KR101244525B1 - 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법 - Google Patents

하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법 Download PDF

Info

Publication number
KR101244525B1
KR101244525B1 KR1020110036274A KR20110036274A KR101244525B1 KR 101244525 B1 KR101244525 B1 KR 101244525B1 KR 1020110036274 A KR1020110036274 A KR 1020110036274A KR 20110036274 A KR20110036274 A KR 20110036274A KR 101244525 B1 KR101244525 B1 KR 101244525B1
Authority
KR
South Korea
Prior art keywords
proximity effect
map
dose
pattern
density
Prior art date
Application number
KR1020110036274A
Other languages
English (en)
Other versions
KR20110117019A (ko
Inventor
히로시 마츠모토
Original Assignee
가부시키가이샤 뉴플레어 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010097161A external-priority patent/JP5441806B2/ja
Priority claimed from JP2010097162A external-priority patent/JP5525902B2/ja
Application filed by 가부시키가이샤 뉴플레어 테크놀로지 filed Critical 가부시키가이샤 뉴플레어 테크놀로지
Publication of KR20110117019A publication Critical patent/KR20110117019A/ko
Application granted granted Critical
Publication of KR101244525B1 publication Critical patent/KR101244525B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • G03F1/78Patterning of masks by imaging by charged particle beam [CPB], e.g. electron beam patterning of masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2061Electron scattering (proximity) correction or prevention methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2063Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam for the production of exposure masks or reticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • H01J37/3023Programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30455Correction during exposure
    • H01J2237/30461Correction during exposure pre-calculated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31769Proximity effect correction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31776Shaped beam

Abstract

실시형태의 하전 입자빔 묘화 장치는, 근접 효과 보정 계수 맵과 기준 조사량 맵으로 세트를 구성하는 복수의 세트 데이터를 입력하여, 기억하는 기억부와, 각 세트 데이터를 판독하고, 세트마다, 제1 조사량 맵을 연산하는 제1 조사량 연산부와, 세트마다, 연산된 제1 조사량 맵을 이용하여, 복수의 근접 효과 밀도에서의 패턴의 치수 맵을 각각 작성하는 치수 맵 작성부와, 각 세트의 각각 근접 효과 밀도가 상이한 복수의 치수 맵을 이용하여, 근접 효과 밀도마다 맵의 각 위치에서의 모든 세트의 치수를 가산하는 가산부와, 가산된, 각각 근접 효과 밀도가 상이한 복수의 가산 치수 맵을 이용하여, 일부의 근접 효과 밀도에서는 상기 패턴의 치수 오차가 보정되고, 나머지 근접 효과 밀도에서는 상기 패턴의 치수 오차에 보정 잔여가 발생하는 근접 효과 보정 계수와 기준 조사량의 세트를 선택하는 선택부와, 맵의 위치마다, 근접 효과 밀도에 의존한 상기 보정 잔여를 보정하는 보정항을 연산하는 보정항 연산부와, 맵의 각 위치에서의 선택된 근접 효과 보정 계수와 기준 조사량의 세트와 상기 보정항을 이용하여 제2 조사량 맵을 연산하는 제2 조사량 연산부와, 상기 제2 조사량 맵에 정의된 조사량의 하전 입자빔을 이용하여, 시료에 패턴을 묘화하는 묘화부를 구비한 것을 특징으로 한다.

