TWI680489B - 帶電粒子束裝置及帶電粒子束的位置偏差修正方法 - Google Patents

帶電粒子束裝置及帶電粒子束的位置偏差修正方法 Download PDF

Info

Publication number
TWI680489B
TWI680489B TW106132898A TW106132898A TWI680489B TW I680489 B TWI680489 B TW I680489B TW 106132898 A TW106132898 A TW 106132898A TW 106132898 A TW106132898 A TW 106132898A TW I680489 B TWI680489 B TW I680489B
Authority
TW
Taiwan
Prior art keywords
irradiation
charged particle
distribution
particle beam
amount
Prior art date
Application number
TW106132898A
Other languages
English (en)
Other versions
TW201826317A (zh
Inventor
中山田憲昭
Noriaki Nakayamada
Original Assignee
日商紐富來科技股份有限公司
Nuflare Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商紐富來科技股份有限公司, Nuflare Technology, Inc. filed Critical 日商紐富來科技股份有限公司
Publication of TW201826317A publication Critical patent/TW201826317A/zh
Application granted granted Critical
Publication of TWI680489B publication Critical patent/TWI680489B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • H01J37/3026Patterning strategy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30433System calibration
    • H01J2237/3045Deflection calibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30455Correction during exposure
    • H01J2237/30461Correction during exposure pre-calculated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31774Multi-beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31776Shaped beam

Abstract

本發明的一個態樣之帶電粒子束裝置,其特徵為,具備:霧化帶電粒子量分布演算部,將偏離了霧化帶電粒子的設計上的分布中心之分布函數、與未偏離帶電粒子束的設計上的照射中心之照射量分布予以摺積積分,藉此演算霧化帶電粒子量分布;及位置偏差量演算部,演算基於霧化帶電粒子量分布之位置偏差量;及修正部,使用位置偏差量,修正照射位置;及鏡柱,具有放出帶電粒子束之放出源、及將前述帶電粒子束偏向之偏向器,將帶電粒子束照射至修正後的照射位置。

