的高度愈大,賦予電磁力的性能愈高。因此,在本實施形態中是將鑄模設備10構成為有效空間的高度H0盡可能地設得較大,以使兩裝置可更發揮其性能。具體而言,要將有效空間的高度H0設得較大,只要將鑄模110之Z軸方向的長度設得較大即可。另一方面,如上述,考慮到鑄片3的冷卻性,從熔鋼液面到鑄模110的下端為止的長度,宜在1000mm以下左右。因此,在本實施形態中,為了確保鑄 片3的冷卻性,並且盡可能地將有效空間的高度H0設得較大,鑄模110是形成為從熔鋼液面到鑄模110的下端為止成為1000mm左右。
在此,若下部水箱140是構成為僅將可獲得充分之冷卻能力的水量進行蓄水,根據過去的作業實績等,該下部水箱140的高度至少需要200mm左右。因此,有效空間的高度H0在800mm以下左右。
(關於電磁攪拌裝置及電磁制動器裝置之殼體的高度H3、H4)
如上述,電磁攪拌裝置150的線圈153是藉由對電磁攪拌芯材152捲繞2~4層截面尺寸為10mm×10mm左右的導線而形成。因此,包含線圈153在內之電磁攪拌芯材152的高度成為H1+80mm以上左右。考慮到殼體151的內壁與電磁攪拌芯材152及線圈153之間的空間,殼體151的高度H3成為H1+200mm以上左右。
電磁制動器裝置160亦同樣,包含線圈163在內之電磁制動器芯材162的高度成為H2+80mm以上左右。考慮到殼體161的內壁與電磁制動器芯材162及線圈163之間的空間,殼體161的高度H4成為H2+200mm以上左右。
(H1+H2可取的範圍)
將上述H0、H3、H4之值代入上述數式(1),可得到下述數式(2)。
[數4]
Figure 108106580-A0305-02-0031-7
也就是說,電磁攪拌芯材152及電磁制動器芯材162必須構成為其高度的和H1+H2成為500mm以下左右。以下,對滿足上述數式(2)並且可充分地得到提升鑄片3之品質的效果之適切的芯材高度比值H1/H2進行檢討。
(關於芯材高度比值H1/H2)
在本實施形態中,是藉由規定可更確實地得到電磁攪拌的效果之電磁攪拌芯材152的高度H1的範圍,來設定芯材高度比值H1/H2之適切的範圍。
如上述,在電磁攪拌中,藉由讓凝固殼界面中之熔鋼2流動,可得到往凝固殼3a之雜質的捕捉受到抑制的洗淨效果,可使鑄片3的表面品質優化。另一方面,隨著愈朝向鑄模110的下方,在鑄模110內之凝固殼3a的厚度會愈來愈厚。因為電磁攪拌的效果會影響到凝固殼3a之內側的未凝固部3b,所以電磁攪拌芯材152的高度H1,可根據必須確保鑄片3的表面品質到何種程度的厚度為止來決定。
在此,在表面品質嚴格的品種中,大多會實施將鑄造後的鑄片3之表層磨削數公釐的製程。此磨削深度為2mm~5mm左右。因此,以這種要求嚴格之表面品質的品種而言,即使在鑄模110內之凝固殼3a的厚度比2mm~5mm更小的範圍內進行電磁攪拌,藉由前述電磁攪 拌而減低雜質之鑄片3的表層也會因為之後的磨削製程而被去除。換言之,若不在鑄模110內之凝固殼3a的厚度成為2mm~5mm以上的範圍內進行電磁攪拌,就無法獲得提升鑄片3之表面品質的效果。
凝固殼3a是從熔鋼液面開始逐漸地成長,已知其厚度如下述數式(3)所示。在此,δ是凝固殼3a的厚度(m),k是依冷卻能力而定的常數,x是從熔鋼液面算起的距離(m),Vc是鑄造速度(m/min)。
Figure 108106580-A0305-02-0032-8
從上述數式(3)求出凝固殼3a的厚度成為4mm或5mm時,鑄造速度(m/min)與從熔鋼液面算起的距離(mm)之間的關係。圖7顯示其結果。圖7是顯示當凝固殼3a的厚度成為4mm或5mm時,鑄造速度(m/min)與從熔鋼液面算起的距離(mm)之間的關係的圖。在圖7,以鑄造速度為橫軸,以從熔鋼液面算起的距離為縱軸,標出當凝固殼3a的厚度成為4mm時、及凝固殼3a的厚度成為5mm時兩者的關係。再者,在得到圖7所示的結果之際的計算中,作為對應於一般鑄模的值,設成k=17。