Description

하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법{CHARGED PARTICLE BEAM WRITING METHOD AND APPARATUS}
본 발명은 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법에 관한 것으로, 예컨대, 전자선 묘화에 있어서 선폭 균일성을 향상시키기 위한 전자빔의 조사(照射)량을 구하는 방법에 관한 것이다.
반도체 디바이스의 미세화의 진전을 담당하는 리소그래피 기술은 반도체 제조 프로세스 중에서도 유일 패턴을 생성하는 매우 중요한 프로세스이다. 최근, LSI의 고집적화에 따라, 반도체 디바이스에 요구되는 회로 선폭은 해마다 미세화되어 오고 있다. 이들 반도체 디바이스에 원하는 회로 패턴을 형성하기 위해서는, 고정밀도의 원화(原畵) 패턴(레티클 또는 마스크라고도 함)이 필요해진다. 여기서, 전자선(전자빔) 묘화 기술은 본질적으로 우수한 해상성을 갖고 있으며, 고정밀도의 원화 패턴의 생산에 이용된다.
도 20은 가변 성형형 전자선 묘화 장치의 동작을 설명하기 위한 개념도이다.
가변 성형형 전자선(EB: Electron beam) 묘화 장치는, 이하와 같이 동작한다. 제1 애퍼처(410)에는, 전자선(330)을 성형하기 위한 직사각형 예컨대 장방형의 개구(411)가 형성되어 있다. 또한, 제2 애퍼처(420)에는, 제1 애퍼처(410)의 개구(411)를 통과한 전자선(330)을 원하는 직사각형 형상으로 성형하기 위한 가변 성형 개구(421)가 형성되어 있다. 하전 입자 소스(430)로부터 조사되어, 제1 애퍼처(410)의 개구(411)를 통과한 전자선(330)은, 편향기에 의해 편향되고, 제2 애퍼처(420)의 가변 성형 개구(421)의 일부를 통과하여, 정해진 일방향(예컨대, X방향으로 함)으로 연속적으로 이동하는 스테이지 상에 탑재된 시료(340)에 조사된다. 즉, 제1 애퍼처(410)의 개구(411)와 제2 애퍼처(420)의 가변 성형 개구(421)의 양쪽을 통과할 수 있는 직사각형 형상이, X방향으로 연속적으로 이동하는 스테이지 상에 탑재된 시료(340)의 묘화 영역에 묘화된다. 제1 애퍼처(410)의 개구(411)와 제2 애퍼처(420)의 가변 성형 개구(421)의 양쪽을 통과시켜, 임의의 형상을 작성하는 방식을 가변 성형방식 (VSB 방식)이라고 말한다.
전술한 전자빔 묘화에서는, 보다 고정밀도의 시료면 내, 예컨대 마스크면 내의 선폭 균일성이 요구되고 있다. 여기서, 이러한 전자빔 묘화에서는, 전자빔을 레지스트가 도포된 마스크에 조사하여 회로 패턴을 묘화하는 경우, 전자빔이 레지스트층을 투과하여 그 아래의 층에 도달하고, 재차 레지스트층에 재입사하는 후방 산란에 의한 근접 효과라고 불리는 현상이 발생해 버린다. 이에 따라, 묘화 시, 원하는 치수로부터 어긋난 치수로 묘화되어 버리는 치수 변동이 발생해 버린다. 한편, 묘화 후의 현상이나 에칭을 행하는 경우에 있어서도, 회로 패턴의 조밀(稠密)에 기인한 로딩 효과라고 불리는 치수 변동이 발생해 버린다.
전자빔의 조사량은, 예컨대, 기준 조사량 Dbase와, 근접 효과를 보정하기 위한 근접 효과 보정 계수 η와 패턴 면적 밀도 ρ 또는 근접 효과 밀도 U에 의존한 근접 효과 보정 조사량 Dp(η, U)의 곱으로 계산된다. 여기서, 기준 조사량 Dbase마다 근접 효과 보정이 잘 맞는 근접 효과 보정 계수 η가 존재한다. 그리고, 기준 조사량 Dbase가 클수록 레지스트 이미지의 치수가 커진다.
그래서, 기판의 위치마다 기준 조사량 Dbase와 근접 효과 보정 계수 η의 세트를 변경하여 근접 효과 보정을 유지하면서 로딩 효과에 의한 치수 변동량도 아울러 보정하는 제1 방법이 있다(예컨대, 일본 특허 공개 제2007-150243호 공보). 최근, 사용자측에서, 로딩 효과 등의 치수 변동 원인마다 이러한 기준 조사량 Dbase 맵과 근접 효과 보정 계수 η 맵의 세트 데이터를 작성하고, 묘화 장치측에서 이러한 복수의 세트 데이터를 이용하여 묘화를 행하는 것이 요청되고 있다. 그러나, 기준 조사량 Dbase 및 근접 효과 보정 계수 η는, 각각 단순히 조합할 수 없어, 종래, 묘화 장치측에서 이러한 복수의 세트 데이터를 이용하여 묘화를 행하는 것은 곤란하였다.
또한, 이러한 제1 방법으로 얻어지는 조사량에서는, 근접 효과 밀도 U에 관계 없이, 동일한 치수 변화량이 얻어진다. 즉, 근접 효과 보정이 어긋나지 않도록 치수 보정을 행한다. 이러한 보정은, 묘화 후의 차광막의 에칭 시에 발생하는 로딩 효과의 보정에 적합하다.
한편, 근접 효과 보정 계수 η는 변경하지 않고 보정하고 싶은 치수와 여유도에 따라 기준 조사량 Dbase를 변경하여 보정하는 제2 방법도 있다. 이러한 제2 방법에서는, 근접 효과 밀도마다 상이한 치수 보정량이 얻어진다. 근접 효과 밀도를 맞춘 조사량이 레지스트 현상 시의 임계값으로부터 어긋나는 경우의 보정에 적합하다. 그 때문에, 현상액의 농도 불균일에 의해 발생하는 현상 임계값의 불균일성에 기인하는 로딩 효과의 보정에 적합하다.
실제의 마스크 제조 시에 발생하는 로딩 효과에 의한 패턴 치수의 오차에는, 전술한 현상 시에 발생하는 로딩 효과와 에칭 시에 발생하는 로딩 효과가 융합되어 있다. 즉, 동일한 위치에서 양자가 혼재하고 있는 경우가 있다. 그 때문에, 전술한 것 중 어느 하나의 보정으로는 완전히 보정할 수 없는 경우가 있다. 그래서, 전자를 제1 방법으로 보정하고, 후자를 제2 방법으로 보정한다고 하는 제3 방법이 검토되고 있다. 그러나, 제3 방법으로 보정하기 위해서는, 사용자 등이 실제로 발생한 치수 오차를 제1 방법의 성분과 제2 방법의 성분으로 분리할 필요가 있고, 이것을 행하는 것은 매우 어렵다. 또한, 현상 시에 발생하는 로딩 효과와 에칭 시에 발생하는 로딩 효과 사이에서 보정에 이용하는 근접 효과 보정 계수 η를 변경할 필요가 발생한 경우에는 전술한 제3 방법은 대응할 수 없게 되어 버린다.
전술한 바와 같이, 사용자측에서, 로딩 효과 등의 치수 변동 원인마다 기준 조사량 Dbase 맵과 근접 효과 보정 계수 η 맵의 세트 데이터를 작성하고, 묘화 장치측에서 이러한 복수의 세트 데이터를 이용하여 묘화를 행하는 것이 요구되고 있다. 그러나, 종래, 묘화 장치측에서 이러한 복수의 세트 데이터를 입력해도, 이들을 조합하여 묘화를 행하는 것은 곤란하다는 문제가 있었다.
또한, 전술한 어떠한 방법에 있어서도, 현상 시에 발생하는 로딩 효과에 의한 치수 변동과 에칭 시에 발생하는 로딩 효과에 의한 치수 변동의 양쪽을 근접 효과도 보정하면서 충분히 보정하는 것은 곤란하다는 문제가 있었다.
본 발명의 일 형태의 하전 입자빔 묘화 장치는,
근접 효과 보정 계수 맵과 기준 조사량 맵으로 세트를 구성하는 복수의 세트 데이터를 입력하여, 기억하는 기억부와,
각 세트 데이터를 판독하고, 세트마다, 제1 조사량 맵을 연산하는 제1 조사량 연산부와,
세트마다, 연산된 제1 조사량 맵을 이용하여, 패턴의 치수 맵을 작성하는 치수 맵 작성부와,
각 세트의 치수 맵을 이용하여, 맵의 위치마다 모든 세트의 치수를 가산하는 가산부와,
가산된 가산 치수 맵을 이용하여, 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 작성하는 세트 맵 작성부와,
작성된 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 이용하여, 제2 조사량 맵을 연산하는 제2 조사량 연산부와,
제2 조사량 맵에 정의된 조사량의 하전 입자빔을 이용하여, 시료에 패턴을 묘화하는 묘화부
를 구비한 것을 특징으로 한다.
본 발명의 다른 형태의 하전 입자빔 묘화 장치는,
근접 효과 보정 계수 맵과 기준 조사량 맵으로 세트를 구성하는 복수의 세트 데이터를 입력하여, 기억하는 기억부와,
각 세트 데이터를 판독하고, 세트마다, 제1 조사량 맵을 연산하는 제1 조사량 연산부와,
세트마다, 연산된 제1 조사량 맵을 이용하여, 복수의 근접 효과 밀도에서의 패턴의 치수 맵을 각각 작성하는 치수 맵 작성부와,
각 세트의 각각 근접 효과 밀도가 상이한 복수의 치수 맵을 이용하여, 근접 효과 밀도마다 맵의 각 위치에서의 모든 세트의 치수를 가산하는 가산부와,
가산된, 각각 근접 효과 밀도가 상이한 복수의 가산 치수 맵을 이용하여, 일부의 근접 효과 밀도에서는 패턴의 치수 오차가 보정되고, 나머지 근접 효과 밀도에서는 패턴의 치수 오차에 보정 잔여가 발생하는 근접 효과 보정 계수와 기준 조사량의 세트를 선택하는 선택부와,
맵의 위치마다, 근접 효과 밀도에 의존한 보정 잔여를 보정하는 보정항을 연산하는 보정항 연산부와,
맵의 각 위치에서의 선택된 근접 효과 보정 계수와 기준 조사량의 세트와 보정항을 이용하여 제2 조사량 맵을 연산하는 제2 조사량 연산부와,
제2 조사량 맵에 정의된 조사량의 하전 입자빔을 이용하여, 시료에 패턴을 묘화하는 묘화부
를 구비한 것을 특징으로 한다.
본 발명의 다른 형태의 하전 입자빔 묘화 장치는,
마스크 묘화 시에 마스크면 내의 치수 변동을 발생시키는 복수의 현상에 대해서, 현상마다 패턴 면적률과 근접 효과 보정 계수와 기준 조사량의 상관 정보를 입력하여, 기억하는 기억부와,
각 상관 정보를 판독하고, 현상마다, 해당 현상을 보정하는 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 작성하는 제1 세트 맵 작성부와,
세트마다, 대응하는 근접 효과 보정 계수 맵과 기준 조사량 맵을 이용하여, 제1 조사량 맵을 연산하는 제1 조사량 연산부와,
세트마다, 연산된 제1 조사량 맵을 이용하여, 패턴의 치수 맵을 작성하는 치수 맵 작성부와,
각 세트의 치수 맵을 이용하여, 맵의 위치마다 모든 세트의 치수를 가산하는 가산부와,
가산된 가산 치수 맵을 이용하여, 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 작성하는 세트 맵 작성부와,
작성된 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 이용하여, 제2 조사량 맵을 연산하는 제2 조사량 연산부와,
제2 조사량 맵에 정의된 조사량의 하전 입자빔을 이용하여, 시료에 패턴을 묘화하는 묘화부
를 구비한 것을 특징으로 한다.
본 발명의 일 형태의 하전 입자빔 묘화 방법은,
근접 효과 보정 계수 맵과 기준 조사량 맵으로 세트를 구성하는 복수의 세트 데이터를 기억하는 기억 장치로부터 각 세트 데이터를 판독하고, 세트마다, 제1 조사량 맵을 연산하며,
세트마다, 연산된 제1 조사량 맵을 이용하여, 패턴의 치수 맵을 작성하고,
각 세트의 치수 맵을 이용하여, 맵의 위치마다 모든 세트의 치수를 가산하며,
가산된 가산 치수 맵을 이용하여, 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 작성하고,
작성된 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 이용하여, 제2 조사량 맵을 연산하며,
제2 조사량 맵에 정의된 조사량의 하전 입자빔을 이용하여, 시료에 패턴을 묘화하는 것을 특징으로 한다.
본 발명의 다른 형태의 하전 입자빔 묘화 방법은,
근접 효과 보정 계수 맵과 기준 조사량 맵으로 세트를 구성하는 복수의 세트 데이터를 기억하는 기억 장치로부터 각 세트 데이터를 판독하고, 세트마다, 제1 조사량 맵을 연산하며,
세트마다, 연산된 제1 조사량 맵을 이용하여, 복수의 근접 효과 밀도에서의 패턴의 치수 맵을 각각 작성하고,
각 세트의 각각 근접 효과 밀도가 상이한 복수의 치수 맵을 이용하여, 근접 효과 밀도마다 맵의 각 위치에서의 모든 세트의 치수를 가산하며,
가산된, 각각 근접 효과 밀도가 상이한 복수의 가산 치수 맵을 이용하여, 일부의 근접 효과 밀도에서는 상기 패턴의 치수 오차가 보정되고, 나머지 근접 효과 밀도에서는 패턴의 치수 오차에 보정 잔여가 발생하는 근접 효과 보정 계수와 기준 조사량의 세트를 선택하며,
맵의 위치마다, 근접 효과 밀도에 의존한 보정 잔여를 보정하는 보정항을 연산하고,
맵의 각 위치에서의 선택된 근접 효과 보정 계수와 기준 조사량의 세트와 상기 보정항을 이용하여 제2 조사량 맵을 연산하며,
제2 조사량 맵에 정의된 조사량의 하전 입자빔을 이용하여, 시료에 패턴을 묘화하는 것을 특징으로 한다.
본 발명의 다른 형태의 하전 입자빔 묘화 장치는,
근접 효과 밀도를 가변으로 하여 기판에 패턴을 묘화했을 때에 기판에 형성된 패턴 치수의 분포를 나타내는, 각각 상이한 근접 효과 밀도의 복수의 패턴 치수 맵 데이터를 입력하여, 기억하는 기억 장치와,
맵 위치마다, 근접 효과 보정 계수와 기준 조사량을 이용하여 계산되는 치수 오차를 보정하는 조사량 함수에 의해 얻어지는 조사량으로 해당 맵 위치를 묘화했을 때에, 일부의 근접 효과 밀도에서는 패턴 치수의 치수 오차가 보정되고, 나머지 근접 효과 밀도에서는 패턴 치수의 치수 오차에 보정 잔여가 발생하는 근접 효과 보정 계수와 기준 조사량의 세트를 선택하는 선택부와,
맵 위치마다, 근접 효과 밀도에 의존한 보정 잔여를 보정하는 보정항을 연산하는 보정항 연산부와,
맵 위치마다, 선택된 근접 효과 보정 계수와 기준 조사량의 세트와 보정항을 이용하여 조사량을 연산하는 조사량 연산부와,
맵 위치마다 얻어진 조사량의 하전 입자빔을 이용하여, 기판 상에 원하는 패턴을 묘화하는 묘화부
를 구비한 것을 특징으로 한다.
본 발명의 다른 형태의 하전 입자빔 묘화 방법은,
근접 효과 밀도를 가변으로 하여 기판에 패턴을 묘화했을 때에 기판에 형성된 패턴 치수의 분포를 나타내는, 각각 상이한 근접 효과 밀도의 복수의 패턴 치수 맵 데이터를 기억하는 기억 장치로부터 복수의 패턴 치수 맵 데이터를 판독하고, 맵 위치마다, 근접 효과 보정 계수와 기준 조사량을 이용하여 계산되는 치수 오차를 보정하는 조사량 함수에 의해 얻어지는 조사량으로 해당 맵 위치를 묘화했을 때에, 일부의 근접 효과 밀도에서는 패턴 치수의 치수 오차가 보정되고, 나머지 근접 효과 밀도에서는 패턴 치수의 치수 오차에 보정 잔여가 발생하는 근접 효과 보정 계수와 기준 조사량의 세트를 선택하며,
맵 위치마다, 근접 효과 밀도에 의존한 보정 잔여를 보정하는 보정항을 연산하고,
맵 위치마다, 선택된 근접 효과 보정 계수와 기준 조사량의 세트와 보정항을 이용하여 조사량을 연산하며,
맵 위치마다 얻어진 조사량의 하전 입자빔을 이용하여, 기판 상에 원하는 패턴을 묘화하는 것을 특징으로 한다.
본 발명의 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법에 의하면, 전자선 묘화에 있어서 선폭 균일성을 향상시키기 위한 전자빔의 조사(照射)량을 구할 수 있다.
도 1은 실시형태 1에서의 묘화 장치의 구성을 도시하는 개념도이다.
도 2는 실시형태 1에서의 묘화 방법의 주요부 공정을 도시하는 흐름도이다.
도 3은 실시형태 1에서의 패턴 치수 CD와 조사량 D의 상관 데이터의 일례를 도시하는 그래프이다.
도 4는 실시형태 1에서의 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 데이터의 일례를 도시하는 그래프이다.
도 5는 실시형태 1에서의 패턴 치수의 연산 방법을 설명하기 위한 개념도이다.
도 6은 실시형태 1에서의 치수 맵을 설명하기 위한 개념도이다.
도 7은 실시형태 2에서의 묘화 장치의 구성을 도시하는 개념도이다.
도 8은 실시형태 2에서의 묘화 방법의 주요부 공정을 도시하는 흐름도이다.
도 9는 실시형태 2에서의 패턴 치수 CD와 근접 효과 보정 계수 η의 상관 데이터의 일례를 도시하는 그래프이다.
도 10은 실시형태 2에서의 기준 조사량과 근접 효과 보정 계수와 U(x)=0.5에서의 패턴 치수와 U(x)=0.5 이외에서의 치수 변동량의 상관 데이터의 일례를 도시하는 도면이다.
도 11a와 도 11b는 실시형태 1에서의 근접 효과 보정 계수와 기준 조사량의 세트를 선택하는 방법을 설명하기 위한 개념도이다.
도 12a와 도 12b는 실시형태 2에서의 보정항을 연산하기 위한 방법을 설명하기 위한 개념도이다.
도 13a 내지 도 13C는 실시형태 2에서의 조사량 보정의 일례를 도시하는 도면이다.
도 14a 내지 도 14c는 실시형태 2에서의 조사량 보정의 다른 일례를 도시하는 도면이다.
도 15a와 도 15b는 실시형태 1에서의 조사량 보정의 다른 일례를 도시하는 도면이다.
도 16은 실시형태 3에서의 묘화 장치의 구성을 도시하는 개념도이다.
도 17은 실시형태 4에서의 묘화 장치의 구성을 도시하는 개념도이다.
도 18은 실시형태 4에서의 묘화 방법의 주요부 공정을 도시하는 흐름도이다.
도 19는 실시형태 4에서의 치수 맵의 작성 방법을 설명하기 위한 개념도이다.
도 20은 가변 성형형 전자선 묘화 장치의 동작을 설명하기 위한 개념도이다.
이하, 실시형태에서는, 하전 입자빔의 일례로서, 전자빔을 이용한 구성에 대해서 설명한다. 단, 하전 입자빔은, 전자빔에 한정되는 것은 아니며, 이온빔 등의 하전 입자를 이용한 빔이어도 상관없다. 또한, 하전 입자빔 장치의 일례로서, 가변 성형형의 묘화 장치에 대해서 설명한다.
실시형태 1