Description

帶電粒子束裝置及帶電粒子束的位置偏差修正方法
本發明係帶電粒子束裝置及帶電粒子束的位置偏差修正方法,例如有關使用電子束對試料描繪圖樣之電子束描繪裝置及方法。
肩負半導體元件微細化發展的微影技術,在半導體製造過程當中是唯一生成圖樣的極重要製程。近年來隨著LSI的高度積體化,對於半導體元件要求之電路線寬正逐年微細化。為了對這些半導體元件形成期望之電路圖樣,必須有高精度的原圖圖樣(亦稱為倍縮光罩(reticle)或光罩(mask))。在此,電子束(EB: Electron beam)描繪技術在本質上具有優良的解析性,故被用來生產高精度的原圖圖樣。   圖13為可變成形型電子線描繪裝置之動作說明用概念圖。可變成形型電子線描繪裝置,係如下述般動作。在第1孔徑410,形成有用來將電子線330成形之矩形的開口411。此外,在第2孔徑420,形成有將通過了第1孔徑410的開口411之電子線330成形為期望的矩形形狀之可變成形開口421。從帶電粒子源430照射,通過了第1孔徑410的開口411之電子線330,會因偏向器而偏向,然後通過第2孔徑420的可變成形開口421的一部分,照射至朝規定的某方向(例如訂為X方向)連續性移動之平台上所裝載之試料340。也就是說,能夠通過第1孔徑410的開口411與第2孔徑420的可變成形開口421這兩者之矩形形狀,會描繪在於X方向連續性移動之平台上所裝載之試料340的描繪區域上。使其通過第1孔徑410的開口411與第2孔徑420的可變成形開口421這兩者,並作成為任意形狀之方式,便稱為可變成形方式(VSB: Variable Shaped Beam方式)。   當對光罩等基板照射電子束的情形下,會因先前已照射的電子束導致照射位置或其周圍帶電。以往,作為消弭此射束照射位置偏差之方法的1種,已知有在基板上形成帶電防止膜(CDL: Charge Dissipation Layer),來防止基板表面的帶電之方法。但,此帶電防止膜,基本上具有酸的特性,因此當在基板上塗布有化學增幅型阻劑(chemical amplification photoresist)的情形下等並不適合。此外,為了形成帶電防止膜必須設置新的設備,例如當製造光罩的情形下等,會導致其製造成本更加增大。因此,渴望無需使用帶電防止膜而進行帶電效應修正(CEC: charging effect correction)。另,帶電現象引起之照射位置的位置偏差,不限於電子束描繪裝置,在藉由電子束等帶電粒子束來檢查圖樣之檢查裝置等運用藉由對瞄準之位置照射帶電粒子束而獲得之結果的帶電粒子束裝置中亦同樣地可能發生。   鑑此,對於該帶電現象引起之位置偏差,有人提出一種運用了下述帶電效應修正的手法之描繪裝置,即,求出帶電量分布來算出射束照射位置的修正量,基於該修正量對修正後之位置照射射束(例如參照日本特開2009-260250號公報,日本特開2011-040450號公報)。然而,在講求因應現今的微細化之更高尺寸精度的當下,倚靠該帶電效應修正,在一部分的區域會發生修正不充分這樣的問題。
本發明的一個態樣,提供一種包括帶電效應修正不充分之一部分區域在內可修正帶電現象引起之位置偏差之帶電粒子束裝置及帶電粒子束的位置偏差修正方法。   本發明的一個態樣之帶電粒子束裝置,其特徵為,具備:   霧化帶電粒子量分布演算部,將偏離了霧化帶電粒子的設計上的分布中心之分布函數、與未偏離帶電粒子束的設計上的照射中心之照射量分布予以摺積積分,藉此演算霧化帶電粒子量分布;及   位置偏差量演算部,演算基於霧化帶電粒子量分布之位置偏差量;及   修正部,使用位置偏差量,修正照射位置;及   鏡柱,具有放出帶電粒子束之放出源、及將前述帶電粒子束偏向之偏向器,將帶電粒子束照射至修正後的照射位置。   本發明的一個態樣之帶電粒子束的位置偏差修正方法,其特徵為,   將偏離了霧化帶電粒子的設計上的分布中心之分布函數、與未偏離帶電粒子束的設計上的照射中心之照射量分布予以摺積積分,藉此演算霧化帶電粒子量分布,   演算基於霧化帶電粒子量分布之位置偏差量,   使用位置偏差量,修正照射位置,   將帶電粒子束照射至修正後的照射位置。   本發明的另一個態樣之帶電粒子束裝置,其特徵為,具備:   照射量分布演算部,演算帶電粒子束的照射量分布;及   位置偏差量演算部,使用神經網路模型,演算基於照射量分布之位置偏差量;及   修正部,使用位置偏差量,修正照射位置;及   鏡柱,具有放出帶電粒子束之放出源、及將前述帶電粒子束偏向之偏向器,將帶電粒子束照射至修正後的照射位置。   本發明的另一個態樣之帶電粒子束的位置偏差修正方法,其特徵為,   演算帶電粒子束的照射量分布,   使用神經網路模型,演算基於照射量分布之位置偏差量,   使用位置偏差量,修正照射位置,   將帶電粒子束照射至修正後的照射位置。
以下,實施形態中,說明一種包括帶電效應修正不充分之一部分區域在內修正帶電現象引起之位置偏差之裝置及方法。   以下,實施形態中,說明運用了電子束來作為帶電粒子束的一例之構成。但,帶電粒子束不限於電子束,也可以是使用離子束等其他帶電粒子的射束。 實施形態1.   圖1為實施形態1中的描繪裝置的主要構成的一例示意概念圖。圖1中,描繪裝置100具備描繪部150及控制部160。描繪裝置100,為帶電粒子束描繪裝置之一例。此外,描繪裝置100,為帶電粒子束裝置之一例。描繪部150,具有電子鏡筒1與描繪室14。在電子鏡筒1內,配置有電子槍5、照明透鏡7、第1孔徑8、投影透鏡9、偏向器10、第2孔徑11、對物透鏡12、偏向器13、及靜電透鏡15。此外,在描繪室14內,配置XY平台3。在XY平台3上,配置作為描繪對象之試料2。試料2中,包括用於半導體製造的曝光之光罩或形成半導體裝置之半導體晶圓等。此外,欲被描繪之光罩中,包括尚未受到任何描繪之光罩底板(mask blanks)。當被描繪時,無庸置疑地在試料上會形成有因電子束而感光之阻劑膜。此外,在XY平台3上,在和配置試料2的位置相異之位置係配置平台位置測定用的鏡4。   控制部160,具有控制計算機110,120、平台位置檢測機構45、平台控制機構46、偏向控制電路130、記憶體142、磁碟裝置等記憶裝置21,140、及外部介面(I/F)電路146。控制計算機110,120、平台位置檢測機構45、平台控制機構46、偏向控制電路130、記憶體142、記憶裝置21,140、及外部I/F電路146,透過未圖示之匯流排相互連接。偏向控制電路130,連接至偏向器10,13。   在控制計算機110內,配置描繪控制部30、圖樣面積密度分布演算部31、劑量分布算出部32、照射量分布算出部33、霧化電子量分布算出部34、帶電量分布算出部(帶電量分布演算部)35、描繪經過時間演算部37、累積時間演算部38、及位置偏差量分布演算部(位置偏差量演算部)36這些功能。描繪控制部30、圖樣面積密度分布演算部31、劑量分布算出部32、照射量分布算出部33、霧化電子量分布算出部(霧化帶電粒子量分布演算部)34、帶電量分布算出部35、描繪經過時間演算部37、累積時間演算部38、及位置偏差量分布演算部36這些各「~部」,包括處理電路,該處理電路中,包括電子電路、電腦、處理器、電路基板、量子電路、或半導體裝置等。此外,各「~部」亦可使用共通的處理電路(同一處理電路)。或是,亦可使用相異的處理電路(個別的處理電路)。對於描繪控制部30、圖樣面積密度分布演算部31、劑量分布算出部32、照射量分布算出部33、霧化電子量分布算出部34、帶電量分布算出部35、描繪經過時間演算部37、累積時間演算部38、及位置偏差量分布演算部36內必要的輸入資料或演算出的結果會隨時被記憶於記憶體142。   在控制計算機120內,配置擊發資料生成部41及位置偏差修正部42這些功能。擊發資料生成部41及位置偏差修正部42這些各「~部」,包括處理電路,該處理電路中,包括電子電路、電腦、處理器、電路基板、量子電路、或半導體裝置等。此外,各「~部」亦可使用共通的處理電路(同一處理電路)。或是,亦可使用相異的處理電路(個別的處理電路)。對於擊發資料生成部41及位置偏差修正部42內必要的輸入資料或演算出的結果會隨時被記憶於未圖示之記憶體。   在偏向控制電路130內,配置成形偏向器控制部43及對物偏向器控制部(偏向量演算部)44這些功能。成形偏向器控制部43及對物偏向器控制部44這些各「~部」,包括處理電路,該處理電路中,包括電子電路、電腦、處理器、電路基板、量子電路、或半導體裝置等。此外,各「~部」亦可使用共通的處理電路(同一處理電路)。或是,亦可使用相異的處理電路(個別的處理電路)。對於成形偏向器控制部43及對物偏向器控制部44內必要的輸入資料或演算出的結果會隨時被記憶於未圖示之記憶體。   此外,定義著用來被描繪之複數個圖形圖樣的描繪資料(佈局資料)係從描繪裝置100的外部輸入,被存儲於記憶裝置140。   圖1中,針對用以說明本實施形態1所必要之構成部分以外係省略記載。對描繪裝置100而言,無庸置疑地,通常也可具備必要的其他構成。   從電子槍5放出之電子束6,會藉由照明透鏡7而對帶有矩形的孔之第1孔徑8全體做照明。此處,係將電子束6先成形為矩形。接著,通過了第1孔徑8的第1孔徑像之電子束6,會藉由投影透鏡9而被投影至第2孔徑11上。在該第2孔徑11上的第1孔徑像的位置,會藉由受到成形偏向控制部43控制之偏向器10而被偏向控制,能夠令其射束形狀與尺寸變化(可變成形)。然後,通過了第2孔徑11的第2孔徑像之電子束6,會藉由對物透鏡12而合焦,藉由受到對物偏向控制部44控制之例如靜電型的偏向器13而被偏向,照射至配置成可移動的XY平台3上之試料2的期望位置。XY平台3藉由平台控制機構46而受到驅動控制。又,XY平台3的位置,藉由平台位置檢測機構45而受到檢測。在平台位置檢測機構45,例如包括對鏡4照射雷射,基於入射光與反射光之干涉來測定位置之雷射測長裝置。靜電透鏡15,和試料2面的凹凸相對應,動態地修正電子束6的焦點位置(動態對焦:dynamic focusing)。   圖2為實施形態1中的平台移動的狀況說明用圖。當對試料2描繪的情形下,一面令XY平台3例如於X方向連續移動,一面對於描繪(曝光)面讓電子束6照射至描繪區域(R)被假想分割成電子束6可偏向的長條狀的複數個條紋區域(SR)而成之試料2的1個條紋區域上。XY平台3的X方向之移動,例如設為連續移動,同時亦令電子束6的擊發位置跟隨平台移動。藉由令其連續移動,能夠縮短描繪時間。然後,若描繪完成1個條紋區域,將XY平台3朝Y方向步進饋送而於X方向(這次朝相反方向)進行下一條紋區域的描繪動作。藉由令各條紋區域的描繪動作以蛇行之方式進行,能夠縮短XY平台3的移動時間。此外,描繪裝置100中,於處理佈局資料(描繪資料)時,是將描繪區域假想分割成長條狀的複數個圖框(frame)區域,對每一圖框區域進行資料處理。又,例如當不進行多重曝光的情形下,通常,圖框區域和上述的條紋區域會成為同一區域。當進行多重曝光的情形下,因應多重度,圖框區域和上述的條紋區域會錯開。或是,描繪區域會被假想分割成和因應多重度之條紋區域成為同一區域的複數個圖框區域,而對每一圖框區域進行資料處理。像這樣,試料2的描繪區域,被假想分割成作為複數個描繪單位區域之圖框區域(條紋區域),描繪部150,對每一該圖框區域(條紋區域)描繪。   圖3(a)與圖3(b)為實施形態1的比較例中的射束的照射域及其周邊的描繪結果的一例示意圖。實施形態1的比較例中,揭示運用以往的帶電效應修正的手法來描繪之結果的一例及藉由運用了以往的帶電效應修正的手法之模擬模型來計算出之描繪位置的一例。圖3(a)中,雖圖面上不易區別,惟為對於後述的圖17中以成為m=40、n=20之方式被網目化而成之設計上的描繪位置而言,將實際的描繪結果所造成的描繪位置與藉由模擬模型計算出的描繪位置予以疊合而成之圖。圖3(a)中,射束照射域及其周邊域結合而成之區域的輪廓看起來浮出成矩形。圖3(b)中,為從實際的描繪結果所造成的描繪位置減去藉由模擬模型計算出的描繪位置而成之模擬模型的計算偏差量(位置偏差量的修正殘差)示意圖。圖3(b)中,揭示圖3(a)所示輪廓看起來浮出的矩形部分。如圖3(b)所示,運用了以往的帶電效應修正的手法之模擬模型中,可知在某一部分的區域A,無法完整再現位置偏差。   圖4(a)至圖4(c)為料想令實施形態1的比較例中的射束的照射位置發生位置偏差之機制說明用圖。圖4(a)中,試料2面被保持成接地電位。另一方面,在配置於試料2的上方之靜電透鏡15,被施加負的電位。故,在從試料2面至靜電透鏡15的配置高度面之間,會產生電場力線從試料2面朝向靜電透鏡15(於z方向)延伸之電場。當該電場因誤差等而方向傾斜的情形下,或/及更發生了漏電場的的情形下,如圖4(b)所示,於試料2上在左右(x方向)的位置會產生電位差。因此,霧化電子的入射位置會變化。