例如,從圖7所示之結果,已知只要在磨削厚度比4mm小、凝固殼3a的厚度至4mm為止的範圍中電磁攪拌熔鋼2即可的情況下,若令電磁攪拌芯材152的高度 H1為200mm,則在鑄造速度3.5m/min以下的連續鑄造中可得到電磁攪拌的效果。已知只要在磨削厚度比5mm小、凝固殼3a的厚度至5mm為止的範圍中電磁攪拌熔鋼2即可的情況下,若令電磁攪拌芯材152的高度H1為300mm,則在鑄造速度3.5m/min以下的連續鑄造中可得到電磁攪拌的效果。再者,此鑄造速度所謂的「3.5m/min」之值,在一般的連續鑄造機中,是對應於作業上及設備上可能的最大鑄造速度。
在此,如上述,在本實施形態中,是以例如以下情形為目標:即使在鑄造速度超過1.6m/min的高速鑄造下,仍確保鑄片3的品質與以往以較慢的鑄造速度來進行連續鑄造時相同。當鑄造速度超過1.6m/min時,若凝固殼3a的厚度即使成為5mm仍欲得到電磁攪拌的效果,從圖7可知,電磁攪拌芯材152的高度H1必須設成至少約150mm以上。
從以上檢討結果,在本實施形態中,例如是將電磁攪拌芯材152構成為該電磁攪拌芯材152的高度H1成為約150mm以上,藉以在超過比較高速的鑄造速度1.6m/min之連續鑄造中,凝固殼3a的厚度即使成為5mm仍可得到電磁攪拌的效果。
關於電磁制動器芯材162的高度H2,如上述,該高度H2愈大則電磁制動器裝置160的性能愈高。因此,從上述數式(2)來看,在H1+H2=500mm的情況下,只要求出對應於上述電磁攪拌芯材152之高度H1的範圍之 H2的範圍即可。亦即,電磁制動器芯材162的高度H2為約350mm。
從該等電磁攪拌芯材152的高度H1及電磁制動器芯材162的高度H2之值來看,本實施形態之芯材高度比值H1/H2例如為下述數式(4)。
Figure 108106580-A0305-02-0034-9
總括而言,在本實施形態中,在將目標放在即使鑄造速度超過1.6m/min時仍確保鑄片3的品質與以往以較慢的鑄造速度來進行連續鑄造時相同或更高的情況下,例如是以電磁攪拌芯材152的高度H1與電磁制動器芯材162的高度H2滿足上述數式(4)的方式,來構成該電磁攪拌芯材152及該電磁制動器芯材162。
再者,芯材高度比值H1/H2之理想的上限值,可藉由電磁制動器芯材162的高度H2可取的最小值來規定。雖然電磁制動器芯材162的高度H2愈小,芯材高度比值H1/H2愈大,但電磁制動器芯材162的高度H2若太小,電磁制動器就無法有效地發揮功能,因而變得無法得到電磁制動器所帶來的提升鑄片3之品質、尤其是內質的效果。可充分地發揮電磁制動器之效果的電磁制動器芯材162之高度H2的最小值,是因應於鑄片尺寸或品種、鑄造速度等的鑄造條件而不同。因此,電磁制動器芯材162之 高度H2的最小值,亦即芯材高度比值H1/H2的上限值,例如下述實施例1~3所示,可根據模擬了實際作業中之鑄造條件的數值分析模擬及實機測試等來規定。
以上,已針對本實施形態之鑄模設備10的構成加以說明。再者,在以上說明中,得到上述數式(4)所示的關係性之際,是從上述數式(2)以H1+H2=500mm來得到該等的關係性。但,本實施形態並不限定於如此的例子。如上述,為了更發揮裝置的性能,H1+H2宜盡可能愈大愈好,所以在上述例中是設成H1+H2=500mm。另一方面,還可想到如下情況:考慮到例如設置水箱130、140、電磁攪拌裝置150及電磁制動器裝置160時的作業性等,在Z軸方向上,該等構件之間宜存在有間隙。像這種更重視作業性等其他要素的情況下,不必非得是H1+H2=500mm,亦可將H1+H2設成例如H1+H2=450mm等,以比500mm更小的值來設定芯材高度比值H1/H2。
又,在以上說明中,當鑄造速度超過1.6m/min時,作為凝固殼3a的厚度即使成為5mm仍可得到電磁攪拌的效果之條件,從圖7求出了電磁攪拌芯材152之高度H1的最小值約150mm,並將此時的芯材高度比值H1/H2之值0.43當作該芯材高度比值H1/H2的下限值。但,本實施形態並不限定於如此的例子。在目標鑄造速度設定得更快的情況下,亦可變化芯材高度比值H1/H2的下限值。也就是說,在實際作業中,在作為目標的鑄造速度下,只要從圖7求出凝固殼3a的厚度即使成為5mm仍可得 到電磁攪拌的效果之電磁攪拌芯材152的高度H1的最小值,並將對應於前述H1之值的芯材高度比值H1/H2當作芯材高度比值H1/H2的下限值即可。