이하, 실시형태 1에서는, 사용자측에서 작성된 기준 조사량 Dbase 맵과 근접 효과 보정 계수 η 맵의 복수의 세트 데이터를 입력하고, 이러한 복수의 세트 데이터를 이용하여 조사량을 산출하는 것이 가능한 장치 및 방법에 대해서 설명한다.
도 1은 실시형태 1에서의 묘화 장치의 구성을 도시하는 개념도이다. 도 1에서, 묘화 장치(100)는, 묘화부(150)와 제어부(160)를 구비하고 있다. 묘화 장치(100)는, 하전 입자빔 묘화 장치의 일례이다. 특히, 가변 성형형(VSB형)의 묘화 장치의 일례이다. 묘화부(150)는, 전자 경통(102)과 묘화실(103)을 구비하고 있다. 전자 경통(102) 내에는, 전자총(201), 조명 렌즈(202), 블랭킹 편향기(블랭커)(212), 블랭킹 애퍼처(214), 제1 성형 애퍼처(203), 투영 렌즈(204), 편향기(205), 제2 성형 애퍼처(206), 대물 렌즈(207), 및 편향기(208)가 배치되어 있다. 묘화실(103) 내에는, 적어도 XY 방향으로 이동 가능한 XY 스테이지(105)가 배치된다. XY 스테이지(105) 상에는, 묘화 대상이 되는 시료(101)가 배치된다. 시료(101)에는, 반도체 장치를 제조하기 위한 노광용의 마스크나 실리콘 웨이퍼 등이 포함된다. 마스크에는 마스크 블랭크스가 포함된다.
제어부(160)는, 제어 계산기(110), 메모리(112), 편향 제어 회로(120), DAC(디지털·아날로그 컨버터) 증폭기 유닛(130)(편향 증폭기), 및 자기 디스크 장치 등의 기억 장치(140, 142, 144)를 갖고 있다. 제어 계산기(110), 메모리(112), 편향 제어 회로(120), 및 자기 디스크 장치 등의 기억 장치(140, 142)는, 도시하지 않은 버스를 통해 서로 접속되어 있다. 편향 제어 회로(120)에는 DAC 증폭기 유닛(130)이 접속되어 있다. DAC 증폭기 유닛(130)은, 블랭킹 편향기(212)에 접속되어 있다.
편향 제어 회로(120)로부터 DAC 증폭기 유닛(130)에 대하여, 블랭킹 제어용의 디지털 신호가 출력된다. 그리고, DAC 증폭기 유닛(130)에서는, 디지털 신호를 아날로그 신호로 변환하고, 증폭시킨 후에 편향 전압으로서, 블랭킹 편향기(212)에 인가한다. 이러한 편향 전압에 의해 전자빔(200)이 편향되어 지고, 각 샷의 빔이 형성된다.
또한, 제어 계산기(110) 내에는, 조사량 연산부(50), 치수 맵 작성부(52), 가산부(54), 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(12), 조사량 연산부(18), 조사 시간 연산부(20), 묘화 데이터 처리부(22) 및 밀도 연산부(24)가 배치되어 있다. 조사량 연산부(50), 치수 맵 작성부(52), 가산부(54), 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(12), 조사량 연산부(18), 조사 시간 연산부(20), 묘화 데이터 처리부(22) 및 밀도 연산부(24)와 같은 각 기능은, 프로그램과 같은 소프트웨어로 구성되어도 된다. 또는, 전자 회로 등의 하드웨어로 구성되어도 된다. 또는, 이들의 조합이어도 된다. 제어 계산기(110)에 필요한 입력 데이터 또는 연산된 결과는 그때마다 메모리(112)에 기억된다. 마찬가지로, 편향 제어 회로(120)는, 프로그램과 같은 소프트웨어로 동작시키는 컴퓨터로 구성되어도 되고, 전자 회로 등의 하드웨어로 구성되어도 된다. 또는, 이들의 조합이어도 된다. 여기서, 도 1에서는, 실시형태 1을 설명하는 데 있어서 필요한 구성을 기재하고 있다. 묘화 장치(100)에 있어서, 통상, 필요한 그 외의 구성을 구비하고 있어도 상관없다. 예컨대, 편향기(205)나 편향기(208)를 위한 각 DAC 증폭기 유닛도 구비하고 있는 것은 물론이다.
도 2는 실시형태 1에서의 묘화 방법의 주요부 공정을 도시하는 흐름도이다. 도 2에서, 실시형태 1에서의 묘화 방법은, 조사량 연산 공정(S100), 치수 맵 작성 공정(S102), 가산 공정(S104), 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성 공정(S106), 조사량 연산 공정(S112), 조사 시간 연산 공정(S114), 및 묘화 공정(S116)이라고 하는 일련의 공정을 실시한다.
먼저, 사용자측에서 작성한 위치에 의존한 근접 효과 보정 계수 η 맵과 기준 조사량 Dbase 맵으로 세트가 구성되는 복수의 세트 데이터를 묘화 장치(100)의 외부로부터 입력하여, 기억 장치(142)에 기억한다. 복수의 세트 데이터는, 시료(101)를 현상할 때의 로딩 효과에 의해 발생하는 패턴의 치수 변동을 보정하기 위한 세트 데이터와, 시료(101)를 현상한 후에 크롬(Cr) 등의 차광막을 에칭할 때의 로딩 효과에 의해 발생하는 패턴의 치수 변동을 보정하기 위한 세트 데이터가 포함된다.
묘화 장치(100) 내에서는, 묘화 데이터 처리부(22)가, 외부로부터 입력되어 기억 장치(140)에 기억된 묘화 데이터를 기억 장치(140)로부터 판독하고, 복수 단의 데이터 변환 처리를 행한다. 그리고, 이러한 복수 단의 데이터 변환 처리에 의해 묘화 장치 고유의 샷데이터를 생성한다. 그리고, 이러한 샷데이터에 따라 묘화 처리가 행해지게 된다. 또한, 밀도 연산부(24)는, 묘화 데이터를 판독하여, 각 위치에서의 패턴 면적 밀도를 산출하고, 각 위치에서의 근접 효과 밀도 U(x)를 추가로 산출한다.
여기서, 근접 효과 밀도 U(x)는, 근접 효과 메시 내의 패턴 면적 밀도 ρ(x)에 분포 함수 g(x)를 근접 효과의 영향 범위 이상의 범위에서 컨볼루션 적분한 값으로 정의된다. 근접 효과 메시는, 근접 효과의 영향 범위의 예컨대 1/10 정도의 사이즈가 적합하고, 예컨대, 1 ㎛ 정도의 사이즈가 적합하다. 근접 효과 밀도 U(x)는 다음의 식 (1)로 정의할 수 있다. x는 위치를 나타내는 벡터로 한다.
(1)
Figure 112011029051733-pat00001
조사량 연산 공정(S100)으로서, 조사량 연산부(50)(제1 조사량 연산부)는, 기억 장치(142)로부터 각 세트 데이터를 판독하고, 세트마다, 조사량 맵(제1 조사량 맵)을 연산한다. 조사량 D는, 다음의 식 (2)로 정의할 수 있다.
(2)
Figure 112011029051733-pat00002
식 (2)에 나타내는 바와 같이, 조사량 D(x, U)는, 기준 조사량 Dbase(x)와, 근접 효과 보정 계수 η(x) 및 근접 효과 밀도 U(x)에 의존한 근접 효과 보정 조사량 Dp(η(x), U(x))의 곱으로 정의할 수 있다.
다음으로, 치수 맵 작성 공정(S102)으로서, 치수 맵 작성부(52)는, 세트마다, 연산된 제1 조사량 맵을 이용하여, 패턴의 치수 맵을 작성한다.
도 3은 실시형태 1에서의 패턴 치수 CD와 조사량 D의 상관 데이터의 일례를 도시하는 그래프이다. 세로축은 패턴 치수 CD를 나타내고, 가로축은 조사량 D를 로그로 나타내고 있다. 여기서는, 예컨대, 근접 효과 밀도 U(x)=0(0%), 0.5(50%), 1(100%)의 각 경우에 대해서 실험에 의해 구하고 있다. 근접 효과 밀도 U(x)=0은 실제로는 패턴이 없는 것이 되어 버리기 때문에, 주위에 아무것도 없는 상태에서 측정용의 라인 패턴을 예컨대 하나 묘화함으로써 근사하여 구할 수 있다. 반대로, 근접 효과 밀도 U(x)=1은 주위를 포함하여 메시 내 전체가 패턴이 되어 버려 치수를 측정할 수 없기 때문에, 주위가 패턴으로 다 메워진 상태에서 측정용의 라인 패턴을 예컨대 하나 묘화함으로써 근사하여 구할 수 있다. 또한, 예컨대, 밀도 50%를 상정하여, 1:1 라인 앤드 스페이스 패턴을 묘화한 경우에, 메시 사이즈가 작기 때문에, 하나의 메시에서는 라인 패턴만, 인접하는 메시에서는 스페이스 패턴만이 되어 버리는 경우도 발생할 수 있다. 이러한 경우, 패턴 면적 밀도 ρ(x)에서는 그대로 주위에 관계없이 메시 내의 밀도가 되어 버린다. 이에 비하여 근접 효과 밀도 U(x)를 이용함으로써, 각 메시가 밀도 50%로 산출 가능해진다. 여기서, 설정하는 근접 효과 밀도 U(x)는, 0%, 50%, 100%의 각 경우로 한정되지 않는다. 예컨대, 10% 이하 중 어느 하나와, 50%와, 90% 이상 중 어느 하나의 3가지를 이용해도 적합하다. 또한, 3종류에 한정되지 않고, 그 외의 수의 종류로 측정해도 된다. 예컨대 4종류 이상 측정해도 상관없다. 패턴 치수 CD와 조사량 D의 상관 데이터는, 보정 파라미터로서, 기억 장치(144)에 저장되어 있다.
도 4는 실시형태 1에서의 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 데이터의 일례를 도시하는 그래프이다. 세로축은 기준 조사량 Dbase를 나타내고, 가로축은 근접 효과 보정 계수 η를 나타내고 있다. 여기서는, 예컨대, 근접 효과 밀도 U(x)가 50%를 기준 근접 효과 밀도로 하고, 이러한 기준 근접 효과 밀도에 있어서 패턴 치수 CD가 일정해지는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 데이터를 나타내고 있다. 기준 조사량 Dbase마다 근접 효과 보정이 잘 맞는 근접 효과 보정 계수 η가 존재한다. 묘화 전에, 미리 패턴 치수를 가변으로 하고, 이러한 상관 데이터를 패턴 치수마다 산출해 둔다. 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 데이터는, 보정 파라미터로서, 기억 장치(144)에 저장해 둔다. 또는, 패턴 치수 CD와 조사량 D의 상관 데이터로부터 치수 맵 작성부(52) 등이 연산해도 된다.
치수 맵 작성부(52)는, 이러한 패턴 치수 CD와 조사량 D의 상관 데이터를 참조하여, 연산된 각 위치에서의 조사량에 대응하는 패턴의 치수를 연산한다. 그리고, 세트마다, 패턴의 치수 맵을 작성한다. 여기서는, 복수의 근접 효과 밀도 U(x) 중 하나를 기준 근접 효과 밀도로 하고, 기준 근접 효과 밀도에서의 조사량에 대응하는 패턴의 치수를 연산한다. 기준 근접 효과 밀도로서, 예컨대, 근접 효과 밀도 U(x)=0.5를 이용한다. 이러한 공정에 의해, 복수의 세트 데이터에 따른 복수의 치수 맵 1, 2를 작성할 수 있다.
도 5는 실시형태 1에서의 패턴 치수의 연산 방법을 설명하기 위한 개념도이다. 전술한 바와 같이, 근접 효과 보정 계수 η와 기준 조사량 Dbase가 결정되면, 식 (2)를 이용하여 조사량 D를 산출할 수 있다. 그리고, 조사량 D가 결정되면, 도 3에서 도시한 패턴 치수 CD와 조사량 D의 상관 데이터로부터 패턴 치수를 구할 수 있다.
도 6은 실시형태 1에서의 치수 맵을 설명하기 위한 개념도이다. 패턴 치수 맵(40)은, 묘화 영역을 정해진 사이즈의 메시 영역으로 분할하고, 각 메시의 위치에 대응하는 패턴 치수가 정의된다. 예컨대, 패턴 치수 맵(40)의 메시 사이즈는, 로딩 효과 보정용으로서, 로딩 효과의 영향 범위의 1/10 정도가 적합하다. 예컨대, 한 변이 1 ㎜인 정사각형의 메시로 하면 적합하다.
가산 공정(S104)으로서, 가산부(54)는, 각 세트의 치수 맵을 이용하여, 맵의 위치마다 모든 세트의 치수를 가산한다. 근접 효과 보정 계수 η끼리 또는 기준 조사량 Dbase끼리에서는, 단순한 합성이 곤란하였으나, 실시형태 1에서는, 이러한 파라미터를 치수로 변환함으로써 복수의 현상에 대하여 현상마다 개별적으로 설정된 근접 효과 보정 계수 η 맵과 기준 조사량 Dbase 맵의 세트 데이터를 입력한 경우라도 합성할 수 있다.
근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성 공정(S106)으로서, 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(12)는, 가산된 가산 치수 맵을 이용하여, 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 작성한다. 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(12)는, 세트 맵 작성부의 일례가 된다. 여기서는, 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(12)가, 근접 효과 보정 계수 맵과 기준 조사량 맵의 양쪽을 작성하고 있으나, 이것으로 한정되지 않는다. 근접 효과 보정 계수 맵 작성부와 기준 조사량 맵 작성부로 나뉘어 기능해도 상관없는 것은 물론이다. 여기서는, 맵의 위치마다, 기준 근접 효과 밀도(U(x)=0.5)에서의 패턴의 치수로서, 대응하는 조사량이 되는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 연산한다.
조사량 연산 공정(S112)으로서, 조사량 연산부(18)(제2 조사량 연산부)는, 치수 합성 후에 작성된 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 이용하여, 묘화 데이터로부터 얻어진 근접 효과 밀도 U(x)에서의 각 위치의 조사량 맵(제2 조사량 맵)을 연산한다. 조사량 D는, 전술한 식 (2)로 계산하면 된다.
또한, 조사량 연산부(18)는, 작성된 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 이용하여 연산된 조사량 맵의 각 값에, 또한, 맵 위치마다 정의된 포그 효과(fog effect)의 보정 계수를 곱한 값을 여기서의 조사량 맵(제2 조사량 맵)으로서 산출해도 된다.
이상과 같이 조사량 D를 연산함으로써, 현상 시에 발생하는 로딩 효과에 의한 치수 변동과 에칭 시에 발생하는 로딩 효과에 의한 치수 변동과 같은 복수의 현상에 기초하는 치수 변동 전체를, 현상을 구별하지 않고서 근접 효과도 보정하면서 보정할 수 있다.
조사 시간 연산 공정(S114)으로서, 조사 시간 연산부(20)는, 묘화 영역의 각 위치에서의 전자빔(200)의 조사 시간 T를 계산한다. 조사량 D는, 조사 시간 T와 전류 밀도 J의 곱으로 정의할 수 있기 때문에, 조사 시간 T는, 조사량 D를 전류 밀도 J로 나눔으로써 구할 수 있다. 산출된 조사 시간은 편향 제어 회로(120)에 출력된다.
묘화 공정(S116)으로서, 묘화부(150)는, 조사량 맵(제2 조사량 맵)에 정의된 조사량의 전자빔(200)을 이용하여, 시료(101) 상에 원하는 패턴을 묘화한다. 구체적으로는, 이하와 같이 동작한다. 편향 제어 회로(120)는, 샷마다의 조사 시간을 제어하는 디지털 신호를 DAC 증폭기 유닛(130)에 출력한다. 그리고, DAC 증폭기 유닛(130)은, 디지털 신호를 아날로그 신호로 변환하고, 증폭시킨 후에 편향 전압으로서 블랭킹 편향기(212)에 인가한다.
전자총(201)(방출부)으로부터 방출된 전자빔(200)은, 블랭킹 편향기(212) 내부를 통과할 때에 블랭킹 편향기(212)에 의해, 빔 ON의 상태에서는, 블랭킹 애퍼처(214)를 통과하도록 제어되고, 빔 OFF의 상태에서는, 빔 전체가 블랭킹 애퍼처(214)에 의해 차폐되도록 편향된다. 빔 OFF의 상태로부터 빔 ON이 되고, 그 후 빔 OFF가 될 때까지 블랭킹 애퍼처(214)를 통과한 전자빔(200)이 1회의 전자빔의 샷이 된다. 블랭킹 편향기(212)는, 통과하는 전자빔(200)의 방향을 제어하여, 빔 ON의 상태와 빔 OFF의 상태를 교대로 생성한다. 예컨대, 빔 ON의 상태에서는 전압을 인가하지 않고, 빔 OFF일 때에 블랭킹 편향기(212)에 전압을 인가하면 된다. 이러한 각 샷의 조사 시간 T로 시료(101)에 조사되는 전자빔(200)의 샷당의 조사량이 조정된다.
이상과 같이 블랭킹 편향기(212)와 블랭킹 애퍼처(214)를 통과함으로써 생성된 각 샷의 전자빔(200)은, 조명 렌즈(202)에 의해 직사각형 예컨대 장방형의 구멍을 갖는 제1 성형 애퍼처(203) 전체를 조명한다. 여기서, 전자빔(200)을 우선 직사각형 예컨대 장방형으로 성형한다. 그리고, 제1 성형 애퍼처(203)를 통과한 제1 애퍼처 이미지(aperture image)의 전자빔(200)은, 투영 렌즈(204)에 의해 제2 성형 애퍼처(206) 상에 투영된다. 편향기(205)에 의해, 이러한 제2 성형 애퍼처(206) 상에서의 제1 애퍼처 이미지는 편향 제어되어, 빔 형상과 치수를 변화시킬(가변 성형을 행할) 수 있다. 이러한 가변 성형은 샷마다 행해지며, 통상 샷마다 상이한 빔 형상과 치수로 성형된다. 그리고, 제2 성형 애퍼처(206)를 통과한 제2 애퍼처 이미지의 전자빔(200)은, 대물 렌즈(207)에 의해 초점을 맞추고, 편향기(208)에 의해 편향되어, 연속적으로 이동하는 XY 스테이지(105)에 배치된 시료의 원하는 위치에 조사된다. 이상과 같이, 각 편향기에 의해, 전자빔(200)의 복수의 샷이 순서대로 기판이 되는 시료(101) 상으로 편향된다.
이상과 같이 실시형태 1에 따르면, 근접 효과 보정 계수 맵과 기준 조사량 맵의 복수의 세트 데이터가 입력되어도, 장치 내에서 합성할 수 있다.
그리고, 실시형태 1에 따르면, 복수의 현상에 기초하는 치수 변동을, 현상마다 보정하는 근접 효과 보정 계수 η 맵과 기준 조사량 Dbase 맵의 세트 데이터를 입력하는 경우라도, 복수의 현상에 기초하는 치수 변동을 통합하여 보정할 수 있는 근접 효과 보정 계수 η 맵과 기준 조사량 Dbase 맵으로 변환할 수 있다. 따라서, 사용자측에서 작성된 기준 조사량 Dbase 맵과 근접 효과 보정 계수 η 맵의 복수의 세트 데이터를 입력하는 경우라도, 이러한 복수의 세트 데이터를 이용하여 조사량을 산출할 수 있다.