從電子鏡筒1照射之電子束6本身,其加速電壓大,故不會因該電場而彎曲。但,對於因該電子束6的照射而產生的霧化電子並未施以很大的加速電壓,故會受到該電場的影響,朝正電位側偏離。其結果,如圖4(c)所示,霧化電子F的分布中心會從照射域E的中心偏離。圖4(c)中,為求簡便,在射束照射域E內亦示意霧化電子F的分布曲線,但在射束照射域E內幾乎不會發生霧化電子F所造成的帶電效應,故實際上描繪位置,會主要受到從射束照射域E的端部朝外側分布之霧化電子F的影響(霧化效應)。圖4(c)例子中,霧化電子F的分布中心朝-x方向偏離,故在射束照射域E的-x方向端部的周邊分布之霧化電子F的分布量增加。其結果,由於在射束照射域E的-x方向端部的周邊增加之霧化電子F的影響,料想會發生位置偏差。另一方面,從射束照射域E的+x方向端部朝外側分布之霧化電子F的分布量會減少,但其減少幅度比從-x方向端部朝外側分布之霧化電子F的分布量的增加幅度來得小,因此在射束照射域E的+x方向端部的周邊,霧化電子F的影響所造成之位置偏差不怎麼大幅變化。其結果,如圖3(b)所示,會造成在某一部分的區域A,顯著地發生位置偏差。鑑此,實施形態1中,利用該機制,依以下方式進行帶電效應修正。   圖5為實施形態1中的描繪方法的主要工程的一例示意流程圖。圖5中,實施形態1中的描繪方法,係實施圖樣面積密度分布ρ(x,y)演算工程(S100)、劑量分布D(x,y)算出工程(S102)、照射量分布E(x,y)算出工程(S104)、霧化電子量分布F(x,y,σ,Δx)算出工程(S106)、描繪經過時間T(x,y)演算工程(S107)、累積時間t演算工程(S108)、帶電量分布C(x,y)算出工程(S109)、位置偏差量分布p(x,y)演算工程(S110)、偏向位置修正工程(S112)、描繪工程(S114)這一連串的工程。   作為圖樣面積密度分布ρ(x,y)演算工程(S100),圖樣面積密度分布演算部31,從記憶裝置140讀出描繪資料,對於描繪區域(或圖框區域)以規定尺寸(格子尺寸)被網目狀地假想分割而成之複數個網目區域的每一網目區域,演算示意描繪資料中定義的圖形圖樣的配置比例之圖樣密度ρ(x,y)。然後,作成每一網目區域的圖樣密度的分布ρ(x,y)。   作為劑量分布D(x,y)算出工程(S102),劑量分布算出部32,使用圖樣密度分布ρ(x,y),算出每一網目區域的劑量的分布D(x,y)。劑量的演算中,合適是進行背向散射電子所造成之鄰近效應的修正。劑量D,能夠由以下的式(1)定義。式(1)中,D0 為基準劑量,η為背向散射率。   該些基準劑量D0 及背向散射率η,藉由該描繪裝置100的使用者來設定。背向散射率η,能夠考量電子束6的加速電壓、試料2的阻劑膜厚或基底基板的種類、製程條件(例如PEB條件或顯影條件)等而設定。   作為照射量分布E(x,y)算出工程(S104),照射量分布算出部33,將圖樣密度分布ρ(x,y)的各網目值、與劑量分布D(x,y)的對應網目值予以乘算,藉此演算每一網目區域的照射量分布E(x,y)(亦稱為「照射強度分布」)。   作為霧化電子量分布F(x,y,σ,Δx)算出工程(S106),霧化電子量分布算出部34(霧化帶電粒子量分布演算部),將偏離了霧化電子的設計上的分布中心之分布函數g(x,y)、與未偏離設計上的照射中心之藉由上述的照射量分布E(x,y)算出工程算出之設計上的照射量分布E(x,y)予以摺積積分,藉此演算霧化電子量分布F(x,y,σ,Δx)(霧化帶電粒子量分布)。以下具體說明之。   首先,示意霧化電子的離度(spread)分布之分布函數g(x,y),能夠使用霧化效果的影響半徑σ,由以下的式(2)定義。此處,作為一例使用高斯分布。圖6(a)與圖6(b)為實施形態1中的霧化電子量分布的計算模型的一例說明用圖。圖6(a)中,揭示照射量分布E與霧化電子的分布函數g。圖6(a)中,將霧化電子的分布函數g的中心,對齊設計上的照射量分布E的中心。將該照射量分布E與霧化電子的分布函數g予以摺積積分,則會如圖6(b)的虛線所示般得到霧化電子量分布F(=E・g)。然而,如上述般,由於在試料2面上產生的電場的影響等,霧化電子的試料2面入射位置會朝正電位(+)側偏差恰好偏差量Δx。鑑此,實施形態1中,於霧化電子量分布F的演算時,是將霧化電子的分布函數g的中心位置挪移恰好該偏差量Δx來演算。霧化電子量分布F(x,y,σ,Δx),能夠由以下的式(3)定義。如以上般藉由將霧化電子的分布函數g的分布中心位置挪移,便會如圖6(b)的實線所示般得到霧化電子量分布F(=E・g)。分布函數g的設計上的分布中心之偏差量Δx(挪移量),可事先藉由實驗等決定以便修正照射量分布E的端部中的位置偏差量。偏差量Δx料想會因為在試料2上產生之於左右電位相異的電場而作用,故依各個描繪裝置100不同其電場的大小會相異。鑑此,只要對每一製造出的描繪裝置100,藉由實驗等預先求出該偏差量Δx即可。   作為描繪經過時間T(x,y)演算工程(S107),描繪經過時間演算部37,針對試料2上的各位置演算從描繪開始時刻(佈局領頭或領頭圖框之描繪開始的時刻)起算直至實際描繪的時刻之經過時間T(x,y)。例如,當該圖框區域(條紋區域)為第i個的第i圖框區域的情形下,係將從描繪開始位置S(0,0)之描繪開始的描繪開始時刻起算至描繪直至前1個的第i-1圖框區域(條紋區域)的各位置(x,y)之預想時間演算成為經過時間T(x,y)。   作為累積時間t演算工程(S108),累積時間演算部38,演算將成為已描繪結束的描繪單位區域之例如圖框區域(條紋區域)的描繪所花費的描繪時間予以累積而成之累積時間t。例如,目前,當該圖框區域為第i個的第i圖框區域的情形下,算出將用來描繪第1圖框區域的時間t(1)、用來描繪第2圖框區域的時間t(2)、…直至用來描繪第i圖框區域的時間t(i)予以累積加算而成之加算值。如此一來,便能得到直至該圖框區域之累積時間t。   此處,當實際描繪目前正在進行處理之該圖框區域內的情形下,直至前1個圖框區域係已完成描繪,故在直至前1個圖框區域內受到電子束6照射之處會成為帶電部分。故,從該圖框區域的累積時間t減去有帶電部分的直至前1個圖框區域內的各位置(x,y)的描繪經過時間T(x,y)而成之差分值(t-T),便成為描繪了帶電部分後的經過時間。   作為帶電量分布C(x,y)算出工程(S109),帶電量分布算出部35,使用照射量分布E(x,y)、及霧化電子量分布F(x,y,σ,Δx)、及隨著時間經過之帶電衰減量,來算出帶電量分布C(x,y)。   首先,假定一用來求出帶電量分布C(x,y)之函數C(E,F,T,t)。具體而言,係分離成照射電子所貢獻之變數CE (E)、及霧化電子所貢獻之變數CF (F)、及經過時間所貢獻之帶電衰減份CT (T,t)。函數C(E,F,T,t),由以下的式(4)定義。此外,式(4)中使用之和圖樣面積密度ρ相依的帶電衰減量κ(ρ),例如能夠由以下的式(5)近似。此處,式(5)雖呈2次函數,但並不限於此,可為更高次的函數、亦可為低次的函數。又,式(4)中使用之和圖樣面積密度ρ相依的帶電衰減時間常數λ(ρ),例如能夠由以下的式(6)近似。此處,式(6)雖呈2次函數,但並不限於此,可為更高次的函數、亦可為低次的函數。另,針對式(4)~式(6)的各係數d0 、d1 、d2 、d3 、e1 、e2 、e3 、κ0 、κ1 、κ2 、λ0 、λ1 、λ2 ,只要如同上述的日本特開2009-260250號公報,日本特開2011-040450號公報般,將實驗結果及/或模擬結果予以擬合(近似)來求出即可。作為一例,具體而言係如下述般求出。   首先,使用帶電衰減量κ及帶電衰減時間常數λ及描繪經過時間t,各圖樣面積密度ρ的帶電量C的衰減曲線,能夠由以指數函數表現之以下的式(7)近似。此外,針對圖樣面積密度ρ(圖樣面積率ρ)為25%、50%、75%及100%的各情形,藉由將規定的帶電用圖樣的描繪剛結束後的測定位置與描繪過50分鐘後的測定位置之差予以擬合,便能得到和式(5)中近似出的圖樣面積密度ρ相依之帶電衰減量κ(ρ)。   此外,針對圖樣面積密度ρ(圖樣面積率ρ)為25%、50%、75%及100%的各情形,藉由將從規定的帶電用圖樣的描繪剛結束後起算至50分鐘後為止的複數個時間點下的測定位置與描繪過50分鐘後的測定位置之各差予以擬合,便能得到和式(6)中近似出的圖樣面積密度ρ相依之帶電衰減時間常數λ(ρ)。   由以上結果,被描繪了該規定的帶電用圖樣之照射部的各位置(座標(x,y))中的帶電量C(x,y),能夠由以下的式(8)近似。又,如上述般,差分值(t-T)係為描繪了帶電部分後的經過時間,故運用了式(8)之CT (T,t),能夠變形成以下的式(9)。另,式(8)中,是基於帶電用圖樣230內的帶電衰減量κ(ρ)於所有的位置為均一這樣的假定來估算。隨著圖樣面積密度ρ從25%增加至75%,負的電荷衰減κ(ρ)的大小會增加,但在100%的圖樣面積密度ρ下負的電荷衰減κ(ρ)會再度減少。實際上,當描繪橫跨複數個圖框區域這樣的規定尺寸的帶電用圖樣的情形下,於最初受描繪之處與最後受描繪之處,會經過相當的時間。相對於由觀測出的位置偏差量Y假定均一分布而求出的帶電衰減量κ(ρ)而言,若由運用帶電會衰減之帶電衰減時間常數λ而設定出的修正後的帶電衰減量κ”(ρ)來求出位置偏差量Y”,則Y”會比Y還來得小。鑑此,亦可使用位置偏差量Y”會和原本的位置偏差量Y成為相等這樣的修正式κ”=L(λ)・κ,來修正帶電衰減量κ(ρ)。   例如,使用複數個帶電衰減時間常數λ,將把在各帶電衰減時間常數λ下的κ”/κ繪製出的結果予以擬合,藉此便能得到修正式κ”=L(λ)・κ。例如,能夠得到κ”=(1+3.1082・λ- 1.0312 )・κ。   例如,帶電衰減量在圖樣面積密度ρ為75%的情形與100%的情形下可能會有逆轉的情形,但藉由該修正,該逆轉現象會消弭,修正後的帶電衰減量κ”(ρ),會成為依圖樣面積密度ρ為25%、50%、75%、100%的順序變小。   此外,在實施形態1中的模型,首先是忽略帶電衰減份CT (T,t),照射域的函數,是假設變數CF (F)=0,亦即C(E,F,T,t)=CE (E)。另一方面,非照射域的函數,是假設變數CE (E)=0,也就是說C(E,F)=CF (F)。此外,照射域內假設為均一地帶電。也就是說,假設CE (E)=co 。此co 為常數,例如為1。   此外,非照射域中,霧化電子量強度F愈變大,則帶電CF (F)愈飽和。鑑此,將非照射域的變數CF (F)由以下的式(10)般來表現。上式(10)中的α,滿足0<α<1之條件。按照本發明者的實驗,得知當α=0.3-0.4時,最接近實驗結果,為合適。此合適的α的範圍,能夠因應所使用的電子束描繪裝置來改變。   此處,說明如上式(10)般規定函數CF (F)之理由。   若將圖樣密度100%時的霧化電子量強度F訂為F100 ,則各圖樣密度下的霧化電子量強度,會和圖樣密度成比例而分別成為F100 ,0.75×F100 ,0.5×F100 ,0.25×F100 。但,CF (F)為未知的函數。因此,CF (F100 ),CF (0.75×F100 ),CF (0.5×F100 ),CF (0.25×F100 )不會呈強度比例,且各圖樣密度下分布形狀可能彼此相異。像這樣若各圖樣密度下的分布形狀相異,則必須對每一圖樣密度規定CF (F),分析上不方便。   鑑此,訂定一對於任意的F而言,即使圖樣密度變化,仍會得到相似形的分布形狀之函數CF (F)。也就是說,函數CF (F)是規定成滿足下式(11)的關係。下式(11)中的a為圖樣密度,A為常數。若為相似形的函數,則CF (F)全體的強度即使不和圖樣面積密度的變化成比例,分布形狀也不會變。針對強度,能夠藉由上述參數c0 ,c1 的組合來調整。故,無需對每一圖樣密度來規定CF (F),只要對1個σ規定1個CF (F)即可,因此能使分析變得簡單。   接著,決定上述參數c0 ,c1 ,σi 的最佳組合。針對照射域,假定c0 這一大小的階段形狀的帶電量分布CE (E),將此帶電量分布CE (E)與事先計算出的響應函數r(x)予以摺積積分,藉此算出位置偏差量p0 (x)。   此外,針對非照射域,假定一α與霧化電子離度半徑(以下亦稱「霧化半徑」)σ來計算CF (F)。對於複數個霧化半徑σ求出此CF (F)。例如,霧化半徑σ是從1mm~24mm為止以1mm間隔來假定。然後,使用對於霧化半徑σ1 ~σi 而言之帶電量分布CF (F)與響應函數r,算出位置偏差量p1 (x)~pi (x)。   若將該些照射域及非照射域的位置偏差量p(x)予以合成,便如下式(12)般表現。然後,上式(12)求出最佳符合(擬合)實驗結果之參數c0 ,c1 ,σ的組合。例如,針對阻劑A、B、C,求出藉由擬合而求得的參數c0 ,c1 ,σ的最佳組合。