作為一例,嘗試求出以下述情形為目標時芯材高度比值H1/H2的條件:考慮作業性等而設成H1+H2=450mm,且即使在更快的鑄造速度2.0m/min下,仍確保鑄片3的品質與以往以較低速的鑄造速度來進行連續鑄造時相同或更高。首先,從圖7求出當鑄造速度為2.0m/min以上時,凝固殼3a的厚度即使成為5mm仍得到電磁攪拌的效果所需的條件。參考圖7,當鑄造速度為2.0m/min時,在從熔鋼液面算起的距離為約175mm的位置,凝固殼的厚度成為5mm。因此,若將裕度(margin)考慮在內,凝固殼3a的厚度即使成為5mm仍可得到電磁攪拌的效果之電磁攪拌芯材152的高度H1的最小值,可求出是200mm左右。此時,由於從H1+H2=450mm可知H2=250mm,因此對芯材高度比值H1/H2所要求的條件會以下述數式(5)表示。
Figure 108106580-A0305-02-0036-10
也就是說,在本實施形態中,當以鑄造速度在2.0m/min下仍可確保鑄片3的品質與以往以較低速的鑄造速度來進行連續鑄造時相同或更高之情況為目標時,只要將電磁攪拌芯材152及電磁制動器芯材162構成為至少 滿足上述數式(5)即可。再者,關於芯材高度比值H1/H2的上限值,如上述,只要根據模擬了實際作業中之鑄造條件的數值分析模擬及實機測試等來規定即可。
像這樣,在本實施形態中,即使增加鑄造速度仍可確保鑄片的品質(表面品質及內質)與以往之較低速下的連續鑄造相同或更高之芯材高度比值H1/H2的範圍,可因應於作為其目標之鑄造速度的具體之值、及H1+H2的具體之值而變化。因此,在設定芯材高度比值H1/H2之適切的範圍之際,只要考慮實際作業時的鑄造條件或連續鑄造機1的構成等,適當地設定作為目標的鑄造速度及H1+H2之值,且藉由以上說明過的方法適當地求出那個時候的芯材高度比值H1/H2之適切的範圍即可。
[實施例1]
為了確認藉由適用本發明,即使鑄造速度增加亦可確保鑄片的表面品質,而進行了數值分析模擬。在該數值分析模擬中,做成模仿已參考圖2~圖5說明之設置有本實施形態之電磁力產生裝置170的鑄模設備10之計算模型,並計算連續鑄造中之熔鋼內的該熔鋼及Ar氣體氣泡的舉動。數值分析模擬的條件如下。
(數值分析模擬的條件)
電磁攪拌裝置的電磁攪拌芯材的寬度W1:1900mm
電磁攪拌裝置的電流施加條件:680A,3.0Hz
電磁攪拌裝置的線圈的捲繞數:20圈
電磁制動器裝置的電磁制動器芯材的寬度W2: 500mm
電磁制動器裝置的電磁制動器芯材間的距離W3:350mm
電磁制動器裝置的電流施加條件:900A
電磁制動器裝置的線圈的捲繞數:120圈
鑄造速度:1.4m/min或2.0m/min
鑄模寬度:1600mm
鑄模厚度:250mm
Ar氣體的吹氣量:5NL/min
在表面品質之評價中,是在上述的條件下進行流體模擬,並計算連續鑄造機之熔鋼中的熔鋼之流速、熔鋼之凝固速度、及Ar氣體氣泡之分布,且評價被凝固殼捕捉的Ar氣體氣泡。具體而言,是藉由下述數式(6)所示的函數來算出Ar氣體氣泡被凝固殼捕捉的機率Pg。在此,C0為常數,U為凝固界面中之熔鋼流速。
[數8]P g =exp(-C 0 U)……(6)
又,使用下述數式(7)來算出此時的Ar氣體氣泡被凝固殼捕捉的速度ηg。在此,ng為凝固殼界面中之Ar氣體氣泡的個數密度,Rs為凝固殼的凝固速度。
[數9]η g =n g R s P g ……(7)
接著,使用下述數式(8)來算出凝固殼中的Ar氣體氣泡的個數密度Sg。在此,Us為凝固殼之往鑄片的拉出方向移動的速度。
Figure 108106580-A0305-02-0039-11
將從上述數式(8)算出之凝固殼內的Ar氣體氣泡的個數密度Sg進行時間平均,算出從鑄片表層算起4mm的範圍內所捕捉到的直徑1mm的Ar氣體氣泡的個數,來作為氣孔(pin hole)指數。氣孔指數愈小,可以說鑄片的表面品質愈高。再者,關於以上所說明之依數值分析模擬所進行的鑄片表面品質之評價方法的詳細,可參考本案申請人的先前申請案,亦即日本特開第2015-157309號公報。