실시형태 2
실시형태 1에서는, 기준 근접 효과 밀도(U(x)=0.5) 이외의 경우라도 동일한 치수가 된다고 가정하고, 기준 근접 효과 밀도(U(x)=0.5)로 치수 변환하고, 합성 후에 기준 근접 효과 밀도(U(x)=0.5)에서 기준 조사량 Dbase 맵과 근접 효과 보정 계수 η 맵을 작성하였다. 그러나, 이것으로 한정되지 않는다. 실시형태 2에서는, 또한, 정밀도를 높이기 위해서, 복수의 근접 효과 밀도 U(x)로 치수 변환하고, 합성 후에 기준 조사량 Dbase 맵과 근접 효과 보정 계수 η 맵을 작성하는 경우를 설명한다.
도 7은 실시형태 2에서의 묘화 장치의 구성을 도시하는 개념도이다. 도 7에서, 제어 계산기 내에, 또한, 선택부(10), 보정 잔여 피팅 처리부(14) 및 보정항 산출부(16)를 추가한 점 이외에는, 도 1과 동일하다. 보정 잔여 피팅 처리부(14) 및 보정항 산출부(16)의 각 기능에 대해서도, 프로그램과 같은 소프트웨어로 구성되어도 된다. 또는, 전자 회로 등의 하드웨어로 구성되어도 된다. 또는, 이들의 조합이어도 된다. 또한, 이하, 특별히 설명하는 내용 이외에는 실시형태 1과 동일하다.
도 8은 실시형태 2에서의 묘화 방법의 주요부 공정을 도시하는 흐름도이다. 도 8에서, 실시형태 2에서의 묘화 방법은, 치수 맵 작성 공정(S102)에서 작성되는 치수 맵, 가산 공정(S104)에서 가산 후에 생성되는 치수 맵이 상이한 점, 가산 공정(S104)과 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성 공정(S106) 사이에 근접 효과 보정 계수 η, 기준 조사량 Dbase 선택 공정(S105)을 추가한 점, 및 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성 공정(S106)과 조사량 연산 공정(S112) 사이에, 또한, 보정 잔여 피팅 공정(S108)과 보정항 산출 공정(S110)이 추가된 점 이외에는 도 2와 동일하다.
조사량 연산 공정(S100)은 실시형태 1과 동일하다.
치수 맵 작성 공정(S102)으로서, 치수 맵 작성부(52)는, 세트마다, 연산된 조사량 맵(제1 조사량 맵)을 이용하여, 복수의 근접 효과 밀도에서의 패턴의 치수 맵을 각각 작성한다. 즉, 여기서는, 예컨대, 근접 효과 밀도 U(x)=0.5에서의 치수 맵 외에, 근접 효과 밀도 U(x)=0에서의 치수 맵과 근접 효과 밀도 U(x)=1에서의 치수 맵을 세트마다 작성한다.
치수 맵 작성부(52)는, 도 3에서 도시한 패턴 치수 CD와 조사량 D의 상관 데이터를 참조하여, 연산된 각 위치에서의 조사량에 대응하는 패턴의 치수를 연산한다. 그리고, 세트마다, 패턴의 치수 맵을 작성한다. 이러한 공정에 의해, 복수의 세트 데이터에 따른, 근접 효과 밀도 U(x)에 의존하는 복수의 치수 맵 1, 2를 작성할 수 있다.
가산 공정(S104)으로서, 가산부(54)는, 각 세트의 각각 근접 효과 밀도 U(x)가 상이한 복수의 치수 맵을 이용하여, 근접 효과 밀도 U(x)마다 맵의 각 위치에서의 모든 세트의 치수를 가산한다. 실시형태 2에서는, 이러한 파라미터를 근접 효과 밀도 U(x)마다의 치수로 변환함으로써 실시형태 1의 경우보다 더 정밀도를 향상시킬 수 있다.
근접 효과 보정 계수 η, 기준 조사량 Dbase 선택 공정(S105)으로서, 선택부(10)는, 가산된, 각각 근접 효과 밀도 U(x)가 상이한 복수의 가산 치수 맵을 이용하여, 일부의 근접 효과 밀도에서는 패턴의 치수 오차가 보정되고, 나머지 근접 효과 밀도에서는 패턴의 치수 오차에 보정 잔여가 발생하는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 선택한다. 선택부(10)는, 패턴 치수 맵(40)의 맵 위치마다, 근접 효과 보정 계수 η와 기준 조사량 Dbase를 이용하여 계산되는 치수 오차를 보정하는 조사량 함수에 의해 얻어지는 조사량 D로 해당 분포 위치를 묘화했을 때에, 일부의 근접 효과 밀도 U(x)에서는 패턴 치수의 치수 오차가 보정되고, 나머지 근접 효과 밀도 U(x)에서는 패턴 치수의 치수 오차에 보정 잔여가 되는 치수 변동량 δ0, δ100이 발생하는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 선택한다.
도 9는 실시형태 2에서의 패턴 치수 CD와 근접 효과 보정 계수 η의 상관 데이터의 일례를 도시하는 그래프이다. 세로축은 패턴 치수 CD를 나타내고, 가로축은 근접 효과 보정 계수 η를 나타내고 있다. 여기서는, 근접 효과 밀도 U(x)가 50%를 기준 근접 효과 밀도로 하고, 이러한 기준 근접 효과 밀도에 있어서 패턴 치수 CD가 일정해지는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 관계로 되어 있기 때문에, 근접 효과 밀도 U(x)=0.5에서는 패턴 치수 CD가 일정해진다. 여기서는, 또한, 나머지 근접 효과 밀도 U(x)에 대해서, 근접 효과 보정 계수 η에 의존한 패턴 치수 CD의 상관 데이터도 마찬가지로 산출해 둔다. 도 9에 도시하는 바와 같이, 기준 근접 효과 밀도로 한 50% 이외의 근접 효과 밀도 U(x)에서는, 근접 효과 보정 계수 η에 의존하여 패턴 치수 CD는 변화한다. 도 9에서는, 기준 근접 효과 밀도 이외의 근접 효과 보정 계수 η에 의존한 패턴 치수 CD의 치수 변동량 δ를 나타내며, 근접 효과 밀도 U(x)=0에 대해서는 δ0, 근접 효과 밀도 U(x)=1에 대해서는 δ100으로 나타내고 있다. 다음으로, 전술한 상관 데이터를 사용하여, 이하의 보정 파라미터를 작성한다.
도 10은 실시형태 2에서의 기준 조사량과 근접 효과 보정 계수와 U(x)=0.5에서의 패턴 치수와 U(x)=0.5 이외에서의 치수 변동량의 상관 데이터의 일례를 도시하는 도면이다. 전술한 바와 같이, 복수의 근접 효과 밀도 U(x) 중 하나를 기준 근접 효과 밀도로 하고, 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트는, 기준 근접 효과 밀도에 있어서 원하는 패턴 치수가 얻어지도록 상관된다. 그래서, 도 10에서는, 근접 효과 보정 계수 η와 기준 조사량 Dbase의 복수의 세트와, 근접 효과 밀도 U(x)=0.5에 있어서 복수의 세트에서 각각 얻어지는 패턴 치수 CD와, 나머지 근접 효과 밀도에서의 이러한 복수의 세트에서의 치수 변동량 δ0, δ100의 상관 데이터가 되는 보정 파라미터(30)를 도시하고 있다. 도 10에서 도시하는 보정 파라미터(30)에서는, 예컨대, 패턴 치수 CD마다, 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 가변으로 하고, 각 경우의 치수 변동량 δ0, δ100을 나타내고 있다. 이러한 보정 파라미터도 기억 장치(144)에 저장해 둔다.
여기서, 도 9에서 도시한 바와 같이, 근접 효과 밀도 U(x)=0.5에서 패턴 치수 CD가 일정해지도록 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트가 구성되어 있다. 그 때문에, 모든 근접 효과 밀도 U(x)에서 원하는 패턴 치수 CD가 되는 1점의 근접 효과 보정 계수 η를 선택하지 않으면, 근접 효과 밀도 U(x)=0.5 이외에 대해서는, 로딩 효과가 없는 조건에서는 근접 효과 보정의 보정 잔여가 발생하게 된다. 실시형태 2에서는, 굳이, 모든 근접 효과 밀도 U(x)에서 원하는 패턴 치수 CD가 되는 1점의 근접 효과 보정 계수 η를 선택하지 않고, 근접 효과 보정 계수 η를 어긋나게 하여 선택한다. 그 결과, 근접 효과 밀도 U(x)=0.5에서는, 조사량 함수에 의해 얻어지는 조사량 D로 해당 분포 위치를 묘화했을 때에, 로딩 효과를 상쇄함으로써 패턴 치수의 치수 오차가 보정되어, 원하는 치수가 된다. 이에 비하여, 근접 효과 밀도 U(x)=0, 100에서는, 조사량 함수에 의해 얻어지는 조사량 D로 해당 분포 위치를 묘화하면, 패턴 치수의 치수 오차에 보정 잔여가 발생할 가능성이 있다. 다음으로, 선택 방법에 대해서 구체적으로 설명한다.
도 11a와 도 11b는 실시형태 1에서의 근접 효과 보정 계수와 기준 조사량의 세트를 선택하는 방법을 설명하기 위한 개념도이다. 패턴 치수 맵(40)의 위치마다, 각 근접 효과 밀도 U(x)에서의 패턴 치수 CD를 판독한다. 그리고, 먼저, 도 11a에 도시하는 바와 같이, 기준 근접 효과 밀도가 되는 근접 효과 밀도 U(x)=0.5에서의 패턴 치수 CD가 되는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 상정한다. 다음으로, 근접 효과 밀도 U(x)=0에서의 패턴 치수 맵(40)에 정의된 패턴 치수의 U(x)=0.5에서의 패턴 치수로부터의 치수 오차 ΔCD0과 근접 효과 밀도 U(x)=0에서의 해당 세트에서 얻어지는 조사량 D로 묘화했을 때의 패턴 치수 변동량 δ0의 차분의 절대값 Δ0을 연산한다. 절대값 Δ0이, 근접 효과 밀도 U(x)=0에서의 보정 잔여가 된다. 마찬가지로, 근접 효과 밀도 U(x)=1에서의 패턴 치수 맵(40)에 정의된 패턴 치수의 U(x)=0.5에서의 패턴 치수로부터의 치수 오차 ΔCD100과 근접 효과 밀도 U(x)=1에서의 해당 세트에서 얻어지는 조사량 D로 묘화했을 때의 패턴 치수 변동량 δ100의 차분의 절대값 Δ100을 연산한다. 절대값 Δ100이, 근접 효과 밀도 U(x)=1에서의 보정 잔여가 된다. 그리고, 다음의 식 (3)으로 나타내는 바와 같이, 양자를 가산한다.
(3)
Figure 112011029051733-pat00003
그리고, 도 11b에 도시하는 바와 같이, 선택부(10)는, 패턴 치수 맵(40)의 분포 위치마다, 보정 파라미터(30)를 참조하여, 식 (3)으로 나타낸 Δerr가 최소가 되는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 선택한다. 바꿔 말하면, 보정 잔여가 보다 작아지는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 선택한다.
그리고, 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성 공정(S106)으로서, 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(12)는, 패턴 치수 맵(40)의 분포 위치마다 선택된 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 이용하여, 각각 위치에 의존한 근접 효과 보정 계수 η 맵과 기준 조사량 Dbase 맵을 작성한다. 여기서는, 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(12)가 양쪽의 맵을 작성하고 있는 구성으로 되어 있으나, 근접 효과 보정 계수 η 맵 작성부와 기준 조사량 Dbase 맵 작성부에 작성 기능이 따로따로여도 상관없다.
이상의 구성에 의해, 근접 효과 밀도 U(x)마다의 패턴 치수 맵으로부터, 현상 시에 발생하는 로딩 효과에 의한 치수 변동과 에칭 시에 발생하는 로딩 효과에 의한 치수 변동과 같은 복수의 현상에 기초하는 치수 변동 전체를, 현상을 구별하지 않고서 보정할 수 있는 근접 효과 보정 계수 η 맵과 기준 조사량 Dbase 맵을 작성할 수 있다. 그리고, 근접 효과 밀도 U(x)=0.5에 대해서는 근접 효과도 동시에 보정할 수 있다. 그러나, 이대로는, 근접 효과 밀도 U(x)=0.5 이외에 있어서, 이러한 보정 잔여가 발생한 채이기 때문에, 다음으로, 이하와 같이 보정항을 마련한다.
도 12a와 도 12b는, 실시형태 2에서의 보정항을 연산하기 위한 방법을 설명하기 위한 개념도이다. 도 12a에서, 세로축은 보정 잔여 Δ, 가로축은 근접 효과 밀도 U(x)를 나타낸다. 도 12b에서, 세로축은 보정항 Dcorr, 가로축은 근접 효과 밀도 U(x)를 나타낸다.
먼저, 보정 잔여 피팅 공정(S108)으로서, 도 12a에 도시하는 바와 같이, 보정 잔여 피팅 처리부(14)는, 근접 효과 밀도 U(x)마다의 보정 잔차 Δ를 정해진 함수로 피팅하여 근사식을 연산한다.
그리고, 보정항 산출 공정(S110)으로서, 보정항 산출부(16)는, 맵 위치마다, 근접 효과 밀도 U(x)에 의존한 보정 잔여 Δ를 보정하는 보정항 Dcorr를 연산한다. 여기서는 보정 잔여 피팅 공정(S124)에서 작성한 근사식으로 얻어지는 근접 효과 밀도 U(x)에 의존한 보정 잔여 Δ를 보정하도록 보정항 Dcorr의 함수를 설정하면 된다.
조사량 연산 공정(S112)으로서, 조사량 연산부(18)는, 맵 위치마다, 선택된 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트와 보정항 Dcorr를 이용하여 조사량 D를 연산한다. 조사량 연산부(18)는, 작성된 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 이용하여, 묘화 데이터로부터 얻어진 근접 효과 밀도 U(x)에서의 각 위치의 조사량 맵(제2 조사량 맵)을 연산한다. 조사량 D는, 다음의 식 (4)로 정의된다.
(4)
Figure 112011029051733-pat00004
식 (4)에 나타내는 바와 같이, 실시형태 2에서의 조사량 D(x, U)는, 기준 조사량 Dbase(x)와, 근접 효과 보정 계수 η(x) 및 근접 효과 밀도 U(x)에 의존한 근접 효과 보정 조사량 Dp(η(x), U(x))의 곱에, 또한, 위치 x 및 근접 효과 밀도 U(x)에 의존한 보정항 Dcorr(x, U(x))를 곱한 식으로 정의할 수 있다.
이상과 같이 조사량 D를 연산함으로써, 현상 시에 발생하는 로딩 효과에 의한 치수 변동과 에칭 시에 발생하는 로딩 효과에 의한 치수 변동과 같은 복수의 현상에 기초하는 치수 변동 전체를, 현상을 구별하지 않고서 근접 효과도 보정하면서 보정할 수 있다. 또한, 근접 효과 밀도 U(x)의 조건을 증가시킴으로써, 치수 맵이나 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트의 정밀도를 더 향상시킬 수 있다. 또한, 복수의 현상에 대하여, 종래 방법에서는 η를 각각 변경하는 보정이 필요한 케이스라도 대응할 수 있다. 또한, 근접 효과 밀도에 의존하는 보정항을 도입함으로써, 보정 정밀도를 향상시킬 수 있다.
또한, 조사량 연산부(18)는, 작성된 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트와 보정항 Dcorr를 이용하여 연산된 조사량 맵의 각 값에, 또한, 맵 위치마다 정의된 포그 효과의 보정 계수를 곱한 값을 여기서의 조사량 맵(제2 조사량 맵)으로서 산출해도 된다.
이하, 조사 시간 연산 공정(S114) 이후는 실시형태 1과 동일하다.
도 13a 내지 도 13c는, 실시형태 2에서의 조사량 보정의 일례를 도시하는 도면이다. 도 13a에서는, 근접 효과 밀도 U(x)=0, 1에서의 패턴 치수 맵(40)에 정의된 패턴 치수의 U(x)=0.5에서의 패턴 치수로부터의 치수 오차 ΔCD0이 예컨대 1 ㎚, ΔCD100이 예컨대 -1 ㎚인 경우를 도시하고 있다. 또한, 도 13c에서는, 이러한 경우에, 패턴 치수 CD와 근접 효과 보정 계수 η의 상관 관계의 일례를 도시하고 있다. 도 10c의 상관 관계의 예에서는, δ0=1, δ100=-1이 되는 근접 효과 보정 계수 η가 존재한다. 이 예에서는, 이러한 근접 효과 보정 계수 η를 선택함으로써, 도 13b에 도시하는 바와 같이 보정 잔여 없이 치수 오차를 보정할 수 있다. 따라서 보정항 Dcorr=1로 할 수 있다.
도 14a 내지 도 14c는 실시형태 2에서의 조사량 보정의 다른 일례를 도시하는 도면이다. 도 14a에서는, 근접 효과 밀도 U(x)=0, 1에서의 패턴 치수 맵(40)에 정의된 패턴 치수의 U(x)=0.5에서의 패턴 치수로부터의 치수 오차 ΔCD0이 예컨대 1 ㎚, ΔCD100이 예컨대 0인 경우를 도시하고 있다. 이러한 경우, 도 14c의 상관 관계의 예에서는, δ0=1, δ100=0이 되는 근접 효과 보정 계수 η는 존재하지 않는다. 그래서, 도 14b에 도시하는 바와 같이, 예컨대 모두 -0.5 ㎚씩 보정 잔여가 발생하는 근접 효과 보정 계수 η를 선택한다. 이러한 선택에 의해, 근접 효과 밀도 U(x)=0, 1에 있어서 각각 완전하지는 않으나 어느 정도의 보정을 할 수 있다. 실시형태 2에서는, 보정항 Dcorr를 이용함으로써 보정 잔여도 보정할 수 있다.
도 15a 내지 도 15b는 실시형태 2에서의 조사량 보정의 다른 일례를 도시하는 도면이다. 도 15a에서는, 근접 효과 밀도 U(x)=0, 1에서의 패턴 치수 맵(40)에 정의된 패턴 치수의 U(x)=0.5에서의 패턴 치수로부터의 치수 오차 ΔCD0이 예컨대 1 ㎚, ΔCD100이 예컨대 1 ㎚인 경우를 도시하고 있다. 이러한 경우, 도 15b의 상관 관계의 예에서는, δ0=1, δ100=1이 되는 근접 효과 보정 계수 η는 존재하지 않는다. 근접 효과 밀도 U(x)=0, 1에서의 치수 변동은 반대측으로 작용하기 때문에 양자를 모두 보정하는 것은 종래에는 곤란하였다. 이에 비하여, 실시형태 2에서는, 보정항 Dcorr를 이용함으로써 이러한 케이스라도 보정할 수 있다.