但,已知即使使用同一種類的阻劑的情形下,若圖樣密度相異則最佳的霧化半徑σ會相異。物理性質上,理想是霧化半徑σ不會和圖樣密度相依而變化。此外,雖針對阻劑A得到了良好的擬合結果,但針對阻劑B,C卻無法得到如阻劑A般良好的擬合結果。按照本發明者之檢討,認為該些結果,是由於將照射部的帶電予以扁平地假定成CE (E)=c0 所造成。   鑑此,本發明者,修正了上述模型,以便針對照射域的帶電量分布也記述霧化電子的影響。該模型中,是將照射域內的帶電量分布如下式(13)般表現。但,非照射部的帶電量分布,設為和上述模型相同。針對修正後的模型求出參數c0 ,c1 ,σ的組合。修正後的模型,霧化半徑σ依然具有圖樣密度相依性。又,藉由擬合求出的c1 ,必須要服貼下面的式(14)之曲線,但發現並不服貼。鑑此,首先將非照射域的帶電量分布CF (F)與霧化電子量強度F之關係,藉由下式(15)這樣的多項式函數來表現。下式(15)中,f1 ,f2 ,f3 為常數。接著,針對各圖樣密度算出y=0下的帶電量分布C(x,0)。另,藉由不限定於y=0,而是在二維下算出帶電量分布C(x,y),能夠使以下進行之擬合的精度提升。   然後,求出非照射域的帶電量分布C(x,0)、及上式(15)的CF (F)最符合之最佳的霧化半徑σ。當霧化半徑σ過小的情形下,或霧化半徑σ過大的情形下,無法得到良好的擬合結果。亦即,若霧化半徑σ變得過小或過大,則各圖樣密度的資料會相互遠離,因此無法求出上述參數f1 ,f2 ,f3 。相對於此,若可求出最佳的霧化半徑σ,則會得到良好的擬合結果,能夠求出上述參數f1 ,f2 ,f3 。   接著,使用上述求出的最佳的霧化半徑σ,求出照射域的霧化電子量分布F。然後,使用照射量分布E、及以上式(3)求出的霧化電子量分布F,藉由下式(16)這樣的多項式函數來表現照射域的帶電量分布C(E,F)。下式(16)中,考量了霧化電子所貢獻之帶電量分布CFe (F)。然後,求出照射域的帶電量分布C(x,0)、及上式(16)的帶電量分布C(E,F)最符合之參數d0 ,d1 ,d2 ,d3 ,e1 ,e2 ,e3 。   此模型中,不同於上述使用了相似形的函數之模型,即使圖樣密度變化,最佳的霧化半徑σ仍不變。   然後,對上式(16)所示之照射域的帶電量分布C(E,F),進一步加算帶電衰減引起之帶電量分布,便得到上述的式(4)。如此一來,便能修正帶電衰減份。   作為位置偏差量分布p(x,y)演算工程(S110),位置偏差量分布演算部36(位置偏差量演算部),演算基於霧化帶電粒子量分布之位置偏差量。具體而言,位置偏差量分布演算部36,對於帶電量分布C(x,y)的各帶電量C將響應函數r(x,y)予以摺積積分,藉此演算帶電量分布C(x,y)的各位置(x,y)的帶電量引起之描繪位置(x,y)的位置偏差量P。假定一將此帶電量分布C(x,y)變換成位置偏差量分布P(x,y)之響應函數r(x,y)。此處,將在帶電量分布C(x,y)的各位置所示之帶電位置以(x’,y’)表示,將目前正在進行資料處理之該圖框區域(例如第i圖框區域)的射束照射位置以(x,y)表示。此處,射束的位置偏差,能夠表現成從射束照射位置(x,y)至帶電位置(x’,y’)為止之距離的函數,因此能夠將響應函數記述成如r(x-x’,y-y’)這般。響應函數r(x-x’,y-y’),只要事先進行實驗,以和實驗結果符合之方式事先求出即可。以下,實施形態1中(x,y)表示目前正在進行資料處理之該圖框區域的射束照射位置。   然後,位置偏差量分布演算部36,由該圖框區域的欲描繪之各位置(x,y)的位置偏差量P來作成位置偏差量分布Pi(x,y)(或亦稱為位置偏差量對映Pi(x,y))。演算出的位置偏差量對映Pi(x,y),被存儲於記憶裝置21,並且被輸出至控制計算機120。   另一方面,在控制計算機120內,擊發資料生成部41,從記憶裝置140讀出描繪資料,進行複數段的資料變換處理,生成描繪裝置100固有的格式的擊發資料。描繪資料中定義之圖形圖樣的尺寸,通常比描繪裝置100在1次的擊發所能形成之擊發尺寸還大。因此,在描繪裝置100內,會將各圖形圖樣分割成複數個擊發圖形(擊發分割),以便成為描繪裝置100在1次的擊發可形成之尺寸。然後,對每一擊發圖形,將示意圖形種類之圖形代碼、座標、及尺寸這些資料予以定義成為擊發資料。   作為偏向位置修正工程(Sl12)(位置偏差修正工程),位置偏差修正部42(修正部),使用位置偏差量,修正照射位置。此處,是修正各位置的擊發資料。具體而言,是對擊發資料的各位置(x,y)加算將位置偏差量對映Pi(x,y)所示意的位置偏差量予以修正之修正值。修正值,例如合適是使用將位置偏差量對映Pi(x,y)所示意的位置偏差量的正負符號予以顛倒而成之值。如此一來,當照射電子束6的情形下,該照射處的座標會被修正,故藉由對物偏向器13而偏向之偏向位置會被修正。擊發資料是以依擊發順序排列之方式定義於資料檔案。   作為描繪工程(S114),在偏向控制電路130內,依擊發順序,成形偏向器控制部43,對每一擊發圖形,由擊發資料中定義的圖形種類及尺寸來演算用來將電子束6可變成形之成形偏向器10的偏向量。同一時期,對物偏向器控制部44(偏向量演算部),演算用來將該擊發圖形偏向至所照射的試料2上的位置之對物偏向器13的偏向量。換言之,對物偏向器控制部44,演算將電子束偏向至修正後的照射位置之偏向量。然後,電子鏡筒1(鏡柱),將電子束照射至修正後的照射位置。具體而言,配置於電子鏡筒1(鏡柱)內的對物偏向器13,因應演算出的偏向量將電子束偏向,藉此將電子束照射至修正後的照射位置。如此一來,描繪部150,便將圖樣描繪至試料2的帶電修正後的位置。   圖7為實施形態1中的描繪方法的主要工程的另一例示意流程圖。圖7中,除了使用和圖樣密度分布ρ(x,y)無關而是固定的劑量分布D(x,y)來取代圖5的劑量分布D(x,y)算出工程(S102)這點以外,和圖5相同。   圖8(a)與圖8(b)為實施形態1中的射束的照射域及其周邊的描繪結果的一例示意圖。圖8(a)中,揭示運用以往的帶電效應修正的手法而描繪出的結果及藉由運用了實施形態1的手法之模擬模型而計算出的位置偏差後的描繪位置。圖8(a)中,雖圖面上不易區別,惟為對於以規定的量子化尺寸被網目化而成之設計上的描繪位置而言,將實際的描繪結果所造成的描繪位置與藉由模擬模型計算出的位置偏差後的描繪位置予以疊合而成之圖。圖8(b)中,為從藉由實施形態1中的模擬模型而計算出的位置偏差後的描繪位置減去實際的描繪結果所造成的描繪位置而成之模擬模型的計算偏差量(位置偏差量的修正殘差)示意圖。如圖8(b)所示,可知能夠將圖3(b)所示之某一部分的區域A的位置偏差予以良好地再現。   故,按照實施形態1,藉由修正實施形態1中得到的示意位置偏差分布之位置偏差量,包括帶電效應修正不充分執行之一部分區域在內可修正帶電現象引起之位置偏差。其結果,能夠將射束照射至高精度的照射位置。 實施形態2.   實施形態1中,說明了將帶電效應修正適用於運用了單射束之描繪裝置的情形,但並不限於此。實施形態2中,說明將帶電效應修正適用於運用了多射束之描繪裝置的情形。   圖9為實施形態2中的描繪裝置的構成示意概念圖。圖9中,描繪裝置300具備描繪部350與控制部360。描繪裝置300為多帶電粒子束描繪裝置之一例,並且為多帶電粒子束曝光裝置之一例。描繪部350,具備電子鏡筒102與描繪室103。在電子鏡筒102內,配置有電子槍201、照明透鏡202、成形孔徑陣列構件203、遮沒孔徑陣列機構204、縮小透鏡205、限制孔徑構件206、對物透鏡207、靜電透鏡212、及偏向器208,209。在描繪室103內配置XY平台105。在XY平台105上,配置有於描繪時(曝光時)成為描繪對象基板的光罩等試料101。試料101係包括製造半導體裝置時的曝光用光罩、或供製造半導體裝置的半導體基板(矽晶圓)等。此外,試料101包括已塗布阻劑,但未受到任何描繪之光罩底板(mask blanks)。在XY平台105上還配置XY平台105的位置測定用的鏡(mirror)210。   控制部360,具有控制計算機110,120、記憶體112、偏向控制電路130、數位/類比變換(DAC)放大器單元132,134、平台控制機構138、平台位置測定器139、外部介面(I/F)電路146、及磁碟裝置等記憶裝置21,140,142。控制計算機110,120、記憶體112、偏向控制電路130、平台控制機構138、平台位置測定器139、外部I/F電路146、及記憶裝置21,140,142係透過未圖示之匯流排而彼此連接。描繪資料從描繪裝置300的外部被輸入並存儲於記憶裝置140(記憶部)。在偏向控制電路130透過未圖示之匯流排而連接有DAC放大器單元132、134及遮沒孔徑陣列機構204。平台位置測定器139,將雷射光照射至XY平台105上的鏡210,並接受來自鏡210的反射光。然後,利用該入射光與反射光之干涉的資訊來測定XY平台105的位置。   控制計算機110內的構成和圖1相同。在控制計算機120內,配置擊發資料生成部41及照射量調變部47這些功能。擊發資料生成部41及照射量調變部47這些各「~部」,包括處理電路,該處理電路中,包括電子電路、電腦、處理器、電路基板、量子電路、或半導體裝置等。此外,各「~部」亦可使用共通的處理電路(同一處理電路)。或是,亦可使用相異的處理電路(個別的處理電路)。對於擊發資料生成部41及照射量調變部47內必要的輸入資料或演算出的結果會隨時被記憶於未圖示之記憶體。   此處,圖9中記載了用以說明實施形態2所必須之構成。對描繪裝置300而言,通常也可具備必要的其他構造。   在成形孔徑陣列構件203,有縱(y方向)p列×橫(x方向)q列(p,q≧2)的孔(開口部)以規定之排列間距(pitch)形成為矩陣狀。例如,於縱橫(x,y方向)形成512×512列的孔。各孔均形成為相同尺寸形狀的矩形。遮沒孔徑陣列機構204,於和成形孔徑陣列構件203的形成為矩陣狀的複數個孔相對應之位置,有供多射束的各個射束通過用之通過孔(開口部)開口。又,在各通過孔25的鄰近位置,包夾著該通過孔而分別配置有遮沒偏向用之控制電極與相向電極的組合(遮沒器:遮沒偏向器)。此外,在各通過孔的鄰近,配置有對控制電極施加偏向電壓之控制電路(邏輯電路)。相向電極被接地連接。通過各通過孔的電子束,會各自獨立地藉由施加於成對的控制電極與相向電極之組合的電壓而被偏向。藉由該偏向而受到遮沒控制。將多射束當中的相對應射束分別予以遮沒偏向。藉由配置於每一通過孔的控制電極與對向電極之組合及其控制電路來構成個別遮沒機構。像這樣,複數個遮沒器,係對通過了成形孔徑陣列構件203的複數個孔(開口部)的多射束當中分別相對應的射束進行遮沒偏向。   實施形態1中,是使用上述個別遮沒控制用的各控制電路所做的射束ON/OFF控制,來進行各射束的遮沒控制。實施形態2中的描繪動作,如圖2中說明般,是對每一條紋區域進行。   從電子槍201(放出部)放出之電子束200,會藉由照明透鏡202而近乎垂直地對成形孔徑陣列構件203全體做照明。在成形孔徑陣列構件203,形成有矩形的複數個孔(開口部),電子束200係對包含所有複數個孔之區域做照明。照射至複數個孔的位置之電子束200的各一部分,會分別通過該成形孔徑陣列構件203的複數個孔,藉此形成例如矩形形狀的複數個電子束(多射束)20a~e。該多射束20a~e會通過遮沒孔徑陣列機構204的各個相對應之遮沒器(第1偏向器:個別遮沒機構)內。該遮沒器,藉由偏向控制電路130及個別遮沒機構的控制電路而受到控制,分別將至少個別地通過之多射束20的相對應射束於設定好的描繪時間(照射時間)予以保持射束ON、OFF的狀態。換言之,遮沒孔徑陣列機構204,控制多射束的照射時間。   通過了遮沒孔徑陣列機構204的多射束20a~e,會藉由縮小透鏡205而被縮小,朝向形成於限制孔徑構件206之中心的孔行進。此處,藉由遮沒孔徑陣列機構204的遮沒器而被偏向的電子束20a,其位置會偏離限制孔徑構件206(遮沒孔徑構件)中心的孔,而被限制孔徑構件206遮蔽。另一方面,未受到遮沒孔徑陣列機構204的遮沒器偏向的電子束20b~e,會如圖9所示般通過限制孔徑構件206的中心的孔。像這樣,限制孔徑構件206,是將藉由個別遮沒機構而被偏向成為射束OFF狀態之各射束加以遮蔽。然後,藉由從成為射束ON開始至成為射束OFF為止所形成之通過了限制孔徑構件206的射束,形成1次份的擊發的各射束。通過了限制孔徑構件206的多射束20,會藉由對物透鏡207而合焦,成為期望之縮小率的圖樣像,然後藉由受到藉由來自DAC放大器單元134的偏向電壓而被控制之偏向器208及藉由來自DAC放大器單元132的偏向電壓而被控制之偏向器209,通過了限制孔徑構件206的各射束(多射束20全體)朝同方向統一被偏向,照射至各射束於試料101上各自之照射位置。