再者,在表面品質之評價中,針對電磁攪拌芯材的高度H1及電磁制動器芯材的高度H2,是依據上述數式(2)所示的關係性,而以H1+H2=500mm的方式使用下述表1所示的8種組合進行模擬。
Figure 108106580-A0305-02-0039-12
又,為了作比較,亦評價了僅設置電磁攪拌裝置時之鑄片的表面品質,來作為以往之連續鑄造方法的 一例。作為評價對象的以往之連續鑄造方法,是對應於使用在圖2~圖5所示之鑄模設備10中取走電磁制動器裝置160者之連續鑄造方法。又,在關於該以往之連續鑄造方法的計算中,電磁攪拌芯材的高度H1是固定成250mm。關於以往之連續鑄造方法,除了未設置電磁制動器裝置160及將電磁攪拌芯材的高度H1固定成250mm以外,是藉由與以上說明過的計算方法同樣的方法,來計算氣孔指數。
針對表面品質的數值分析模擬結果顯示於圖8及圖9。圖8是顯示藉由數值分析模擬所得到的,當鑄造速度為1.4m/min時之芯材高度比值H1/H2與氣孔指數之間的關係的圖表。圖9是顯示藉由數值分析模擬所得到的,當鑄造速度為2.0m/min時之芯材高度比值H1/H2與氣孔指數之間的關係的圖表。圖8及圖9中,以芯材高度比值H1/H2為橫軸,以氣孔指數為縱軸,標出兩者的關係。又,圖8及圖9中,將上述以往之連續鑄造方法中的氣孔指數的值,以平行於橫軸的虛線直線來顯示。
參考圖8,當鑄造速度為1.4m/min時,以往之連續鑄造方法中的氣孔指數為40左右。另一方面,在本實施形態之連續鑄造方法中,當芯材高度比值H1/H2為0.82以上時,可得到與以往之連續鑄造方法相同或更低的氣孔指數。尤其是,若芯材高度比值H1/H2成為1.0以上,氣孔指數比以往之連續鑄造方法降得更低。且,氣孔指數是芯材高度比值H1/H2之值愈大就愈降低。亦即,可想成是電磁攪拌芯材152的高度H1相對於電磁制動器芯材162 的高度H2變得愈大,氣孔指數愈降低,且鑄片3的表面品質優化。
參考圖9,當鑄造速度增加至2.0m/min時,以往之連續鑄造方法中的氣孔指數會惡化到80左右。另一方面,在本實施形態之連續鑄造方法中,當芯材高度比值H1/H2為約0.70~約2.70時,氣孔指數降低至與以往之連續鑄造方法相同或更低。尤其是,已知當芯材高度比值H1/H2為約1.0~約1.5時,氣孔指數減低至40左右,且即使是在鑄造速度增加至2.0m/min的情況下,也能得到與藉由以往之連續鑄造方法以鑄造速度1.4m/min來進行連續鑄造時相同的表面品質。
從以上的結果,已知在對應於上述數值分析模擬條件之鑄造條件下,若令芯材高度比值H1/H2為約0.70~約2.70之間的任一個值,至少在鑄造速度為1.4m/min~2.0m/min的連續鑄造中,可確保與以往之連續鑄造方法相同或更高的鑄片的表面品質。尤其是,已知若令芯材高度比值H1/H2為約1.0~約1.5,即使在鑄造速度增加至2.0m/min的情況下,仍可確保與以往之較低速下的(具體而言為鑄造速度1.4m/min)連續鑄造方法相同或更高的鑄片的表面品質。
[實施例2]
為了確認藉由適用本發明,即使鑄造速度增加亦可確保鑄片的內質,而進行了數值分析模擬。關於內質,在與上述表面品質評價時同樣的模擬方法中,並非評價Ar氣 泡,而是評價鑄片之代表性的雜質介在物即鋁殘存於該鑄片中的值。具體而言,假定是垂直彎曲型的連續鑄造機,藉由模擬來分析連續鑄造中之鋁粒子的舉動,把沉降到比其垂直部更下方的鋁粒子視為直接殘留於鑄片,算出鑄片之規定體積中的鋁粒子的個數來作為內質指數。此時,令連續鑄造機的垂直部長度為3m。又,令鋁粒子的直徑為0.4mm,令鋁粒子的比重為3990kg/m3。內質指數愈小,可以說鑄片的內質愈高。
再者,在內質之評價中,針對電磁攪拌芯材的高度H1及電磁制動器芯材的高度H2,是以上述數式(2)所示的關係性為基礎,而以成為H1+H2=450mm的方式,使用下述表2所示的4種組合來進行模擬。
Figure 108106580-A0305-02-0042-14
又,針對內質,也是為了作比較而評價了僅設置電磁攪拌裝置時的內質,來作為以往之連續鑄造方法的一例。作為評價對象的以往之連續鑄造方法,與上述表面品質評價時同樣,是使用在圖2~圖5所示之本實施形態的鑄模設備10中取走電磁制動器裝置160者之連續鑄造方法。又,電磁攪拌裝置的電磁攪拌芯材高度H1是固定成250mm。