실시형태 3
실시형태 1, 2에서는, 근접 효과 보정 계수 η 맵과 기준 조사량 Dbase 맵으로 세트가 구성되는 복수의 세트 데이터를 묘화 장치(100)가 사용자측으로부터 입력하는 데이터로 하고 있었으나, 이것으로 한정되지 않는다. 실시형태 3에서는, 또한, 근접 효과 보정 계수 η 맵과 기준 조사량 Dbase 맵을 작성하기 전의 단계에서의 데이터를 입력 데이터로 하는 경우에 대해서 설명한다. 사용자에 따라서는, 패턴 면적 밀도 ρL과 근접 효과 보정 계수 η의 상관 데이터 및 패턴 면적 밀도 ρL과 기준 조사량 Dbase의 상관 데이터로서 세트 데이터를 작성하는 것도 상정된다. 그래서, 실시형태 3에서는, 사용자측이 치수 변동의 현상마다 이들 세트 데이터를 작성하여 묘화 장치(100)에 입력한 경우라도 묘화 장치(100) 내에서 대응 가능하게 하는 구성을 설명한다.
도 16은 실시형태 3에서의 묘화 장치의 구성을 도시하는 개념도이다. 도 16에서, 제어 계산기 내에, 또한, 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(56)를 추가한 점, 및 기억 장치(142)에 저장되는 입력 데이터가 패턴 면적 밀도 ρL과 근접 효과 보정 계수 η와 기준 조사량 Dbase로 상관되는 복수의 세트 데이터가 되는 점 이외에는, 도 1과 동일하다. 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(56)의 기능에 대해서도, 프로그램과 같은 소프트웨어로 구성되어도 된다. 또는, 전자 회로 등의 하드웨어로 구성되어도 된다. 또는, 이들의 조합이어도 된다. 또한, 이하, 특별히 설명하는 내용 이외에는 실시형태 1과 동일하다.
먼저, 마스크 묘화 시에 마스크면 내의 치수 변동을 발생시키는 복수의 현상에 대해서, 현상마다 패턴 면적 밀도(면적률) ρL과 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 정보를 사용자측에서 작성한다. 그리고, 사용자측에서 작성한 패턴 면적 밀도 ρL과 근접 효과 보정 계수 η와 기준 조사량 Dbase로 상관되는 복수의 세트 데이터를 묘화 장치(100)의 외부로부터 입력하여, 기억 장치(142)에 기억한다. 복수의 세트 데이터는, 시료(101)를 현상할 때의 로딩 효과에 의해 발생하는 패턴의 치수 변동을 보정하기 위한 세트 데이터와, 시료(101)를 현상한 후에 크롬(Cr) 등의 차광막을 에칭할 때의 로딩 효과에 의해 발생하는 패턴의 치수 변동을 보정하기 위한 세트 데이터가 포함된다. 마스크 묘화 시에 마스크면 내의 치수 변동을 발생시키는 복수의 현상에 대해서, 현상마다 패턴 면적률과 근접 효과 보정 계수와 기준 조사량의 상관 정보를 입력하여, 기억한다.
또한, 밀도 연산부(24)는, 묘화 영역을 메시 분할하고, 묘화 데이터를 참조하여, 각 메시 내의 패턴 면적 밀도 ρL을 연산한다. 메시 사이즈는, 로딩 효과 보정용으로서, 로딩 효과의 영향 범위의 1/10 정도가 적합하다. 예컨대, 한 변이 1 ㎜인 정사각형의 메시로 하면 적합하다.
근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성 공정으로서, 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(56)(제1 세트 맵 작성부)는, 각 상관 정보를 판독하고, 현상마다, 해당 현상을 보정하는 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 작성한다. 여기서는, 사용자측에서 작성한 패턴 면적 밀도 ρL과 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 데이터를 참조하여, 묘화 장치(100)에 의해 실제로 묘화하는 묘화 데이터로부터 얻어진 각 위치의 패턴 면적 밀도 ρL로부터 대응하는 근접 효과 보정 계수 η와 기준 조사량 Dbase를 구한다.
그리고, 조사량 연산 공정(S100)으로서, 조사량 연산부(50)(제1 조사량 연산부)는, 세트마다, 조사량 맵(제1 조사량 맵)을 연산한다. 이후의 각 공정은 실시형태 1과 동일하다.
이상과 같이 실시형태 3에서는, 현상마다 패턴 면적률과 근접 효과 보정 계수와 기준 조사량의 상관 정보가 입력되어도, 장치 내에서 합성할 수 있다. 그리고, 현상마다 작성된 입력 데이터의 내용이 상이한 경우라도 묘화 장치(100) 내에서 합성하여 적당한 조사량 D를 산출할 수 있다.
실시형태 4
이하, 실시형태 4에서는, 현상 시에 발생하는 로딩 효과에 의한 치수 변동과 에칭 시에 발생하는 로딩 효과에 의한 치수 변동의 양쪽을 근접 효과도 보정하면서 보정하는 것이 가능한 장치 및 방법에 대해서 설명한다.
도 17은 실시형태 4에서의 묘화 장치의 구성을 도시하는 개념도이다. 도 17에서, 묘화 장치(100)는, 묘화부(150)와 제어부(160)를 구비하고 있다. 묘화 장치(100)는, 하전 입자빔 묘화 장치의 일례이다. 특히, 가변 성형형(VSB형)의 묘화 장치의 일례이다. 묘화부(150)는, 전자 경통(102)과 묘화실(103)을 구비하고 있다. 전자 경통(102) 내에는, 전자총(201), 조명 렌즈(202), 블랭킹 편향기(블랭커)(212), 블랭킹 애퍼처(214), 제1 성형 애퍼처(203), 투영 렌즈(204), 편향기(205), 제2 성형 애퍼처(206), 대물 렌즈(207), 및 편향기(208)가 배치되어 있다. 묘화실(103) 내에는, 적어도 XY 방향으로 이동 가능한 XY 스테이지(105)가 배치된다. XY 스테이지(105) 상에는, 묘화 대상이 되는 시료(101)가 배치된다. 시료(101)에는, 반도체 장치를 제조하기 위한 노광용의 마스크나 실리콘 웨이퍼 등이 포함된다. 마스크에는 마스크 블랭크스가 포함된다.
제어부(160)는, 제어 계산기(110), 메모리(112), 편향 제어 회로(120), DAC(디지털·아날로그 컨버터) 증폭기 유닛(130)(편향 증폭기), 및 자기 디스크 장치 등의 기억 장치(140, 142)를 갖고 있다. 제어 계산기(110), 메모리(112), 편향 제어 회로(120), 및 자기 디스크 장치 등의 기억 장치(140, 142)는, 도시하지 않은 버스를 통해 서로 접속되어 있다. 편향 제어 회로(120)에는 DAC 증폭기 유닛(130)이 접속되어 있다. DAC 증폭기 유닛(130)은, 블랭킹 편향기(212)에 접속되어 있다.
편향 제어 회로(120)로부터 DAC 증폭기 유닛(130)에 대하여, 블랭킹 제어용의 디지털 신호가 출력된다. 그리고, DAC 증폭기 유닛(130)에서는, 디지털 신호를 아날로그 신호로 변환하고, 증폭시킨 후에 편향 전압으로서, 블랭킹 편향기(212)에 인가한다. 이러한 편향 전압에 의해 전자빔(200)이 편향되어 지고, 각 샷의 빔이 형성된다.
또한, 제어 계산기(110) 내에는, 선택부(910), 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(912), 보정 잔여 피팅 처리부(914), 보정항 산출부(916), 조사량 연산부(918), 조사 시간 연산부(920), 및 묘화 데이터 처리부(922)가 배치되어 있다. 선택부(910), 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(912), 보정 잔여 피팅 처리부(914), 보정항 산출부(916), 조사량 연산부(918), 조사 시간 연산부(920), 및 묘화 데이터 처리부(922)와 같은 각 기능은, 프로그램과 같은 소프트웨어로 구성되어도 된다. 또는, 전자 회로 등의 하드웨어로 구성되어도 된다. 또는, 이들의 조합이어도 된다. 제어 계산기(110)에 필요한 입력 데이터 또는 연산된 결과는 그때마다 메모리(112)에 기억된다. 마찬가지로, 편향 제어 회로(120)는, 프로그램과 같은 소프트웨어로 동작시키는 컴퓨터로 구성되어도 되고, 전자 회로 등의 하드웨어로 구성되어도 된다. 또는, 이들의 조합이어도 된다. 여기서, 도 17에서는, 실시형태 4를 설명하는 데 있어서 필요한 구성을 기재하고 있다. 묘화 장치(100)에 있어서, 통상, 필요한 그 외의 구성을 구비하고 있어도 상관없다. 예컨대, 편향기(205)나 편향기(208)를 위한 각 DAC 증폭기 유닛도 구비하고 있는 것은 물론이다.
도 18은 실시형태 4에서의 묘화 방법의 주요부 공정을 도시하는 흐름도이다. 도 18에서, 묘화 장치(100)에 입력하기 전에 사전에 행하는 공정으로서, 패턴 치수 CD와 조사량 D의 상관 데이터 취득 공정(S9102), 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 데이터 취득 공정(S9104), 패턴 치수 CD와 근접 효과 보정 계수 η의 상관 데이터 취득 공정(S9106), 및 보정 파라미터 작성 공정(S9108)을 실시한다. 또한, 사전에 행하는 공정으로서, 치수 맵 작성 공정(S9110)을 실시한다. 그리고, 실시형태 4에서의 묘화 장치(100) 내에서 행하는 묘화 방법은, 근접 효과 보정 계수 η, 기준 조사량 Dbase 선택 공정(S9120), 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성 공정(S9122), 보정 잔여 피팅 공정(S9124), 보정항 산출 공정(S9126), 조사량 연산 공정(S9128), 조사 시간 연산 공정(S9130), 및 묘화 공정(S9132)이라고 하는 일련의 공정을 실시한다.
먼저, 패턴 치수 CD와 조사량 D의 상관 데이터 취득 공정(S9102)으로서, 근접 효과 밀도 U마다, 패턴 치수 CD와 조사량 D의 상관 데이터를 실험에 의해 취득한다. 여기서, 근접 효과 밀도 U(x)는, 근접 효과 메시 내의 패턴 면적 밀도 ρ(x)에 분포 함수 g(x)를 근접 효과의 영향 범위 이상의 범위에서 컨볼루션 적분한 값으로 정의된다. 근접 효과 메시는, 근접 효과의 영향 범위의 예컨대 1/10 정도의 사이즈가 적합하고, 예컨대, 1 ㎛ 정도의 사이즈가 적합하다. 근접 효과 밀도 U(x)는 전술한 식 (1)로 정의할 수 있다. x는 위치를 나타내는 벡터로 한다.
실시형태 4에서의 패턴 치수 CD와 조사량 D의 상관 데이터의 일례를 도시하는 그래프는, 도 3과 동일하다. 세로축은 패턴 치수 CD를 나타내고, 가로축은 조사량 D를 로그로 나타내고 있다. 여기서는, 예컨대, 근접 효과 밀도 U(x)=0(0%), 0.5(50%), 1(100%)의 각 경우에 대해서 실험에 의해 구하고 있다. 근접 효과 밀도 U(x)=0은 실제로는 패턴이 없는 것이 되어 버리기 때문에, 주위에 아무것도 없는 상태에서 측정용의 라인 패턴을 예컨대 하나 묘화함으로써 근사하여 구할 수 있다. 반대로, 근접 효과 밀도 U(x)=1은 주위를 포함하여 메시 내 전체가 패턴이 되어 버려 치수를 측정할 수 없기 때문에, 주위가 패턴으로 다 메워진 상태에서 측정용의 라인 패턴을 예컨대 하나 묘화함으로써 근사하여 구할 수 있다. 또한, 예컨대, 밀도 50%를 상정하여, 1:1 라인 앤드 스페이스 패턴을 묘화한 경우에, 메시 사이즈가 작기 때문에, 하나의 메시에서는 라인 패턴만, 인접하는 메시에서는 스페이스 패턴만이 되어 버리는 경우도 발생할 수 있다. 이러한 경우, 패턴 면적 밀도 ρ(x)에서는 그대로 주위에 관계없이 메시 내의 밀도가 되어 버린다. 이에 비하여 근접 효과 밀도 U(x)를 이용함으로써, 각 메시가 밀도 50%로 산출될 수 있다. 여기서, 설정하는 근접 효과 밀도 U(x)는, 0%, 50%, 100%의 각 경우로 한정되지 않는다. 예컨대, 10% 이하 중 어느 하나와, 50%와, 90% 이상 중 어느 하나의 3가지를 이용해도 적합하다. 또한, 3종류에 한정되지 않고, 그 외의 수의 종류로 측정해도 된다. 예컨대 4종류 이상 측정해도 상관없다.
다음으로, 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 데이터 취득 공정(S9104)으로서, 실험으로 얻어진 CD와 조사량 D의 상관 데이터를 이용하여, 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 데이터를 산출한다.
실시형태 4에서의 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 데이터의 일례를 도시하는 그래프는, 도 4와 동일하다. 세로축은 기준 조사량 Dbase를 나타내고, 가로축은 근접 효과 보정 계수 η를 나타내고 있다. 여기서는, 예컨대, 근접 효과 밀도 U(x)가 50%를 기준 근접 효과 밀도로 하고, 이러한 기준 근접 효과 밀도에 있어서 패턴 치수 CD가 일정해지는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 데이터를 산출한다. 기준 조사량 Dbase마다 근접 효과 보정이 잘 맞는 근접 효과 보정 계수 η가 존재한다. 패턴 치수를 가변으로 하고, 이러한 상관 데이터를 패턴 치수마다 산출한다.
다음으로, 패턴 치수 CD와 근접 효과 보정 계수 η의 상관 데이터 취득 공정(S9106)으로서, 패턴 치수마다 얻어진 근접 효과 보정 계수 η와 기준 조사량 Dbase의 상관 데이터를 이용하여, 패턴 치수 CD와 근접 효과 보정 계수 η의 상관 데이터를 산출한다.
실시형태 4에서의 패턴 치수 CD와 근접 효과 보정 계수 η의 상관 데이터의 일례를 도시하는 그래프는, 도 9와 동일하다. 세로축은 패턴 치수 CD를 나타내고, 가로축은 근접 효과 보정 계수 η를 나타내고 있다. 여기서는, 또한, 나머지 근접 효과 밀도 U(x)에 대해서, 근접 효과 보정 계수 η에 의존한 패턴 치수 CD의 상관 데이터도 마찬가지로 산출해 둔다. 도 5에 도시하는 바와 같이, 기준 근접 효과 밀도로 한 50% 이외의 근접 효과 밀도 U(x)에서는, 근접 효과 보정 계수 η에 의존하여 패턴 치수 CD는 변화한다. 도 9에서는, 기준 근접 효과 밀도 이외의 근접 효과 보정 계수 η에 의존한 패턴 치수 CD의 치수 변동량 δ를 나타내고, 근접 효과 밀도 U(x)=0에 대해서는 δ0, 근접 효과 밀도 U(x)=1에 대해서는 δ100으로 나타내고 있다.
다음으로, 보정 파라미터 작성 공정(S9108)으로서, 전술한 상관 데이터를 사용하여, 보정 파라미터를 작성한다.
실시형태 4에서의 기준 조사량과 근접 효과 보정 계수와 U(x)=0.5에서의 패턴 치수와 U(x)=0.5 이외에서의 치수 변동량의 상관 데이터의 일례를 도시하는 도면은, 도 10과 동일하다. 전술한 바와 같이, 복수의 근접 효과 밀도 U(x) 중 하나를 기준 근접 효과 밀도로 하고, 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트는, 기준 근접 효과 밀도에 있어서 원하는 패턴 치수가 얻어지도록 상관된다. 그래서, 도 10에서는, 근접 효과 보정 계수 η와 기준 조사량 Dbase의 복수의 세트와, 근접 효과 밀도 U(x)=0.5에 있어서 복수의 세트에서 각각 얻어지는 패턴 치수 CD와, 나머지 근접 효과 밀도에서의 이러한 복수의 세트에서의 치수 변동량 δ0, δ100의 상관 데이터가 되는 보정 파라미터(30)를 도시하고 있다. 도 10에서 도시하는 보정 파라미터(30)에서는, 예컨대, 패턴 치수 CD마다, 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 가변으로 하고, 각 경우의 치수 변동량 δ0, δ100을 나타내고 있다.
다음으로, 치수 맵 작성 공정(S9110)으로서, 근접 효과 밀도 U(x)마다, 시료(101)의 위치에 의존한 치수 맵을 작성한다.
도 19a와 도 19b는 실시형태 4에서의 치수 맵의 작성 방법을 설명하기 위한 개념도이다. 도 19a에서, 평가용 기판(9300)에 평가 패턴(9302)이 평가용 기판(9300)의 실질적 전체면에 분포되도록 규칙적으로 평가 패턴(9302)을 형성한다. 각 평가 패턴(9302)에는, 근접 효과 밀도 U(x)=0, 0.5, 1이 되는 패턴이 배치된다. 묘화 장치(100)를 이용하여 레지스트가 도포된 평가용 기판(9300)에 이러한 평가 패턴(9302)을 전체면에 묘화한 후, 레지스트를 현상하고, 하지(下地)의 차광막이 되는 예컨대 크롬(Cr)막을 에칭하며, 또한 애싱한다. 그리고, 평가용 기판(9300)에 형성된 차광막의 패턴 치수를 각각 측정한다. 그리고, 도 19b에 도시하는 바와 같이, 근접 효과 밀도 U(x)마다, 측정된 패턴 치수를 위치에 의존시켜 정의한 패턴 치수 맵(940)을 작성한다. 이상과 같이 하여, 근접 효과 밀도 U(x)를 가변으로 하여 평가용 기판(9300)에 패턴을 묘화했을 때에 평가용 기판(9300)에 형성된 패턴 치수 CD의 분포를 나타내는, 각각 상이한 근접 효과 밀도의 복수의 패턴 치수 맵(940)의 데이터를 작성한다. 측정된 패턴 치수에는, 현상 시에 발생하는 로딩 효과에 의한 치수 변동분과 에칭 시에 발생하는 로딩 효과에 의한 치수 변동분의 양쪽이 포함된다. 패턴 치수 맵(940)의 메시 사이즈는, 로딩 효과 보정용으로서, 로딩 효과의 영향 범위의 1/10 정도가 적합하다. 예컨대, 한 변이 1 ㎜인 정사각형의 메시로 하면 적합하다.
이상과 같이 하여, 보정 파라미터(930)와 근접 효과 밀도 U(x)마다의 패턴 치수 맵(940)을 묘화 장치(100)로 묘화하기 전에 사전에 작성해 둔다. 그리고, 이러한 보정 파라미터(930)와 근접 효과 밀도 U(x)마다의 패턴 치수 맵(940)의 각 데이터는, 묘화 장치(100)의 외부로부터 묘화 장치(100) 내에 입력되고, 기억 장치(142)에 기억된다. 이와 같이 기억 장치(142)는, 근접 효과 보정 계수와 기준 조사량의 복수의 세트와, 기준 근접 효과 밀도에 있어서 복수의 세트에서 각각 얻어지는 패턴 치수와, 나머지 근접 효과 밀도에서의 복수의 세트에서의 치수 변동량을 나타내는 상관 데이터를 기억한다. 여기서는, 하나의 기억 장치(142)에 저장하고 있으나, 이것에 한정되는 것은 아니며, 복수의 기억 장치에 나누어 저장되어도 상관없다. 그리고, 이들 데이터를 이용하여, 이하, 묘화 장치(100)로 패턴을 묘화한다.
묘화 장치(100) 내에서는, 묘화 데이터 처리부(922)가, 외부로부터 입력되어 기억 장치(140)에 기억된 묘화 데이터를 기억 장치(140)로부터 판독하고, 복수 단의 데이터 변환 처리를 행한다. 그리고, 이러한 복수 단의 데이터 변환 처리에 의해 묘화 장치 고유의 샷데이터를 생성한다. 그리고, 이러한 샷데이터에 따라 묘화 처리가 행해지게 된다. 또한, 묘화 데이터 처리부(922)는, 묘화 데이터를 판독하여, 각 위치에서의 패턴 면적 밀도를 산출하고, 또한 각 위치에서의 근접 효과 밀도 U(x)를 산출한다.
근접 효과 보정 계수 η, 기준 조사량 Dbase 선택 공정(S9120)으로서, 선택부(910)는, 패턴 치수 맵(940)의 맵 위치마다, 근접 효과 보정 계수 η와 기준 조사량 Dbase를 이용하여 계산되는 치수 오차를 보정하는 조사량 함수에 의해 얻어지는 조사량 D로 해당 분포 위치를 묘화했을 때에, 일부의 근접 효과 밀도 U(x)에서는 패턴 치수의 치수 오차가 보정되고, 나머지 근접 효과 밀도 U(x)에서는 패턴 치수의 치수 오차에 보정 잔여가 되는 치수 변동량 δ0, δ100이 발생하는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 선택한다. 조사량 함수는, 전술한 식 (2)로 정의할 수 있다.
식 (2)에 나타내는 바와 같이, 조사량 D(x, U)는, 기준 조사량 Dbase(x)와, 근접 효과 보정 계수 η(x) 및 근접 효과 밀도 U(x)에 의존한 근접 효과 보정 조사량 Dp(η(x), U(x))의 곱으로 정의할 수 있다.
여기서, 도 9에서 도시한 바와 같이, 근접 효과 밀도 U(x)=0.5에서 패턴 치수 CD가 일정해지도록 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트가 구성되어 있다. 그 때문에, 모든 근접 효과 밀도 U(x)에서 원하는 패턴 치수 CD가 되는 1점의 근접 효과 보정 계수 η를 선택하지 않으면, 근접 효과 밀도 U(x)=0.5 이외에 대해서는, 로딩 효과가 없는 조건에서는 근접 효과 보정의 보정 잔여가 발생하게 된다. 실시형태 4에서는, 굳이, 모든 근접 효과 밀도 U(x)에서 원하는 패턴 치수 CD가 되는 1점의 근접 효과 보정 계수 η를 선택하지 않고, 근접 효과 보정 계수 η를 어긋나게 하여 선택한다. 그 결과, 근접 효과 밀도 U(x)=0.5에서는, 조사량 함수에 의해 얻어지는 조사량 D로 해당 분포 위치를 묘화했을 때에, 로딩 효과를 상쇄함으로써 패턴 치수의 치수 오차가 보정되어, 원하는 치수가 된다. 이에 비하여, 근접 효과 밀도 U(x)=0, 1에서는, 조사량 함수에 의해 얻어지는 조사량 D로 해당 분포 위치를 묘화하면, 패턴 치수의 치수 오차에 보정 잔여가 발생하게 된다. 다음으로, 선택 방법에 대해서 구체적으로 설명한다.
실시형태 4에서의 근접 효과 보정 계수와 기준 조사량의 세트를 선택하는 방법을 설명하기 위한 개념도는, 도 11a 내지 도 11b와 동일하다. 패턴 치수 맵(940)의 위치마다, 각 근접 효과 밀도 U(x)에서의 패턴 치수 CD를 판독한다. 그리고, 먼저, 도 11a에 도시하는 바와 같이, 기준 근접 효과 밀도가 되는 근접 효과 밀도 U(x)=0.5에서의 패턴 치수 CD가 되는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 상정한다. 다음으로, 근접 효과 밀도 U(x)=0에서의 패턴 치수 맵(940)에 정의된 패턴 치수의 U(x)=0.5에서의 패턴 치수로부터의 치수 오차 ΔCD0과 근접 효과 밀도 U(x)=0에서의 해당 세트에서 얻어지는 조사량 D로 묘화했을 때의 패턴 치수 변동량 δ0의 차분의 절대값 Δ0을 연산한다. 절대값 Δ0이, 근접 효과 밀도 U(x)=0에서의 보정 잔여가 된다. 마찬가지로, 근접 효과 밀도 U(x)=1에서의 패턴 치수 맵(940)에 정의된 패턴 치수의 U(x)=0.5에서의 패턴 치수로부터의 치수 오차 ΔCD100과 근접 효과 밀도 U(x)=1에서의 해당 세트에서 얻어지는 조사량 D로 묘화했을 때의 패턴 치수 변동량 δ100의 차분의 절대값 Δ100을 연산한다. 절대값 Δ100이, 근접 효과 밀도 U(x)=1에서의 보정 잔여가 된다. 그리고, 전술한 식 (3)으로 나타내는 바와 같이, 양자를 가산한다.
그리고, 도 11b에 도시하는 바와 같이, 선택부(910)는, 패턴 치수 맵(940)의 분포 위치마다, 보정 파라미터(930)를 참조하여, 식 (3)으로 나타낸 Δerr가 최소가 되는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 선택한다. 바꿔 말하면, 보정 잔여가 보다 작아지는 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 선택한다.
그리고, 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성 공정(S9122)으로서, 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(912)는, 패턴 치수 맵(940)의 분포 위치마다 선택된 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트를 이용하여, 각각 위치에 의존한 근접 효과 보정 계수 η 맵과 기준 조사량 Dbase 맵을 작성한다. 여기서는, 근접 효과 보정 계수 η, 기준 조사량 Dbase 맵 작성부(912)가 양쪽의 맵을 작성하고 있는 구성으로 되어 있으나, 근접 효과 보정 계수 η 맵 작성부와 기준 조사량 Dbase 맵 작성부에 작성 기능이 따로따로여도 상관없다.
이상의 구성에 의해, 근접 효과 밀도 U(x)마다의 패턴 치수 맵으로부터, 현상 시에 발생하는 로딩 효과에 의한 치수 변동과 에칭 시에 발생하는 로딩 효과에 의한 치수 변동과 같은 복수의 현상에 기초하는 치수 변동 전체를, 현상을 구별하지 않고서 보정할 수 있는 근접 효과 보정 계수 η 맵과 기준 조사량 Dbase 맵을 작성할 수 있다. 그리고, 근접 효과 밀도 U(x)=0.5에 대해서는 근접 효과도 동시에 보정할 수 있다. 그러나, 이대로는, 근접 효과 밀도 U(x)=0.5 이외에 있어서, 이러한 보정 잔여가 발생한 상태이기 때문에, 다음으로, 이하와 같이 보정항을 마련한다.
실시형태 4에서의 보정항을 연산하기 위한 방법을 설명하기 위한 개념도는, 도 12a 내지 도 12b와 동일하다. 도 12a에서, 세로축은 보정 잔여 Δ, 가로축은 근접 효과 밀도 U(x)를 나타낸다. 도 12b에서, 세로축은 보정항 Dcorr, 가로축은 근접 효과 밀도 U(x)를 나타낸다.
먼저, 보정 잔여 피팅 공정(S9124)으로서, 도 12a에 도시하는 바와 같이, 보정 잔여 피팅 처리부(914)는, 근접 효과 밀도 U(x)마다의 보정 잔차 Δ를 정해진 함수로 피팅하여 근사식을 연산한다.
그리고, 보정항 산출 공정(S9126)으로서, 보정항 산출부(916)는, 맵 위치마다, 근접 효과 밀도 U(x)에 의존한 보정 잔여 Δ를 보정하는 보정항 Dcorr를 연산한다. 여기서는 보정 잔여 피팅 공정(S9124)에서 작성한 근사식으로 얻어지는 근접 효과 밀도 U(x)에 의존한 보정 잔여 Δ를 보정하도록 보정항 Dcorr의 함수를 설정하면 된다.
조사량 연산 공정(S9128)으로서, 조사량 연산부(918)는, 맵 위치마다, 선택된 근접 효과 보정 계수 η와 기준 조사량 Dbase의 세트와 보정항 Dcorr를 이용하여 조사량 D를 연산한다. 조사량 D는, 전술한 식 (4)로 정의된다.
식 (4)에 나타내는 바와 같이, 실시형태 4에서의 조사량 D(x, U)는, 기준 조사량 Dbase(x)와, 근접 효과 보정 계수 η(x) 및 근접 효과 밀도 U(x)에 의존한 근접 효과 보정 조사량 Dp(η(x), U(x))의 곱에, 또한, 위치 x 및 근접 효과 밀도 U(x)에 의존한 보정항 Dcorr(x, U(x))를 곱한 식으로 정의할 수 있다.
이상과 같이 조사량 D를 연산함으로써, 현상 시에 발생하는 로딩 효과에 의한 치수 변동과 에칭 시에 발생하는 로딩 효과에 의한 치수 변동과 같은 복수의 현상에 기초하는 치수 변동 전체를, 현상을 구별하지 않고서 근접 효과도 보정하면서 보정할 수 있다.
여기서, 조사량 연산부(918)는, 맵 위치마다, 선택된 근접 효과 보정 계수 η(x)와 기준 조사량 Dbase의 세트와 보정항 Dcorr를 이용하여 연산된 조사량 D(x, U)에, 또한, 맵 위치마다 정의된 포그 효과의 보정 계수를 곱한 값을 산출하고, 이러한 결과를 조사량 D(x, U)로 해도 적합하다.
조사 시간 연산 공정(S9130)으로서, 조사 시간 연산부(920)는, 묘화 영역의 각 위치에서의 전자빔(200)의 조사 시간 T를 계산한다. 조사량 D는, 조사 시간 T와 전류 밀도 J의 곱으로 정의할 수 있기 때문에, 조사 시간 T는, 조사량 D를 전류 밀도 J로 나눔으로써 구할 수 있다. 산출된 조사 시간은 편향 제어 회로(120)에 출력된다.
묘화 공정(S9132)으로서, 묘화부(150)는, 맵 위치마다 얻어진 조사량의 전자빔(200)을 이용하여, 시료(101) 상에 원하는 패턴을 묘화한다. 구체적으로는, 이하와 같이 동작한다. 편향 제어 회로(120)는, 샷마다의 조사 시간을 제어하는 디지털 신호를 DAC 증폭기 유닛(130)에 출력한다. 그리고, DAC 증폭기 유닛(130)은, 디지털 신호를 아날로그 신호로 변환하고, 증폭시킨 후에 편향 전압으로서 블랭킹 편향기(212)에 인가한다.
전자총(201)(방출부)으로부터 방출된 전자빔(200)은, 블랭킹 편향기(212) 내부를 통과할 때에 블랭킹 편향기(212)에 의해, 빔 ON의 상태에서는, 블랭킹 애퍼처(214)를 통과하도록 제어되고, 빔 OFF의 상태에서는, 빔 전체가 블랭킹 애퍼처(214)에 의해 차폐되도록 편향된다. 빔 OFF의 상태로부터 빔 ON이 되고, 그 후 빔 OFF가 될 때까지 블랭킹 애퍼처(214)를 통과한 전자빔(200)이 1회의 전자빔의 샷이 된다. 블랭킹 편향기(212)는, 통과하는 전자빔(200)의 방향을 제어하여, 빔 ON의 상태와 빔 OFF의 상태를 교대로 생성한다. 예컨대, 빔 ON의 상태에서는 전압을 인가하지 않고, 빔 OFF일 때에 블랭킹 편향기(212)에 전압을 인가하면 된다. 이러한 각 샷의 조사 시간 T로 시료(101)에 조사되는 전자빔(200)의 샷당의 조사량이 조정되게 된다.
이상과 같이 블랭킹 편향기(212)와 블랭킹 애퍼처(214)를 통과함으로써 생성된 각 샷의 전자빔(200)은, 조명 렌즈(202)에 의해 직사각형 예컨대 장방형의 구멍을 갖는 제1 성형 애퍼처(203) 전체를 조명한다. 여기서, 전자빔(200)을 먼저 직사각형 예컨대 장방형으로 성형한다. 그리고, 제1 성형 애퍼처(203)를 통과한 제1 애퍼처 이미지의 전자빔(200)은, 투영 렌즈(204)에 의해 제2 성형 애퍼처(206) 상에 투영된다. 편향기(205)에 의해, 이러한 제2 성형 애퍼처(206) 상에서의 제1 애퍼처 이미지는 편향 제어되어, 빔 형상과 치수를 변화시킬(가변 성형을 행할) 수 있다. 이러한 가변 성형은 샷마다 행해지며, 통상 샷마다 상이한 빔 형상과 치수로 성형된다. 그리고, 제2 성형 애퍼처(206)를 통과한 제2 애퍼처 이미지의 전자빔(200)은, 대물 렌즈(207)에 의해 초점을 맞추고, 편향기(208)에 의해 편향되어, 연속적으로 이동하는 XY 스테이지(105)에 배치된 시료의 원하는 위치에 조사된다. 이상과 같이, 각 편향기에 의해, 전자빔(200)의 복수의 샷이 순서대로 기판이 되는 시료(101) 상으로 편향된다.
이상과 같이 실시형태 4에 따르면, 복수의 현상에 기초하는 치수 변동을 통합하여 보정할 수 있다. 근접 효과 밀도마다의 치수 맵을 직접 입력하여 처리하기 때문에, 종래 방법과 같이 사용자측에서 현상마다 보정폭을 분배할 필요가 없다. 또한, 복수의 현상에 대하여, 종래 방법에서는 η를 각각 변경하는 보정이 필요한 케이스라도 대응할 수 있다. 또한, 근접 효과 밀도에 의존하는 보정항을 도입함으로써, 보정 정밀도를 향상시킬 수 있다.
이상과 같이 실시형태 4에 따르면, 근접 효과 보정 조건에 얽매이지 않고서, 근접 효과 보정 계수와 기준 조사량을 선택할 수 있다. 그리고, 치수 변동의 현상에 관계없이 치수 보정을 할 수 있다.
이상과 같이 실시형태 4에 따르면, 현상 시에 발생하는 로딩 효과에 의한 치수 변동과 에칭 시에 발생하는 로딩 효과에 의한 치수 변동과 같은 복수의 현상에 기초하는 치수 변동 전체를 현상을 구별하지 않고서 근접 효과도 보정하면서 보정할 수 있다.
실시형태 4에서의 조사량 보정의 일례를 도시하는 도면은, 도 13a 내지 도 13c와 동일하다. 도 13a에서는, 근접 효과 밀도 U(x)=0, 1에서의 패턴 치수 맵(940)에 정의된 패턴 치수의 U(x)=0.5에서의 패턴 치수로부터의 치수 오차 ΔCD0이 예컨대 1 ㎚, ΔCD100이 예컨대 -1 ㎚인 경우를 도시하고 있다. 또한, 도 13c에서는, 이러한 경우에, 패턴 치수 CD와 근접 효과 보정 계수 η의 상관 관계의 일례를 도시하고 있다. 도 13c의 상관 관계의 예에서는, δ0=1, δ100=-1이 되는 근접 효과 보정 계수 η가 존재한다. 이 예에서는, 이러한 근접 효과 보정 계수 η를 선택함으로써, 도 13b에 도시하는 바와 같이 보정 잔여 없이 치수 오차를 보정할 수 있다. 따라서 보정항 Dcorr=1로 할 수 있다.
실시형태 4에서의 조사량 보정의 다른 일례를 도시하는 도면은, 도 14a 내지 도 14c와 동일하다. 도 14a에서는, 근접 효과 밀도 U(x)=0, 1에서의 패턴 치수 맵(940)에 정의된 패턴 치수의 U(x)=0.5에서의 패턴 치수로부터의 치수 오차 ΔCD0이 예컨대 1 ㎚, ΔCD100이 예컨대 0인 경우를 도시하고 있다. 이러한 경우, 도 14c의 상관 관계의 예에서는, δ0=1, δ100=0이 되는 근접 효과 보정 계수 η는 존재하지 않는다. 그래서, 도 14b에 도시하는 바와 같이, 예컨대 모두 -0.5 ㎚씩 보정 잔여가 발생하는 근접 효과 보정 계수 η를 선택한다. 이러한 선택에 의해, 근접 효과 밀도 U(x)=0, 1에 있어서 각각 완전하지는 않으나 어느 정도의 보정을 할 수 있다. 실시형태 4에서는, 보정항 Dcorr를 이용함으로써 보정 잔여도 보정할 수 있다.
실시형태 4에서의 조사량 보정의 다른 일례를 도시하는 도면은, 도 15a와 도 15b와 동일하다. 도 15a에서는, 근접 효과 밀도 U(x)=0, 1에서의 패턴 치수 맵(940)에 정의된 패턴 치수의 U(x)=0.5에서의 패턴 치수로부터의 치수 오차 ΔCD0이 예컨대 1 ㎚, ΔCD100이 예컨대 1 ㎚인 경우를 도시하고 있다. 이러한 경우, 도 15b의 상관 관계의 예에서는, δ0=1, δ100=1이 되는 근접 효과 보정 계수 η는 존재하지 않는다. 근접 효과 밀도 U(x)=0, 1에서의 치수 변동은 반대측으로 작용하기 때문에 양자를 모두 보정하는 것은 종래에는 곤란하였다. 이에 비하여, 실시형태 4에서는, 보정항 Dcorr를 이용함으로써 이러한 케이스라도 보정할 수 있다.
이상, 구체예를 참조하면서 실시형태에 대해서 설명하였다. 그러나, 본 발명은, 이들 구체예로 한정되지 않는다.
또한, 장치 구성이나 제어 방법 등, 본 발명의 설명에 직접 필요하지 않은 부분 등에 대해서는 기재를 생략하였으나, 필요해지는 장치 구성이나 제어 방법을 적절하게 선택하여 이용할 수 있다. 예컨대, 묘화 장치(100)를 제어하는 제어부 구성에 대해서는, 기재를 생략하였으나, 필요해지는 제어부 구성을 적절하게 선택하여 이용하는 것은 물론이다.
그 외, 본 발명의 요소를 구비하고, 당업자가 적절하게 설계 변경할 수 있는 모든 하전 입자빔 묘화 장치 및 방법은, 본 발명의 범위에 포함된다.
부가적인 이점 및 변경은 당업자게 용이하게 발생할 수 있다. 따라서, 더 넓은 양태들에 있어서의 발명은 여기에 도시하고 설명한 특정 세부사항 및 대표적인 실시형태들로 제한되지 않는다. 그러므로, 여러가지 변형은 첨부된 첨구범위 및 그 등가물에 의해 정의된 바와 같이 일반적인 발명의 개념의 사상 또는 범위를 벗어나지 않고 행해질 수 있다.

Claims (7)

  1. 근접 효과 보정 계수 맵과 기준 조사량 맵으로 세트를 구성하는 복수의 세트 데이터를 입력하여, 기억하는 기억부와,
    각 세트 데이터를 판독하고, 세트마다, 제1 조사량 맵을 연산하는 제1 조사량 연산부와,
    세트마다, 연산된 제1 조사량 맵을 이용하여, 복수의 근접 효과 밀도(패턴 밀도를 근접 효과의 분포 함수로 컨볼루션 적분하여 얻는 값)에서의 패턴의 치수 맵을 각각 작성하는 치수 맵 작성부와,
    각 세트의 각각 근접 효과 밀도가 상이한 복수의 치수 맵을 이용하여, 근접 효과 밀도마다 맵의 각 위치에서의 모든 세트의 치수를 가산하는 가산부와,
    가산된, 각각 근접 효과 밀도가 상이한 복수의 가산 치수 맵을 이용하여, 일부의 근접 효과 밀도에서는 상기 패턴의 치수 오차가 보정되고, 나머지 근접 효과 밀도에서는 상기 패턴의 치수 오차에 보정 잔여가 발생하는 근접 효과 보정 계수와 기준 조사량의 세트를 선택하는 선택부와,
    맵의 위치마다, 근접 효과 밀도에 의존한 상기 보정 잔여를 보정하는 보정항을 연산하는 보정항 연산부와,
    맵의 각 위치에서의 선택된 근접 효과 보정 계수와 기준 조사량의 세트와 상기 보정항을 이용하여 제2 조사량 맵을 연산하는 제2 조사량 연산부와,
    상기 제2 조사량 맵에 정의된 조사량의 하전 입자빔을 이용하여, 시료에 패턴을 묘화하는 묘화부
    를 구비한 것을 특징으로 하는 하전 입자빔 묘화 장치.
  2. 근접 효과 보정 계수 맵과 기준 조사량 맵으로 세트를 구성하는 복수의 세트 데이터를 기억하는 기억 장치로부터 각 세트 데이터를 판독하고, 세트마다, 제1 조사량 맵을 연산하는 공정과,
    세트마다, 연산된 제1 조사량 맵을 이용하여, 복수의 근접 효과 밀도(패턴 밀도를 근접 효과의 분포 함수로 컨볼루션 적분하여 얻는 값)에서의 패턴의 치수 맵을 각각 작성하는 공정과,
    각 세트의 각각 근접 효과 밀도가 상이한 복수의 치수 맵을 이용하여, 근접 효과 밀도마다 맵의 각 위치에서의 모든 세트의 치수를 가산하는 공정과,
    가산된, 각각 근접 효과 밀도가 상이한 복수의 가산 치수 맵을 이용하여, 일부의 근접 효과 밀도에서는 상기 패턴의 치수 오차가 보정되고, 나머지 근접 효과 밀도에서는 상기 패턴의 치수 오차에 보정 잔여가 발생하는 근접 효과 보정 계수와 기준 조사량의 세트를 선택하는 공정과,
    맵의 위치마다, 근접 효과 밀도에 의존한 상기 보정 잔여를 보정하는 보정항을 연산하는 공정과,
    맵의 각 위치에서의 선택된 근접 효과 보정 계수와 기준 조사량의 세트와 상기 보정항을 이용하여 제2 조사량 맵을 연산하는 공정과,
    상기 제2 조사량 맵에 정의된 조사량의 하전 입자빔을 이용하여, 시료에 패턴을 묘화하는 공정
    을 포함한 것을 특징으로 하는 하전 입자빔 묘화 방법.
  3. 제1항에 있어서, 상기 제2 조사량 연산부는, 작성된 근접 효과 보정 계수 맵과 기준 조사량 맵의 세트를 이용하여 연산된 조사량 맵의 각 값에, 맵 위치마다 정의된 포그 효과(fog effect)의 보정 계수를 곱한 값을 상기 제2 조사량 맵으로서 추가적으로 산출하는 것을 특징으로 하는 하전 입자빔 묘화 장치.
  4. 근접 효과 밀도(패턴 밀도를 근접 효과의 분포 함수로 컨볼루션 적분하여 얻는 값)를 가변으로 하여 기판에 패턴을 묘화했을 때에 상기 기판에 형성된 패턴 치수의 분포를 나타내는, 각각 상이한 근접 효과 밀도의 복수의 패턴 치수 맵 데이터를 입력하여, 기억하는 기억 장치와,
    맵 위치마다, 근접 효과 보정 계수와 기준 조사량을 이용하여 계산되는 치수 오차를 보정하는 조사량 함수에 의해 얻어지는 조사량으로 해당 분포 위치를 묘화했을 때에, 일부의 근접 효과 밀도에서는 상기 패턴 치수의 치수 오차가 보정되고, 나머지 근접 효과 밀도에서는 상기 패턴 치수의 치수 오차에 보정 잔여가 발생하는 근접 효과 보정 계수와 기준 조사량의 세트를 선택하는 선택부와,
    맵 위치마다, 근접 효과 밀도에 의존한 상기 보정 잔여를 보정하는 보정항을 연산하는 보정항 연산부와,
    맵 위치마다, 선택된 근접 효과 보정 계수와 기준 조사량의 세트와 상기 보정항을 이용하여 조사량을 연산하는 조사량 연산부와,
    맵 위치마다 얻어진 조사량의 하전 입자빔을 이용하여, 상기 기판 상에 원하는 패턴을 묘화하는 묘화부
    를 구비한 것을 특징으로 하는 하전 입자빔 묘화 장치.
  5. 제4항에 있어서, 상기 선택부는, 분포 위치마다, 상기 보정 잔여가 보다 작아지는 근접 효과 보정 계수와 기준 조사량의 상기 세트를 선택하는 것을 특징으로 하는 하전 입자빔 묘화 장치.
  6. 제4항 또는 제5항에 있어서, 상기 상이한 근접 효과 밀도 중 하나를 기준 근접 효과 밀도로 하고, 근접 효과 보정 계수와 기준 조사량의 세트는, 상기 기준 근접 효과 밀도에 있어서 원하는 패턴 치수가 얻어지도록 상관되며,
    상기 기억 장치는, 근접 효과 보정 계수와 기준 조사량의 복수의 세트와, 상기 기준 근접 효과 밀도에 있어서 상기 복수의 세트에서 각각 얻어지는 패턴 치수와, 나머지 근접 효과 밀도에서의 상기 복수의 세트에서의 치수 변동량을 나타내는 상관 데이터를 더 기억하고,
    상기 선택부는, 상기 상관 데이터를 참조하여, 근접 효과 보정 계수와 기준 조사량의 상기 세트를 선택하는 것을 특징으로 하는 하전 입자빔 묘화 장치.
  7. 제4항에 있어서, 상기 조사량 연산부는, 상기 맵 위치마다, 선택된 근접 효과 보정 계수와 기준 조사량의 세트와 상기 보정항을 이용하여 연산된 조사량에, 맵 위치마다 정의된 포그 효과의 보정 계수를 곱한 값을 추가적으로 산출하는 것을 특징으로 하는 하전 입자빔 묘화 장치.
KR1020110036274A 2010-04-20 2011-04-19 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법 KR101244525B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010097161A JP5441806B2 (ja) 2010-04-20 2010-04-20 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JPJP-P-2010-097161 2010-04-20
JP2010097162A JP5525902B2 (ja) 2010-04-20 2010-04-20 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JPJP-P-2010-097162 2010-04-20

Publications (2)

Publication Number Publication Date
KR20110117019A KR20110117019A (ko) 2011-10-26
KR101244525B1 true KR101244525B1 (ko) 2013-03-18

Family

ID=44787540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110036274A KR101244525B1 (ko) 2010-04-20 2011-04-19 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법

Country Status (3)

Country Link
US (1) US8610091B2 (ko)
KR (1) KR101244525B1 (ko)
TW (1) TWI438581B (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US9400857B2 (en) * 2011-09-19 2016-07-26 D2S, Inc. Method and system for forming patterns using charged particle beam lithography
JP5871558B2 (ja) * 2011-10-20 2016-03-01 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5977550B2 (ja) 2012-03-22 2016-08-24 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置
JP6014342B2 (ja) 2012-03-22 2016-10-25 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
TWI476806B (zh) * 2012-03-29 2015-03-11 Nuflare Technology Inc Charging Particle Beam Mapping Device and Inspection Method for Drawing Data
JP6076708B2 (ja) * 2012-11-21 2017-02-08 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビームの照射量チェック方法
JP6057700B2 (ja) * 2012-12-26 2017-01-11 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置
JP6097640B2 (ja) * 2013-06-10 2017-03-15 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置
JP6283180B2 (ja) * 2013-08-08 2018-02-21 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP6456118B2 (ja) * 2014-11-20 2019-01-23 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
KR102404639B1 (ko) * 2015-02-02 2022-06-03 삼성전자주식회사 전자 빔 노광 방법 및 그를 포함하는 기판 제조 방법
JP6575455B2 (ja) * 2016-07-29 2019-09-18 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP6951922B2 (ja) * 2016-09-28 2021-10-20 株式会社ニューフレアテクノロジー 荷電粒子ビーム装置及び荷電粒子ビームの位置ずれ補正方法
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11556058B2 (en) * 2018-10-31 2023-01-17 Taiwan Semiconductor Manufacturing Co., Ltd. Proximity effect correction in electron beam lithography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202470A (ja) * 1997-12-31 1999-07-30 United Microelectron Corp マスク製造のための近接効果補正方法
JP2007005341A (ja) * 2005-06-21 2007-01-11 Advantest Corp 電子ビーム露光装置
KR20070044767A (ko) * 2005-10-25 2007-04-30 가부시키가이샤 뉴플레어 테크놀로지 빔 조사량 연산 방법, 묘화 방법, 기록 매체 및 묘화 장치
JP2009064862A (ja) * 2007-09-05 2009-03-26 Nuflare Technology Inc 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619230B2 (en) * 2005-10-26 2009-11-17 Nuflare Technology, Inc. Charged particle beam writing method and apparatus and readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202470A (ja) * 1997-12-31 1999-07-30 United Microelectron Corp マスク製造のための近接効果補正方法
JP2007005341A (ja) * 2005-06-21 2007-01-11 Advantest Corp 電子ビーム露光装置
KR20070044767A (ko) * 2005-10-25 2007-04-30 가부시키가이샤 뉴플레어 테크놀로지 빔 조사량 연산 방법, 묘화 방법, 기록 매체 및 묘화 장치
JP2009064862A (ja) * 2007-09-05 2009-03-26 Nuflare Technology Inc 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法

Also Published As

Publication number Publication date
TW201144947A (en) 2011-12-16
US20110253911A1 (en) 2011-10-20
KR20110117019A (ko) 2011-10-26
US8610091B2 (en) 2013-12-17
TWI438581B (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
KR101244525B1 (ko) 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법
KR100819293B1 (ko) 하전 입자 빔 묘화 방법 및 하전 입자 빔 묘화 장치
JP4476975B2 (ja) 荷電粒子ビーム照射量演算方法、荷電粒子ビーム描画方法、プログラム及び荷電粒子ビーム描画装置
KR100857959B1 (ko) 패턴 작성 방법 및 하전 입자빔 묘화 장치
JP5020849B2 (ja) 荷電粒子ビーム描画装置、パターンの寸法誤差補正装置及びパターンの寸法誤差補正方法
US7619230B2 (en) Charged particle beam writing method and apparatus and readable storage medium
TWI652715B (zh) Charged particle beam drawing device and charged particle beam drawing method
JP5871558B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP4476987B2 (ja) 荷電粒子ビーム描画方法、プログラム及び荷電粒子ビーム描画装置
JP6057635B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5731257B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5242963B2 (ja) 荷電粒子ビーム描画装置、パターン寸法のリサイズ装置、荷電粒子ビーム描画方法及びパターン寸法のリサイズ方法
KR20080096437A (ko) 하전 입자 빔 묘화 장치 및 하전 입자 빔 묘화 방법
KR20130110034A (ko) 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법
KR102238893B1 (ko) 전자 빔 조사 방법, 전자 빔 조사 장치 및 프로그램을 기록한 컴퓨터로 판독 가능한 비일시적인 기록 매체
JP5441806B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5525902B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2012069667A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5871557B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5079408B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2012023279A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5401135B2 (ja) 荷電粒子ビーム描画方法、荷電粒子ビーム描画装置及びプログラム
JP2011243805A (ja) 描画データの作成方法、荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP5773637B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160218

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170220

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180220

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190219

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200219

Year of fee payment: 8