此外,例如當XY平台105在連續移動時,射束的照射位置會受到偏向器208控制,以便追隨XY平台105的移動。一次所照射之多射束20,理想上會成為以成形孔徑陣列構件203的複數個孔的編排間距乘上上述期望之縮小率而得之間距而並排。像這樣,電子鏡筒102(鏡柱),將由電子束構成的多射束照射至試料101上。XY平台105藉由平台控制機構138而受到驅動控制。又,XY平台105的位置,藉由平台位置測定器139而受到檢測。在平台位置測定器139,例如包括對鏡210照射雷射,基於其入射光與反射光之干涉來測定位置之雷射測長裝置。靜電透鏡212,和試料101面的凹凸相對應,動態地修正多射束20的焦點位置(動態對焦:dynamic focusing)。   圖10為實施形態2中的多射束的照射區域與描繪對象像素之一例示意圖。圖10中,條紋區域332例如以多射束的射束尺寸而被分割成網目狀的複數個網目區域。該各網目區域係成為描繪對象像素336(單位照射區域、或描繪位置)。描繪對象像素336的尺寸,並不限定於射束尺寸,亦可為和射束尺寸無關而由任意大小所構成者。例如,亦可由射束尺寸的1/n(n為1以上的整數)的尺寸來構成。圖10例子中揭示,試料101的描繪區域,例如於y方向以和一次的多射束20的照射所能照射之照射區域334(描繪照野)的尺寸實質相同之寬度尺寸被分割成複數個條紋區域332之情形。另,條紋區域332的寬度不限於此。較佳為照射區域334的n倍(n為1以上之整數)之尺寸。圖10例子中,揭示512×512列的多射束之情形。又,在照射區域334內,揭示一次的多射束20擊發所能夠照射之複數個像素328(射束的描繪位置)。換言之,相鄰像素328間的間距即為多射束的各射束間之間距。圖10例子中,藉由被相鄰4個像素328所包圍,且包括4個像素328當中的1個像素328之正方形區域,來構成1個格子329。圖10例子中,揭示各格子329由4×4像素所構成之情形。   例如,若藉由偏向器208,照射區域334被固定(追蹤控制)於試料101上的1點,則同一射束會藉由偏向器209一面於格子329內的行或列平移(shift)一面進行各擊發。然後,格子329內的行或列的像素336群之照射結束後,將追蹤控制重置,將照射區域334例如挪移1像素336份而予以固定(追蹤控制)。此時,負責格子329的射束,係被控制成使用和前次的射束相異之射束。藉由反覆該動作,條紋區域332內的所有的像素336便成為照射對象。然後,將多射束當中的其中一個射束照射至必要的像素336,藉此以全體而言便會描繪期望的圖形圖樣。   圖11為實施形態2中的描繪方法的主要工程的一例示意流程圖。圖11中,實施形態2中的描繪方法,除了實施照射量調變工程(S113)來取代偏向位置修正工程(S112)這點以外,和圖5相同。此外,除以下說明的點以外之內容,均與實施形態1相同。   從圖樣面積密度分布ρ(x,y)演算工程(S100)至位置偏差量分布p(x,y)演算工程(S110)為止的各工程的內容和實施形態1相同。實施形態1中,為了修正位置偏差,是修正擊發資料中定義之各擊發圖形的照射位置(座標),並演算偏向量以便偏向至修正後的位置。另一方面,實施形態2中,是使用多射束,藉由對必要的像素336之射束照射有無及照射量之調整來形成圖樣。又,射束偏向是使用偏向器208、209以多射束全體統一偏向。因此,難以修正個別的射束的偏向位置。鑑此,實施形態2中,是將帶電引起之位置偏差的像素336及該像素336的周邊的像素的照射量予以調變,藉此修正於照射後形成之照射圖樣(像素圖樣)的位置。   此處,擊發資料生成部41,演算對各像素336之照射時間。照射時間,能夠藉由將劑量分布D(x,y)中定義之劑量除以電流密度J來求出。   作為照射量調變工程(S113),照射量調變部47(修正部的一例),參照位置偏差量分布(對映)所示意之位置偏差量,將照射至受到多射束當中的相對應射束照射之像素336(照射單位區域)與該像素336的周邊之像素336的各自的照射量予以調變,以使受多射束20照射之結果,會在應修正的照射位置形成照射圖樣。   圖12(a)與圖12(b)為實施形態2中的位置偏差修正方法的一例說明用圖。圖12(a)例子中,揭示照射至座標(x,y)的像素之射束a’朝+x,+y側引發了位置偏差之情形。欲將因該發生了位置偏差的射束a’而形成之圖樣的位置錯位如圖12(b)般修正至符合座標(x,y)的像素之位置,能夠藉由將偏差份量的照射量分配至和偏差的周圍的像素的方向相反側之像素來修正。圖12(a)例子中,朝座標(x,y+1)的像素偏差份量的照射量,可分配至座標(x,y-1)的像素。朝座標(x+1,y)的像素偏差份量的照射量,可分配至座標(x-1,y)的像素。   朝座標(x+1,y+1)的像素偏差份量的照射量,可分配至座標(x-1,y-1)的像素。   照射量調變部47,因應該像素(x,y)的射束的位置偏差所造成之偏差了的面積的比率,演算該像素(x,y)的射束的調變率與該像素(x,y)的周圍的像素(x,y-1)(x-1,y)(x-1,y-1)的射束的調變率。具體而言,對於因射束偏差而被射束的一部分重疊之周圍的每一像素,演算將偏差份量的面積(重疊之射束部分的面積)除以射束面積而得之比例,以作為對於位於和重疊之像素相反側之像素的分配量(射束調變率)。   圖12(a)例子中,往座標(x,y+1)的像素偏差之面積比,能夠以(x方向射束尺寸-x方向偏差量)×y方向偏差量/(x方向射束尺寸×y方向射束尺寸)來演算。故,為了修正而用來對於座標(x,y-1)的像素分配之分配量(射束調變率)U,能夠以(x方向射束尺寸-x方向偏差量)×y方向偏差量/(x方向射束尺寸×y方向射束尺寸)來演算。   圖12(a)例子中,往座標(x+1,y+1)的像素偏差了的面積比,能夠以x方向偏差量×y方向偏差量/(x方向射束尺寸×y方向射束尺寸)來演算。故,為了修正而用來對於座標(x-1,y-1)的像素分配之分配量(射束調變率)V,能夠以x方向偏差量×y方向偏差量/(x方向射束尺寸×y方向射束尺寸)來演算。   圖12(a)例子中,往座標(x+1,y)的像素偏差了的面積比,能夠以x方向偏差量×(y方向射束尺寸-y方向偏差量)/(x方向射束尺寸×y方向射束尺寸)來演算。故,為了修正而用來對於座標(x-1,y)的像素分配之分配量(射束調變率)W,能夠以x方向偏差量×(y方向射束尺寸-y方向偏差量)/(x方向射束尺寸×y方向射束尺寸)來演算。   其結果,未被分配而成為剩餘的份量之座標(x,y)的像素的射束調變率D,能夠以1-U-V-W來演算。   然後,照射量調變部47,將得到的調變率乘上相對應之像素的照射量(照射時間),藉此進行像素336的照射量調變。   作為描繪工程(S114),電子鏡筒102(鏡柱),對於對象像素336與該像素336的周邊的像素336分別照射調變後的照射量的射束。如此一來,描繪部350,便將圖樣描繪至試料101的帶電修正後的位置。   像以上這樣,按照實施形態2,即使使用了多射束的情形下,包括帶電效應修正不充分執行之一部分區域在內仍能修正帶電現象引起之位置偏差。其結果,能夠將射束照射至高精度的照射位置。    實施形態3.   上述的各實施形態中,分布函數g的設計上的分布中心之偏差量Δx(挪移量),是設計成可事先藉由實驗等決定以便修正照射量分布E的端部中的位置偏差量。實施形態3中,作為求出偏差量Δx之手法的一例,說明使用神經網路(neural network)模型,將分布函數g的設計上的分布中心之偏差量Δx予以最佳化之構成。   圖14為實施形態3中的描繪裝置的主要構成的一例示意概念圖。圖14中,除了控制部160更具有磁碟裝置等記憶裝置144這點、及在控制計算機110內更配置神經網路(NN)演算部39這點以外,和圖1相同。描繪控制部30、圖樣面積密度分布演算部31、劑量分布算出部32、照射量分布算出部33、霧化電子量分布算出部34、帶電量分布算出部35、描繪經過時間演算部37、累積時間演算部38、NN演算部39、及位置偏差量分布演算部36這些各「~部」,包括處理電路,該處理電路中,包括電子電路、電腦、處理器、電路基板、量子電路、或半導體裝置等。此外,各「~部」亦可使用共通的處理電路(同一處理電路)。或是,亦可使用相異的處理電路(個別的處理電路)。對於描繪控制部30、圖樣面積密度分布演算部31、劑量分布算出部32、照射量分布算出部33、霧化電子量分布算出部34、帶電量分布算出部35、描繪經過時間演算部37、累積時間演算部38、NN演算部39、及位置偏差量分布演算部36內必要的輸入資料或演算出的結果會隨時被記憶於記憶體142。   圖15為實施形態3中的描繪方法的主要工程的一例示意流程圖。圖15中,實施形態3中的描繪方法,除了於圖樣面積密度分布ρ(x,y)演算工程(S100)之前更追加了神經網路演算工程(S90)這點以外,和圖5相同。此外,以下除特別說明的點以外之內容,均與實施形態1相同。   作為神經網路演算工程(S90),NN演算部39,運用神經網路模型,使用評估圖樣的照射量分布E、與評估圖樣的實際的位置偏差量分布p,來學習權重係數g(j,i)、及權重係數R(k,j)。   圖16為實施形態3中的神經網路的構成的一例示意概念圖。一般而言人類的大腦據稱為由多數個神經元(神經細胞)所構成之大規模網路,神經網路為將此模型化而成者。如圖16所示,針對輸入層與中間層的彼此的層間的權重係數g(j,i)、及中間層與輸出層的彼此的層間的權重係數R(k,j),是以認為理想的教師資料與實際得到的輸出之平方誤差會成為最小之方式來求出。具體而言,各層的節點間,是將來自輸入層側的節點之輸出值予以加權乘積累加演算而成之合計值藉由輸出入變換函數予以變換並傳播作為往輸出側之輸入值。然後,依最終輸出層的輸出結果來形成位置偏差量的分布資料。又,神經網路模型中,是將逐漸改變權重係數來成為最小誤差值之過程稱為學習。   圖17為實施形態3中的評估圖樣的對映構成的一例示意概念圖。圖17中,設定一照射區域、與圍繞照射區域之非照射區域,在照射區域內配置評估圖樣。然後,將照射區域與非照射區域之全體區域,於x,y方向分別藉由自然數m+1條的格線,分割成m×m個的網目狀的複數個網目區域。故,m×m個的網目區域當中,中心部的n×n個的網目區域會成為照射區域。例如,於x,y方向40×40個的網目區域當中,將中心部的20×20個的網目區域訂為照射區域。   圖18為實施形態3中的複數個評估圖樣的佈局的一例示意概念圖。描繪裝置100,在塗布有阻劑的評估基板300上,如圖18所示,描繪圖樣面積密度相異之複數個評估圖樣302。圖18例子中,是描繪圖樣面積密度ρ為3%、5%、10%、15%、20%、25%、50%、75%、及100%這9種類的評估圖樣302。描繪後,將評估基板300顯影、灰化,藉此便能得到各評估圖樣302的阻劑圖樣。然後,測定各評估圖樣302的阻劑圖樣的位置。或,亦可進一步以各評估圖樣302的阻劑圖樣作為遮罩,來蝕刻下層的例如鉻(Cr)膜等遮光膜。在該情形下,可測定蝕刻後的遮光膜的位置。測定位置,可測定各格線的交點。故,測定資料,對於每一評估圖樣302,針對x,y方向各自能夠得到(m+1)×(m+1)個的位置。作為評估圖樣302,例如合適是使用線與間隔(line and space)圖樣等。針對該複數個評估圖樣,於x,y方向各自作成由m×m個的網目區域的每一網目區域的照射量與(m+1)×(m+1)個的位置偏差量組成對之教師資料,從描繪裝置100外部輸入,存儲於記憶裝置144。   然後,NN演算部39,從記憶裝置144讀出教師資料,使用照射量分布E(i)的資料作為神經網路模型的輸入層的各資料,使用評估圖樣的實際的位置偏差量分布p(k)的資料作為輸出層的各資料,來演算權重係數g(j,i)、及權重係數R(k,j)。可從實際得到的位置偏差量分布p(k)之資料令其逆傳播。演算出的權重係數g(j,i)、及權重係數R(k,j),暫時性地被記憶於記憶裝置144。可因應學習依序被更新。   此處,作為權重係數g(j,i)的核(kernel),使用分布函數g。故,往神經網路模型的中間層之輸入值,相當於霧化電子量分布F之資料,此外,來自中間層之輸出值,相當於帶電量分布C之資料。NN演算部39,針對9種類的評估圖樣,依序做演算處理藉此學習,令權重係數g(j,i)、及權重係數R(k,j)一般化(generalization)。另,針對各評估圖樣,可得到x方向的位置偏差分布與y方向的位置偏差分布,故輸出層p(k)的節點數會成為(m+1)2 的2倍。此處,如上述般,於帶電量分布C的計算中在照射區域和非照射區域會改變計算式。故,理想是針對為了得到權重係數R(k,j)而使用之輸出入變換函數,也準備照射區域用之輸出入變換函數和非照射區域用之輸出入變換函數,當藉由照射區域的輸入資料與非照射區域用的輸入資料來演算時變更輸出入變換函數(變更節點)。