針對內質的數值分析模擬結果顯示於圖10。圖10是顯示藉由數值分析模擬所得到的鑄造速度與內 質指數之間的關係的圖表。在圖10中,以鑄造速度為橫軸,以內質指數為縱軸,標出對應於上述表2所示各芯材高度比值H1/H2之值的鑄造速度及內質指數的關係。又,在圖10中,一併標出上述以往之連續鑄造方法的結果。
參考圖10,在以往之連續鑄造方法中,一般的鑄造速度1.4m/min時的內質指數約為40,該內質指數隨著鑄造速度增加而顯著地增加(亦即隨著鑄造速度增加,鑄片的內質顯著地惡化)。
另一方面,在本實施形態之連續鑄造方法中,當芯材高度比值H1/H2為1.5以下時,即使鑄造速度增加至2.0m/min左右,內質指數也能抑制得比40小,可得到相較於以往之連續鑄造方法中鑄造速度為1.4m/min的情況更良好的內質。即使是芯材高度比值H1/H2為2.0的情況,在鑄造速度為2.4m/min時,內質指數約為60,仍可確保與以往之連續鑄造方法中鑄造速度為1.6m/min的情況相同的內質。從以上的結果來看,若想使鑄造速度為高速且還能確保與以往相同或更低的鑄片之內質,只要令芯材高度比值H1/H2為2.0以下,更理想的是1.5以下即可。
從以上的結果,已知在對應於上述數值分析模擬條件的鑄造條件下,若令芯材高度比值H1/H2為約1.5以下的任一個值,在鑄造速度2.0m/min的連續鑄造中,可確保與鑄造速度1.4m/min下之以往的連續鑄造方法相同或更低的鑄片之內質。又,已知若令芯材高度比值H1/H2為約2.0以下的任一個值,在鑄造速度2.4m/min的連續鑄 造中,可確保與鑄造速度1.6m/min下之以往的連續鑄造方法相同或更低的鑄片之內質。
[實施例3]
為了進一步確認本發明的效果而進行實機測試。在該實機測試中,將參考圖2~圖5所說明的本實施形態之電磁力產生裝置170設置於實際在作業中使用的連續鑄造機,並使用該連續鑄造機,一邊多樣地變化芯材高度比值H1/H2及鑄造速度,一邊實際地進行連續鑄造。接著,藉由目視及超音波檢驗,分別調查已鑄造之鑄片的表面品質及內質。又,為了作比較,針對僅設置電磁攪拌裝置之以往的連續鑄造方法,亦進行連續鑄造,並藉由同樣的方法來調查其鑄片的品質。以往的連續鑄造方法與上述數值分析模擬時同樣,是使用在圖2~圖5所示之本實施形態的鑄模設備10中取走電磁制動器裝置160者之連續鑄造方法。又,令以往之連續鑄造方法的鑄造速度為1.6m/min,電磁攪拌裝置之電磁攪拌芯材的高度為200mm。
又,關於浸漬噴嘴,本實施形態及以往之連續鑄造方法皆是使用其吐出孔朝下45°的浸漬噴嘴,且令吐出孔上端之從熔鋼液面算起的深度為270mm。
結果顯示於下述表3。在表3中,關於鑄片的品質,是以以往之連續鑄造方法的品質為基準,藉由以下方式來表現:當獲得比該以往之連續鑄造方法更好的品質時附上「○」,當獲得與該以往之連續鑄造方法相同程度的品質時附上「△」,當獲得比該以往之連續鑄造方法更 差的品質時附上「×」。
Figure 108106580-A0305-02-0045-17
在本實施例中,調查了即使鑄造速度增加至 2.0m/min時,仍可確保比以往之較低速下的(具體而言是鑄造速度1.6m/min)連續鑄造方法更優良的鑄片品質(表面品質及內質)之芯材高度比值H1/H2的範圍。從表3所示的結果,已知在對應於上述實機測試的鑄造條件下,藉由令芯材高度比值H1/H2之值為約0.80~約2.33,即使鑄造速度增加至2.0m/min時,仍可確保比較低速下之以往的連續鑄造方法更優良的鑄片品質。換言之,從本實施例的結果顯示,藉由適用本發明,並令芯材高度比值H1/H2之值為約0.80~約2.33,可確保鑄片的品質,並且可使鑄造速度增加至2.0m/min而提升生產性。又,同樣地,從表3所示的結果,已知在對應於上述實機測試的鑄造條件下,藉由令芯材高度比值H1/H2之值為約1.00~約2.00,即使鑄造速度增加至2.2m/min時,仍可確保比較低速下之以往的連續鑄造方法更優良的鑄片品質。
(3.補充)
以上,一邊參考附加圖式一邊針對本發明之適宜的實施形態詳細地進行了說明,但本發明並不限定於如此的例子。只要是本發明所屬技術領域中具有通常知識者,顯然可以在申請專利範圍所記載之技術思想的範疇內,想到各種變更例或修正例,且明白該等例子當然也屬於本發明之技術範圍。
2‧‧‧熔鋼
10‧‧‧鑄模設備
111‧‧‧長邊鑄模板(鑄模板)
121‧‧‧長邊側支承板(支承板)
124‧‧‧軟鐵
130‧‧‧上部水箱(水箱)
140‧‧‧下部水箱(水箱)
150‧‧‧電磁攪拌裝置
151‧‧‧殼體
152‧‧‧電磁攪拌芯材(鐵芯)
153‧‧‧線圈
160‧‧‧電磁制動器裝置
161‧‧‧殼體
162‧‧‧電磁制動器芯材(鐵芯)
163‧‧‧線圈
164‧‧‧端部
165‧‧‧連結部
170‧‧‧電磁力產生裝置
H0、H1、H2、H3、H4‧‧‧芯材高度
X、Y、Z‧‧‧方向

Claims (8)

  1. 一種鑄模設備,其具備有: 連續鑄造用的鑄模; 第1水箱及第2水箱,將用以冷卻前述鑄模的冷卻水進行蓄水; 電磁攪拌裝置,對前述鑄模內的熔融金屬賦予如在水平面內產生迴旋流的電磁力;及 電磁制動器裝置,對來自浸漬噴嘴之吐向前述鑄模內的熔融金屬之吐出流賦予制動前述吐出流之方向的電磁力; 在前述鑄模之長邊鑄模板的外側面,前述第1水箱、前述電磁攪拌裝置、前述電磁制動器裝置、及前述第2水箱從上方朝向下方按照此順序設置, 且前述電磁攪拌裝置的芯材高度H1及前述電磁制動器裝置的芯材高度H2滿足下述數式(101)所示的關係: [數1]
    Figure 03_image001
  2. 如請求項1之鑄模設備,其中前述電磁攪拌裝置的芯材高度H1及前述電磁制動器裝置的芯材高度H2滿足下述數式(103)所示的關係: [數2]
    Figure 03_image003
  3. 如請求項1之鑄模設備,其中前述電磁攪拌裝置的芯材高度H1及前述電磁制動器裝置的芯材高度H2滿足下述數式(105)所示的關係: [數3]
    Figure 03_image005
  4. 如請求項1之鑄模設備,其中前述電磁攪拌裝置的芯材高度H1及前述電磁制動器裝置的芯材高度H2滿足下述數式(2)所示的關係: [數4]
    Figure 03_image007
  5. 如請求項1之鑄模設備,其中前述電磁制動器裝置是由分割制動器所構成。
  6. 如請求項1之鑄模設備,其鑄造速度為2.0m/min以下。
  7. 如請求項2之鑄模設備,其鑄造速度為2.2m/min以下。
  8. 如請求項3之鑄模設備,其鑄造速度為2.4m/min以下。
TW108106580A 2018-02-26 2019-02-26 鑄模設備 TWI693978B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018031995 2018-02-26
JP2018-031995 2018-02-26

Publications (2)

Publication Number Publication Date
TW201936292A TW201936292A (zh) 2019-09-16
TWI693978B true TWI693978B (zh) 2020-05-21

Family

ID=67687106

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108106580A TWI693978B (zh) 2018-02-26 2019-02-26 鑄模設備

Country Status (8)

Country Link
US (1) US11027331B2 (zh)
EP (1) EP3760337A4 (zh)
JP (1) JP6908176B2 (zh)
KR (1) KR102255634B1 (zh)
CN (1) CN111194247B (zh)
CA (1) CA3084772A1 (zh)
TW (1) TWI693978B (zh)