照射量分布E(i)的資料,不僅是位於照射區域之n×n個的網目區域,而是由包括位於其周圍的非照射區域之網目區域在內的m×m個的網目區域所構成。故,NN演算部39,可由照射量分布E(i)的資料之輸入值來判斷照射區域和非照射區域。例如,當輸入值為零的情形下,該網目區域判斷為非照射區域節點,當輸入值不為零的情形下,該網目區域判斷為照射區域節點。可因應該節點,選擇中間層的輸出入變換函數。換言之,針對照射量分布中照射量為零的位置訂為非照射區域,而適用於神經網路模型。   圖19為實施形態3中的霧化電子量分布的一例示意圖。實施形態3中,揭示藉由NN演算部39演算出的結果得到之往神經網路模型的中間層節點之輸入資料亦即霧化電子量分布F的一例。如圖19所示,依神經網路模型的中間層資料所致之霧化電子量分布F,分布中心係偏差Δx。該偏差量Δx,是藉由圖樣面積密度相異之複數個評估圖樣302而被最佳化而成之值。像這樣,藉由使用神經網路模型來演算,能夠將分布函數g的設計上的分布中心之偏差量Δx予以最佳化。該被最佳化而成之分布中心的偏差量Δx,會被輸出至霧化電子量分布算出部34。如此一來,霧化電子量分布F(x,y,σ,Δx)算出工程(S106)中,便能使用最佳化而成之分布中心的偏差量Δx,對實際的描繪資料演算霧化電子量分布F。   圖樣面積密度分布ρ(x,y)演算工程(S100)以後的各工程的內容和實施形態1相同。   像以上這樣,按照實施形態3,藉由使用神經網路模型,能夠將分布函數g的設計上的分布中心之偏差量Δx予以最佳化。故,能夠更高精度地修正位置偏差。其結果,能夠將射束照射至高精度的照射位置。   另,運用了實施形態3中的神經網路模型之分布函數g的設計上的分布中心之偏差量Δx的最佳化,並不限於運用了實施形態1的單射束之描繪裝置,針對運用了實施形態2的多射束之描繪裝置亦能適用。    實施形態4.   實施形態4中,說明使用神經網路模型,不進行帶電量分布等之演算處理而直接演算位置偏差分布之構成。   圖20為實施形態4中的描繪裝置的主要構成的一例示意概念圖。圖20中,控制部160,具有控制計算機110,120、平台位置檢測機構45、平台控制機構46、偏向控制電路130、記憶體142、磁碟裝置等記憶裝置140,144、及外部I/F電路146。控制計算機110,120、平台位置檢測機構45、平台控制機構46、偏向控制電路130、記憶體142、記憶裝置140,144、及外部I/F電路146,透過未圖示之匯流排相互連接。在控制計算機110內,配置描繪控制部30、圖樣面積密度分布演算部31、劑量分布算出部32、照射量分布算出部33、NN演算部39、及位置偏差量分布演算部36。其他要點如同圖1。   描繪控制部30、圖樣面積密度分布演算部31、劑量分布算出部32、照射量分布算出部33、NN演算部39、及位置偏差量分布演算部36這些各「~部」,包括處理電路,該處理電路中,包括電子電路、電腦、處理器、電路基板、量子電路、或半導體裝置等。此外,各「~部」亦可使用共通的處理電路(同一處理電路)。或是,亦可使用相異的處理電路(個別的處理電路)。對於描繪控制部30、圖樣面積密度分布演算部31、劑量分布算出部32、照射量分布算出部33、NN演算部39、及位置偏差量分布演算部36內必要的輸入資料或演算出的結果會隨時被記憶於記憶體142。   圖21為實施形態4中的描繪方法的主要工程的一例示意流程圖。圖21中,實施形態4中的描繪方法,係實施神經網路演算工程(S90)、圖樣面積密度分布ρ(x,y)演算工程(S100)、劑量分布D(x,y)算出工程(S102)、照射量分布E(x,y)算出工程(S104)、位置偏差量分布p(x,y)演算工程(S111)、偏向位置修正工程(S112)、描繪工程(S114)這一連串的工程。   神經網路演算工程(S90)的內容,和實施形態3相同。但,實施形態4中,不需要檔案等的往外部媒體之中間層資料的暫時保存,而是如同實施形態3般,使用存儲於記憶裝置144之教師資料,令權重係數g(j,i)、及權重係數R(k,j)一般化,並且將演算出的權重係數g(j,i)、及權重係數R(k,j)暫時性地記憶於記憶裝置144。權重係數g(j,i)、及權重係數R(k,j),可因應學習來依序被更新。   圖樣面積密度分布ρ(x,y)演算工程(S100)、劑量分布D(x,y)算出工程(S102)、及照射量分布E(x,y)算出工程(S104)之內容,和實施形態1相同。   作為位置偏差量分布p(x,y)演算工程(S111),NN演算部39(位置偏差量演算部),使用神經網路模型,演算基於照射量分布E之位置偏差量p。具體而言,NN演算部39,對於運用了存儲於記憶裝置144的最新的權重係數g(j,i)、及權重係數R(k,j)之神經網路模型的輸入層,輸入照射量分布E的資料,而從輸出層輸出位置偏差量分布p(x,y)的資料。照射量分布E,是針對描繪區域(或圖框區域)全體被作成,故對可輸入至輸入層之資料數每者來逐一演算即可。此時,NN演算部39,可由照射量分布E的資料之輸入值來判斷照射區域和非照射區域。例如,當輸入值為零的情形下,該網目區域判斷為非照射區域節點,當輸入值不為零的情形下,該網目區域判斷為照射區域節點。可因應該節點,選擇中間層的輸出入變換函數。換言之,針對照射量分布中照射量為零的位置訂為非照射區域,而適用於神經網路模型。然後,位置偏差量分布演算部36,使用從神經網路模型的輸出層輸出之資料,演算(作成)基於照射量分布E之位置偏差量p。藉由使用神經網路模型,便能代替實施形態1~3中說明的霧化電子量分布F(x,y,σ,Δx)算出工程(S106)、及帶電量分布C(x,y)算出工程(S109)之各演算。此外,在中間層的輸出入變換函數更加入描繪經過時間T和累積時間t之項目,來作成描繪有經過了同樣的描繪經過時間T和累積時間t之評估圖樣的評估基板,測定它們的位置偏差量,並令其學習測定結果,藉此還可代替描繪經過時間T(x,y)演算工程(S107)、及累積時間t演算工程(S108)之各演算。   以下以圖16為基礎來說明具體的計算手法。另,為求簡便,僅記載x的位置偏差量的計算份,但針對y的位置偏差量的計算亦同。首先,假設相當於最初的圖框描繪之輸入層E為從i=4開始者。也就是說,i<4的E(1),E(2),E(3)會成為非照射區域的輸入層節點。此外,訂定最初的圖框描繪的正下方的輸出層p為k=3。p(3)比最初的圖框描繪還之前,故p(3)=0。第1圖框正上方的p(4),係描繪有相當於第1圖框的輸入層作為E(4),因此透過神經網路計算位置偏差。此時,相當於第1圖框之中間層C(4)會變化成照射區域節點之功用。   將相當於下一個的第2圖框描繪之輸入層訂為E(5)。同樣地中間層之C(5)會變化成照射區域之功用,第2圖框正上方的p(5)透過網路被計算。此時,已描繪完畢的輸入層E(4)、中間層C(4)的功用仍然保留。另一方面,輸出層p(4)的位置偏差於第1圖框描繪時即已確定,因此於第2圖框描繪後無需再計算。   依以上方式,將圖框描繪逐一繼續至照射區域的最後,藉此計算和照射區域相對應之所有的輸出層節點之位置偏差量即可。   偏向位置修正工程(S112)、及描繪工程(S114)之各工程的內容和實施形態1相同。   像以上這樣,按照實施形態4,藉由使用神經網路模型,能夠不進行霧化電子量分布F(x,y,σ,Δx)或帶電量分布C(x,y)之演算,而從照射量分布直接地得到位置偏差量分布。故,能將計算程式更單純化,並且能夠更高精度地修正位置偏差。其結果,能夠將射束照射至高精度的照射位置。   另,運用了實施形態4中的神經網路模型之位置偏差量分布的演算,並不限於運用了實施形態1的單射束之描繪裝置,針對運用了實施形態2的多射束之描繪裝置亦能適用。   以上已一面參照具體例一面針對實施形態做了說明。但,本發明並非限定於該些具體例。帶電現象引起之照射位置的位置偏差,不限於電子束描繪裝置。本發明,能夠適應於藉由電子束等帶電粒子束來檢查圖樣之檢查裝置等運用藉由對瞄準之位置照射帶電粒子束而獲得之結果的帶電粒子束裝置。   此外,針對裝置構成或控制手法等對於本發明說明非直接必要之部分等雖省略記載,但能夠適當選擇使用必要之裝置構成或控制手法。例如,有關控制描繪裝置100之控制部構成雖省略其記載,但當然可適當選擇使用必要之控制部構成。例如,圖1等中的控制計算機110,120,亦可更透過未圖示之匯流排,連接至作為記憶裝置的一例之RAM(隨機存取記憶體)、ROM、磁碟(HD)裝置,作為輸入手段的一例之鍵盤(K/B)、滑鼠,作為輸出手段的一例之監視器、印表機,或作為輸入輸出手段的一例之FD、DVD、CD等。   其他具備本發明之要素,且所屬技術領域者可適當變更設計之所有帶電粒子束裝置及帶電粒子束的位置偏差修正方法,均包含於本發明之範圍。   雖已說明了本發明的幾個實施形態,但該些實施形態僅是提出作為例子,並非意圖限定發明範圍。該些新穎之實施形態,可以其他各種形態來實施,在不脫離發明要旨之範圍內,能夠進行各種省略、置換、變更。該些實施形態或其變形,均包含於發明範圍或要旨當中,且包含於申請專利範圍所記載之發明及其均等範圍內。
1‧‧‧電子鏡筒
2‧‧‧試料
3‧‧‧XY平台
4‧‧‧鏡
5‧‧‧電子槍
6‧‧‧電子束
7‧‧‧照明透鏡
8‧‧‧第1孔徑
9‧‧‧投影透鏡
10‧‧‧偏向器
11‧‧‧第2孔徑
12‧‧‧對物透鏡
13‧‧‧偏向器
14‧‧‧描繪室
15‧‧‧靜電透鏡
20(20a~e)‧‧‧多射束
21、140、144‧‧‧記憶裝置
30‧‧‧描繪控制部
31‧‧‧圖樣面積密度分布演算部
32‧‧‧劑量分布算出部
33‧‧‧照射量分布算出部
34‧‧‧霧化電子量分布算出部
35‧‧‧帶電量分布算出部
36‧‧‧位置偏差量分布演算部
37‧‧‧描繪經過時間演算部
38‧‧‧累積時間演算部
39‧‧‧神經網路(NN)演算部
41‧‧‧擊發資料生成部
42‧‧‧位置偏差修正部
43‧‧‧成形偏向器控制部
44‧‧‧對物偏向器控制部
45‧‧‧平台位置檢測機構
46‧‧‧平台控制機構
47‧‧‧照射量調變部
100‧‧‧描繪裝置
101‧‧‧試料
102‧‧‧電子鏡筒
103‧‧‧描繪室
105‧‧‧XY平台
110、120‧‧‧控制計算機
112‧‧‧記憶體
130‧‧‧偏向控制電路
132、134‧‧‧數位/類比變換(DAC)放大器單元
138‧‧‧平台控制機構
139‧‧‧平台位置測定器
142‧‧‧記憶體
146‧‧‧外部介面(I/F)電路
150‧‧‧描繪部
160‧‧‧控制部
201‧‧‧電子槍
202‧‧‧照明透鏡
203‧‧‧成形孔徑陣列構件
204‧‧‧遮沒孔徑陣列機構
205‧‧‧縮小透鏡
206‧‧‧限制孔徑構件
207‧‧‧對物透鏡
208、209‧‧‧偏向器
210‧‧‧鏡
212‧‧‧靜電透鏡
230‧‧‧帶電用圖樣
300‧‧‧描繪裝置
328‧‧‧像素
329‧‧‧格子
330‧‧‧電子線
332‧‧‧條紋區域
334‧‧‧照射區域
336‧‧‧描繪對象像素
340‧‧‧試料
350‧‧‧描繪部
360‧‧‧控制部
410‧‧‧第1孔徑
411‧‧‧開口
420‧‧‧第2孔徑
421‧‧‧可變成形開口
430‧‧‧帶電粒子源
圖1為實施形態1中的描繪裝置的主要構成的一例示意概念圖。   圖2為實施形態1中的平台移動的狀況說明用圖。   圖3(a)與圖3(b)為實施形態1的比較例中的射束的照射域及其周邊的描繪結果的一例示意圖。   圖4(a)至圖4(c)為料想令實施形態1的比較例中的射束的照射位置發生位置偏差之機制說明用圖。   圖5為實施形態1中的描繪方法的主要工程的一例示意流程圖。   圖6(a)與圖6(b)為實施形態1中的霧化電子量分布的計算模型的一例說明用圖。   圖7為實施形態1中的描繪方法的主要工程的另一例示意流程圖。   圖8(a)與圖8(b)為實施形態1中的射束的照射域及其周邊的描繪結果的一例示意圖。   圖9為實施形態2中的描繪裝置的構成示意概念圖。   圖10為由圖9的結果得到的帶電衰減量與圖樣面積密度ρ之關係的一例示意圖。   圖11為實施形態2中的描繪方法的主要工程的一例示意流程圖。   圖12(a)與圖12(b)為實施形態2中的位置偏差修正方法的一例說明用圖。   圖13為可變成形型電子線描繪裝置之動作說明用概念圖。   圖14為實施形態3中的描繪裝置的主要構成的一例示意概念圖。   圖15為實施形態3中的描繪方法的主要工程的一例示意流程圖。   圖16為實施形態3中的神經網路的構成的一例示意概念圖。   圖17為實施形態3中的評估圖樣的對映構成的一例示意概念圖。   圖18為實施形態3中的複數個評估圖樣的佈局的一例示意概念圖。   圖19為實施形態3中的霧化電子量分布的一例示意圖。   圖20為實施形態4中的描繪裝置的主要構成的一例示意概念圖。   圖21為實施形態4中的描繪方法的主要工程的一例示意流程圖。

Claims (8)

  1. 一種帶電粒子束裝置,具備:霧化帶電粒子量分布演算部,將偏離了霧化帶電粒子的設計上的分布中心之分布函數、與未偏離帶電粒子束的設計上的照射中心之照射量分布予以摺積積分,藉此演算霧化帶電粒子量分布;及位置偏差量演算部,演算基於前述霧化帶電粒子量分布之位置偏差量;及修正部,使用前述位置偏差量,修正照射位置;及偏向量演算部,演算將帶電粒子束偏向至前述修正後的照射位置之偏向量;及鏡柱,具有放出帶電粒子束之放出源、及將前述帶電粒子束偏向之偏向器,將帶電粒子束照射至修正後的照射位置;前述偏向器,因應前述偏向量來將前述帶電粒子束偏向。
  2. 如申請專利範圍第1項所述之帶電粒子束裝置,其中,前述鏡柱,照射由帶電粒子束所構成之多射束,前述修正部,具有照射量調變部,將照射至受到前述多射束當中的相對應射束照射之照射單位區域與該照射單位區域的周邊之照射單位區域的各自的照射量予以調變,以使受前述多射束照射之結果,會在應修正的照射位置形成照射圖樣,前述鏡柱,將各自受到調變後的照射量的射束照射至前述照射單位區域與該照射單位區域的前述周邊之照射單位區域。
  3. 如申請專利範圍第1項所述之帶電粒子束裝置,其中,前述分布函數的前述設計上的分布中心之偏差量,是使用事先決定好的值以便修正在前述照射量分布的端部產生的位置偏差量。
  4. 如申請專利範圍第1項所述之帶電粒子束裝置,其中,更具備神經網路演算部,使用神經網路模型演算前述設計上的分布中心之偏差量。
  5. 一種帶電粒子束的位置偏差修正方法,係將偏離了霧化帶電粒子的設計上的分布中心之分布函數、與未偏離帶電粒子束的設計上的照射中心之照射量分布予以摺積積分,藉此演算霧化帶電粒子量分布,演算基於前述霧化帶電粒子量分布之位置偏差量,使用前述位置偏差量,修正照射位置,演算將帶電粒子束偏向至前述修正後的照射位置之偏向量,因應前述偏向量來將前述帶電粒子束偏向,而將帶電粒子束照射至修正後的照射位置。
  6. 一種帶電粒子束裝置,具備:照射量分布演算部,演算帶電粒子束的照射量分布;及位置偏差量演算部,使用神經網路模型,演算基於前述照射量分布之位置偏差量;及修正部,使用前述位置偏差量,修正照射位置;及鏡柱,具有放出帶電粒子束之放出源、及將前述帶電粒子束偏向之偏向器,將帶電粒子束照射至修正後的照射位置。
  7. 如申請專利範圍第6項所述之帶電粒子束裝置,其中,針對前述照射量分布中照射量為零的位置訂為非照射區域,而適用於前述神經網路模型。
  8. 一種帶電粒子束的位置偏差修正方法,係演算帶電粒子束的照射量分布,使用神經網路模型,演算基於前述照射量分布之位置偏差量,使用前述位置偏差量,修正照射位置,將帶電粒子束照射至修正後的照射位置。
TW106132898A 2016-09-28 2017-09-26 帶電粒子束裝置及帶電粒子束的位置偏差修正方法 TWI680489B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016190258 2016-09-28
JP2016-190258 2016-09-28
JP2017026945 2017-02-16
JP2017-026945 2017-02-16

Publications (2)

Publication Number Publication Date
TW201826317A TW201826317A (zh) 2018-07-16
TWI680489B true TWI680489B (zh) 2019-12-21

Family

ID=61685679

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106132898A TWI680489B (zh) 2016-09-28 2017-09-26 帶電粒子束裝置及帶電粒子束的位置偏差修正方法

Country Status (4)

Country Link
US (1) US10410830B2 (zh)
JP (1) JP6951922B2 (zh)
KR (1) KR102027206B1 (zh)
TW (1) TWI680489B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133428A (ja) * 2017-02-15 2018-08-23 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法
US10493299B2 (en) * 2017-12-08 2019-12-03 Elekta, Inc. Determining parameters for a beam model of a radiation machine using deep convolutional neural networks
JP7026575B2 (ja) 2018-05-22 2022-02-28 株式会社ニューフレアテクノロジー 電子ビーム照射方法、電子ビーム照射装置、及びプログラム
JP6981380B2 (ja) * 2018-08-02 2021-12-15 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
DE112019005606T5 (de) 2018-11-09 2021-08-05 Nuflare Technology, Inc. Geladener-Teilchenstrahl-Schreibvorrichtung, Geladener-Teilchenstrahl-Schreibverfahren und ein Programm
JP7159970B2 (ja) * 2019-05-08 2022-10-25 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP7391735B2 (ja) * 2019-09-25 2023-12-05 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置
JP7413105B2 (ja) * 2019-09-25 2024-01-15 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置
JP2023516596A (ja) * 2020-02-26 2023-04-20 マジック リープ, インコーポレイテッド 手続型電子ビームリソグラフィ
JP2021180224A (ja) * 2020-05-12 2021-11-18 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
US11804361B2 (en) 2021-05-18 2023-10-31 Nuflare Technology, Inc. Charged particle beam writing method, charged particle beam writing apparatus, and computer-readable recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110031387A1 (en) * 2009-08-07 2011-02-10 Nuflare Technology, Inc. Charged particle beam writing apparatus and method thereof
US20150206709A1 (en) * 2014-01-22 2015-07-23 Nuflare Technology, Inc. Multi charged particle beam writing apparatus, and multi charged particle beam writing method
TW201621961A (zh) * 2014-10-17 2016-06-16 Nuflare Technology Inc 多重帶電粒子束的遮沒裝置及多重帶電粒子束描繪裝置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608791B2 (ja) 1977-12-07 1985-03-05 株式会社日立製作所 醗酵装置の昇温冷却方法および装置
JPS5480555A (en) 1977-12-09 1979-06-27 Fujitsu Ltd Nonndirectional liquid metal contact switch
US5912469A (en) * 1996-07-11 1999-06-15 Nikon Corporation Charged-particle-beam microlithography apparatus
DE69737270T2 (de) * 1996-08-30 2008-03-06 Hitachi, Ltd. Vorrichtung zum Bestrahlen mit geladenen Teilchen
EP1184725A1 (en) * 2000-09-04 2002-03-06 Infineon Technologies SC300 GmbH & Co. KG Method for adjusting a lithographic tool
JP2002217088A (ja) * 2001-01-17 2002-08-02 Nikon Corp 荷電粒子線露光装置、荷電粒子線露光方法及び半導体デバイスの製造方法
TWI242692B (en) * 2002-12-16 2005-11-01 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP4737968B2 (ja) * 2004-10-13 2011-08-03 株式会社東芝 補正装置、補正方法、補正プログラム及び半導体装置の製造方法
JP4976071B2 (ja) * 2006-02-21 2012-07-18 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP2008085120A (ja) * 2006-09-28 2008-04-10 Nuflare Technology Inc 荷電粒子ビーム描画装置の位置補正係数算出方法及び荷電粒子ビーム描画装置の位置補正係数更新方法
JP5480496B2 (ja) * 2008-03-25 2014-04-23 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
US20120219886A1 (en) * 2011-02-28 2012-08-30 D2S, Inc. Method and system for forming patterns using charged particle beam lithography with variable pattern dosage
JP5416998B2 (ja) * 2009-03-17 2014-02-12 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
JP2010250286A (ja) * 2009-03-23 2010-11-04 Toshiba Corp フォトマスク、半導体装置、荷電ビーム描画装置
JP5525798B2 (ja) * 2009-11-20 2014-06-18 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置およびその帯電効果補正方法
KR101244525B1 (ko) * 2010-04-20 2013-03-18 가부시키가이샤 뉴플레어 테크놀로지 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법
JP5688308B2 (ja) * 2011-02-18 2015-03-25 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5859778B2 (ja) * 2011-09-01 2016-02-16 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP5617947B2 (ja) * 2013-03-18 2014-11-05 大日本印刷株式会社 荷電粒子線照射位置の補正プログラム、荷電粒子線照射位置の補正量演算装置、荷電粒子線照射システム、荷電粒子線照射位置の補正方法
JP2014225428A (ja) * 2013-04-24 2014-12-04 キヤノン株式会社 荷電粒子線照射装置、荷電粒子線の照射方法及び物品の製造方法
JP6295035B2 (ja) * 2013-07-10 2018-03-14 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2015142093A (ja) * 2014-01-30 2015-08-03 凸版印刷株式会社 電子線描画装置と電子線照射量の補正方法
JP2015216225A (ja) * 2014-05-09 2015-12-03 キヤノン株式会社 リソグラフィ装置及び方法、並びに物品の製造方法
JP6617066B2 (ja) * 2016-03-25 2019-12-04 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP6951174B2 (ja) * 2016-09-28 2021-10-20 株式会社ニューフレアテクノロジー 電子ビーム装置及び電子ビームの位置ずれ補正方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110031387A1 (en) * 2009-08-07 2011-02-10 Nuflare Technology, Inc. Charged particle beam writing apparatus and method thereof
US20150206709A1 (en) * 2014-01-22 2015-07-23 Nuflare Technology, Inc. Multi charged particle beam writing apparatus, and multi charged particle beam writing method
TW201621961A (zh) * 2014-10-17 2016-06-16 Nuflare Technology Inc 多重帶電粒子束的遮沒裝置及多重帶電粒子束描繪裝置

Also Published As

Publication number Publication date
KR20180035177A (ko) 2018-04-05
US10410830B2 (en) 2019-09-10
JP6951922B2 (ja) 2021-10-20
KR102027206B1 (ko) 2019-10-04
TW201826317A (zh) 2018-07-16
US20180090299A1 (en) 2018-03-29
JP2018133552A (ja) 2018-08-23

Similar Documents

Publication Publication Date Title
TWI680489B (zh) 帶電粒子束裝置及帶電粒子束的位置偏差修正方法
JP6951174B2 (ja) 電子ビーム装置及び電子ビームの位置ずれ補正方法
TWI658331B (zh) 帶電粒子束的照射量修正用參數之取得方法,帶電粒子束描繪方法及帶電粒子束描繪裝置
TWI611250B (zh) 帶電粒子束描繪裝置及帶電粒子束描繪方法
US20070158576A1 (en) Method of calculating deflection aberration correcting voltage and charged particle beam writing method
TWI729445B (zh) 多帶電粒子束描繪裝置及多帶電粒子束描繪方法
TW201921413A (zh) 多帶電粒子束描繪裝置及多帶電粒子束描繪方法
US9748074B2 (en) Data generating apparatus, energy beam writing apparatus, and energy beam writing method
WO2021229966A1 (ja) 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
TWI775007B (zh) 帶電粒子束描繪裝置,帶電粒子束描繪方法及程式
TWI754145B (zh) 電子束照射方法、電子束照射裝置及可藉由記錄了程式的電腦讀取之非暫態性的記錄媒體
CN111913361B (zh) 带电粒子束描绘方法以及带电粒子束描绘装置
US11804361B2 (en) Charged particle beam writing method, charged particle beam writing apparatus, and computer-readable recording medium
WO2021220697A1 (ja) 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
TW202343521A (zh) 帶電粒子束描繪方法,帶電粒子束描繪裝置及電腦可讀取記錄媒體