WO (1) WO2019164004A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283633B2 (ja) * 2020-12-25 2023-05-30 Jfeスチール株式会社 鋼の連続鋳造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029874A1 (en) * 1996-02-13 1997-08-21 Asea Brown Boveri Ab A device for casting in a mould
JP2004501770A (ja) * 2000-06-27 2004-01-22 エービービー エービー 鋳型を用いた金属の連続鋳造方法および装置
WO2005042186A1 (de) * 2003-10-27 2005-05-12 Siemens Aktiengesellschaft Vorrichtung und verfahren zum elektromagnetischen rühren oder bremsen von metallguss, insbesondere stahlstrangguss

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226409A (ja) 1993-02-04 1994-08-16 Nippon Steel Corp 高清浄鋼の連続鋳造方法
SE9503898D0 (sv) * 1995-11-06 1995-11-06 Asea Brown Boveri Sätt och anordning vid gjutning av metall
JP3510101B2 (ja) * 1998-02-20 2004-03-22 新日本製鐵株式会社 溶融金属の流動制御装置
JPH11285786A (ja) * 1998-03-31 1999-10-19 Nippon Steel Corp 継ぎ目部品位の優れた連々鋳片の製造方法
JP2000061599A (ja) 1998-08-26 2000-02-29 Sumitomo Metal Ind Ltd 連続鋳造方法
JP2002045953A (ja) 2000-08-03 2002-02-12 Nippon Steel Corp 鋼の連続鋳造方法
JP2004042063A (ja) * 2002-07-09 2004-02-12 Nippon Steel Corp 連続鋳造装置及び連続鋳造方法
JP4746398B2 (ja) * 2005-10-11 2011-08-10 新日本製鐵株式会社 鋼の連続鋳造方法
JP4653625B2 (ja) * 2005-10-14 2011-03-16 新日本製鐵株式会社 溶融金属の連続鋳造用鋳型
FR2893868B1 (fr) * 2005-11-28 2008-01-04 Rotelec Sa Reglage du mode de brassage electromagnetique sur la hauteur d'une lingotiere de coulee continue
JP2008055431A (ja) * 2006-08-29 2008-03-13 Jfe Steel Kk 鋼の連続鋳造方法
JP4912945B2 (ja) * 2007-04-06 2012-04-11 新日本製鐵株式会社 連続鋳造鋳片の製造方法
JP5073531B2 (ja) * 2007-04-10 2012-11-14 新日本製鐵株式会社 スラブの連続鋳造装置及びその連続鋳造方法
JP2010058148A (ja) * 2008-09-03 2010-03-18 Jfe Steel Corp 鋼の連続鋳造方法
JP4505530B2 (ja) * 2008-11-04 2010-07-21 新日本製鐵株式会社 鋼の連続鋳造用装置
KR20140053279A (ko) * 2011-11-09 2014-05-07 신닛테츠스미킨 카부시키카이샤 강의 연속 주조 장치
JP6123549B2 (ja) 2013-07-30 2017-05-10 新日鐵住金株式会社 連鋳鋳片の製造方法
JP6379515B2 (ja) 2014-02-25 2018-08-29 新日鐵住金株式会社 鋼の連続鋳造方法
CN105935751A (zh) * 2016-07-05 2016-09-14 湖南中科电气股份有限公司 多功能多模式板坯连铸结晶器电磁控流装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029874A1 (en) * 1996-02-13 1997-08-21 Asea Brown Boveri Ab A device for casting in a mould
JP2004501770A (ja) * 2000-06-27 2004-01-22 エービービー エービー 鋳型を用いた金属の連続鋳造方法および装置
WO2005042186A1 (de) * 2003-10-27 2005-05-12 Siemens Aktiengesellschaft Vorrichtung und verfahren zum elektromagnetischen rühren oder bremsen von metallguss, insbesondere stahlstrangguss

Also Published As

Publication number Publication date
BR112020013272A2 (pt) 2020-12-01
KR102255634B1 (ko) 2021-05-25
US20200331057A1 (en) 2020-10-22
KR20200051724A (ko) 2020-05-13
JPWO2019164004A1 (ja) 2020-10-22
EP3760337A4 (en) 2021-07-14
US11027331B2 (en) 2021-06-08
EP3760337A1 (en) 2021-01-06
WO2019164004A1 (ja) 2019-08-29
CA3084772A1 (en) 2019-08-29
TW201936292A (zh) 2019-09-16
CN111194247B (zh) 2021-12-10
CN111194247A (zh) 2020-05-22
JP6908176B2 (ja) 2021-07-21

Similar Documents

Publication Publication Date Title
US11478846B2 (en) Electromagnetic stirring device
JP7143732B2 (ja) 連続鋳造方法
JP6123549B2 (ja) 連鋳鋳片の製造方法
TWI693978B (zh) 鑄模設備
JP4591156B2 (ja) 鋼の連続鋳造方法
JP6330542B2 (ja) 連鋳鋳片の製造方法
JP2020124738A (ja) タンディッシュ
JP7159630B2 (ja) 電磁撹拌方法、電磁撹拌装置及び鋳型設備
JP7211197B2 (ja) 連続鋳造方法
JP7265129B2 (ja) 連続鋳造方法
JP7273304B2 (ja) 連続鋳造方法及び鋳型設備
JP2020078814A (ja) 連続鋳造方法
CN112105469B (zh) 铸模设备及连续铸造方法
JP2022165468A (ja) 炭素鋼鋳片の連続鋳造方法
JP7436820B2 (ja) 連続鋳造方法
JP7031517B2 (ja) 連続鋳造方法
JP6036144B2 (ja) 連続鋳造方法
JP4983320B2 (ja) 鋼の連続鋳造方法及び装置
JP2021000652A (ja) 連続鋳造方法
JP6287901B2 (ja) 鋼の連続鋳造方法
JP5018144B2 (ja) 鋼の連続鋳造方法
BR112020013272B1 (pt) Instalação de moldagem
JP2006159280A (ja) 鋼の連続鋳造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees