TWI670004B - 用來產生植物之螢光激活細胞分選富增技術 - Google Patents

用來產生植物之螢光激活細胞分選富增技術 Download PDF

Info

Publication number
TWI670004B
TWI670004B TW102132254A TW102132254A TWI670004B TW I670004 B TWI670004 B TW I670004B TW 102132254 A TW102132254 A TW 102132254A TW 102132254 A TW102132254 A TW 102132254A TW I670004 B TWI670004 B TW I670004B
Authority
TW
Taiwan
Prior art keywords
dna
artificial sequence
plant
sequence
gene
Prior art date
Application number
TW102132254A
Other languages
English (en)
Other versions
TW201424578A (zh
Inventor
吉爾曼 史賓根堡
薩瑞納 塞哈卜
約翰 梅森
Original Assignee
美商陶氏農業科學公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商陶氏農業科學公司 filed Critical 美商陶氏農業科學公司
Publication of TW201424578A publication Critical patent/TW201424578A/zh
Application granted granted Critical
Publication of TWI670004B publication Critical patent/TWI670004B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • C12N15/821Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
    • C12N15/8212Colour markers, e.g. beta-glucoronidase [GUS], green fluorescent protein [GFP], carotenoid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本文描述一種工程基因轉殖整合平台(ETIP),其可被隨機地或在植物基因組之標的位置插入,用以協助快速選擇及偵測於ETIP基因位置被完全標定(3'及5'端二者)之GOI。本發明要素之一係在ETIP中引入特異性雙鏈斷裂。某些具體實施例中描述一種使用鋅指核酸酶(結合位之ETIP,但可能使用其他標定技術,如大範圍核酸酶(meganucleases)、TALs、CRISPRs或白胺酸拉鏈。本文亦描述用以產生基因轉殖植物的組成物和方法,其中,提供者或有效負載(payload)之DNA表現一或多種外源核酸序列之產物(例如蛋白質或RNA),該產物被穩定結合至一植物細胞之ETIP。於具體實施例中,該ETIP協助自構思(ideation)至開發階段之基因候選者(candidates)及植物表現載體的測試。

Description

用來產生植物之螢光激活細胞分選富增技術 交互參照相關申請案
本申請案主張2012年9月7日提申之美國臨時專利申請案No.61/697,890之優先權。
發明領域
本揭露內容係關於螢光激活細胞分選技術來產生植物的領域。於一較佳具體實施例中,本揭露內容描述經編輯(edited)、再生(regenerable)之原生質體之FACS富增技術來產生可育之編輯植物。
發明背景
Bonner、Sweet、Hulett、Herzenberg及其他人在1960年代晚期發明了螢光激活細胞分選儀(FACS)用以進行流式細胞術及多種細胞的細胞分選。Becton Dickinson細胞分析免疫(Immunocytometry)系統在1970年代早期導入了商用機器。螢光激活細胞分選技術(FACS)是一種特定型式之流式細胞術。其提供了用於將異種生物細胞之混合物分選入二或更多容器的方法,一次一個細胞,基於各細胞之特定光散射及螢光特徵。此為一種有用的科學儀器,因為 其提供了個別細胞螢光訊號之快速、客觀及定量紀錄,以及物理上分離出特定感興趣之細胞。
小範圍、快速流動之液流的中央夾帶著該細胞的懸浮液。安排該液流以使得在細胞之間有相較於細胞徑距而為大型的間隔。一震盪機制造成細胞流分成個別的小滴。調整該系統以使得每一小滴中有多於一個細胞的可能性低。就在該液流被分成小滴之前,該液流經過一螢光測定站,在該螢光測定站中感興趣之各細胞的螢光特徵被測定。一帶電環(electrical charging ring)被置於恰在液流被分成小滴的位置。以先前之螢光密度測量為基礎,一電價被置於該環上,當該液流被分成小滴時相反電價被留滯在小滴上。該帶電之小滴接著流經靜電偏轉系統,該系統使小滴依其帶電轉向進入容器中。在某些系統中,直接將該電價施予液流,分成小滴會保留與液流相同情況的電價。在分成小滴後接著使該液流回復至中性。
在流式細胞術中可使用廣泛螢光團作為標記。螢光團,或簡稱為“fluors”,典型地連接至可辨識細胞上或細胞中之目標特徵的抗體;其亦連接至具細胞膜或其他細胞結構親合性之化學體。各螢光團具有特徵性之峰值,激發或發射波長,且發射光譜常交疊。因此,取決於燈或雷射波長而使用之標記組合被用於激發螢光染料及可用之偵測儀。
螢光激活細胞分選技術(FACS)提供由異源的細胞混合物分離出大量螢光標定細胞之快速手段。具細胞類 型特異性表現螢光標記基因(例如綠螢光蛋白(GFP))之基因轉殖植物之蒐集,非常適合用於FACS協助於個別細胞類型之研究。
已證明流式細胞儀分析及螢光激活細胞分選(FACS)植物原生質體的實用性,此外,這種技術在許多不同領域的研究取得了有價值的結果(Harkins及Galbraith,1984;Galbraith et al.,1995;Sheen et al.,1995)。例如,由阿拉伯芥植物表現組織特異性螢光蛋白標記之FACS原生質體已被使用來測試特定細胞類型中基礎和環境刺激之轉錄廓形(Birnbaum et al.,2003;Brady et al.,2007;Gifford et al.,2008;Dinneny et al.,2008),且流式細胞術被施用來分析反應性氧類生成及計畫性細胞凋亡煙草原生質體(Nicotiana tabacum;Lin et al.,2006)。可使用廣泛篩選螢光工具來研究植物中大量(plethora)生理參數,例如融合至螢光蛋白之順式作用元件(cis-regulatory elements)(Haseloff及Siemering,2006)、基因編碼分子感測器(Looger et al.,2005)或染料感測器(Haugland,2002)可與流式細胞儀組合使用來測量不同的生物程序。但是,由於檢測的敏感性,這個程序會有某程度之效率低下,因此存在改進的餘地。
發明概要
本說明書之一特定具體實施例係關於一種用於由一群植物細胞產生植物的方法,其係藉由使用感興趣之多核苷酸來分離一植物原生質體,藉由提供一植物原生質 體群體,其具有至少一包括有感興趣之多核苷酸及螢光標記之原生質體,其中該群體實質上不含包括有該螢光標記及感興趣之多核苷酸的植物原生質體,其中該植物原生質體係被海藻酸鈉包封;由該群體中剩餘的植物原生質體分開該包括感興趣之多核苷酸及該螢光標記之至少一原生質體,藉此分離出包括有感興趣之多核苷酸的植物原生質體;由該分離之植物原生質體再生(regenerating)一植物;及培養該植物。
本發明之另一具體實施例中,可藉由分離出包含感興趣之多核苷酸植物之原生質體來再生植物,其係藉由提供具有至少一原生質體之一植物原生質體群體,該原生質體包含已整合到該植物原生質體之基因組中的感興趣之多核苷酸及螢光標記;其中該植物原生質體係被海藻酸鈉包封;由該群體之原生質體獲得(recovering)微癒傷組織(microcalli),該微癒傷組織包括該感興趣之多核苷酸及螢光標記,其中該包括感興趣之多核苷酸及螢光標記之至少一原生質體已使用感興趣之多核苷酸及編碼該螢光標記之多核苷酸轉殖;由該微癒傷組織再生一植物;及培養該植物。
替代之具體實施例包含用於產生基因轉殖植物的方法,該方法可包含提供具有至少一原生質體之一植物原生質體群體,該原生質體包括感興趣之多核苷酸及螢光標記,其中該至少一原生質體包括位點特異性核酸酶,以使得感興趣之多核苷酸能夠藉由於該位點特異性核酸酶辨 認區同源重組而被整合到該至少一植物原生質體之基因體中,且其中該植物原生質體係被海藻酸鈉包封;由該群體中使該包括有感興趣之多核苷酸及該螢光標記之至少一原生質體與其餘之植物原生質體分開;由該至少一原生質體再生該基因轉殖植物;以及培養該基因轉殖植物。
藉由以下數個具體實施例之詳述及參考所附圖式,本發明上述及其他特色將更加顯著。
圖1A-1E顯示使用ALIGNX®所產生之FAD2基因序列的序列比對。
圖2顯示FAD2基因序列之種系發生樹(phylogenetic tree),其係使用JALVIEW® v 2.3基於鄰接距離(neighbor joining distance)所產生。
圖3A-3M'顯示使用ALIGNX®所產生之FAD3基因序列的序列比對。
圖4顯示FAD3基因序列之種系發生樹,使用JALVIEW® v 2.3基於鄰接距離所產生。被標記之序列與以下相對應:本實施中將FAD3A'/A"稱為FAD3A';本實施中將單倍型2(Haplotype 2)稱為FAD3C';本實施中將單倍型1稱為FAD3C";以及,本實施中將單倍型3稱為FAD3A"
圖5顯示pDAB104010之質體圖譜(map),其為代表性之鋅指核酸酶表現卡匣(cassete)。此構建體(construct)的規畫(lay-out)與其他的ZFN表現卡匣相似,其中該鋅指域(domain)24828及24829,係以上述之可擇鋅指域取代。
圖6為顯示每10,000序列讀取(reads)於目標ZFN位之缺損之序列讀取數的多線段圖例子。該圖之X軸表示缺失(deletion)的鹼基數,該Y軸表示序列讀取數,該Z軸表示如該無右側之顏色編碼樣品標識。所示之特定實施例係FAD2基因群(family)位點1(locus 1),其包含4個基因群成員之3個目標ZFN位A、B及C以及被評定為控制樣品A及B之2個控制轉染。
圖7(A)之圖軸細節同圖6。該圖顯示FAD2基因群之ZFN標定位點4的資料。該位包含2個ZFN位及2個必要之控制轉染。圖7(B)中特定序列內容(SEQ ID NOs 571-580)圍繞著該ZFN目標位,辨識FAD2A及C,含有三-核苷酸重覆C、T及G,造成FAD2A及C位點序列中可觀察到單一鹼基缺失增加。
圖8顯示pDAS000130之質體圖譜。
圖9顯示pDAS000271之質體圖譜。
圖10顯示pDAS000272之質體圖譜。
圖11顯示pDAS000273之質體圖譜。
圖12顯示pDAS000274之質體圖譜。
圖13顯示pDAS000275之質體圖譜。
圖14顯示pDAS000031之質體圖譜。
圖15顯示pDAS000036之質體圖譜。
圖16顯示pDAS000037之質體圖譜。
圖17說明ETIP及有效負載(payload)核酸配置,及該植物細胞基因組中於該ETIP位之該目標有效負載的產物。
圖18說明原生質體的變換,接著為該宿主細胞株中於該ETIP位之該目標有效負載的FACS選擇,使用在3'及5'端之截頭式(truncated)可刻記(scorable)且可篩選(selectable)之標記的重組體。
圖19A及19B說明ETIP油菜(canola)品件之同源直接修復,其肇因於以鋅指核酸酶(pDAS000074或pDAS000075)於基因位點切斷雙股DNA,隨後將Ds-red提供者(pDAS000068、pDAS000070或pDAS000072)連接(intergration)至該油菜染色體之ETIP位點。該提供者連接至該基因位點導致完全功能、高表現性之Ds-red轉殖基因。
圖20顯示該油菜原生質體之FACS分選,以及pDAS000031(“pDAS31”)轉染之油菜原生質體之經計算的轉染效率。此外,將非轉形油菜原生質體之FACS分選結果係當作陰性控制組。
圖21顯示該油菜原生質體之FACS分選,以及pDAS000064/pDAS000074(上圖)及pDAS000064/pDAS000075(下圖)轉染之油菜原生質體品件之經計算的轉染效率。
圖22顯示該油菜原生質體之FACS分選,以及pDAS000068/pDAS000074(上圖)及pDAS000068/pDAS000075(下圖)轉染之油菜原生質體品件之經計算的轉染效率。
圖23顯示該油菜原生質體之FACS分選,以及pDAS000070/pDAS000074(上圖)及pDAS000070/pDAS000075(下圖)轉染之油菜原生質體品件之經計算的轉染效率。
圖24顯示該油菜原生質體之FACS分選,以及 pDAS000072/pDAS000074(上圖)及pDAS000072/pDAS000075(下圖)轉染之油菜原生質體品件之經計算的轉染效率。
圖25顯示pDAS000074之質體圖譜。
圖26顯示pDAS000075之質體圖譜。
圖27顯示pDAS000064之質體圖譜。
圖28顯示pDAS000068之質體圖譜。
圖29顯示pDAS000070之質體圖譜。
圖30顯示pDAS000072之質體圖譜。
圖31係顯示轉殖基因目標引子結合位及轉殖基因複製數估計檢測探針之圖。
圖32為顯示FAD2A ZFN DNA辨識區域(bc12075_Fad2a-r272a2及bc12075_Fad2a-278a2)及ZFN特定引子結合位(FAD2A.UnE.F1及FAD2A.UnE.R1)及內源引子(FAD2A/2C.RB.UnE.F1及FAD2A/2C.RB.UnE.R1)之SEQUENCHER®檔案。
圖33係顯示內源及轉殖基因目標引子結合位之圖,其用於偵測轉殖基因於FAD2A經完整HDR之整合。
圖34係顯示於經完整編輯之FAD2A位點之Kpn1核酸限制內切酶發生位,及FAD2a 5'hph及FAD2A 3'南方氏探針結合處之圖。
圖35顯示Kpn1片段、FAD2A 5'、hph、FAD2A 3'探針的位置和大小,以及在FAD2A位點經HDR具有ETIP整合之植物之南方氏分析的預期結果。
圖36顯示qPCR複製數預估的代表性資料輸出值。左手 邊欄位表現由一已知之帶有單一隨機轉殖基因插入之T0基因轉殖植物獲得之資料,其被使用作為對其他所有”經標準化”之樣品之校準樣品。右手邊欄位係一已知之帶有5個轉殖基因整合之T0基因轉殖植物。該二種植物之插入複製數係使用南方氏分析來決定。其餘欄位提供可能的基因轉殖植物之複製數預估。在該欄位下方的標記相當於該圖中之欄位,可被使用來決定各基因轉殖植物預估之複製數。當使用軟體來預估複製數時,野生型植物、非轉殖控制植物及僅質體控制並不會導致複製數,因為其不會具有hphHMG I/Y標的二者之Cq。
本發明之實施態樣
原生質體暫時轉形係一植物研究中廣泛使用之迅速且無問題的工具。例如,該技術可被使用來監測啟動子元件(elements)之調控,分析基因表現或對各種刺激反應的酵素活性,測試轉錄因子或訊息傳遞串接組件的角色,或研究蛋白之亞細胞定位(Sheen,2001;Yoo et al.,2007)。相對於通常耗時數月且需要使用轉染劑(通常為農桿菌(Agrobacterium tumefaciens)之植物穩定轉形(阿拉伯芥(Arabidopsis thaliana)為最常使用之平台),可在僅一天達到原生質體之轉染,且只需原料DNA及基於藥品或電穿孔之一的轉染方法。此外,暫時轉形分析能在細胞篩檢不正確時,克服穩定過度表現會遇到的問題,例如多效性發育效應(pleiotropic developmental effects)或無法存活 (nonviability)。但是,因為原生質體轉形效率不可能為100%此一事實,非轉殖細胞造成的結果令人費解。
轉形效率通常很低且易變(例如Cummins等人,2007;<10%),取決於所用的方法或者是所使用之原生質體及DNA的性質。本發明係關於植物生物科技之領域,但可被使用於所有生物學目的。特別的是,本發明之具體實施例係關於由植物細胞異源族群藉由流式細胞儀分選來產生天然或基因轉殖植物細胞株。此等植物細胞株可能為單子葉或雙子葉植物。熟於此藝者將能知曉,本發明亦使用該植物細胞株再生整個可育性(fertile)植物。
本發明具體實施例之一係關於FACS敏感篩選,其對於篩選成功轉殖之細胞為較佳之篩選。先前曾有報導一群植物細胞之轉形,例如植物懸浮培養常造成異源及表現程度不一致之轉殖基因培育株。本發明首要關注在提供以植物為基礎的系統。分離並培育單一細胞的能力有多種可能應用方式。例如,本文所述之方法具有與植物細胞培育株之生產力相關之改良方法的實用性。但是,此應用方式對於所有細胞有廣泛的應用性。
本發明之具體實施例包含使用流式細胞儀分選技術(例如FACS技術)用來分開或分離單一的即個體化的原生質體,其係由一群植物細胞使用該技術領域已知之材料及方法來製備。此等原生質體可被轉形且可以1)產生螢光標記蛋白或多肽蛋白或多肽;2)產生所欲之產物;及/或3)在篩選劑存在下存續。FACS分選標準(criteria)可選自於包 含以下之組群:遺傳背景(例如ploidy,aneuploidy),突變,轉殖基因,基因交換產物,以及螢光(自體螢光(葉綠體、代謝產物),螢光蛋白或限制酶所致螢光)。可使用任何螢光蛋白。可使用或不使用篩選劑。
以流式細胞儀分選技術分開或分離該單一原生質體之後,再生各單一的轉形之原生質體直到以共培養(co-cultivation)形成微小群落(微癒傷組織)。該植物來源不限,但限制為其原生質體具有形成微小群落或微癒傷組織之再生潛力的株系(lines)、品系(varieties)及品種(species)。本發明因此將可被應用至所有已建立或即將提供再生方案之植物品系及品種。因此,本發明可在所有已建立或未來將提供再生部分之植物品系及品種中進行。
分開或移開該微小群落本身及餵養細胞材料,培養直到植物細胞株形成。
本發明之具體實施例也包含產生癒傷組織,其係藉由1)轉移該微小群落或微癒傷組織至固態培養介質中,以及2)在至少一篩選劑存在下,培養該微小群落或微癒傷組織直到轉殖基因癒傷組織形成,由該癒傷組織之形成可藉由轉移該癒傷組織至液態培養介質中來建立基因轉殖植物細胞株。也可利用機械手段(即選殖株拾取)來使該微小群落與餵養細胞材料移開或分開。於此情況下,不需要篩選劑,而包括在該微小群中之細胞不需要表現對任何篩選劑之抗性。
某些具體實施例中,該等細胞在進行流式細胞儀 分選之前可包括天然或非轉殖基因細胞之植物細胞異源群,且其穩定地或暫時地以可操作地連接到一功能啟動子之包括有至少一異源核酸序列的至少一表現載體轉形,其中該至少一異源核酸序列編碼一所欲之產物。在其他的具體實施例中,該至少一異源核酸序列可操作地連接到至少一功能啟動子,其中該至少一異源核酸序列編碼一螢光標記蛋白或多肽,及至少一對篩選劑具抗性或編碼一所欲產物之異源核酸序列。其他具體實施例之情況包括:該細胞額外地包括編碼將累積在所提供之基因轉殖植物細胞株中之所欲產物的異源核酸序列。
在其他具體實施例中,該宿主細胞之基因組可被表現以使得該重組蛋白或肽可被重組修飾,例如同源重組或異源重組。
可在前驅物、誘導物、激素、穩定劑、抑制劑、RNAi/siRNA分子、傳訊化合物、限制酶及/或誘引劑(elicitors)存在下,處理或培養任何建立之(轉殖基因)單株或雙株(diclonal)之植物細胞株,添加或取代載體懸浮體,用來產生重組蛋白或代謝產物。
異源核酸編碼細菌、真菌、植物或非植物源之基因,例如融合蛋白及動物源之蛋白。產生之多肽被使用來產生經純化供用於他處之多肽。本發明之方法所產生之蛋白包含異源二聚體、免疫球蛋白、融合抗體和單鏈抗體。此外,上述基因可被改變用來產生具改變之性質的蛋白。
本發明之具體實施例包含產生各種蛋白及多肽 之能力。此等具體實施例也可包含產生至少一所欲之產物的方法,該產物係選自於由以下所組成之組群:異源蛋白或多肽、二級代謝產物及標記。該方法包括為了產生及累積隨後從生成細胞或從培養基中獲得或分離之至少一所欲產物,使用本發明所建立之植物細胞株。
額外方法包含產生至少一胞外異源蛋白之方法,其包括以下步驟:1)穩定地將一第一核酸導入包括於起始植物細胞群之目標細胞,該第一核酸包括編碼異源蛋白及所欲產物之核苷酸序列;2)由該植物懸浮培養物提供之植物懸浮細胞製備原生質體,其中該原生質體額外地經轉形且能夠i)產生螢光標記蛋白或多肽及ii)在篩選劑存在下存活;3)藉由將製備之原生質體送至FACS來分開單一轉形原生質體;4)再生經分開之單一轉形原生質體至微小群落或微癒傷組織形成,藉餵養細胞材料存在進行共培養;5)再生癒傷組織,藉由i)轉移該微小群落或微癒傷組織至固體培養基及ii)在至少一篩選劑存在下培養該微小群落或微癒傷組織至轉殖基因癒傷組織形成;6)建立基因轉殖植物細胞株,藉由轉移該癒傷組織至液態培養基;7)造成或允許異源蛋白或所欲產物之核酸表現,藉由提供正確的培養條件;及8)由生成細胞收集累積之異源蛋白或所欲產物。此分離可為完全習知方式,且可能涉及或不涉及部分或完全純化。
可在各構建體中使用多於一種基因。各包含一或多個編碼所選之異源蛋白之核苷酸序列的多個載體被導入 本文或他處所述之目標細胞中。其也可用於產生限制酶之多個次單元。
該螢光標記蛋白或多肽可為能被例如GUS之螢光偵測之蛋白,例如GFP或DsRed、螢光素酶等之螢光蛋白。報導之較佳者為非侵入性標記,例如DsRed或GFP。
本發明之技術被使用來篩選將被培育之特定植物。以數種方式來進行感興趣之基因的篩選。大量技術被用於將DNA插入至植物宿主細胞內。此等技術包含以T-DNA轉形、使用農桿菌(Agrobacterium tumefaciens)或農桿根群菌(Agrobacterium rhizogenes)作為轉形劑、融合、注射、基因槍(微粒轟擊)、碳化矽晶鬚(silicon carbide whiskers)、氣溶膠粒子束(aerosol beaming)、PEG或電穿孔以及其他可能的方法。若使用農桿菌來轉形,將被插入之DNA必須被選殖入特殊的質體,意即進入中間載體或進入二元(binary)載體。該中間載體可藉著同源重組整合至Ti或Ri質體,因為與T-DNA中之序列同源。該Ti或Ri質體也包括T-DNA轉移必要之vir區。中間載體可在農桿菌屬中自行複製。該中間載體可被轉移至農桿菌,藉著輔助質體(接合)。雙元載體可在E.coli及農桿菌屬二者中自行複製。其包括篩選標記基因及一連接子或多連接子,其係由右及左方之T-DNA邊緣區讀框(framed)。其可被直接轉形入農桿菌(Holsters,1978)。使用作為宿主細胞之農桿菌包括一帶有vir區之質體。該vir區於轉移T-DNA進入該植物細胞是必要的。可包含額外之T-DNA。轉形之細菌係被使用於植物細 胞轉形。植物外植體可利用農桿菌或農桿根群菌有利地培養用於轉移DNA進入該植物細胞。於含有篩選用之抗生素或殺生物劑之適合的介質中,整株植物可由感染植物材料再生(例如,葉的碎片、莖的片段、根以及原生質體或懸浮培養之細胞)。獲得之植物接著被測試是否有插入之DNA存在。於注射及電穿孔之情況下,對質體沒有特殊要求。可能使用原本的質體,舉例而言,如pUC衍生物。
該轉形細胞在該植物內以通常方式生長。其可形成生殖細胞並傳遞該轉形特徵至後代植物。此植物可在正常方式下生長,並與具有相同轉形遺傳因子或其他遺傳因子之植物雜交。獲得之雜交個體具有相對應之表型性質。
本發明某些較佳具體實施例中,編碼感興趣之蛋白的基因係由插入該植物基因組之轉錄單元表現。較佳地,該轉錄單元係能夠穩定整合到該植物基因組中且能篩選編碼該蛋白之轉殖植物株系表現mRNA的重組載體。
一旦該插入DNA被整合到基因組中,其相對地變穩定(且不會再離開)。通常含有賦予轉殖植物細胞對殺生物劑或抗生素具抗性之篩選標記,例如康黴素、G418、博來黴素(bleomycin)、潮黴素或氯黴素。植物篩選標記亦可典型地提供對各種殺草劑之抗性,例如:草銨膦(glufosinate)(例如PAT/bar),草甘膦(EPSPS),ALS-抑制劑(例如咪唑啉酮、磺醯脲、三唑嘧啶磺醯(triazolopyrimidine sulfonanilide)等),溴苯腈(bromoxynil),HPPD-抑制劑之抗劑,PPO-抑制劑,ACC-ase抑制劑,及許多其他者。該個 別使用之標記因此應該能篩選出轉形細胞,而非那些不含插入DNA之細胞。該等感興趣之基因較佳地在該植物細胞中藉組成型或誘導型之啟動子被表現。一旦被表現,該mRNA被轉譯成蛋白,藉此將感興趣之胺基酸結合成蛋白。該等編碼在該植物細胞中表現之蛋白的基因可受組成型啟動子、組織特異性啟動子或誘導型啟動子控制。
現存數種可用於導入外來重組載體至植物細胞中的技術,以及用於獲得穩定保留及表現該等導入之基因的技術。該等技術包含直接將包覆在微粒之遺傳物質導入至細胞中(U.S.Pat.Nos.4,945,050 to Cornell及5,141,131 to DowElanco,now Dow AgroSciences,LLC)。此外,使用農桿菌技術來轉形植物,參見University of Toledo之U.S.Pat.Nos.5,177,010;Texas A&M之5,104,310;歐洲專利申請案0131624B1;Schilperoot之歐洲專利申請案120516、159418B1及176,112;Schilperoot之U.S.Pat.Nos.5,149,645、5,469,976、5,464,763及4,940,838及4,693,976;Max Planck之歐洲專利申請案116718、290799、320500;Japan Tobacco之歐洲專利申請案604662及627752,以及U.S.Pat.No.5,591,616;Ciba Geigy(現為Syngenta)之歐洲專利申請案0267159及0292435,及U.S.Pat.No.5,231,019;Calgene之U.S.Pat.Nos.5,463,174及4,762,785;及Agracetus之U.S.Pat.Nos.5,004,863及5,159,135。其他轉形技術包含晶鬚(whiskers)技術。參見Zeneca(現為Syngenta)之U.S.Pat.Nos.5,302,523及5,464,765。其他直接將DNA傳遞之轉形技 術包含氣溶膠束(aerosol beam)技術。參見U.S.Pat.No.6,809,232。電穿孔技術亦被使用來轉形植物。參見Boyce Thompson Institute之WO 87/06614;Dekalb之U.S.Pat.Nos.5,472,869及5,384,253;及Plant Genetic Systems之WO 92/09696及WO 93/21335。此外,病毒載體亦可被使用來產生表現感興趣之蛋白的基因轉殖植物。例如,使用Mycogen Plant Science及Ciba-Geigy(現為Syngenta)之U.S.Pat.No.5,569,597,以及Biosource(現為Large Scale Biology)之U.S.Pat.Nos.5,589,367及5,316,931所述之方法以病毒載體轉形單子葉植物。
如先前所述,DNA構建體被導入至該植物宿主中的方法並非本發明之關鍵。可使用任何提供有效轉形的方法。例如,本文所述之各種用於植物細胞轉形之方法,並包含使用Ti或Ri-質體及其他來表現農桿菌所致之轉形。於許多例子中,希望具有接壤T-DNA之一或二側邊緣之用於轉形之構建體,更特別的是右側邊緣。雖然能以其他轉形模式尋得T-DNA邊緣之用途,當該構建體使用農桿菌或農桿根群菌作為轉形模式時是特別有用的。其中農桿菌被使用於植物細胞轉形,使用被導入與T-DNA或者是宿主中存在之Ti或Ri質體同源重組之宿主中的載體。可藉由電穿孔、三親交配及其他該技術領域熟於此藝者已知之轉形革蘭氏陰性菌的技術來導入該載體。載體轉形入農桿菌宿主中的方法並非本發明之關鍵。用於重組之含有T-DNA之Ti或Ri質體可能可以或無法造成蟲癭(gall)形成,其並非本發 明之關鍵,只要該vir基因存在於該宿主中。
在農桿菌用於轉形之情況下,在T-DNA邊緣內之表現構建體將被插入至廣譜載體,例如pRK2或其衍生物,如Ditta等人(1980)及EPO 0 120 515所述。於該表現構建體及T-DNA中包含者為一或多個本文所述之標記,其允許篩選轉形農桿菌及轉形植物細胞。所用之特殊標記對本發明不具必要性,較佳之標記取決於宿主及使用之建構。
於使用農桿菌之植物細胞轉形中,結合外植體並與轉形之農桿菌放在一起以提供充足的時間進行轉形。轉形之後,以適當之抗生素篩選來殺死該農桿菌,以適當之選擇介質來培養植物細胞。一形成癒傷組織,依植物組隻培養及植物再生已知方法使用適當的植物激素可促進芽體(shoot)形成。但是,癒傷組織暫時階段並不是必要的。枝形成後,可將該植物細胞轉移到促進根形成的介質中,藉此完成植物再生。該植物接著被培育至獲得種子,該種子可被使用於建立未來的下一代。不論轉形技術,編碼細菌蛋白之基因較佳被納入基因轉移載體,藉由在載體中含有植物啟動子調控元件以及3'非轉譯轉錄結束區域(如Nos等)使該載體適於在植物細胞中表現該基因。
除了多種用於轉形植物之技術外,與外來基因接觸之組織類型也有所不同。此組織包含但不限於:胚胎組織,癒傷組織第I、II及III型,胚軸,分生組織,根組織,在韌皮部中表現之組織等。幾乎所有植物組織在反分化時可使用本文所述之適當技術轉形。
如上所述,如需要的話可使用多種篩選標記。特定標記之偏好可由熟於此藝者自由決定,以下任一之篩選標記可與任何其他本文未列出可作為篩選標記之基因一起使用。此等篩選標記包含但不限於:編碼對康黴素、新黴素及G41具抗性之跳躍子(transposon)Tn5(Aph II)之氨基糖苷類磷酸轉移酶基因;潮黴素抗性;胺甲葉酸(methotrexate)抗性以及編碼對草甘膦具抗性或耐受性之基因;草丁膦(phosphinothricin)(雙丙氨磷(bialaphos)或草銨膦(glufosinate));ALS-抑制殺草劑(咪唑啉酮(imidazolinone),磺醯脲(sulfonylurea)及三唑并嘧啶(triazolopyrimidine)殺草劑),ACC-ase抑制劑(例如ayryloxypropionates或環己二酮),及其他如溴苯腈及HPPD-抑制劑(如mesotrione)等。
除了篩選標記,其可能為希望使用之報導基因。於某些情況下,報導基因會或不會與篩選標記一起使用。報導基因為典型地非存在於接受之生物或組織中且典型地編碼蛋白造成某些表型改變或酵素性質的基因。Weising等人(1988)提供此等基因之實施例。較佳之報導基因包含:E.coli之uidA位點的β-葡萄糖醛酸苷酶(GUS),E.coli之Tn9的氯黴素乙醯轉移酶基因,來自生物發光水母維多利亞多管發光水母(Aequorea victoria)的綠螢光蛋白,及螢火蟲(Photinus pyralis)之螢光素酶基因。接著在該基因被導入至接受細胞之後的適當時間進行偵測報導基因表現之試驗。較佳之該試驗需使用如Jefferson等人(1987)所述編碼E.coli之uidA位點的β-葡萄糖醛酸苷酶(GUS)基因來辨識轉形細 胞。
除了植物啟動子調控元件,可有效使用植物細胞中多種來源之啟動子調控元件來表現外來基因。例如,可使用菌源之啟動子調控元件,如章魚鹼合成酶啟動子、胭脂鹼(nopaline)合成酶啟動子、甘露鹼(mannopine)合成酶啟動子;病毒源之啟動子,如花椰菜嵌紋病毒(35S及19S)、35T(其為再造之35S啟動子,參見U.S.Pat.No.6,166,302,尤其是實施例7E)等。植物啟動子調控元件包含但不限於:核酮糖-1,6-二磷酸(RUBP)羧化酶小次單元(ssu),β-伴大豆球蛋白啟動子,β-菜豆球蛋白啟動子,ADH啟動子,熱震(heat-shock)啟動子,及組織特異啟動子。有其他元件存在,如基質結合區,架構連接區,內含子,增強子,聚腺苷酸序列等,因此改良轉錄效率或DNA整合。此等元件可能是或不是DNA功能所必要者,雖然其可以藉由影響轉錄、mRNA穩定性等提供較佳之表現或DNA功能。當希望獲得植物轉形DNA最佳表現時,此等元件包含在DNA中。典型元件包含但不限於:Adh-內含子1,Adh-內含子6,苜蓿嵌紋病毒外殼蛋白前導序列,滲透蛋白(osmotin)UTR序列,玉米條紋病毒外殼蛋白前導序列,以及其他熟於此藝者可使用者。也可使用組成型啟動子調控元件,藉此指示所有細胞類型及所有時間之連續基因表現(例如肌動蛋白、泛蛋白、CaMV 35S等)。組織特異性啟動子調控元件負責特定細胞或組織類型中的基因表現,如葉或種子(例如玉米蛋白、油蛋白(oleosin)、油菜蛋白(napin)、ACP、球蛋白等) 及該等會被使用者。
啟動子調控元件在植物發育之特定階段可能具活性或不具活性,而在植物組織及生物中是具活性的。實例包含但不限於:花粉-特定,胚-特定,玉米穗-特定,棉花纖維-特定,根-特定,種子胚乳-特定,或營養時期-特定之啟動子調控元件等。在某些環境下,希望使用誘導型啟動子調控元件,負責對應於特定訊息之基因表現,該等訊息例如:物理刺激(熱震基因),光(RUBP羧化酶),激素(Em),代謝物,化學物質(四環黴素反應),及壓力。可使用在植物中作用之其他希望之轉錄及轉譯元件。該技術領域已知多種植物-特定基因轉移載體。
可使用植物RNA病毒系統來表現細菌的蛋白。這樣做的話,該編碼蛋白的基因可被插入至適合之將感染該感興趣之宿主植物之植物病毒的外殻啟動子區。表現該蛋白以供保護該植物不受殺草劑傷害。Mycogen Plant Sciences,Inc.之U.S.Pat.No.5,500,360及Biosource之U.S.Pat.Nos.5,316,931及5,589,367,描述植物RNA病毒系統。
進一步增進耐受性或抗性程度的手段。本文顯示本發明植物可具有未知之殺草劑抗性特徵,但不會對包含產量之表型產生可觀察到之負面效果。此植物係在本發明之範疇中。本文例示及建議之植物能忍受2x、3x、及5x之典型應用程度,例如對至少一殺草劑。此等耐受性程度之改良係在本發明之範疇中。例如,該領域已知的各種技術及可預見被最佳化並進一步發展用於增加特定基因之表 現。
此方法之一包含增加該基因之複製數(於表現卡匣等之中)。具有多個基因複製者可選擇轉形的方式。
可使用強啟動子及增強子來"增壓”表現。此等啟動子之實施例包含較佳之使用35S增強子之35T啟動子。35S、玉米泛蛋白、阿拉伯芥泛蛋白、A.t.肌動蛋白及CSMV啟動子係包含於此種用途中。其他強病毒啟動子亦為較佳者。增強子包含4OCS及35S雙增強子。舉例而言,可使用基質連接區(MARs)來增加轉形效率及轉形基因表現。
具體實施例可使用本發明之重組(Shuffling)(定向演化)及轉錄因子。
變異蛋白亦可被設計成在序列層次不同但保留相同或相近之整體必要三維結構、表面電價分佈等。參見例如U.S.Pat.No.7,058,515;Larson et al.,Protein Sci.2002 11:2804-2813,“Thoroughly sampling sequence space:Large-scale protein design of structural ensembles”;Crameri et al.,Nature Biotechnology 15,436-438(1997),“Molecular evolution of an arsenate detoxification pathway by DNA shuffling”;Stemmer,W.P.C.1994,DNA shuffling by random fragmentation and reassembly:in vitro recombination for molecular evolution,Proc.Natl.Acad.Sci.USA 91:10747-10751;Stemmer,W.P.C.1994,Rapid evolution of a protein in vitro by DNA shuffling,Nature 370:389-391;Stemmer,W.P.C.1995,Searching sequence space. Bio/Technology 13:549-553;Crameri,A.,Cwirla,S,and Stemmer,W.P.C.1996,construction and evolution of antibody-phage libraries by DNA shuffling,Nature Medicine 2:100-103;and Crameri,A.,Whitehorn,E.A.,Tate,E.and Stemmer,W.P.C.,1996,Improved green fluorescent protein by molecular evolution using DNA shuffling,Nature Biotechnology 14:315-319.
插入植物細胞中之重組多核苷酸的活性取決於鄰近該插入之內源植物DNA的影響。因此,另一個選擇是利用已知之植物基因組中供插入之良好位點。參見例如WO 2005/103266 A1,關於cry1F及cry1Ac棉花事件;FAD2、FAD3,其中如AAD1若AAD12或其他在該等基因組位點之基因可經以該等插入來取代。因此,可使用例如本發明之目標同源重組。此類技術是以下之目的,例如WO 03/080809 A2及對應之已公開美國申請案(USPA 20030232410),關於將鋅指用於目標之重組。該領域已知重組酶之用途(例如cre-10x及flp-frt)。
運算設計最適於合成髮夾結構之5'或3'UTR亦可於本發明之範疇中進行。計算機模擬,如同基因重組(shuffling)及定向演化,一般係在本文其他處討論。更特別是,關於計算機模擬及UTRs,用於預測/評估本發明之5'及3'UTR衍生物之計算機模擬技術包含但不限於:MFold version 3.1 available from Genetics Corporation Group,Madison,Wis.(see Zucker et al.,Algorithms and Thermodynamics for RNA Secondary Structure Prediction:A Practical Guide.In RNA Biochemistry and Biotechnology,11-43,J.Barciszewski & B.F.C.Clark,eds.,NATO ASI Series,Kluwer Academic Publishers,Dordrecht,NL,(1999);Zucker et al.,Expanded sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure.J.Mol.Biol.288,911-940(1999);Zucker et al.,RNA Secondary Structure Prediction.In Current Protocols in Nucleic Acid Chemistry,S.Beaucage,D.E.Bergstrom,G.D.Glick,and R.A.Jones eds.,John Wiley & Sons,New York,11.2.1-11.2.10,(2000)),COVE(RNA structure analysis using covariance models(stochastic context free grammar methods))v.2.4.2(Eddy & Durbin,Nucl.Acids Res.1994,22:2079-2088)(其原始碼免費散佈且可進入網站genetics.wustl.edu/eddy/software/下載),及FOLDALIGN(也免費散佈且可由網站bioinf.au.dk.FOLDALIGN/下載取得)(參見Finding the most significant common sequence and structure motifs in a set of RNA sequences.J.Gorodkin,L.J.Heyer and G.D.Stormo.Nucleic Acids Research,Vol.25,no.18 pp 3724-3732,1997;Finding Common sequence and Structure Motifs in a set of RNA sequences.J.Gorodkin,L.J.Heyer,and G.D.Stormo.ISMB 5;120-123,1997).
本發明之具體實施例可與自然演進或化學誘發 變異體(可藉由篩選技術來選擇變異體,接著以其他基因轉形)結合使用。本發明之植物可結合各種抗性基因及/或演進之抗性基因。傳統之育種技術也可與本發明結合,用以有力地結合、基因滲入(introgress)及改良性狀。
所有本文引註及討論的文獻,包含出版品、專利及專利申請書,僅在提供本說明書提申日以前的揭露內容。本文任何部分皆不會被解釋為因該等先前發明而承認本發明人非為較早之揭露。
實施例
以下實施例係被提供用來說明某些特定之特色及/或態樣。不應將此等實施例解釋為限制本發明於描述之特定的特色或態樣。
實施例1:由細菌人工染色體庫辨識旁系同源FAD2及FAD3標的序列
BAC之建構
細菌人工染色體(BAC)庫來自商業供應商(Amplicon Express,Pullman,WA)。該BAC庫係由含有由西洋油菜(Brassica napus)L.var.DH10275分離出來具高分子量遺傳DNA(gDNA)片段之110,592個BAC選殖株所組成。以BamHIHinDIII限制酶切該gDNA。約135 Kbp之分離gDNA片段被連接至該pCC1BAC載體(Epicentre,Madison,WI)中且轉殖至Escherichia coli str.DH10B(Invitrogen)中。該BAC庫係由偶數個BAC選殖株所建立,該BAC選殖株係使用二種不同的限制酶來建構。因此,該Hind III所建構之BAC 庫係由144個分別的384孔盤所組成。同樣地,該BamHI所建構之BAC庫係由144個分別的384孔盤所組成。分離共110,592個之BAC選殖株,並排列成288個分別的384孔盤。供應者係以可供快速PCR篩檢之單股DNA萃取物來提供該288個分別的384孔盤之每一者。所獲得之BAC庫涵括約15Gbp之gDNA,相當於西洋油菜L.var.DH10275基因體12倍之基因體覆蓋率(如Johnston et al.(2005)Annals of Botany 95:229-235所述,估計西洋油菜L.之基因體為ca.1.132 Gbp)。
由BAC庫分離之FAD2編碼序列的序列分析
使用所建構之BAC庫來分離FAD2基因編碼序列。進行定序實驗來辨識西洋油菜L.var.DH10275之4種FAD2基因的旁系同源體特定基因序列。
該FAD2基因序列最初係由模式物種阿拉伯芥中被辨識。該基因序列在Genbank中被列在位點標記:At3g12120。先前已描述該模式植物物種阿拉伯芥以及該雙子葉植物蕪菁(B.rapa)(四子葉植物西洋油菜的祖先之一)之間的比較型基因組關係(Schranz et al.(2006)Trends in Plant Science 11(11):535-542)。由FAD2基因之特殊關係,該比較性分析預期會出現3-4個該基因之複製在該雙子葉植物Brassica基因組中。其他之遺傳圖譜研究係由Scheffler等人(1997)Theoretical and Applied Genetics 94;583-591完成。此等遺傳圖譜研究結果指出在西洋油菜中存在有該FAD2基因之4個複製。
B.napus L.var.DH12075建構之BAC庫序列分析導致分離出4個BAC序列(SEQ ID NO:1,SEQ ID NO:2,SEQ ID NO:3及SEQ ID NO:4),其中該FAD2A(SEQ ID NO:5)、FAD2-1(SEQ ID NO:6)、FAD2-2(SEQ ID NO:7)及FAD2-3(SEQ ID NO:8)基因之編碼序列已被決定。該FAD2A、FAD2-1、FAD2-2及FAD2-3基因序列係被辨識及經遺傳圖譜化。使用序列比對程序及利用辨識率之鄰接樹來進行該4個FAD2基因的序列分析。經由該載體NTI Advance 11.0電腦程序(Life Technologies,Carlsbad,CA)之ALIGNX®程序來進行序列比對,且示於圖1。ALIGNX®使用修改過之Clustal W algorithm來產生蛋白質或核酸序列用於相似度比較及註解之多序列比對。該鄰接樹係以JALVIEW v2.3®軟體來產生,顯示於圖2。(Waterhouse et al.(2009)Bioinformatics 25(9)1189-1191)。如圖2所示,該分離序列之分析指出,該FAD2A及FAD2-3序列之間有高度序列相似性,同樣地在FAD2-1及FAD2-2之間有高度序列相似性。該4個序列可被歸類為2個分支,其中FAD2A及FAD2-3組成第一分支,FAD2-1及FAD2-2組成第二分支。
其次,來自西洋油菜(Brassica napus)新分離之FAD2序列被使用於分離自蕪菁基因組BAC庫及甘藍(Brassica oleracea)霰彈槍法基因序列片段(reads)之BLAST基因組庫。蕪菁及甘藍(Brassica oleracea)二者為雙二倍體物種(AC基因組,n=19)之西洋油菜之雙子葉植物祖先。西洋油菜係衍生自蕪菁(A sub-基因組,n=10)及甘藍 (Brassica oleracea)(C sub-基因組,n=9)間之相近雜交。使用BLASTn分析來比較該雙子葉植物祖先(progenitor)序列及分離自西洋油菜之4種不同之FAD2編碼序列。此序列分析將蕪菁及甘藍(Brassica oleracea)之特別的、經註解的基因序列辨識出來,該等序列與最新發現之西洋油菜FAD2序列共享最高之序列相似性。表1列出新被辨識之FAD2編碼序列及對應之祖先參考序列登錄號及來源生物。
該FAD2基因存在於西洋油菜基因組中,各基因在每一個次-基因組中有二個複製。各基因之其中一個複製係位在A次-基因組上,同樣地各基因之一個複製係位在C次-基因組上。新的命名約定用來指出各基因所位在之次-基因組。該由西洋油菜BAC遺傳DNA庫及祖先序列資料而來之4個不同之FAD2編碼序列之高度序列相似性說明了FAD2-3係C次-基因組而來之FAD2序列之複製品,且可被重新標示為FAD2C;FAD2-1是A次-基因組而來之FAD2序列的複製品,且可因此被重新標示為FAD2A';最後,FAD2-2是由C次-基因組之FAD2序列而來之第二次複製,且被重新 標示為FAD2C'
由BAC庫分離之FAD3編碼序列的序列分析
使用所建構BAC庫來分離FAD3基因編碼序列。進行定序實驗以辨識來自西洋油菜L.var.DH10275之5個FAD3基因旁系同源的特定基因序列。
於模式物種阿拉伯芥中初步辨識該FAD3基因序列。該基因序列係被列在Genbank位點標誌:At2g29980。先前已述及模式植物物種阿拉伯芥及該雙子葉植物蕪菁(四倍體西洋油菜之祖先之一)之間的比較型基因組關係(Schranz et al.(2006)Trends in Plant Science 11(11):535-542)。由FA2基因之特殊關係,該比較性分析預期會出現3-4個該基因之複製在該雙子葉植物Brassica基因組中。其他之遺傳圖譜研究係由Scheffler等人(1997)Theoretical and Applied Genetics 94;583-591完成。此等遺傳圖譜研究結果指出在西洋油菜中存在有該FAD3基因之6個複製。
先前定序的努力集中在被辨識之西洋油菜之FAD3基因及繪出A和C基因組特異複製之基因圖譜(Hu et al.(2006)Theoretical and Applied Genetics,113(3):497-507)。種子特異cDNA庫之EST序列的收集已在先前建構並定序該植物株DH12075,藉由Andrew Sharpe of Agriculture及Agri-food Canada,107 Science Place,Saskatoon,Saskatchewan。因為無法得到雙倍之單倍體油菜植物DH12075全長基因序列的ESTs,也無法得到序列品質 指標及正確調用(called)核苷酸之可信度。所以,不同FAD基因序列片段(reads)之間的序列變異無法被毫無懷疑地歸因於FAD3基因群各種旁系同源不同基因的複製,也無法得到該等基因序列。但是,當與該等ESTs以及Hu et al.,(2006)所述之二種FAD3A及FAD3C全長基因序列一起進行合併序列分析時,與該二種基因相配之ESTs與額外之3單倍型一起被辨識。結果,總共有六種獨特FAD3單倍型被辨識。組合所有各種FAD3單倍型可得資料之後,確定外顯子1中有高度外顯子序列差異。外顯子1中之FAD3序列差異被確定為可被用來設計基因/對偶基因特異PCR引子的機會。此外,外顯子被確定為單倍型之間最小差異者(例如外顯子5、6、7及8具有1-3 bp與FAD3A及FAD3C不同)或沒有序列差異者(例如外顯子2及3)。
序列分析該所由B.napus L.var.DH12075所建構之BAC庫,導致分離出6種BAC序列(SEQ ID NO:9,SEQ ID NO:10,SEQ ID NO:11,SEQ ID NO:12,SEQ ID NO:13及SEQ ID NO:14),其中以下基因之編碼序列被決定:FAD3A(SEQ ID NO:15),FAD3A'(SEQ ID NO:16),FAD3A"(SEQ ID NO:17),FAD3C(SEQ ID NO:18),FAD3C"(SEQ ID NO:19),及FAD3C'(SEQ ID NO:20)。FAD3A、FAD3A'、FAD3A"、FAD3C、FAD3C"及FAD3C'基因序列被辨識及繪出基因圖譜。
6種FAD3基因的序列分析係使用序列比對程序及使用相似度百分比之鄰接樹來進行。序列比對係使用 Vector NTI Advance 11.0 computer program之ALIGNX®程式(Life Technologies,Carlsbad,CA)並示於圖3。ALIGNX®使用改變之Clustal W algorithm來產生蛋白或核酸序列相似性比較及註解的多序列比對。以JALVIEW v2.3®軟體來建立鄰接樹並示於圖4(Waterhouse et al.(2009)Bioinformatics 25(9)1189-1191)。將確定含有FAD3基因之片段重疊群作為阿拉伯芥基因資料之BLASTn查詢。The region of each of the各該6種片段重疊群之包含FAD3基因之區域經由比較阿拉伯芥FAD3基因(Genbank登錄號:At2g29980)來確定。接著定向FAD3片段重疊群,以使得所有FAD3基因為5'至3'的方向。FAD3片段重疊群被修整成可以包含多達2個上游(5')及1個下游(3')阿拉伯芥基因。一旦定向,整個FAD3基因編碼區係由各片段重疊群摘出,並被使用來產生鄰接樹以展演不同FAD3基因群成員之間的關係。該6個FAD3群成員係被排成3對FAD3基因(圖4)。
PCR篩選
一組PCR引子係被設計來篩選上述之BAC庫。引子被設計成泛用引子(可擴增所有基因群之成員)或基因特異型引子供用於目標對偶基因的擴增。該PCR引子被設計成20 bp長(+/- 1bp),包含50%G/C含量(+/- 8%)。表2及表3列出被設計及合成的引子。匯集該選殖株BAC庫並以聚合酶鏈反應(PCR)篩選。
於聚合酶鏈反應(PCR)使用二組不同的條件。該第一系列PCR反應包含:1X PCR緩衝液(含dNTPs);1.5mM MgCl2;200μM 0.25U Immolase® DNA聚合酶(Bioline,London,UK);250nM各引子;及,約5-10 ng模板DNA。第二系列PCR反應被建立用於擴增遺傳DNA,包含:5-10 ng基因組DNA,1X PCR緩衝液,2mM dNTPs,0.4μM正向及反向因子,及0.25U Immolase® DNA聚合酶(Bioline, London,UK)。匯集擴增子使其最終量為13μL,使用MJ PTC200®溫度循環器(BioRad,Hercules,CA)或ABI 9700基因Amp系統®(Life Technologies,Carlsbad,CA)來擴增。使用Bryan et al(Scottish Crops Research Institute annual report:2001-2002)所述之篩選系統之4維篩選方法以上述PCR條件來進行PCR篩選特定盤。基於匯集之BAC庫之PCR篩選,擴增之PCR產物被定序,使用直接式Sanger定序方法。以乙醇、乙酸鈉及EDTA純化該擴增之產物,基於BigDye® v3.1 protocol(Applied Biosystems),在ABI3730xl® automated capillary電泳平台上進行電泳。
基於PCR篩選及構形Sanger定序,一批盤被確定含有各種不同FAD2及FAD3基因群成員。總共有四種獨特之FAD2及FAD3旁系同源基因序列被確定(表4及表5)。共選擇二盤(各盤有FAD2及FAD3旁系同源基因序列)來進行盤篩檢以確定該盤中含有FAD2及FAD3基因之特定井及選殖株(表4及表5)。確定該二盤之特定井,FAD2及FAD3基因群成員各選擇一個別選殖株。
以定序來分析各確定之FAD基因群成員之單一BAC選殖株。分離該BAC選殖株之DNA,使用Large Construct kit®(Qiagen,Valencia,CA)依製造者之指示製備該DNA來定序。使用GS-FLX® Titanium Technology(Roche,Indianapolis,IN)依製造者之指示製備經萃取之BAC DNA來定序。使用物理分區之GS-FLX TI® Pico-titer plate利用成對匯集之BACs來進行定序反應以獲得最佳資料輸出。成對結合該BACs,其中該FAD2基因係與FAD3基因配對。以Newbler v2.0.01.14®(454 Life Sciences,Branford,CT)組合所有產生之序列資料。使用Sequencher v3.7®(GeneCodes,Ann Arbor,MI)以人工評估組合之片段重疊群是否存有對應之FAD基因。
在所有4個FAD2及6個FDAD3基因之全長基因序列被確定及完整特徵化之後,鋅指核酸酶被設計用來結合 至各特定基因群成員之序列。
實施例2:設計對FAD2基因具特異性之鋅指結合域
依先前所述方式設計直接針對編碼各種FAD2基因位點之功能序列之DNA序列的鋅指蛋白。參見如Urnov et al.(2005)Nature 435:646-651。例示之標的序列及識別螺旋示於表6及表7(識別螺旋區設計)及表8及表9(目標區位)。在表8及表9中,目標位中以ZFP識別螺旋接觸的核苷酸係以大寫字母指示;未接觸之核苷酸以小寫字母指示。鋅指核酸酶(ZFN)目標位被設計用來結合5個FAD2A之目標位及7個FAD3之目標位。FAD2及FAD3鋅指設計被整合到編碼有至少一個具CCHC結構之指狀蛋白的鋅指表現載體中。參見U.S.Patent Publication No.2008/0182332。特別的是,各蛋白中之最後指狀部分具有一CCHC架構供識別螺旋。非典範之鋅指編碼序列被連接至IIS型限制酶FokI之核酸酶域(Wah et al.,(1998)Proc.Natl.Acad.Sci.USA 95:10564-10569之胺基酸序列384-579),經由一四胺基酸ZC連接子及一來自玉米之opaque-2核定位信號,來形成FAD2A鋅指核酸酶(ZFNs)。融合蛋白之表現係由相對強之組成型啟動子來驅動,例如來自木薯葉脈嵌紋病毒(CsVMV)啟動子及兩側為農桿腫瘤菌(Agrobacterium tumefaciens)ORF23 3'非轉譯區(AtuORF23 3'UTR v1)之啟動子。在選殖入該建構物之二個鋅指核酸酶融合蛋白之間加入來自刺蛾(Thosea asigna)病毒(Szymczak et al.,2004)之自行水解2A編碼核苷酸序列。例示之載體係如下所述。
實施例3:鋅指核酸酶剪切FAD2基因之評估
構建體之組合
如實施例2所述使用酵母測試來識別之含有範例鋅指核酸酶之ZFN表現構建體的質體載體,係使用技術領域中已普遍知悉之技能和技術來設計及完成。各個鋅指編碼序列被連接至位於該鋅指核酸酶上游之編碼opaque-2核定位信號的序列(Maddaloni et al.(1989)Nuc.Acids Res.17(18):7532)。
其次,該opaque-2核定位信號::鋅指核酸酶融合序列與互補之opaque-2核定位信號::鋅指核酸酶融合序列z配對。據此,每一個由單一開啟讀碼框(open reading frame)所組成之構建體包含了二個以來自序列刺蛾(Thosea asigna)病毒之2A(Mattion et al.(1996)J.Virol.70:8124-8127)分開的opaque-2核定位信號::鋅指核酸酶融合序列。融合蛋白之表現係以相對強之組成型啟動子來驅動,例如來自木薯葉脈嵌紋病毒(CsVMV)啟動子及兩側為農桿腫瘤菌(Agrobacterium tumefaciens)ORF23 3'非轉譯區(AtuORF23 3'UTR v1)之啟動子。
使用IN-FUSIONTM Advantage Technology(Clontech,Mountain View,CA)來組合該載體。核酸限制內切酶係由New England BioLabs(NEB;Ipswich,MA)獲得,T4 DNA連接酶(Invitrogen)係被用於DNA連接。使用NUCLEOSPIN® Plasmid Kit(Macherey-Nagel Inc.,Bethlehem,PA)或Plasmid Midi Kit(Qiagen)依供應者之指示來進行質體之製備。使用 QIAquick Gel Extraction KitTM(Qiagen)在瓊脂糖Tris-乙酸膠體電泳之後分離DNA片段。以限制酶切少量DNA來初步篩選所有組合之質體的選殖群體。選定選殖株之質體DNA係藉商用定序廠商(Eurofins MWG Operon,Huntsville,AL)來定序。使用SEQUENCHERTM軟體(Gene Codes Corp.,Ann Arbor,MI)來組合及分析序列資料。在送入B.napus原生質體之前,使用Pure Yield Plasmid MAXIPREP System®(Promega Corporation,Madison,WI)或Plasmid MAXI KIT®(Qiagen,Valencia,CA)依供應商之指示由E.coli培養來製備質體DNA。
經由限制酶酶切及DNA定序來確認所得之以下11種質體構建體:pDAB104008(含有ZFN24845及ZFN24844構建體),pDAB104009(含有ZFN24820及ZFN24821構建體),pDAB104010(含有ZFN24828及ZFN24829構建體)(圖5),pDAB104003(含有ZFN24810及ZFN24811構建體),pDAB104011(含有ZFN24832及ZFN24833構建體),pDAB104002(含有ZFN24794及ZFN24795構建體),pDAB104006(含有ZFN24796及ZFN24797構建體),pDAB104004(含有ZFN24814及ZFN24815構建體),pDAB104001(含有ZFN24800及ZFN24801構建體),pDAB104005(含有ZFN24818及ZFN24819構建體)及pDAB104007(含有ZFN24836及ZFN24837構建體)。表10列出不同構建體及特定FAD序列,其中各ZFN係被設計用來剪切及結合。
經由限制酶酶切及DNA定序來確認所得之以下質體構建體:pDAB107824(ZFNs 28025-2A-28026),pDAB107815(ZFNs 27961-2A-27962),pDAB107816(ZFNs 27969-2A-27970),pDAB107817(ZFNs 27973-2A-27974),pDAB107825(ZFNs 28035-2A-28036),pDAB107826(ZFNs 28039-2A-28040),pDAB107818(ZFNs 27987-2A-27988),pDAB107827(ZFNs 28051-2A-28052),pDAB107821(ZFNs 28004-2A-28005),pDAB107819(ZFNs 27989-2A-27990),pDAB107828(ZFNs 28053-2A-28054),pDAB107829(ZFNs 28055-2A-28056),pDAB107820(ZFNs 27991-2A-27992),pDAB107822(ZFNs 28021-2A-28022)及pDAB107823(ZFNs 28023-2A-28024)。
製備轉染DNA
藉由在100%(v/v)乙純中沉澱及沖洗來消毒上述載體之質體DNA,在一層流櫥中乾燥。在30μL消毒之二次蒸餾水中懸浮該DNA沉澱物,使最終濃度為0.7μg/μl,以供用於轉染入以下所述之原生質體細胞中。質體DNA之製備係在獲得供暫時轉染之超螺旋質體DNA及穩定轉染之線性化質體DNA。暫時轉染原生質體細胞不需要添加運送DNA(例如魚精子DNA)至轉形質體。於暫時實驗中,約每106原生質需使用30μg質體DNA轉形。
轉染
西洋油菜L.var.DH10275之轉染係依Spangenberg et al.,(1986)Plant Physiology 66:1-8所述方式來完成,該媒介物之配方係被描述在Spangenberg G.及Protrykus I.(1995)之煙草原生質體中以聚乙二醇致使之直接基因轉移。在Gene Transfer to Plant(Protrykus I.及Spangenberg G.Eds.)Springer-Verlag,Berlin中。在70%乙醇中消毒西洋油菜種子表面。該種子被浸泡在12mL之70%乙醇溶液中,以和緩晃動方式混合該混合物10分鐘。藉傾析該溶液來去除該70%乙醇溶液,換成含有1% w/v次氯酸鈣及0.1% v/v Tween-20之種子消毒溶液。該種子被浸泡在該種子消毒溶液中,以和緩晃動方式混合該混合物25分鐘。傾析該種子消毒溶液,以50mL經消毒的水清洗該經消毒之種子三次。最後,將該種子移到放在培養皿中之經消毒80mm Whatman®過濾紙盤(Fisher-Scientific,St.Louis,MO), 稍微使該種子被水浸透。以Parafilm®(Fisher-Scientific,St.Louis,MO)密封該培養皿,使該盤保持在25℃之完全黑暗中一至二天。觀察到種子萌芽的跡象後,將該芽苗移到含固化之GEM介質的培養皿,用來促使進一步種子發芽。該芽苗保持在25℃之GEM介質四至五天。
一數量之液體PS培養基(約10mL)被傾析至一經消毒之培養皿中。使用經消毒之鉗和手術刀去除在增長和發育之4葉期的四到五日齡幼苗的地上部分並丟棄。決定用長20-40mm之胚軸段來產生最高量之小型、富有胞質之原生質體。該胚軸段係在無菌條件下切下並轉移到液體PS培養基。該切下之胚軸段被聚集在一起,橫向切成5-10mm段。其次,將該胚軸段移到新鮮的PS培養基中並保持在室溫一小時。該胞質分離(plasmolyzed)之胚軸被移到含有限制酶溶液之培養皿。小心地將所有胚軸段浸泡在該溶液中。以Parafilm®密封該等培養皿,保持在20-22℃中以和緩晃動隔夜(16至18小時)。
由胚軸段釋出原生質體細胞。輕輕地攪拌隔夜之胚軸酶切物(酶切s)來釋出限制酶溶液中的原生質體。稍微傾斜該培養皿,協助移置該由限制酶溶液及植物碎片之酶切懸浮物。使用10mL吸量管將酶切懸浮物移到經消毒之原生質體過濾(100 micron篩之濾器)單元以進一步分開植物碎片及原生質體。輕輕敲打該過濾單元以釋出篩網留滯之剩餘液體。輕輕混合該原生質體懸浮物(約8至9mL)並分配至14mL經消毒之塑膠圓底離心管中。覆蓋1.5mL之W5溶 液至各懸浮物之上。以一角度小心地注入該W5溶液於該原生質體懸浮物之上,以逐滴加入達到最小攪拌之方式來注入。將該W5溶液加入至該原生質體懸浮物中會產生富有原生質體的界面。使用吸量管來收集此界面。其次,將收集到之原生質體移到新的14mL離心管中,輕輕地混合。使用血球計來決定所獲得之原生質體的產量,用來決定每一毫升中原生質體的數量。重覆該方法,其中葉組織被酶切來產生葉肉原生質體。
其次,添加W5溶液達10mL之量,在去除該W5溶液前以70g沉澱該原生質體。以和緩的搖動再次懸浮其餘之原生質體懸浮物。每一含有該原生質體懸浮物之管添加5mL之W5溶液,保持在室溫下一至四小時。以70g沉澱該原生質體懸浮物,然後去除所有W5溶液。其次,300μL轉形緩衝液被添加至每一含有分離之原生質體的經沉澱之原生質體懸浮物。10μg質體DNA被加入至每一管之原生質體懸浮物。該質體DNA係由上述之鋅指核酸酶構建體所組成(如pDAB104010)。其次,300μL之預熱PEG 4000溶液被加入至該原生質體懸浮物,輕輕敲打該管。將該原生質體懸浮物及轉形混合物保持在室溫15分鐘,不攪拌。加入另外10mL之W5溶液至各管中,依序等分為1mL、1mL、1mL、2mL、2mL及3mL,在W5溶劑添加之間將管上下顛倒。以70g離心旋轉沉澱該原生質體。去除所有W5溶液,留下純的原生質體懸浮物。
其次,添加0.5mL之K3培養基至沉澱之原生質體 細胞,再懸浮該細胞。該再懸浮之原生質體細胞被置於1:1濃度之5mL之K3及0.6mL之Sea PlaqueTM瓊脂糖(Cambrex,East Rutherford,NJ)培養皿中央。以單一和緩的旋轉動作搖晃該培養皿,將其保持在室溫20-30分鐘。以PARAFILM®密封該培養皿,在完全黑暗中培養該原生質體24小時。在保持黑暗中之後,在微光中培養該培養皿6天(5μMol m-2 s-1之Osram L36 W/21 Lumilux白管)。於該培養步驟之後,使用經消毒之刮刀將該含有原生質體之瓊脂糖切成四分圓。切開之四分圓被置於含有20mL之A培養基的250mL塑膠培養瓶中,在旋轉搖盪器上保持80rpm及1.25cm throw於24℃連續微光中14天,然後分析決定各鋅指核酸酶構建體活性程度。
由油菜原生質體分離遺傳DNA
以個別之1.5或2.0mL微量離心管提供轉染之原生質體。將在緩衝溶液中之該細胞沉澱在管的基底。DNA萃取係藉由在液態氮中快速冷凍細胞進行,接著在a Labconco Freezone 4.5®(Labconco,Kansas City,MO)中於-40℃及約133 x 10-3mBar壓力下冷凍乾燥該細胞48小時。使用DNeasy®(QIAGEN,Carlsbad,CA)植物套組依製造者指示將該凍乾細胞進行DNA萃取,除非不能使組織瓦解,該原生質體細胞被直接加入至該細胞分解緩衝液。
在油菜原生質體中測試FAD2A及FAD3之ZFNs之遺傳
DNA序列剪切
針對FAD2A及FAD3基因位之ZFN目標位之設計 被聚集,因此多對ZFN被設計重疊該目標位。聚集ZFN目標位使得PCR引子將可被設計為能於100 bp窗內擴增所有FAD2A及FAD3基因群成員周圍基因序列,封圍所有重疊之ZFN目標位。據此,該Illumina短讀取序列技術可被使用來評估轉染之原生質體之目標ZFN位的完整性。此外,該設計之PCR引子需要包括將序列讀取歸因(attribute)於FAD2A及FAD3群之特定基因成員的特定核苷酸基。因此,所有PCR引子必須結合離任何ZFN目標切位5-10個核苷酸,當已知非同源性末端接合(NHEJ)活性會造成小型缺失,其會造成引發位被去除、抑制擴增,且因此扭曲NHEJ活性之評估。
引子被設計用來結合至所有FAD2A及FAD3基因群之ZFN目標位(表11),並經由PCR擴增產物之Sanger定序來實證檢驗所有基因群成員之擴增。於數種例子中,引子無法與所有基因群成員區別(表12及表13),但是在所有例子中FAD2A及FAD3之目標基因序列是能區別的。以下之PCR引子設計定制DNA條碼序列被整合至被使用來區別不同AFN目標位之PCR引子,且識別轉染之特定序列片段及ZFN(表11、12及13)。
以下以ZFN轉染之油菜原生質體之DNA萃取,PCR擴增目標ZFN位點係被進行用來產生正確形式之必要之位點特定DNA分子,藉由合成技術用於Illumina定序。各檢驗係被最佳化來用於25 ng起始DNA(約12,500細胞當量之西洋油菜基因組)。進行多反應,每一樣品提供需要的覆蓋範圍來評估適當量之NHEJ效率及特異性,約16個PCR反應相當於200,000複製之西洋油菜基因組取自個別之原生質體。對所有樣品進行了PCR擴增主混合(master-mixes)以相同檢驗測試,一個進行三次的反應係使用了定量PCR方法檢測,其係被使用來判斷在目標組織上進行的最佳周期數,以確保PCR擴增不會受限於試劑且維持在以指數級擴增的階段。該具有必要之負控制反應之試驗係在96井形式下進行,使用MX3000P thermocycler®(Stratagene,LaJolla, CA)。由該定量PCR平台收集之輸出資料,相對增加之螢光逐周期地被繪製,決定將提供足夠擴增之每一試驗之周期數,但不會讓反應受限於試劑,試圖減少過多周期(over cycling)及一般轉譯體或分子的擴增。未使用之主混合,其留在冰上直到定量PCR分析得到結果且決定周期數,接著被分配到所需數量之反應管中(每一ZFN試驗約16)且進行PCR反應。之後擴增,匯集單一ZFN位點之樣品在一起,以MinElute® PCR purification kit(Qiagen)依製造者指示清洗每一ZFN之200μL匯集之產物。為了使用Illumina短片段技術來定序該樣品,需要藉由擴增連接額外對配之末端引子至所產生之片段上。藉由PCR擴增技術達成此目地,使用將被加入到該第一輪擴增之部分互補至該序列且包含該所需之對配末端序列之引子。再次使用經過先前所述之定量PCR周期分析之樣品來決定進行之最佳PCR周期數,其加入配對末端序列而不會過度擴增樣品之一般片段。之後PCR擴增,使用MinElute® column(Qiagen)依製造者指示來清洗產生之產物,再次溶解於2.5%瓊脂糖膠體中。使用Syber Safe®(Life Technologies,Carlsbad,CA)使呈正確大小之帶狀的可見之DNA片段被膠體萃取,以去除任何殘餘之PCR所產生的引子-雙聚體或其他偽片段,使用MinElute® gel extraction kit(Qiagen)依製造者指示由該膠體切塊萃取DNA。膠體萃取完成之後,使用AMPure® magnetic beads(Beckman-Coulter,Brea,CA)以DNA對珠粒(bead)為1:1.7之比例進行額外之DNA清洗步驟。使用用於Illumina定序之定 量PCR庫量化套組(KAPA)來評估DNA之濃度,以1/40,000及1/80,000稀釋度並進行該反應三次。基於該定量PCR之結果,該DNA被稀釋至標準濃度2nM,所有序列庫與DNA定序組合。使用cBot cluster® generation kit(Illumina,San Diego,CA)來製備用於定序之樣品,該樣品在Illumina GA2x®上以100 bp配對-末端定序片段依製造者指示被定序。
用於偵測於目標鋅指位之非同源性末端連接資料分析方法
定序反應完成及使用Illumina生物資訊管道鹼基識別(base calling)來進行初級資料取得之後,進行全分析來識別在各例中目標ZFN位缺失的鹼基。一定制(custom)之PERL script被設計用來萃取及排序來自在計算上接在輸入序列表之後的DNA序列碼(barcode)。該序列碼(barcode)必須與該參考序列相配至被接受的Phred得分大於30,以減少錯認序列片段。在將序列片段依所使用之不同碼群來分級之後,所有序列都經過品質過濾。品質過濾為第二定制開發之PERL script。若為多於3個鹼基為”N”或是Phred得分之中位數小於20或是有3個連續鹼基之Phred得分小於20或該序列片段小於40 bp長的序列片段會被排除。使用NextGENe®(SoftGenetics,State College,PA)組件合併剩餘序列,可得到配對序列片段之二者。接著將該剩餘之合併序列片段減少為獨特序列片段的集合,使用具有被識別為重複序列的計數之被記錄在剩餘序列辨識器之末端的第三 定制PERL script。使用製造有間隔之FASTA比對檔案之NextGENe®軟體來使該獨特序列片段及FAD2及FAD3參考序列比對。
使用有間隔之FASTA檔案,使用第四定制PERL script將有間隔之鹼基位數轉變為輸入參考值。這使得在組合資料中之鹼基被識別,該鹼基區別不同基因群成員(不同基因群成員之間的同源或旁系同源序列變異)。一旦鹼基數變化,各獨特序列片段可能產生單倍型記錄(reports),並指定該片段至特定基因群成員。一旦以基因分群該片段,圍繞在該ZFN目標位之10 bp窗(window)被識別並被評估。記錄每一基因具缺失之序列數以及缺少的鹼基數。
接著以具序列數之多線段圖之圖像來顯示資料,於目標ZFN位每10,000序列片段缺失1至10鹼基(圖6)。分析係被用於所有ZFN轉染以及控制轉染。於一些情況下,天然DNA序列中之重複造成目標ZFN位定序錯誤的增加,例如在所有樣品中被報導而常被視為單鹼基缺失之普及性的增加,包括以ZFN或控制轉者(圖7)。
由此等結果,藉由NHEJ更高活性判斷來確定FAD2目標位之最高量ZFN活性在位點E。該編碼在質體pDAB104010(即ZFN24828及24829)上之ZFNs被選擇用於植物體標定工程轉殖基因整合平台(ETIP),其特徵在於特顯著之遺傳DNA剪切活性及最小非目標活性。
實施例4:工程轉殖基因整合平台(ETIP)油菜植物株之DNA構建體
以下所述之該質體載體構建體係使用一般該技術領域所知悉之方法及技術來建構。該領域熟悉此藝者能輕易知悉本段中所述之特定試劑及技術之實施,且可輕易以其他試劑及技術替換來達成希望健構出質體載體構建體的目的。由New England BioLabs(NEB;Ipswich,MA)獲得核酸限制內切酶。以T4連接酶(Invitrogen,Carlsbad,CA)來完成連接。使用Gateway® LR Clonase®限制酶混合(Invitrogen)來進行閘道反應(Gateway reactions),用於將一進入載體組合入一終點載體。在使用In-融合TM優選技術(Clontech,Mountain View,CA)來進行In-融合TM反應用於將一進入載體組合入一單一終點載體,使用NucleoSpin®質體套組(Macherey-Nagel Inc.,Bethlehem,PA)或質體Midi套組®(Qiagen)依提供者指示來進行質體之製備。使用QIAquick Gel Extraction KitTM(Qiagen)分離DNA片段,在瓊脂糖Tris-乙酸膠體電泳之後。藉由限制酶切miniprepDNA來初步篩選所有組合質體之群落體。以商業定序提供者(Eurofins MWG Operon,Huntsville,AL)來定序選定之選殖株的質體DNA。使用SequencherTM軟體(Gene Codes Corp.,Ann Arbor,MI)來收集並分析序列資料。
用於在油菜FAD2A位點精確整合ETIP之直接遞送載體
標準選殖方法被使用在建構含ETIP載體pDAS000130(圖8,T-鏈插入SEQ ID NO:141),用於特定整合至B.napus之FAD2A基因中。此構建體被設計用來與鋅指核酸酶構建體pDAB1004010一起遞送至油菜原生質體 中。該鋅指核酸酶構建體會切斷FAD2A位點,然後pDAS000130構建體將整合在油菜基因組中,經由同源重組修復機制(homology directed repair mechanism)。該ETIP包含四個表現卡匣(二個不完全),其被另外之ZFN辨識序列及含有另一ZFN辨識序列之工程降落點(ELP)分開。該另外ZFN辨識序列是獨特的且被設計用來標定具ETIP及ELP轉形基因插入之多核苷酸序列的導入。同樣地,該ZFN辨識序列可被使用來切除多核苷酸序列。該第一基因表現卡匣係不完整之dsRED表現卡匣且包含來自阿拉伯芥聚泛蛋白10(AtUbi啟動子)基因(Callis,et al.,(1990)J.Biol.Chem.,265:12486-12493)之啟動子、5'非轉譯區及內含子,接著是用於在雙子葉植物表現之210 bp之來自礁珊瑚(Discosoma sp.)(Clontech,Mountain View,CA)密碼子-最佳化之dsRed基因(ds RED(最佳雙子葉)外顯子1),接著是來自阿拉伯芥硫基還原酶類基因的內含子(來自At之硫基還原酶之內含子1:登錄號:NC_00374)及包括玉米Vp1(Viviparous-1)基因之轉錄終止子及聚腺苷酸位的3'非轉譯區(Zmlip terminator:Paek et al.,(1998)Molecules and Cells,8(3):336-342)。該第二表現卡匣包含19S啟動子,其包含花椰菜嵌紋病毒之5' UTR(CaMV 19S:Cook and Penon(1990)Plant Molecular Biology 14(3):391-405),接著是用於在雙子葉植物表現之密碼子-最佳化之E.colihph基因(hph(HygR):Kaster et al.,(1983)nucleic acids Research 11(19):6895-6911)及包括農桿腫瘤菌(A. tumefaciens)pTi15955之開啟讀碼框1之轉錄終止子及聚腺苷酸位的3'UTR(At-ORF1 terminator:Barker et al.,(1983)Plant Molecular Biology 2(6):335-50)。該第三表現卡匣係不完整之PAT表現卡匣且包含阿拉伯芥4-香豆基(coumaryl)-CoA合成酶之第一內含子(內含子#2 4-香豆基-CoA合成酶v:登錄號:At3g21320/NC003074),接著是最後256 bp分離自產綠色鏈霉菌(Streptomyces viridochromogenes)之合成植物-最佳化草丁膦(phosphinothricin)乙醯轉移酶基因,其編碼對麩胺合成酶抑制劑具抗性的蛋白,包括草丁膦(phophinothricin)、草銨膦(glufosinate)及雙丙氨磷(bialaphos)(PAT(v6)3'end:Wohlleben et al.,(1988)Gene 70(1):25-37)。此卡匣之終止為包括農桿腫瘤菌(A.tumefaciens)pTi15955之開啟讀碼框23之轉錄終止子及聚腺苷酸位的3' UTR(AtuORF23 terminator:Barker et al.,(1983)Plant Molecular Biology 2(6):335-50)。該第四表現卡匣係ipt基因卡匣且包含來自阿拉伯芥DNA結合蛋白MYB32基因(U26933)之588 bp之截斷的啟動子及5' UTR(AtMYB32(T)promoter:Li et al.,(1999)Plant Physiology 121:313),接著是農桿腫瘤菌(A.tumefaciens)之異戊基轉移酶(ipt)基因及包含花椰菜嵌紋病毒之包括轉錄終止子及聚腺苷酸位的35s終止子(CaMV 35S terminator:Chenault et al.,(1993)Plant Physiology 101(4):1395-1396)。為了遞送至FAD2A,ETIP序列之每一端由該雙鏈斷裂位置之每一側接有1kb之FAD2A基因序列,由 pDAB104010中編碼之ZFN至B.napus之FAD2A基因的遞送所引發。
該ETIP序列係藉由商業基因合成供應商來合成(GeneArt,Life Technologies)。使用Qiagen DNeasy® plant mini kit(Qiagen,Hilden)依製造者所提供之指示由B.napus DH12075葉組織純化之遺傳DNA擴增FAD2A基因組序列之1 kb片段。使用T4連接酶(NEB,Ipswich,MA)將該1 kb之FAD2A序列連接至ETIP載體中。所有組合質體之群落係藉由miniprep DNA限制酶切來初步篩選。核酸限制內切酶係由New England BioLabs(NEB,Ipswich,MA)及Promega(Promega Corporation,WI)獲得。使用QIAprep Spin Miniprep® Kit(Qiagen)或Pure Yield Plasmid Maxiprep® system(Promega Corporation,WI)依提供者之指示來進行質體製備。選定之選殖株的質體DNA被定序,使用ABI Sanger定序及Big Dye terminator® v3.1循環定序方法(Applied Biosystems,Life Technologies)。使用SequencherTM軟體(Gene Codes Corp.,Ann Arbor,MI)來組合及分析序列資料。
用於在油菜FAD3位點精密整合ETIP的直接遞送載體
標準選殖方法被使用在建構含ETIP載體pDAS000271(圖9,T-鏈插入SEQ ID NO:142)、pDAS000272(圖10,T-鏈插入SEQ ID NO:143)、pDAS000273(圖11,T-鏈插入SEQ ID NO:144)、pDAS000274(圖12,T-鏈插入SEQ ID NO:145)及pDAS000275(圖13,T-鏈插入SEQ ID NO:146),用於特定整合至B.napus之FAD3A或FAD3C基因 位點中。此構建體被設計用來與鋅指核酸酶構建體pDAB107828或pDAB107829一起遞送至油菜原生質體中。特定鋅指核酸酶構建體會切斷FAD3A位點,然後pDAS000273或pDAS275構建體將整合在該油菜基因組中,經由同源重組修復機制(homology directed repair mechanism)。同樣地,特定鋅指核酸酶構建體會切斷FAD3C位點,然後pDAS000271、pDAS000272或pDAS000274構建體將整合在該油菜基因組中,經由同源重組修復機制(homology directed repair mechanism)。該ETIP包含四個表現卡匣(二個不完全),其被另外之ZFN辨識序列及含有另一ZFN辨識序列之工程降落點(ELP)分開。該另外ZFN辨識序列是獨特的且被設計用來標定具ETIP及ELP轉形基因插入之多核苷酸序列的導入。同樣地,該ZFN辨識序列可被使用來切除多核苷酸序列。該第一基因表現卡匣係不完整之dsRED表現卡匣且包含來自阿拉伯芥聚泛蛋白10(AtUbi啟動子)基因(Callis,et al.,(1990)J.Biol.Chem.,265:12486-12493)之啟動子、5'非轉譯區及內含子,接著是用於在雙子葉植物表現之210 bp之來自礁珊瑚(Discosoma sp.)(Clontech,Mountain View,CA)密碼子-最佳化之dsRed基因(ds RED(最佳雙子葉)之外顯子1),接著是來自阿拉伯芥硫基還原酶類基因的內含子(來自At之硫基還原酶之內含子1:登錄號:NC_00374)及包括玉米Vp1(Viviparous-1)基因之轉錄終止子及聚腺苷酸位的3'非轉譯區(Zmlip terminator:Paek et al.,(1998)Molecules and Cells,8(3):336-342)。該第二表現卡匣包含19S啟動子,其包含花椰菜嵌紋病毒之5' UTR(CaMV 19S:Cook and Penon(1990)Plant Molecular Biology 14(3):391-405),接著是用於在雙子葉植物表現之密碼子-最佳化之E.colihph基因(hph(HygR):Kaster et al.,(1983)nucleic acids Research 11(19):6895-6911)及包括農桿腫瘤菌(A.tumefaciens)pTi15955之開啟讀碼框1之轉錄終止子及聚腺苷酸位的3'UTR(At-ORF1 terminator:Barker et al.,(1983)Plant Molecular Biology 2(6):335-50)。該第三表現卡匣係不完整之PAT表現卡匣且包含阿拉伯芥4-香豆基(coumaryl)-CoA合成酶之第一內含子(內含子#2 4-香豆基-CoA合成酶v:登錄號:At3g21320/NC003074),接著是最後256 bp分離自產綠色鏈霉菌(Streptomyces viridochromogenes)之合成植物-最佳化草丁膦(phosphinothricin)乙醯轉移酶基因,其編碼對麩胺合成酶抑制劑具抗性的蛋白,包括草丁膦(phophinothricin)、草銨膦(glufosinate)及雙丙氨磷(bialaphos)(PAT(v6)3'end:Wohlleben et al.,(1988)Gene 70(1):25-37)。此卡匣之終止為包括農桿腫瘤菌(A.tumefaciens)pTi15955之開啟讀碼框23之轉錄終止子及聚腺苷酸位的3' UTR(AtuORF23終止子:Barker et al.,(1983)Plant Molecular Biology 2(6):335-50)。該第四表現卡匣係ipt基因卡匣且包含阿拉伯芥DNA結合蛋白MYB32基因(U26933)之588 bp之截斷的啟動子及5' UTR(AtMYB32(T)promoter:Li et al.,(1999)Plant Physiology 121:313),接著是A.tumefaciens之異戊基轉移酶(ipt)基因及包含花椰菜嵌紋病毒之轉錄終止子及聚腺苷酸位的35s終止子(CaMV 35S terminator:Chenault et al.,(1993)Plant Physiology 101(4):1395-1396)。為了遞送至FAD3A或FAD3C,ETIP序列之每一端由該雙鏈斷裂位置之每一側接有1kb之FAD3A或FAD3C基因序列,由B.napus之FAD3A或FAD3C基因中編碼之ZFN的遞送所引發。
該ETIP序列係藉由商業基因合成供應商來合成(GeneArt,Life Technologies)。使用Qiagen DNeasy® plant mini kit(Qiagen,Hilden)依製造者所提供之指示由B.napus DH12075葉組織純化之遺傳DNA擴增FAD3A或FAD3C基因組序列之1 kb片段。使用T4連接酶(NEB,Ipswich,MA)將該1 kb之FAD3A或FAD3C序列連接至ETIP載體中。所有組合質體之群落係藉由miniprep DNA限制酶切來初步篩選。核酸限制內切酶係由New England BioLabs(NEB,Ipswich,MA)及Promega(Promega Corporation,WI)獲得。使用QIAprep Spin Miniprep® Kit(Qiagen)或Pure Yield Plasmid Maxiprep® system(Promega Corporation,WI)依供應者之指示來進行質體製備。選定之選殖株的質體DNA被定序,使用ABI Sanger Sequencing and Big Dye Terminator® v3.1 cycle sequencing protocol(Applied Biosystems,Life Technologies)。使用SequencherTM軟體(Gene Codes Corp.,Ann Arbor,MI)來組合及分析序列資料。
控制載體
使用控制載體來發展螢光激活細胞分選(FACS)之細胞分選方法。使用標準選殖方法建構包含二基因表現卡匣之控制載體pDAS000031(圖14:T-鏈插入SEQ ID NO:147)。該第一基因表現卡匣包含花椰菜嵌紋病毒19s啟動子(CaMV 19S promoter;Shillito,et al.,(1985)Bio/Technology 3;1099-1103)::潮黴素抗性基因(hph(HygR);US Patent No.4,727,028)::及該農桿腫瘤菌(Agrobacterium tumefaciens)開啟讀碼框1之3'非轉譯區(AtORF1 terminator;Huang et al.,(1990)J.Bacteriol.1990 172:1814-1822)。該第二基因表現卡匣包含以反方向(trans orientation)(如頭對頭之方向)在同一個讀框融合之阿拉伯芥泛蛋白10啟動子(AtUbi10 promoter;Callis,et al.,(1990)J.Biol.Chem.,265:12486-12493)::dsRED(dsRED(D);US Patent No.6,852,849)及阿拉伯芥之內含子(內含子#1;GenBank:AB025639.1)::農桿腫瘤菌(Agrobacterium tumefaciens)開啟讀碼框23之3'非轉譯區(AtORF23 terminator;US Patent No.5,428,147)。使用In-融合TM Advantage Technology(Clontech,Mountain View,CA)組合該質體載體。
於油菜中隨機整合ETIP之二元載體的建構
建構二個二元載體用來在西洋油菜之基因組中隨機整合ETIP T-鏈序列。使用標準選殖方法建構含ETIP之載體pDAS000036(圖15,T-鏈插入SEQ ID NO:148)及pDAS000037(圖16,T-鏈插入SEQ ID NO:149)。該ETIP 載體包含四個表現卡匣(二個不完整之表現卡匣),其被ZFN辨識序列及含更多ZFN辨識序列之工程降落點(ELP)分開。該第一基因表現卡匣係不完整之dsRED表現卡匣且包含來自阿拉伯芥聚泛蛋白10(AtUbi10啟動子)基因(Norris et al.,(1993)植物Molecular Biology,21(5):895-906)之啟動子、5'非轉譯區及內含子,接著是用於在雙子葉植物表現之210 bp之來自礁珊瑚(Discosoma sp.)(Clontech,Mountain View,CA)密碼子-最佳化之dsRed基因,接著是阿拉伯芥硫基還原酶類基因內含子(登錄號:NC_00374)及包括玉米Vp1(Viviparous-1)基因之轉錄終止子及聚腺苷酸位之3'非轉譯區(UTR)(Zmlip terminator:Paek et al.,(1998)Molecules and Cells,8(3):336-342)。該第二表現卡匣包含19S啟動子,其包含花椰菜嵌紋病毒之5' UTR(CaMV 19S:Cook and Penon(1990)Plant Molecular Biology 14(3):391-405),接著是用於在雙子葉植物表現之密碼子-最佳化之E.colihph基因(hph(D):Kaster et al(1983)核酸s Research,11(19):6895-6911)及包括農桿腫瘤菌(A.tumefaciens)pTi15955之開啟讀碼框1(ORF1)之轉錄終止子及聚腺苷酸位的3'UTR(At-ORF1 terminator:Barker et al.,(1983)Plant Molecular Biology 2(6):335-50)。該第三表現卡匣係不完整之PAT表現卡匣且包含阿拉伯芥4-香豆基(coumaryl)-CoA合成酶之第一內含子(登錄號:At3g21320(NC003074)),接著是最後256 bp分離自產綠色鏈霉菌(Streptomyces viridochromogenes)之合成植物-最佳化草丁 膦(phosphinothricin)乙醯轉移酶基因,其編碼對麩胺合成酶抑制劑具抗性的蛋白,包括草丁膦(phophinothricin)、草銨膦(glufosinate)及雙丙氨磷(bialaphos)(PATv6(外顯子2);Wohlleben et al.,(1988)Gene,70(1):25-37)。此卡匣之終止為包括農桿腫瘤菌(A.tumefaciens)pTi15955之開啟讀碼框23(ORF23)之轉錄終止子及聚腺苷酸位的3' UTR(AtuORF23 terminator:Barker et al.,(1983)Plant Molecular Biology 2(6):335-50)。該第四表現卡匣係ipt基因卡匣且包含阿拉伯芥DNA結合蛋白MYB32基因(U26933)之588 bp之截斷的啟動子及5' UTR(AtMYB32(T)promoter:Li et al.,(1999)Plant Physiology 121:313),接著是農桿腫瘤菌(A.tumefaciens)之異戊基轉移酶(ipt)基因及包含花椰菜嵌紋病毒之轉錄終止子及聚腺苷酸位的35s終止子(CaMV 35S terminator:Chenault et al.,(1993)Plant Physiology 101(4):1395-1396)。
該表現卡匣及ELP係藉由商業基因合成供應商(GeneArt,Life Technologies)利用Multi-Gateway位來合成。進入選殖株(entry clones)係使用BP clonase II enzyme mixTM(Invitrogen,Life Technologies)及pDONR221 vector suiteTM(Invitrogen,Life Technologies)由各表現卡匣及ELP建構而成。該進入選殖株接著與Gateway-enabled二元載體一起被使用在一Multi-Gateway反應中,使用LR Clonase II Plus Enzyme mixTM(Invitrogen,Life Technologies)。所有組合質體之群落係藉由miniprep DNA限制酶切來初步篩選。核酸 限制內切酶係由New England BioLabs(NEB,Ipswich,MA)及Promega(Promega Corporation,WI)獲得。使用QIAprep Spin Miniprep KitTM(Qiagen,Hilden)或Pure Yield Plasmid Maxiprep SystemTM(Promega Corporation,WI)依提供者之指示來進行質體製備。選定之植株的質體DNA被定序,使用ABI Sanger Sequencing and Big Dye terminator® v3.1 cycle sequencing protocolTM(Applied Biosystems,Life Technologies)。使用SequencherTM軟體(Gene Codes Corp.,Ann Arbor,MI)來組合及分析序列資料。
實施例5:ETIP油菜植物株之產生
西洋油菜之轉形
ETIP構建體(pDAS000036、pDAS000037)、DS-Red控制構建體(pDAS000031)以及FAD2A、FAD3A和FAD3C位特異性構建體(pDAS000130及pDAS000271-pDAS000275)以及伴隨之鋅指核酸酶(pDAB104010、pDAB10728及pDAB10729)係如實施例4所述。該二元載體被轉形至農桿腫瘤菌(Agrobacterium tumefaciens)品系GV3101:PM90中。西洋油菜原生質體細胞之轉形係使用部分改變之實施例3所述之轉染實驗方法。
該實驗方法之改變包含使用海藻酸鈉代替Sea PlaqueTM瓊脂。鋅指核酸酶構建體及ETIP構建體被一起遞送進入西洋油菜原生質體細胞之轉染實驗係以包含5:1莫耳比質體DNA之DNA濃度完成。其他ETIP及控制質體構建體以30μg濃度之質體DNA來轉形。據此,pDAS000130係 由濃度為27.8μg之質體DNA組成,且pDAB104010係由濃度為2.2μg之質體DNA組成。其他ETIP及控制質體構建體以30μg之質體DNA轉形。
實驗方法的額外改變包括在含1.5mg/mL潮黴素之培養基由轉殖原生質體細胞繁殖全植物。繁殖全植物需要每二周更換A培養基並監測該原生質體而來之群落的生長。該原生質體而來之群落長至大約2-3mm大小時,將該群落移到含有固化MS型態培養基之12孔井Costar®盤(Fisher Scientific,St.Louis,MO)單獨之孔井中。使該盤保持在連續微光中於24℃一至二周,直到該癒傷組織增長至8-10mm大小。於原生質體細胞達到1-2cm大小之後,將該原生質體細胞移到含有MS型態培養基之單獨之250mL培養瓶中。使該管保持在24℃光照16小時(20μMol m-2 s-1 of Osram L36 W/21 Lumilux white tubes)及8h黑暗環境。一至二周內可見多個芽體(shoots)。當其達到3-4cm長度之後,將該芽體移到含有MS型態培養基250mL培養瓶中。使該250mL培養瓶保持在24℃光照16h(20μMol m-2 s-1之Osram L36 W/21 Lumilux white tubes)及8h黑暗環境。使該芽體(shoot)在該培養瓶中維持,直到其發展成植物小苗時移到溫室中成長至成熟。
實施例6:在油菜中整合含T-DNAs之ETIPs之分子驗證
使用DNeasy® 96植物DNA extraction kitTM或DNeasy® Plant Mini KitTM(Qiagen)由所有推定基因轉殖植物之葉組織萃取遺傳DNA。使用以下引子進行PCR來分析 各植物之遺傳DNA:被設計用以擴增pTiC58前置(SEQ ID NO:150 CGAGAACTTGGCAATTCC)及pTiC58反置(SEQ ID NO:151 TGGCGATTCTGAGATTCC)之virC之引子,被設計用以擴增B.napus肌動蛋白之引子,來測試A.tumfaciens之持續性;肌動蛋白前置(SEQ ID NO:152 GACTCATCGTACTCTCCCTTCG)及肌動蛋白反置(SEQ ID NO:153 GACTCATCGTACTCTCCCTTCG),來檢查基因組DNA之品質。引子被設計用來擴增hph基因;HPH前置(SEQ ID NO:154 TGTTGGTGGAAGAGGATACG)及HPH反置(SEQ ID NO:155 ATCAGCAGCAGCGATAGC),其係由ETIP編碼。未由virC引子得到產物卻由肌動蛋白及hph之引子擴增出正確大小產物的植物被歸類為基因轉殖植物。
完成第二篩選,其中各基因轉殖植物之gDNA係藉由PCR分析,其係使用五組引子,該引子係設計用來擴增T-DNA區以外的二元載體[(1F SEQ ID NO:156 ATGTCCACTGGGTTCGTGCC;1R SEQ ID NO:157 GAAGGGAACTTATCCGGTCC)(2F SEQ ID NO:158 TGCGCTGCCATTCTCCAAAT;2R SE ID NO:159 ACCGAGCTCGAATTCAATTC)(3F SEQ ID NO:160 CCTGCATTCGGTTAAACACC;3R SEQ ID NO:161 CCATCTGGCTTCTGCCTTGC)(4F SEQ ID NO:162 ATTCCGATCCCCAGGGCAGT;4R SEQ ID NO:163 GCCAACGTTGCAGCCTTGCT)(5F SEQ ID NO:164 GCCCTGGGATGTTGTTAAGT;5R SEQ ID NO:165 GTAACTTAGGACTTGTGCGA)]。以引子組3及4擴增出正確及預期大小之PCR產物的植物被認為具有架構(backbone)整合。
使用改變之CTAB方法(Maguire et al,.(1994)Plant Molecular Biology Reporter,12(2):106-109)由20g葉組織純化沒有架構整合之植物的DNA。以數種限制酶酶切分離之,藉由在瓊脂糖膠上電泳分出10μg之gDNA,使用標準南方墨點法將其移至一膜上。依製造商指示使用DIG Easy Hyb SystemTM(Roche,South San Francisco,CA)探測該膜。使用以下引子由EITP構建體擴增各表現卡匣、ELP及內源控制基因、肌動蛋白的探針:IPT-F SEQ ID NO:166 TCTCTACCTTGATGATCGG;IPT-R SEQ ID NO:167 AACATCTGCTTAACTCTGGC;dsRED-F SEQ ID NO:168 ATGGCTTCATCTGAGAACG;dsRED-R SEQ ID NO:169 TTCCGTATTGGAATTGAGG;PAT-F SEQ ID NO:170 TTGCTTAAGTCTATGGAGGCG;PAT-R SEQ ID NO:171 TGGGTAACTGGCCTAACTGG;ELP-F SEQ ID NO:172 ATGATATGTAGACATAGTGGG;ELP-R SEQ ID NO:173 AGGGTGTAAGGTACTAGCC;Hph-F SEQ ID NO:174 TGTTGGTGGAAGAGGATACG;Hph-R SEQ ID NO:175 ATCAGCAGCAGCGATAGC;肌動蛋白-F SEQ ID NO:176 GTGGAGAAGAACTACGAGCTACCC;肌動蛋白-R SEQ ID NO:177 GACTCATCGTACTCTCCCTTCG。
由所有含有僅有ETIP單份(single copy)之植物擴 增及定序ETIP序列。藉直接定序PCR產物來分析各T-DNA插入之序列,使用ABI3730xITM(Applied Biosystems,Life Teachnologies)。由基因組DNA擴增該T-DNA插入,使用Phusion Hot Start II PolymeraseTM(Finnzymes,Thermo Fisher Scientific)。以多引子對擴增大約2 Kbp長之重疊序列來完成T-DNA擴增反應。以多引子定序各PCR產物以確定完全涵蓋。以蝦鹼性磷酸酶及核酸外切酶I(Applied Biosystems,Life Technologies)處理該PCR反應,以使多餘的引子在定序PCR反應前失活。辨識每個複製ETIP株之T-DNA插入側翼的序列,藉由以八種核酸限制內切酶酶切純化之遺傳DNA,之後連接對核酸限制內切酶所產生之突出部分具專一性之雙鏈連接子。在此連接步驟之後,PCR係以生物素化(biotinylated)之引子對ETIP之3’或5’端以及以一引子對各連接子來進行。該PCR產物在Ampure Solid Phase Reversible Immobilization(SPRI)beadsTM(Agencourt Bioscience Corporation,Beckman Coulter Company)上被捕抓及清潔。進行巢式PCR,所有產物使用ABI Sanger Sequencing and Big Dye Terminator v3.1 cycleTM定序方法(Applied Biosystems,Life Technologies)來定序。使用SequencherTM軟體(Gene Codes Corp.,Ann Arbor,MI)來收集並分析序列資料。
南方墨點法分析
在進行南方探測之前,選擇特定限制酶來酶切gDNA樣品。藉由以EcoRI及SwaI酶切該遺傳DNA來分析假 定的基因轉殖植物。其次,以包括PATv6、IPT或ELP基因組成之多核苷酸片段來探測經酶切之gDNA及未切之gDNA樣品,因為此等多核苷酸探針片段能夠區分在EcoRI酶切中以及SwaI酶切的多個插入。接著以所有6個探針進一步分析被辨識之單份(single copy)基因轉殖植物株,以辨識該插入之載體之所有必要組成的存在。
因此,67個以ETIP-pDAS000036轉殖的獨立品件被取樣及測試轉殖基因(hph)的存在及載體架構的存在。在測試之67個植物中,發現有47個具有轉殖基因整合基因組內。該47基因轉殖植物中發現17個植物含有載體架構(表16)。其餘30個不含載體架構顯著部分(沒有Ori或SpecR)的植物經南方分析取樣。作為一般規則,以IPT探針初步篩選該植物,以包括dsRED、PAT、ELP及hph基因組成之探針進一步測試被識別為假定單份(single copy)株之植物株,為了確認整個卡匣存在。
同樣地,以ETIP-pDAS000037轉殖且在土中存活之52個獨立品件被取樣及測試轉殖基因(hph)的存在及載體架構的存在。該測試之52個植物中,發現48個具有轉殖基因整合在基因組內。在該48個基因轉殖植物中,發現23個植物含有載體架構,而3個植物未經測試(表16)。其餘22個不含載體架構顯著部分(沒有Ori或SpecR)的植物經南方分析取樣。以IPT探針初步篩選此等基因轉殖植物,以dsRED、PAT、ELP、hph及肌動蛋白探針進一步測試被識別為假定單份(single copy)株之植物株,為了確認結果。一 旦獲得識別之5個獨立單份(single copy)株,終止其餘植物中的的南方分析。總共有11個ETIP-pDAS000037株經南方分析。
以pDAS000036及pDAS000037轉殖之ETIP轉殖基因油菜的結果
該經pDAS000036及pDAS000037轉形所產生之轉殖基因西洋油菜品件導致單份(single copy)、全長T-鏈插入的產生。每一植物之三或四個品件被完全特徵化並假定地圖譜化到該西洋油菜基因組之特定染色體中。雖然少數單一鹼基對重組在該T-鏈整合時發生,選定之品件包含能夠驅動轉殖基因大量表現的全長表現卡匣。選定之T0品件被培育到T1生長階段。使用上述之PCR檢驗再次篩選該T1,來判斷整合T-鏈的接合子。經篩選之品件被分類為同型、 異型或不表現型。
由所有含有整合ETIP序列僅有單份(single copy)的轉殖基因品件擴增並定序該ETIP序列。以直接定序PCR產物來分析每個T-DNA插入之序列。由基因組DNA擴增該T-DNA插入,使用Phusion Hot Start II PolymeraseTM(Finnzymes,Thermo Fisher Scientific)。其次,以多引子對來擴增該T-DNA,以擴增大約2 Kb長之重疊序列。以多引子定序每一PCR產物以確保完全涵蓋。以蝦鹼性磷酸酶及核酸外切酶I(Applied Biosystems,Life Technologies)來處理該PCR反應以使得定序PCR反應之前多餘的引子失活。
辨識每個單份(single copy)ETIP株之T-DNA插入側翼的序列,藉由以八種核酸限制內切酶酶切純化之遺傳DNA,之後連接對核酸限制內切酶所產生之突出部分具專一性之雙鏈連接子。在此步驟之後,以生物素化(biotinylated)引子對ETIP之3’或5’端以及以一引子對各連接子來進行PCR反應。該PCR產物在Ampure Solid Phase Reversible ImmobilizationTM(SPRI)beads(Agencourt Bioscience Corporation,Beckman Coulter Company)上被捕抓及清潔。進行巢式PCR,所有產物使用ABI Sanger Sequencing and Big Dye Terminator v3.1 cycleTM定序方法(Applied Biosystems,Life Technologies)來定序。使用SequencherTM軟體(Gene Codes Corp.,Ann Arbor,MI)來收集並分析序列資料。八個ETIP株被辨識並被選定用於側翼序列分析(表17)。側翼序列之左及右(亦被稱為邊緣或接合序列)係SEQ ID NO:431-SEQ ID NO:446,畫底線之序列係指質體載體,無底線之序列係基因組側翼序列。
pDAS000036品件詳細內容:em02-5788-1-1左緣側翼(SEQ ID NO:431)
em02-5788-1-1左緣側翼(SEQ ID NO:432)
pDAS000036品件詳細內容:ad58-5784-2-1左緣側翼(SEQ ID NO:433)
ad58-5784-2-1右緣側翼(SEQ ID NO:434)
pDAS000036品件詳細內容:ad58-5898-10-1左緣側翼(SEQ ID NO:435)
ad58-5898-10-1右緣側翼(SEQ ID NO:436)
pDAS000037品件詳細內容:lf31-6139-2-3左緣側翼(SEQ ID NO:437)
lf31-6139-2-3右緣側翼(SEQ ID NO:438)
pDAS000037品件詳細內容:bm56-6315-1-1左緣側翼(SEQ ID NO:439)
bm56-6315-1-1右緣側翼(SEQ ID NO:440)
pDAS000037品件詳細內容:ad58-6372-1-1左緣側翼(SEQ ID NO:441)
ad58-6372-1-1右緣側翼(SEQ ID NO:442)
pDAS000037品件詳細內容:ad58-6620-4-1左緣側翼(SEQ ID NO:443)
ad58-6620-4-1右緣側翼(SEQ ID NO:444)
pDAS000037品件詳細內容:ad58-6620-17-1左緣側翼(SEQ ID NO:445)
ad58-6620-17-1右緣側翼(SEQ ID NO:446)
ETIP圖譜
對於每一含有ETIP之單份(single copy)插入的轉殖基因品件,接著以人工進行該側翼序列組合,並使用區域BLAST分析。此方法識別出共八個具單份(single copy)整合之植物(表18及表19)。由NCBI GSS資料庫下載甘藍 (Brassica oleracea)霰彈槍定序之595,478基因組匯集,形成核苷酸BLAST資料庫。然後BLASTn該側翼ETIP序列及比對該資料庫,人工檢驗所有配對。甘藍資料庫中最顯著配對至該側翼ETIP序列之序列被拿來與線上蕪菁基因組序列(http://brassicadb.org/brad/blastPage.php)進行比對,其中檢索出該基因組中具有最顯著配對序列的位置。例如僅5'或3'側翼序列提供與甘藍基因組序列顯著配對者,假定不對齊或不配對之序列具有資料庫中被辨識之缺漏序列或在整合ETIP時所產生之顯著基因組重組。對於由分析該側翼ETIP序列所產生之顯著BLASTn配對的樣品,對於該八個單份(single copy)ETIP植物之每一者,最顯著之甘藍GSS配對序列以及蕪菁基因組之最顯著配對序列在SequencherTM v5.0軟體(Gene Codes Corp.,Ann Arbor,MI)中以人工比對。比較三個序列,與該側翼ETIP比較之雙子葉植物Brassica種之最相似序列於該ETIP位在之基因組中被標出。對於多數顯著不同之樣品確實存在於該二種雙子葉植物Brassica基因組序列,該西洋油菜之側翼ETIP序列顯示與一或其他雙子葉植物序列之顯著關聯。然而有雙子葉植物之間差異不足的例子,可能指定連鎖群(linkage group)但無法指定次-基因組(sub-genome)。接著預測該特定基因組於蕪菁基因組序列之位置。例如在ETIP被辨識為整合在甘藍(B.oleracea)C基因組中者,於Parkin et al.(Genetics 2005,171:765-781)所述之該雙子葉植物Brassica基因組之間之比較性基因同性線(synteny)被使用來推斷西洋油菜C次-基 因組中之基因組位置。除了識別之序列與阿拉伯芥基因組編碼序列(由http://arabidopsis.org/index.jsp下載之TAIR 9 CDS)進行BLASTn,識別如Schranz et al.(Trend in Plant Science 2006,11,11:535-542)所述在阿拉伯芥甘藍(Brassica)基因同性線(synteny)之後的任何斷裂基因序列之相似性以及確認基因組位置。
經由先前所述方法使用同型合子品件來產生原生質體。該原生質體隨後與一被設計來標定鋅指結合位之鋅指核酸酶共-轉殖,該鋅指結合位係被整合ETIP序列及一與ETIP特定區具同源性之供體質體內。該鋅指核酸酶切斷該ETIP位點且該供體質體經由同源修復被整合西洋油菜細胞之基因組內。作為整合到供體質體之結果,該部分DS-red轉殖基因被修復為全長之DS-red轉殖基因。現在可完整運 作之DS-red轉殖基因的表現被使用來以FACS方法分選原生質體細胞。使用實施例7所述之FACS方法分選假定之基因轉殖植物,再生該分離之原生質體成為成熟植物。使用分子確認方法確認在該ETIP標定植物中整合到供體質體。據此,該ETIP位點成為一對於基因標定整合到供體多核苷酸序列位點之特異性位點。
該基因組標定位置提供不會改變植物一般表型之基因組位置。得到的品件,其中轉殖基因被標定在一ETIP內,當該ETIP品件與控制植物比較,其不具有農業上有意義之差異。此外,該整合到EITP位點內之轉殖基因的蛋白表現程度係大量表現,且一致和穩定的跨多個基因組的位置。該揭示之基因序列SEQ ID NO:431至SEQ ID NO:446提供brassica基因組中的基因組位置,其可標定包括一轉殖基因之基因表現卡匣之整合。
油菜中FAD2A整合之分子確認
由所有假定之基因轉殖植物的葉組織萃取遺傳DNA,依製造商指示使用DNeasy Plant Mini KitTM(Qiagen),例外是在80μl之AE緩衝液中洗提組織。在研磨成粉末之前,在液態氮中快速冷凍30毫克再生植物之年輕的葉組織。
使用三獨立的檢驗表現FAD2A位點的分子特徵。使用以下控制來設計即最佳化檢驗:特徵化之轉殖基因品件,其包括單一隨機整合之轉殖基因,特徵化之轉殖基因品件,具五個隨機整合轉殖基因,天然油菜c.v.DH12075植物及非模板控制反應。三個以下之分子分析的結 果被一起考量用以提供經由HDR在FAD2A整合ETIP的證據。
藉由即時定量聚合酶鏈鎖反應識別轉殖基因之整合
使用對hph具特異性之引子(亦稱為hpt)標定基因(SEQ ID NO:447,hpt F791 5' CTTACATGCTTAGGATCGGACTTG 3';SEQ ID NO:448,hpt R909 5' AGTTCCAGCACCAGATCTAACG 3';SEQ ID NO:449,hpt Taqman 872 5' CCCTGAGCCCAAGCAGCATCATCG 3' FAM)(圖31)及編碼高遷移率族蛋白I/Y(HMG I/Y)的參考基因(SEQ ID NO:450,F 5' CGGAGAGGGCGTGGAAGG 3';SEQ ID NO:451,R 5' TTCGATTTGCTACAGCGTCAAC 3';SEQ ID NO:452,探針5' AGGCACCATCGCAGGCTTCGCT 3' HEX)來分析每一植物之四個複製。使用以下條件來擴增反應:95℃ 10分鐘,接著40個周期95℃ 30秒,60℃ 1分鐘,每一個鏈合步驟結束時獲得擴增資料。使用△Cq方法計算複製數,其中△Cq=Cq(目標基因)-Cq(參考基因)。Livak,K.J.and T.D.Schmittgen,Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method.Methods,2001.25(4):p.402-8。hphHMG I/Y擴增的植物以及具0.5或更多複製數被認為是轉殖基因,當具有0.5及1.2之植物被評分為假定之單份(single copy)。在BioRad CFX96 TouchTM Real-Time PCR Detection System利用FastStart Universal Probe Master(ROX)進行擴增(Roche,Basel,Switzerland)。
偵測斷裂之FAD2A之ZFN位
在優勢檢驗之斷裂位點測試中,分析每一植物存在有或沒有內源性目標的擴增。該檢驗為SYBR® Green I qPCR檢驗,且單對分別(singleplex)(但各反應同時在同一個PCR盤上進行)標定一內源性位點(FAD2A/2C.RB.UnE.F1,SEQ ID NO:453,5' CTTCCACTCCTTCCTCCTCGT*C 3'及FAD2A/2C.RB.UnE.R1,5' SEQ ID NO:454,GCGTCCCAAAGGGTTGTTGA*G 3')及ZFN位點(ZFN pDAB104010結合及切斷該基因組的位點)(FAD2A.UnE.F1,SEQ ID NO:455,5' TCTCTACTGGGCCTGCCAGGG*C 3'及FAD2A.UnE.R1,SEQ ID NO:456,5' CCCCGAGACGTTGAAGGCTAAGTACAA*A 3')(圖32)。二引子對皆使用以下條件擴增:98℃ 30秒,接著35個周期(98℃ 10秒,65℃ 20秒,72℃ 90秒),然後接著95℃ 10秒,然後由50℃到95℃以每0.05秒增加0.5℃之熔化分析及對每一增加進行讀盤。反應條件被列在表20。
擴增內源性目標但未擴增ZFN目標之植物被評分為具有斷裂位點測試,且其備認為具有斷裂之ZFN位。此檢驗被認為是正面的,當FAD2A位點上之對偶之ZFN結合位皆被打斷。
經由同源直接修復對於在FAD2A整合之轉殖基因進行PCR偵測
利用端點以被設計用來擴增以下之目標轉殖基因的PCR引子來分析每一假定轉形植物:hph(hph_ExoDigPC_F1,SEQ ID NO:457,5' TTGCGCTGACGGATTCTACAAGGA 3'hph_ExoDigPC_R1,SEQ ID NO:458,5' TCCATCAGTCCAAACAGCAGCAGA 3'),FAD2A內源位點(FAD2A.Out.F1,SEQ ID NO:459,5' CATAGCAGTCTCACGTCCTGGT*C 3'及FAD2A.Out.Rvs3,SEQ ID NO:460,5' GGAAGCTAAGCCATTACACTGTTCA*G 3'),經由HDR插入在FAD2A位點之任何轉殖基因的跨越5’端的區域,FAD2A位點中轉殖基因之上游(FAD2A.Out.F1,SEQ ID NO:461,5' CATAGCAGTCTCACGTCCTGGT*C 3'及QA520,SEQ ID NO:462,5' CCTGATCCGTTGACCTGCAG 3')以及經由HDR插入在FAD2 A位點之任何轉殖基因的跨越3’端的區域,FAD2 A位點中轉殖基因之下游(QA558,SEQ ID NO:463,5' GTGTGAGGTGGCTAGGCATC 3'及FAD2A.Out.Rvs3,SEQ ID NO:464,5' GGAAGCTAAGCCATTACACTGTTCA*G 3')(圖33)。使用以下條件來擴增所有引子對:98℃ 30秒, 之後進行35個周期(98℃ 10秒,65℃ 20秒,72℃ 90秒)。反應試劑條件係如表21所述。
5'轉殖基因-基因組側翼標的之擴增及/或3'轉殖基因-基因組側翼標的之擴增指示了假定的插入品件。應注意的是,由於pDAS000130卡匣中大約1,000 bp之FAD2A同源性臂(arms)(包括與ZFN切斷位緊臨之上游或下游之FAD2A區100%序列相似度之多核苷酸序列),該PCR反應會有因脫離標的之ETIP整合品件而發生之PCR嵌合現象所致之假陽性PCR產物之擴增。確認轉殖基因整合而有hph標的擴增出現。擴增FAD2A標的說明了FAD2A位點是完整的或只含有部分插入。由於ETIP的大小(11,462 bp之ETIP卡匣或13,472 bp之包含FAD2A同源性臂及ETIP卡匣),預期當完整ETIP整合至FAD2A位點中,該FAD2A引子將不會擴增產物。
FAD2A編排之南方偵測
擴增5'基因組-轉殖基因側翼標的產物及/或擴增3'轉殖基因-基因組側翼標的之植物,或者是未擴增ZFN位點標的之植物,或是該二種植物,接受南方分析以偵測於FAD2A位點之轉殖基因的整合。由5g葉組織純化遺傳DNA,使用改變之CTAB方法(Maguire,T.L.,G.G.Collins,and M.Sedgley A modified CTAB DNA extraction procedure for plant belonging to the family proteaceae。Plant Molecular Biology Reporter,1994.12(2):p.106-109)。其次,以Kpnl-HF(New England BioLabs)酶切12μg遺傳DNA,在使用標準南方墨點法將酶切片段移到膜上之前,於0.8%瓊脂糖膠上以電泳分離該等酶切片段。FAD2A 5'目標區(F,SEQ ID NO:465,5' AGAGAGGAGACAGAGAGAGAGT 3'及R,SEQ ID NO:466,5' AGACAGCATCAAGATTTCACACA 3')、FAD2A 3'目標區(F,SEQ ID NO:467,5' CAACGGCGAGCGTAATCTTAG 3'及R,SEQ ID NO:468,5' GTTCCCTGGAATTGCTGATAGG 3')及hph(F,SEQ ID NO:469,5' TGTTGGTGGAAGAGGATACG 3'及R,SEQ ID NO:470,5' ATCAGCAGCAGCGATAGC 3')之引子,在DIG Easy Hyb System®(Roche,South San Francisco,CA)依製造商指示被使用來產生用以偵測在FAD2A位點之中是否有ETIP存在的探針(圖34)。雜交反應係在42℃下對FAD2A 5'區、在45℃下對FAD2A 3'區進行,以及在42℃下用於偵測hph
膜結合遺傳DNA係以特定順序被探測;第一,探 測FAD2A 5'序列,接著探測FAD2A 3'序列,最後探測hph序列(圖35)。其理由如下。第一探針(FAD2A 5')為診斷探針,若ETIP有經由完整HDR整合至FAD2A中,膜上會發現5,321 bp片段。在電穿孔時造成的帶大小可輕易地區別,將座落(sit)在接近DIG標定Roche DNA分子量標記III®(Roche,Indianapolis,IN)之5,148 bp片段。膜之第二探針具有該FAD2A 3'探針,且一經編輯之植物將具有22,433 bp片段,其中一未經編輯之植物將會具有16,468 bp片段。該以FAD2A 3'探針辨識之相同的22,433 bp片段亦應被hph探針連接且以hph探針辨識。此等片段在膠(gel)上難以區分,因為他們非常大且難以決定出現在大於或小於該DIG標定Roche DNA分子量標記III®中最大之21,226 bp片段的片段之間有任何差異。據此,此等探針提供強化辨識ETIP經由同源直接修復(HDR)整合至FAD2A中的證據,藉由使用該FAD2A 5'探針來觀察5 kb片段。限制酶KpnI是唯一適合用於此試驗之限制核酸內切酶,因為KpnI切位出現在單一位點中之該ETIP卡匣切位之單一位點,且出現在FAD2A ZFN位點之二個區位(site)中。一區位(site)係位在上游,該第二區位(site)位在FAD2A同源臂之下游。此外,KpnI不對甲基化敏感,且可作為具增加之保真度(fidelity)之重組限制酶(New England Biolabs)。
分子及南方分析的結果
在轉染、培養及選擇之後,該基因轉殖植物被移置土壤。由此方法,139個植物存活且有組織樣品用以gDNA 萃取及分析。所有139個植物皆被分析複製數估計。於此等139個植物中,56個為ETIP陽性,且該56個陽性植物中之11個具有潛在的單份(single copy)整合(圖36)(表22)。該ETIP整合為陽性之56個植物中,該FAD2A 5'-基因組-轉殖基因側翼序列之擴增出現在7個植物中。該FAD2A 3'-轉殖基因-基因組側翼序列之擴增並未出現在該ETIP整合為陽性之56個植物之任何一者中。此外,轉殖基因整合為陽性之該56個植物中,11個植物之中斷位點qPCR測試為陽性。對FAD2A 5'基因組-轉殖基因側翼序列之擴增為陽性及/或中斷位點qPCR測試為陽性之14個植物以上述3種探針進行南方分析。經南方分析之該14個植物全部顯示出在FAD2A位點中部分整合,但是當以FAD2A 5'探針、FAD2A 3'hph探針偵測,此等植物沒有任何一者顯示出藉HDR於該FAD2A位點之完整全長整合該ETIP之證據。當以FAD2A 3’探針偵測,沒有條帶i)大於WT及ii)等於對該等樣品觀察之條帶(表22)。
以pDAS000130及pDAB104010轉殖之油菜的ETIP基因轉殖結果
藉pDAS000130及pDAB104010轉形製造之基因 轉殖西洋油菜品件造成單份(single copy)之整合、在該FAD2A位點中pDAS000130之ETIP多核苷酸序列之全長T-鏈之插入。3至4個品件完全被特徵化及確認含有整合之ETIP。該確認係使用一入-出(in-out)PCR擴增方法來完成,且進一步藉南方點墨法驗證。該被選擇之T0品件被培養至T1成長階段。再篩選該T1植物以決定該整合之T-鏈之合子型。經篩選之品件被分類為同型、異型或不表現型。
藉先前所述之方法使用該同型合子品件來產生原生質體。該原生質體隨後以鋅指核酸酶共-轉殖,該鋅指核酸酶係被設計來標定被整合在該ETIP序列之鋅指結合位及與該ETIP特定區域有同源性之供體質體,其中該供體藉HDR機制被整合在該ETIP中。同樣地,該原生質體隨後以鋅指核酸酶共-轉殖,該鋅指核酸酶係被設計來標定被整合在該ETIP序列之鋅指結合位及與該ETIP特定區域沒有同源性之供體質體,其中該供體藉非同源性末端連結機制被整合在該ETIP中。該鋅指核酸酶切斷該ETIP位點,且該供體質體藉同源性直接修復或非同源性末端連結被整合在該西洋油菜細胞之基因組中。該供體質體之整合的結果,該部分DS-red轉殖基因被修復成全長之DS-red轉殖基因。使用該正全面運作之DS-red轉殖基因的表現以FACS方法分選原生質體細胞。使用實施例7中所述之該FACS方法來分選潛在之基因轉殖植物,該分離出之原生質體被再生為成熟的植物。使用分子確認方法確認該供體質體之整合係在ETIP-標定植物中。因此,該ETIP位點被當作用於標定供體多核 苷酸序列整合之基因的位點特異性之位點。
以鋅指核酸酶及pDAS000271-PDAS000275之ETIP構建體轉殖之油菜之基因轉殖結果
藉轉形ETIP及鋅指核酸酶製造之該基因轉殖西洋油菜品件造成整合單份(single copy),在該FAD3A位點中插入pDAS000273及pDAS275之ETIP多核苷酸序列之全長T-鏈,及在FAD3C位點中插入pDAS000271、pDAS000272或pDAS000274之ETIP多核苷酸序列之全長T-鏈。3至4個品件完全被特徵化及確認含有整合之ETIP。該確認係使用一入-出(in-out)PCR擴增方法來完成,且進一步藉南方點墨法驗證。該被選擇之T0品件被培養至T1成長階段。再篩選該T1植物以決定該整合之T-鏈之合子型。經篩選之品件被分類為同型、異型或不表現型。
藉先前所述之方法使用該同型合子品件來產生原生質體。該原生質體隨後以鋅指核酸酶共-轉殖,該鋅指核酸酶係被設計來標定被整合在該ETIP序列之鋅指結合位及與該ETIP特定區域有同源性之供體質體。該鋅指核酸酶切斷該ETIP位點,且該供體質體藉由同源直接修復被整合在該西洋油菜細胞的基因組中。該供體質體之整合的結果,該部分DS-red轉殖基因被修復成全長之DS-red轉殖基因。使用該正全面運作之DS-red轉殖基因的表現以FACS方法分選原生質體細胞。使用實施例7中所述之該FACS方法來分選潛在之基因轉殖植物,該分離出之原生質體被再生為成熟的植物。使用分子確認方法確認該供體質體之整合 係在ETIP-標定植物中。因此,該ETIP位點被當作用於標定供體多核苷酸序列整合之基因的位點特異性之位點。
實施例7:以FACS分選原生質體細胞
使用BD Biosciences Influx-Cell sorterTM(San Jose,CA)藉由FACS細胞分選方法來分選以DS-Red控制構建體,pDAS000031,轉染之西洋油菜之原生質體。如實施例3所述方法分離且轉染該原生質體細胞。以pDAS000031轉染該等細胞後,使用FACS分選儀以表14所述之條件來分選該等細胞。
該表現DS-red轉殖基因之原生質體被分選及分離。使用分選儀計數該FACS分離之原生質體。約1x105至1.8x105細胞於FACS分離後之第一天被置於一24井微孔板之井中。該細胞被移到珠培養5至20天。於相似條件進行 測試,其中於FACS分離後之第二天約1x104細胞被置於一2或4井微孔板之井中。測試之各種條件導致回收的細胞存活率為分離之原生質體細胞全體之95-98%。該FACS分選之原生質體細胞被移到珠培養3-20天。使用上述之實驗方法,將該FACS分選之原生質體細胞在含有1.5mg/mL潮黴素之介質上再生成植物。該潛在之基因轉殖植物藉分子確認實驗方法被確認含有一完整之pDAS000031之T-鏈插入。
以ZFN之同源重組DS-ReD來標定ETIP株
藉分子特徵獲得且確認一含有pDAS000036之T-鏈插入的油菜株,其含有一全長的、單份(single copy)之T-鏈。此油菜品件被標誌為pDAS000036-88且被使用來藉先前所述之方法產生原生質體。該原生質體被分離且~50,000油菜原生質體細胞隨後以鋅指核酸酶pDAS000074(圖25)或pDAS000075(圖26)共-轉殖,其係被設計用以標定一整合在該ETIP序列中之鋅指結合位以及一與該ETIP有同源性之供體質體pDAS000064、pDAS000068、pDAS000070或pDAS000072(分別為圖27,圖28,圖29及圖30)。圖19及圖20提供該導致藉鋅指核酸酶同源重組之Ds-red轉殖基因之位點特異性整合之同源直接修復之說明。該鋅指核酸酶被設計用以於被界定之鋅指結合序列切斷該ETIP位點,藉此產生該基因組內之雙股斷裂。其次,該供體質體藉同源直接修復被整合在該西洋油菜原生質體細胞之基因組中。該供體質體之內含子-1及內含子-2區域與對應之該ETIP位點之內含子-1及內含子-2區域具有同源性。供體質體整合之結 果,該部分DS-red轉殖基因被修復成全長、高表現性之之DS-red轉殖基因。使用該全面運作之DS-red轉殖基因的表現以上述之FACS方法分選原生質體細胞。因此,該ETIP位點被當作用於標定供體多核苷酸序列整合之基因的位點特異性之位點。最後,該分離之原生質體可被分選及再生為成熟植物。使用分子確認方法確認該供體質體之整合係在該ETIP-標定植物中。
該供體質體DNA及ZFN質體DNA於各種濃度下被混合,且被使用來轉染該含有品件pDAS000036-88之油菜原生質體細胞,使用前述之FACS轉染分選該基因轉殖原生質體細胞using the FACS轉染。表15描述各種轉染實驗及使用來轉染該含有品件pDAS000036-88之油菜原生質體之DNA濃度。藉前述方法分離及製備用來轉染之該ZFN及供體質體DNA。
在轉染試驗完成後,該原生質體被保持在室溫48小時且使用上述FACS實驗方法進行分選。各試驗被獨立地分選,且鋅指之轉殖基因滲入係藉辨識表現DS-red轉殖基因之各個品件來確認。圖21-24顯示FACS分選的結果。如所指之圖說明的結果,含有完整全整合之DS-red轉殖基因的多個品件被產生。該多個Ds-Red品件係鋅指核酸酶之供體DNA構建體整合在該ETIP基因組位點中之結果。此位點特異性整合導致高度表現、完整複製之Ds-Red轉殖基因。該Ds-Red轉殖基因表現之頻率的範圍為總油菜原生質體細胞(~50,000)之約0.03-0.07%。但是,在該ETIP基因組位點中之鋅指核酸酶之供體DNA構建體整合的轉染效率頻率更高且範圍為約0.07-0.64%。
圖21顯示該供體質體及ZFN質體被共-轉形之轉染的結果。在上方之圖,其中供體(pDAS000064)及該鋅指核酸酶(pDAS000074)在26μg對4μg之質體DNA之比例下 被共-轉形,導致在ETIP基因組位點中之鋅指核酸酶之供體DNA構建體之整合,重組頻率為該~50,000個油菜原生質體細胞之約0.03%。實際上,該重組頻率高更多。在轉染實驗中提供之該~50,000個的油菜原生質體細胞中,只有此等油菜原生質體細胞之約10-30%實際被轉形。因此,實際之在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合的轉染效率範圍約為0.22-0.07%。同樣在下方之圖,其中供體(pDAS000064)及該鋅指核酸酶(pDAS000075)係於26μg對4μg之質體DNA之比例下被共-轉形,導致在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合,重組頻率為該~50,000個油菜原生質體細胞之約0.03%。實際上,該重組頻率高更多。在轉染實驗中提供之該~50,000個的油菜原生質體細胞中,只有此等細胞之約10-30%實際被轉染。因此,實際之在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合的轉染效率範圍約為0.26-0.08%。該鋅指致同源直接修復之結果顯著地大於陰性控制實驗,其中~50,000個原生質體之中只有1個被辨識具有紅色螢光,因此獲得圖20所示之0.00%重組頻率。
圖22顯示該供體質體及ZFN質體被共-轉形之轉染的結果。在上方之圖,其中供體(pDAS000068)及該鋅指核酸酶(pDAS000074)於28μg對2μg之質體DNA之比例下被共-轉形,導致在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合,重組頻率為該~50,000個油菜原生質體細胞之約0.03%。實際上,該重組頻率高更多。在轉染實驗中 提供之該~50,000個的油菜原生質體細胞中,只有此等油菜原生質體細胞之約10-30%實際被轉形。因此,實際之在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合的轉染效率範圍約為0.22-0.07%。同樣在下方之圖,其中供體(pDAS000068)及該鋅指核酸酶(pDAS000075)係於28μg對2μg之質體DNA之比例下被共-轉形,導致在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合,重組頻率為該~50,000個油菜原生質體細胞之約0.04%。實際上,該重組頻率高更多。在轉染實驗中提供之該~50,000個的油菜原生質體細胞中,只有此等細胞之約10-30%實際被轉染。因此,實際之在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合的轉染效率範圍約為0.38-0.12%。該鋅指致同源直接修復之結果顯著地大於陰性控制實驗,其中~50,000個原生質體之中只有1個被辨識具有紅色螢光,因此獲得圖20所示之0.00%重組頻率。
圖23顯示該供體質體及ZFN質體被共-轉形之轉染的結果。在上方之圖,其中供體(pDAS000070)及該鋅指核酸酶(pDAS000074)於28μg對2μg之質體DNA之比例下被共-轉形,導致在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合,重組頻率為該~50,000個油菜原生質體細胞之約0.07%。實際上,該重組頻率高更多。在轉染實驗中提供之該~50,000個的油菜原生質體細胞中,只有此等油菜原生質體細胞之約10-30%實際被轉形。因此,實際之在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合的 轉染效率範圍約為0.64-0.21%。同樣在下方之圖,其中供體(pDAS000070)及該鋅指核酸酶(pDAS000075)係於28μg對2μg之質體DNA之比例下被共-轉形,導致在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合,重組頻率為該~50,000個油菜原生質體細胞之約0.04%。實際上,該重組頻率高更多。在轉染實驗中提供之該~50,000個的油菜原生質體細胞中,只有此等細胞之約10-30%實際被轉染。因此,實際之在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合的轉染效率範圍約為0.34-0.11%。該鋅指致同源直接修復之結果顯著地大於陰性控制實驗,其中~50,000個原生質體之中只有1個被辨識具有紅色螢光,因此獲得圖20所示之0.00%重組頻率。
圖24顯示該供體質體及ZFN質體被共-轉形之轉染結果。在上方之圖,其中供體(pDAS000072)及該鋅指核酸酶(pDAS000074)於28μg對2μg之質體DNA之比例下被共-轉形,導致在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合,重組頻率為該~50,000個油菜原生質體細胞之約0.07%。實際上,該重組頻率高更多。在轉染實驗中提供之該~50,000個的油菜原生質體細胞中,只有此等油菜原生質體細胞之約10-30%實際被轉形。因此,實際之在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合的轉染效率範圍約為0.62-0.2%。同樣在下方之圖,其中供體(pDAS000072)及該鋅指核酸酶(pDAS000075)係於28μg對2μg之質體DNA之比例下被共-轉形,導致在ETIP基因組 位點中之鋅指核酸酶致供體DNA構建體整合,重組頻率為該~50,000個油菜原生質體細胞之約0.05%。實際上,該重組頻率高更多。在轉染實驗中提供之該~50,000個的油菜原生質體細胞中,只有此等細胞之約10-30%實際被轉染。因此,實際之在ETIP基因組位點中之鋅指核酸酶致供體DNA構建體整合的轉染效率範圍約為0.44-0.14%。該鋅指致同源直接修復之結果顯著地大於陰性控制實驗,其中~50,000個原生質體之中只有1個被辨識具有紅色螢光,因此獲得圖20所示之0.00%重組頻率。
選定之外植體被移動且以含有phosphothrinocin之再生介質培養。培養期之後,存活之外植體被移到伸長培養基(elongation medium)及誘根培養基(root induction medium)中培養及植物發育。包括發育之根(root)及芽體(shoot)結構之整個植物被移到土壤中,且在溫室中進一步繁殖。該組織培養方法使用前述之培養基及培養條件。由組織培養方法產生之植物的結果顯示在下表23。
該FACS分選方法可直接實施用來篩選任何螢光轉殖基因序列,且被使用來分離任何原生質體之部分,本文係在一基因組位點中之ETIP區域之特定區位中藉同源修復(homology mediated repair)以螢光轉殖基因標定西洋油菜之原生質體細胞。
雖然本文描述某些例示性之具體實施例,習於此 藝者將能認識並理解到,可對該等例示性之具體實施例在不背離以下請求項之範圍內進行增加、減少及修飾。此外,一具體實施例之特徵可與另一具體實施例之特徵組合。
<110> 陶氏農業科學公司
<120> 用來產生植物之螢光激活細胞分選富增技術
<130> 2971-P10992.1US(72292-US-NP)
<160> 480
<170> PatentIn版本3.5
<210> 1
<211> 47493
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 1
<210> 2
<211> 40174
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 2
<210> 3
<211> 28527
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 3
<210> 4
<211> 26095
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 4
<210> 5
<211> 1161
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 5
<210> 6
<211> 1134
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 6
<210> 7
<211> 1161
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 7
<210> 8
<211> 1137
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 8
<210> 9
<211> 20890
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 9
<210> 10
<211> 105998
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 10
<210> 11
<211> 59642
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 11
<210> 12
<211> 28086
<212> DNA
<213> 西洋油菜(Brassica napus)
<220>
<221> misc_feature
<222> (27461)..(27461)
<223> n is a,c,g,or t
<220>
<221> misc_feature
<222> (27463)..(27463)
<223> n is a,c,g,or t
<220>
<221> misc_feature
<222> (27465)..(27465)
<223> n is a,c,g,or t
<220>
<221> misc_feature
<222> (27467)..(27467)
<223> n is a,c,g,or t
<220>
<221> misc_feature
<222> (27470)..(27470)
<223> n is a,c,g,or t
<400> 12
<210> 13
<211> 10653
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 13
<210> 14
<211> 23648
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 14
<210> 15
<211> 3247
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 15
<210> 16
<211> 4014
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 16
<210> 17
<211> 4761
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 17
<210> 18
<211> 3827
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 18
<210> 19
<211> 4668
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 19
<210> 20
<211> 5714
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 20
<210> 21
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> D_uni_F3_F1引子序列
<400> 21
<210> 22
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> D_spec_F3_F2引子序列
<400> 22
<210> 23
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> D_spec_F3_F3引子序列
<400> 23
<210> 24
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> D_spec_F3_F4引子序列
<400> 24
<210> 25
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> D_uni_F3_R1引子序列
<400> 25
<210> 26
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> D_spec_F3_R2引子序列
<400> 26
<210> 27
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> D_spec_F3_R3引子序列
<400> 27
<210> 28
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> D_UnivF2_F1引子序列
<400> 28
<210> 29
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> D_UnivF2_F2引子序列
<400> 29
<210> 30
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> D_UnivF2_R1引子序列
<400> 30
<210> 31
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> D_UnivF2_R2引子序列
<400> 31
<210> 32
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> D_SpecificF2_F3引子序列
<400> 32
<210> 33
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> D_SpecificF2_R3引子序列
<400> 33
<210> 34
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> D_UnivF2_F4引子序列
<400> 34
<210> 35
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> D_UnivF2_R4人工序列
<400> 35
<210> 36
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 27961 ZFP標定位
<400> 36
<210> 37
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 27962 ZFP標定位
<400> 37
<210> 38
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 27969 ZFP標定位
<400> 38
<210> 39
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> ZFP標定位
<400> 39
<210> 40
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 27973 ZFP標定位
<400> 40
<210> 41
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 27974 ZFP標定位
<400> 41
<210> 42
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 27987標定位
<400> 42
<210> 43
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 27988 ZFP標定位
<400> 43
<210> 44
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 27989 ZFP標定位
<400> 44
<210> 45
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 27990 ZFP標定位
<400> 45
<210> 46
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 27991 ZFP標定位
<400> 46
<210> 47
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 27992 ZFP標定位
<400> 47
<210> 48
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28004 ZFP標定位
<400> 48
<210> 49
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28005 ZFP標定位
<400> 49
<210> 50
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28021 ZFP標定位
<400> 50
<210> 51
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28022 ZFP標定位
<400> 51
<210> 52
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28023 ZFP標定位
<400> 52
<210> 53
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28024 ZFP標定位
<400> 53
<210> 54
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28025 ZFP標定位
<400> 54
<210> 55
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28026 ZFP標定位
<400> 55
<210> 56
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28035 ZFP標定位
<400> 56
<210> 57
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28036 ZFP標定位
<400> 57
<210> 58
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28039 ZFP標定位
<400> 58
<210> 59
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28040 ZFP標定位
<400> 59
<210> 60
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28051 ZFP標定位
<400> 60
<210> 61
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28052 ZFP標定位
<400> 61
<210> 62
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28053 ZFP標定位
<400> 62
<210> 63
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28054 ZFP標定位
<400> 63
<210> 64
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28055 ZFP標定位
<400> 64
<210> 65
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 28056 ZFP標定位
<400> 65
<210> 66
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24800 ZFP標定位
<400> 66
<210> 67
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24801 ZFP標定位
<400> 67
<210> 68
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24794 ZFP標定位
<400> 68
<210> 69
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24795 ZFP標定位
<400> 69
<210> 70
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24810 ZFP標定位
<400> 70
<210> 71
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24811 ZFP標定位
<400> 71
<210> 72
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24814 ZFP標定位
<400> 72
<210> 73
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24815 ZFP標定位
<400> 73
<210> 74
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24818 ZFP標定位
<400> 74
<210> 75
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24819 ZFP標定位
<400> 75
<210> 76
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24796 ZFP標定位
<400> 76
<210> 77
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24797 ZFP標定位
<400> 77
<210> 78
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24836 ZFP標定位
<400> 78
<210> 79
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24837 ZFP標定位
<400> 79
<210> 80
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24844 ZFP標定位
<400> 80
<210> 81
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24845 ZFP標定位
<400> 81
<210> 82
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24820 ZFP標定位
<400> 82
<210> 83
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24821 ZFP標定位
<400> 83
<210> 84
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24828 ZFP標定位
<400> 84
<210> 85
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24829 ZFP標定位
<400> 85
<210> 86
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24832 ZFP標定位
<400> 86
<210> 87
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 24833 ZFP標定位
<400> 87
<210> 88
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus1_F PCR引子
<400> 88
<210> 89
<211> 57
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus1_F2A PCR引子
<400> 89
<210> 90
<211> 57
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus1_F2B PCR引子
<400> 90
<210> 91
<211> 57
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus1_F2C PCR引子
<400> 91
<210> 92
<211> 59
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus2_F1D PCR引子
<400> 92
<210> 93
<211> 59
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus2_F1E PCR引子
<400> 93
<210> 94
<211> 59
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus3_F2F PCR引子
<400> 94
<210> 95
<211> 59
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus3_F2G PCR引子
<400> 95
<210> 96
<211> 59
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus3_F2H PCR引子
<400> 96
<210> 97
<211> 58
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus4_F1J PCR引子
<400> 97
<210> 98
<211> 58
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus4_F1K PCR引子
<400> 98
<210> 99
<211> 59
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus5_F1L PCR引子
<400> 99
<210> 100
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus1_R1A PCR引子
<400> 100
<210> 101
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus1_R1B PCR引子
<400> 101
<210> 102
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus1_R1C PCR引子
<400> 102
<210> 103
<211> 63
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus2_R1D PCR引子
<400> 103
<210> 104
<211> 63
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus2_R1E PCR引子
<400> 104
<210> 105
<211> 63
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus3_R1F PCR引子
<400> 105
<210> 106
<211> 63
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus3_R1G PCR引子
<400> 106
<210> 107
<211> 63
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus3_R1H PCR引子
<400> 107
<210> 108
<211> 63
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus4_R1J PCR引子
<400> 108
<210> 109
<211> 63
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus4_R1K PCR引子
<400> 109
<210> 110
<211> 63
<212> DNA
<213> 人工序列
<220>
<223> FAD2_ZFN_Locus5_R1L PCR引子
<400> 110
<210> 111
<211> 58
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus1A_F3 PCR引子
<400> 111
<210> 112
<211> 58
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus1B_F3 PCR引子
<400> 112
<210> 113
<211> 58
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus2C_F1 PCR引子
<400> 113
<210> 114
<211> 58
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus3D_F1 PCR引子
<400> 114
<210> 115
<211> 58
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus3E_F1 PCR引子
<400> 115
<210> 116
<211> 58
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus3F_F1 PCR引子
<400> 116
<210> 117
<211> 61
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus4G_F1 PCR引子
<400> 117
<210> 118
<211> 61
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus4H_F1 PCR引子
<400> 118
<210> 119
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus5J_F1 PCR引子
<400> 119
<210> 120
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus6K_F1 PCR引子
<400> 120
<210> 121
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus6L_F1 PCR引子
<400> 121
<210> 122
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus6M_F1 PCR引子
<400> 122
<210> 123
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus6N_F1 PCR引子
<400> 123
<210> 124
<211> 61
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus7P_F3 PCR引子
<400> 124
<210> 125
<211> 61
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus7Q_F3 PCR引子
<400> 125
<210> 126
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus1A_R1 PCR引子
<400> 126
<210> 127
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus1B_R1 PCR引子
<400> 127
<210> 128
<211> 63
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus2C_R1 PCR引子
<400> 128
<210> 129
<211> 65
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus3D_R1 PCR引子
<400> 129
<210> 130
<211> 65
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus3E_R1 PCR引子
<400> 130
<210> 131
<211> 65
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus3F_R1 PCR引子
<400> 131
<210> 132
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus4G_R_uni PCR引子
<400> 132
<210> 133
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus4H_R_uni PCR引子
<400> 133
<210> 134
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus5J_R2 PCR引子
<400> 134
<210> 135
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus6K_R1 PCR引子
<400> 135
<210> 136
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus6L_R1 PCR引子
<400> 136
<210> 137
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus6M_R1 PCR引子
<400> 137
<210> 138
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus6N_R1 PCR引子
<400> 138
<210> 139
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus7P_R1 PCR引子
<400> 139
<210> 140
<211> 66
<212> DNA
<213> 人工序列
<220>
<223> FAD3_ZFN_Locus7Q_R1 PCR引子
<400> 140
<210> 141
<211> 13472
<212> DNA
<213> 人工序列
<220>
<223> pDAS000130之T鏈插入區
<400> 141
<210> 142
<211> 13462
<212> DNA
<213> 人工序列
<220>
<223> pDAS000271之T鏈插入區
<400> 142
<210> 143
<211> 13462
<212> DNA
<213> 人工序列
<220>
<223> pDAS000272之T鏈插入區
<400> 143
<210> 144
<211> 13462
<212> DNA
<213> 人工序列
<220>
<223> pDAS000273之T鏈插入區
<400> 144
<210> 145
<211> 13462
<212> DNA
<213> 人工序列
<220>
<223> pDAS000274之T鏈插入區
<400> 145
<210> 146
<211> 13462
<212> DNA
<213> 人工序列
<220>
<223> pDAS000275之T鏈插入區
<400> 146
<210> 147
<211> 5521
<212> DNA
<213> 人工序列
<220>
<223> pDAS000031之T鏈插入區
<400> 147
<210> 148
<211> 11708
<212> DNA
<213> 人工序列
<220>
<223> pDAS000036之T鏈插入區
<400> 148
<210> 149
<211> 11707
<212> DNA
<213> 人工序列
<220>
<223> pDAS000037之T鏈插入區
<400> 149
<210> 150
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> pTiC58前置PCR引子
<400> 150
<210> 151
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> pTiC58反置PCR引子
<400> 151
<210> 152
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 肌動蛋白前置PCR引子
<400> 152
<210> 153
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 肌動蛋白反置PCR引子
<400> 153
<210> 154
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> HPH前置PCR引子
<400> 154
<210> 155
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> HPH反置PCR引子
<400> 155
<210> 156
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 1F PCR引子
<400> 156
<210> 157
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 1R PCR引子
<400> 157
<210> 158
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 2F PCR引子
<400> 158
<210> 159
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 2R PCR引子
<400> 159
<210> 160
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 3F PCR引子
<400> 160
<210> 161
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 3R PCR引子
<400> 161
<210> 162
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 4F PCR引子
<400> 162
<210> 163
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 4R PCR引子
<400> 163
<210> 164
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 5F PCR引子
<400> 164
<210> 165
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 5R PCR引子
<400> 165
<210> 166
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> IPT-F PCR引子
<400> 166
<210> 167
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> IPT-R PCR引子
<400> 167
<210> 168
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> dsRED-F PCR引子
<400> 168
<210> 169
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> dsRED-R PCR引子
<400> 169
<210> 170
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> PAT-F PCR引子
<400> 170
<210> 171
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> PAT-R PCR引子
<400> 171
<210> 172
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> ELP-F PCR引子
<400> 172
<210> 173
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> ELP-R PCR引子
<400> 173
<210> 174
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> Hph-F PCR引子
<400> 174
<210> 175
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> Hph-R PCR引子
<400> 175
<210> 176
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 肌動蛋白-F PCR引子
<400> 176
<210> 177
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 肌動蛋白-R PCR引子
<400> 177
<210> 178
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27961指1
<400> 178
<210> 179
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27961指2
<400> 179
<210> 180
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27961指3
<400> 180
<210> 181
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27961指4
<400> 181
<210> 182
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27961指5
<400> 182
<210> 183
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27961指6
<400> 183
<210> 184
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27962指1
<400> 184
<210> 185
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27962指2
<400> 185
<210> 186
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27962指3
<400> 186
<210> 187
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27962指4
<400> 187
<210> 188
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27962指5
<400> 188
<210> 189
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27973指1
<400> 189
<210> 190
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27973指2
<400> 190
<210> 191
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27973指3
<400> 191
<210> 192
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27973指4
<400> 192
<210> 193
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27973指5
<400> 193
<210> 194
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27973指6
<400> 194
<210> 195
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27974指1
<400> 195
<210> 196
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27974指2
<400> 196
<210> 197
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27974指3
<400> 197
<210> 198
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27974指4
<400> 198
<210> 199
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27974指5
<400> 199
<210> 200
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27974指6
<400> 200
<210> 201
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27987指1
<400> 201
<210> 202
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27987指2
<400> 202
<210> 203
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27987指3
<400> 203
<210> 204
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27987指4
<400> 204
<210> 205
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27987指5
<400> 205
<210> 206
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27990指1
<400> 206
<210> 207
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27990指2
<400> 207
<210> 208
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27990指3
<400> 208
<210> 209
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27990指4
<400> 209
<210> 210
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27990指5
<400> 210
<210> 211
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27990指6
<400> 211
<210> 212
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27991指1
<400> 212
<210> 213
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27991指2
<400> 213
<210> 214
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27991指3
<400> 214
<210> 215
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27991指4
<400> 215
<210> 216
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27991指5
<400> 216
<210> 217
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27992指1
<400> 217
<210> 218
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27992指2
<400> 218
<210> 219
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27992指3
<400> 219
<210> 220
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27992指4
<400> 220
<210> 221
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 27992指5
<400> 221
<210> 222
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28004指1
<400> 222
<210> 223
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28004指2
<400> 223
<210> 224
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28004指3
<400> 224
<210> 225
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28004指4
<400> 225
<210> 226
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28004指5
<400> 226
<210> 227
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28004指6
<400> 227
<210> 228
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28005指1
<400> 228
<210> 229
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28005指2
<400> 229
<210> 230
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28005指3
<400> 230
<210> 231
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28005指4
<400> 231
<210> 232
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28005指5
<400> 232
<210> 233
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28021指1
<400> 233
<210> 234
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28021指2
<400> 234
<210> 235
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28021指3
<400> 235
<210> 236
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28021指4
<400> 236
<210> 237
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28021指5
<400> 237
<210> 238
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28022指1
<400> 238
<210> 239
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28022指2
<400> 239
<210> 240
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28022指3
<400> 240
<210> 241
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28022指4
<400> 241
<210> 242
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28022指5
<400> 242
<210> 243
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28023指1
<400> 243
<210> 244
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28023指2
<400> 244
<210> 245
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28023指3
<400> 245
<210> 246
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28023指4
<400> 246
<210> 247
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28023指5
<400> 247
<210> 248
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28024指1
<400> 248
<210> 249
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28024指2
<400> 249
<210> 250
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28024指3
<400> 250
<210> 251
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28024指4
<400> 251
<210> 252
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28024指5
<400> 252
<210> 253
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28025指1
<400> 253
<210> 254
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28025指2
<400> 254
<210> 255
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28025指3
<400> 255
<210> 256
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28025指4
<400> 256
<210> 257
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28025指5
<400> 257
<210> 258
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28025指6
<400> 258
<210> 259
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28026指1
<400> 259
<210> 260
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28026指2
<400> 260
<210> 261
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28026指3
<400> 261
<210> 262
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28026指4
<400> 262
<210> 263
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28026指5
<400> 263
<210> 264
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28035指1
<400> 264
<210> 265
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28035指2
<400> 265
<210> 266
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28035指3
<400> 266
<210> 267
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28035指4
<400> 267
<210> 268
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28035指5
<400> 268
<210> 269
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28035指6
<400> 269
<210> 270
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28036指1
<400> 270
<210> 271
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28036指2
<400> 271
<210> 272
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28036指3
<400> 272
<210> 273
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28036指4
<400> 273
<210> 274
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28036指5
<400> 274
<210> 275
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28036指6
<400> 275
<210> 276
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28039指1
<400> 276
<210> 277
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28039指2
<400> 277
<210> 278
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28039指3
<400> 278
<210> 279
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28039指4
<400> 279
<210> 280
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28039指5
<400> 280
<210> 281
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28039指6
<400> 281
<210> 282
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28040指1
<400> 282
<210> 283
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28040指2
<400> 283
<210> 284
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28040指3
<400> 284
<210> 285
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28040指4
<400> 285
<210> 286
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28040指5
<400> 286
<210> 287
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28051指1
<400> 287
<210> 288
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28051指2
<400> 288
<210> 289
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28051指3
<400> 289
<210> 290
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28051指4
<400> 290
<210> 291
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28051指5
<400> 291
<210> 292
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28052指1
<400> 292
<210> 293
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28052指2
<400> 293
<210> 294
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28052指3
<400> 294
<210> 295
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28052指4
<400> 295
<210> 296
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28053指1
<400> 296
<210> 297
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28053指2
<400> 297
<210> 298
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28053指3
<400> 298
<210> 299
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28053指4
<400> 299
<210> 300
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28053指5
<400> 300
<210> 301
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28054指1
<400> 301
<210> 302
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28054指2
<400> 302
<210> 303
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28054指3
<400> 303
<210> 304
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28054指4
<400> 304
<210> 305
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28054指5
<400> 305
<210> 306
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28054指6
<400> 306
<210> 307
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28055指1
<400> 307
<210> 308
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28055指2
<400> 308
<210> 309
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28055指3
<400> 309
<210> 310
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28055指4
<400> 310
<210> 311
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28055指5
<400> 311
<210> 312
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28056指1
<400> 312
<210> 313
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28056指2
<400> 313
<210> 314
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28056指3
<400> 314
<210> 315
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28056指4
<400> 315
<210> 316
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 28056指5
<400> 316
<210> 317
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24800指1
<400> 317
<210> 318
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24800指2
<400> 318
<210> 319
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24800指3
<400> 319
<210> 320
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24800指4
<400> 320
<210> 321
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24800指5
<400> 321
<210> 322
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24801指1
<400> 322
<210> 323
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24801指2
<400> 323
<210> 324
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24801指3
<400> 324
<210> 325
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24801指4
<400> 325
<210> 326
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24801指5
<400> 326
<210> 327
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24794指1
<400> 327
<210> 328
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24794指2
<400> 328
<210> 329
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24794指3
<400> 329
<210> 330
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24794指4
<400> 330
<210> 331
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24794指5
<400> 331
<210> 332
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24795指1
<400> 332
<210> 333
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24795指2
<400> 333
<210> 334
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24795指3
<400> 334
<210> 335
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24795指4
<400> 335
<210> 336
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24795指5
<400> 336
<210> 337
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24810指1
<400> 337
<210> 338
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24810指2
<400> 338
<210> 339
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24810指3
<400> 339
<210> 340
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24810指4
<400> 340
<210> 341
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24810指5
<400> 341
<210> 342
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24811指1
<400> 342
<210> 343
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24811指2
<400> 343
<210> 344
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24811指3
<400> 344
<210> 345
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24811指4
<400> 345
<210> 346
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24811指5
<400> 346
<210> 347
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24814指1
<400> 347
<210> 348
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24814指2
<400> 348
<210> 349
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24814指3
<400> 349
<210> 350
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24814指4
<400> 350
<210> 351
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24814指5
<400> 351
<210> 352
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24815指1
<400> 352
<210> 353
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24815指2
<400> 353
<210> 354
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24815指3
<400> 354
<210> 355
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24815指4
<400> 355
<210> 356
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24815指5
<400> 356
<210> 357
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24818指1
<400> 357
<210> 358
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24818指2
<400> 358
<210> 359
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24818指3
<400> 359
<210> 360
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24818指4
<400> 360
<210> 361
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24818指5
<400> 361
<210> 362
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24819指1
<400> 362
<210> 363
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24819指2
<400> 363
<210> 364
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24819指3
<400> 364
<210> 365
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24819指4
<400> 365
<210> 366
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24819指5
<400> 366
<210> 367
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24796指1
<400> 367
<210> 368
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24796指2
<400> 368
<210> 369
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24796指3
<400> 369
<210> 370
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24796指4
<400> 370
<210> 371
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24796指5
<400> 371
<210> 372
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24797指1
<400> 372
<210> 373
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24797指2
<400> 373
<210> 374
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24797指3
<400> 374
<210> 375
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24797指4
<400> 375
<210> 376
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24797指5
<400> 376
<210> 377
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24836指1
<400> 377
<210> 378
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24836指2
<400> 378
<210> 379
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24836指3
<400> 379
<210> 380
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24836指4
<400> 380
<210> 381
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24836指5
<400> 381
<210> 382
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24837指1
<400> 382
<210> 383
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24837指2
<400> 383
<210> 384
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24837指3
<400> 384
<210> 385
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24837指4
<400> 385
<210> 386
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24837指5
<400> 386
<210> 387
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24844指1
<400> 387
<210> 388
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24844指2
<400> 388
<210> 389
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24844指3
<400> 389
<210> 390
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24844指4
<400> 390
<210> 391
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24844指5
<400> 391
<210> 392
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24844指6
<400> 392
<210> 393
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24845指1
<400> 393
<210> 394
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24845指2
<400> 394
<210> 395
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24845指3
<400> 395
<210> 396
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24845指4
<400> 396
<210> 397
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24845指5
<400> 397
<210> 398
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24820指1
<400> 398
<210> 399
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24820指2
<400> 399
<210> 400
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24820指3
<400> 400
<210> 401
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24820指4
<400> 401
<210> 402
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24820指5
<400> 402
<210> 403
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24821指1
<400> 403
<210> 404
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24821指2
<400> 404
<210> 405
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24821指3
<400> 405
<210> 406
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24821指4
<400> 406
<210> 407
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24821指5
<400> 407
<210> 408
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24828指1
<400> 408
<210> 409
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24828指2
<400> 409
<210> 410
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24828指3
<400> 410
<210> 411
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24828指4
<400> 411
<210> 412
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24828指5
<400> 412
<210> 413
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24829指1
<400> 413
<210> 414
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24829指2
<400> 414
<210> 415
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24829指3
<400> 415
<210> 416
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24829指4
<400> 416
<210> 417
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24829指5
<400> 417
<210> 418
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24829指6
<400> 418
<210> 419
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24832指1
<400> 419
<210> 420
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24832指2
<400> 420
<210> 421
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24832指3
<400> 421
<210> 422
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24832指4
<400> 422
<210> 423
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24832指5
<400> 423
<210> 424
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24832指6
<400> 424
<210> 425
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24833指1
<400> 425
<210> 426
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24833指2
<400> 426
<210> 427
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24833指3
<400> 427
<210> 428
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24833指4
<400> 428
<210> 429
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24833指5
<400> 429
<210> 430
<211> 7
<212> PRT
<213> 人工序列
<220>
<223> 24833指6
<400> 430
<210> 431
<211> 694
<212> DNA
<213> 人工序列
<220>
<223> 品件細節:em02-5788-1-1左邊緣側翼
<400> 431
<210> 432
<211> 732
<212> DNA
<213> 人工序列
<220>
<223> em02-5788-1-1左邊緣側翼
<400> 432
<210> 433
<211> 643
<212> DNA
<213> 人工序列
<220>
<223> 品件細節:ad58-5784-2-1左邊緣側翼
<400> 433
<210> 434
<211> 653
<212> DNA
<213> 人工序列
<220>
<223> ad58-5784-2-1右邊緣側翼
<400> 434
<210> 435
<211> 450
<212> DNA
<213> 人工序列
<220>
<223> 品件細節:ad58-5898-10-1左邊緣側翼
<400> 435
<210> 436
<211> 644
<212> DNA
<213> 人工序列
<220>
<223> ad58-5898-10-1右邊緣側翼
<400> 436
<210> 437
<211> 674
<212> DNA
<213> 人工序列
<220>
<223> lf31-6139-2-3左邊緣側翼
<400> 437
<210> 438
<211> 544
<212> DNA
<213> 人工序列
<220>
<223> [00213]lf31-6139-2-3右邊緣側翼
<400> 438
<210> 439
<211> 569
<212> DNA
<213> 人工序列
<220>
<223> bm56-6315-1-1左邊緣側翼
<400> 439
<210> 440
<211> 685
<212> DNA
<213> 人工序列
<220>
<223> bm56-6315-1-1右邊緣側翼
<400> 440
<210> 441
<211> 734
<212> DNA
<213> 人工序列
<220>
<223> ad58-6372-1-1左邊緣側翼
<400> 441
<210> 442
<211> 521
<212> DNA
<213> 人工序列
<220>
<223> ad58-6372-1-1右邊緣側翼
<400> 442
<210> 443
<211> 450
<212> DNA
<213> 人工序列
<220>
<223> ad58-6620-4-1左邊緣側翼
<400> 443
<210> 444
<211> 775
<212> DNA
<213> 人工序列
<220>
<223> ad58-6620-4-1右邊緣側翼
<400> 444
<210> 445
<211> 808
<212> DNA
<213> 人工序列
<220>
<223> ad58-6620-17-1左邊緣側翼
<400> 445
<210> 446
<211> 578
<212> DNA
<213> 人工序列
<220>
<223> ad58-6620-17-1右邊緣側翼
<400> 446
<210> 447
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 引子序列
<400> 447
<210> 448
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 448
<210> 449
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 449
<210> 450
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 450
<210> 451
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 451
<210> 452
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 452
<210> 453
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 453
<210> 454
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 454
<210> 455
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 455
<210> 456
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 456
<210> 457
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 457
<210> 458
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 458
<210> 459
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 459
<210> 460
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 460
<210> 461
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 461
<210> 462
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 462
<210> 463
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 463
<210> 464
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 464
<210> 465
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 465
<210> 466
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 466
<210> 467
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 467
<210> 468
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 468
<210> 469
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 469
<210> 470
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 引子
<400> 470
<210> 471
<211> 118
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 471
<210> 472
<211> 118
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 472
<210> 473
<211> 118
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 473
<210> 474
<211> 118
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 474
<210> 475
<211> 20
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 475
<210> 476
<211> 28
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 476
<210> 477
<211> 28
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 477
<210> 478
<211> 28
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 478
<210> 479
<211> 28
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 479
<210> 480
<211> 20
<212> DNA
<213> 西洋油菜(Brassica napus)
<400> 480

Claims (8)

  1. 一種用來產生包含一感興趣的多核苷酸之基因轉殖植物的方法,該方法包含:提供一個體化且分開(individual and separate)的植物原生質體群體,其中該植物原生質體係被海藻酸鈉(sodium alginate)包封,各個原生質體包含在該植物原生質體之基因組中的一基因轉殖品件,該植物原生質體在該品件位點包含一感興趣的多核苷酸及一編碼一螢光標記的多核苷酸;藉由螢光激活細胞分選技術(FACS)將一種包含該感興趣之多核苷酸及該螢光標記之原生質體與該群體中其餘的植物原生質體分開;以及由該植物原生質體再生一基因轉殖植物。
  2. 如請求項1之方法,其中該感興趣之多核苷酸編碼一感興趣之多肽。
  3. 如請求項1之方法,其中包含該感興趣的多核苷酸及該螢光標記之被海藻酸鈉包封的該原生質體,其包含一鋅指核酸酶。
  4. 如請求項1之方法,其中該植物原生質體群體係自一植物組織獲得。
  5. 如請求項1之方法,其包含將複數個被海藻酸鈉包封之原生質體分開,該原生質體包含該感興趣之多核苷酸及該螢光標記。
  6. 如請求項1之方法,其中該植物係一單子葉植物或雙子葉植物。
  7. 如請求項1之方法,其中該感興趣之多核苷酸及該編碼該螢光標記之多核苷酸二者皆存在於一核酸分子中,該核酸分子係被用於以位點特異性整合的方式來轉形包含該感興趣之多核苷酸及該螢光標記的該原生質體。
  8. 如請求項1之方法,其中該基因轉殖品件係使用鋅指核酸酶以位點特異方式而被整合於該基因組中。
TW102132254A 2012-09-07 2013-09-06 用來產生植物之螢光激活細胞分選富增技術 TWI670004B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261697890P 2012-09-07 2012-09-07
US61/697,890 2012-09-07

Publications (2)

Publication Number Publication Date
TW201424578A TW201424578A (zh) 2014-07-01
TWI670004B true TWI670004B (zh) 2019-09-01

Family

ID=50234835

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102132254A TWI670004B (zh) 2012-09-07 2013-09-06 用來產生植物之螢光激活細胞分選富增技術

Country Status (17)

Country Link
US (1) US20140075593A1 (zh)
EP (1) EP2893024B1 (zh)
JP (1) JP6362600B2 (zh)
KR (1) KR102219621B1 (zh)
CN (2) CN111118100A (zh)
AR (1) AR092482A1 (zh)
AU (1) AU2013312198B2 (zh)
BR (1) BR112015004864B8 (zh)
CA (1) CA2883800C (zh)
HK (1) HK1210220A1 (zh)
IL (1) IL237535B (zh)
IN (1) IN2015DN01785A (zh)
MX (1) MX367170B (zh)
RU (1) RU2679510C2 (zh)
TW (1) TWI670004B (zh)
WO (1) WO2014039970A1 (zh)
ZA (1) ZA201501736B (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2734621B1 (en) 2011-07-22 2019-09-04 President and Fellows of Harvard College Evaluation and improvement of nuclease cleavage specificity
UA119135C2 (uk) * 2012-09-07 2019-05-10 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Спосіб отримання трансгенної рослини
CN105264067B (zh) * 2012-09-07 2020-11-10 美国陶氏益农公司 Fad3性能基因座及相应的能够诱导靶向断裂的靶位点特异性结合蛋白
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
DK3066201T3 (en) 2013-11-07 2018-06-06 Editas Medicine Inc CRISPR-RELATED PROCEDURES AND COMPOSITIONS WITH LEADING GRADES
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
JP7068821B2 (ja) 2014-12-03 2022-05-17 アジレント・テクノロジーズ・インク 化学修飾を有するガイドrna
CN107787367B (zh) 2015-04-06 2021-10-26 里兰斯坦福初级大学理事会 用于crispr/cas介导的基因调控的化学修饰的引导rna
IL310721A (en) 2015-10-23 2024-04-01 Harvard College Nucleobase editors and their uses
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
CN106198358B (zh) * 2016-06-24 2019-02-15 北京大学 基于"石英杯中激发型"流式细胞分选仪的染色体分选方法
CA3032699A1 (en) 2016-08-03 2018-02-08 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
AU2017308889B2 (en) 2016-08-09 2023-11-09 President And Fellows Of Harvard College Programmable Cas9-recombinase fusion proteins and uses thereof
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
CN110214180A (zh) 2016-10-14 2019-09-06 哈佛大学的校长及成员们 核碱基编辑器的aav递送
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
EP3592853A1 (en) 2017-03-09 2020-01-15 President and Fellows of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
CN110914426A (zh) 2017-03-23 2020-03-24 哈佛大学的校长及成员们 包含核酸可编程dna结合蛋白的核碱基编辑器
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
US20200109408A1 (en) 2017-05-31 2020-04-09 Tropic Biosciences UK Limited Methods of selecting cells comprising genome editing events
GB201708662D0 (en) 2017-05-31 2017-07-12 Tropic Biosciences Uk Ltd Compositions and methods for increasing shelf-life of banana
CN111801345A (zh) 2017-07-28 2020-10-20 哈佛大学的校长及成员们 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
AU2018352592A1 (en) 2017-10-16 2020-06-04 Beam Therapeutics, Inc. Uses of adenosine base editors
AU2020242032A1 (en) 2019-03-19 2021-10-07 Massachusetts Institute Of Technology Methods and compositions for editing nucleotide sequences
GB201905542D0 (en) * 2019-04-18 2019-06-05 Phytoform Labs Ltd Methods, systems and apparatus for plant material screening and propagation
WO2021067394A1 (en) * 2019-09-30 2021-04-08 Calyxt, Inc. Gene editing using a messenger ribonucleic acid construct
CA3177481A1 (en) 2020-05-08 2021-11-11 David R. Liu Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
WO2023039586A1 (en) 2021-09-10 2023-03-16 Agilent Technologies, Inc. Guide rnas with chemical modification for prime editing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200815593A (en) * 2006-08-11 2008-04-01 Dow Agrosciences Llc Zinc finger nuclease-mediated homologous recombination

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727028A (en) 1981-06-22 1988-02-23 Eli Lilly And Company Recombinant DNA cloning vectors and the eukaryotic and prokaryotic transformants thereof
US4762785A (en) 1982-08-12 1988-08-09 Calgene, Inc. Novel method and compositions for introducting alien DNA in vivo
EP0290799B9 (en) 1983-01-13 2004-09-01 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Transgenic dicotyledonous plant cells and plants
EP0131624B1 (en) 1983-01-17 1992-09-16 Monsanto Company Plasmids for transforming plant cells
NL8300699A (nl) 1983-02-24 1984-09-17 Univ Leiden Werkwijze voor het inbouwen van vreemd dna in het genoom van tweezaadlobbige planten; werkwijze voor het produceren van agrobacterium tumefaciens bacterien; stabiele cointegraat plasmiden; planten en plantecellen met gewijzigde genetische eigenschappen; werkwijze voor het bereiden van chemische en/of farmaceutische produkten.
NL8300698A (nl) 1983-02-24 1984-09-17 Univ Leiden Werkwijze voor het inbouwen van vreemd dna in het genoom van tweezaadlobbige planten; agrobacterium tumefaciens bacterien en werkwijze voor het produceren daarvan; planten en plantecellen met gewijzigde genetische eigenschappen; werkwijze voor het bereiden van chemische en/of farmaceutische produkten.
US5428147A (en) 1983-04-15 1995-06-27 Mycogen Plant Science, Inc. Octopine T-DNA promoters
US5231019A (en) 1984-05-11 1993-07-27 Ciba-Geigy Corporation Transformation of hereditary material of plants
US5149645A (en) 1984-06-04 1992-09-22 Rijksuniversiteit Leiden Process for introducing foreign DNA into the genome of plants
NL8401780A (nl) 1984-06-04 1986-01-02 Rijksuniversiteit Leiden En Pr Werkwijze voor het inbouwen van vreemd dna in het genoom van planten.
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
CA1288073C (en) 1985-03-07 1991-08-27 Paul G. Ahlquist Rna transformation vector
US5569597A (en) 1985-05-13 1996-10-29 Ciba Geigy Corp. Methods of inserting viral DNA into plant material
AU7360087A (en) 1986-04-30 1987-11-24 Boyce Thompson Institute For Plant Research Inc. Electric field mediated dna transformation of plant cells and organelles
US5188958A (en) 1986-05-29 1993-02-23 Calgene, Inc. Transformation and foreign gene expression in brassica species
US5177010A (en) 1986-06-30 1993-01-05 University Of Toledo Process for transforming corn and the products thereof
EP0267159A3 (de) 1986-11-07 1990-05-02 Ciba-Geigy Ag Verfahren zur genetischen Modifikation monokotyler Pflanzen
SE455438B (sv) 1986-11-24 1988-07-11 Aga Ab Sett att senka en brennares flamtemperatur samt brennare med munstycken for oxygen resp brensle
US5004863B2 (en) 1986-12-03 2000-10-17 Agracetus Genetic engineering of cotton plants and lines
ES2121803T3 (es) 1987-05-20 1998-12-16 Novartis Ag Plantas de zea mays y plantas transgenicas de zea mays generadas a partir de protoplastos o celulas derivadas de protoplastos.
US5316931A (en) 1988-02-26 1994-05-31 Biosource Genetics Corp. Plant viral vectors having heterologous subgenomic promoters for systemic expression of foreign genes
US5302523A (en) 1989-06-21 1994-04-12 Zeneca Limited Transformation of plant cells
US5141131A (en) 1989-06-30 1992-08-25 Dowelanco Method and apparatus for the acceleration of a propellable matter
DK0558676T3 (da) 1990-11-23 2000-09-25 Aventis Cropscience Nv Fremgangsmåde til transformering af enkimbladede planter
US5384253A (en) 1990-12-28 1995-01-24 Dekalb Genetics Corporation Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes
JPH05130861A (ja) * 1991-11-06 1993-05-28 Hitachi Chem Co Ltd プロトプラストからクローン細胞を作製する方法
JPH07505531A (ja) 1992-04-15 1995-06-22 プラント・ジェネティック・システムズ・エヌ・ブイ 単子葉植物細胞の形質転換法
EP0604662B1 (en) 1992-07-07 2008-06-18 Japan Tobacco Inc. Method of transforming monocotyledon
US5469976A (en) 1993-04-30 1995-11-28 Burchell; James R. Shelf allocation and management system
DE69404385T2 (de) 1993-06-04 1998-02-19 Cavis Srl Trägheitsschalter zur Ausschaltung der Batterie eines Kraftfahrzeuges
WO1997013402A1 (en) 1995-10-13 1997-04-17 Dow Agrosciences Llc Modified bacillus thuringiensis gene for lepidopteran control in plants
US5783431A (en) * 1996-04-24 1998-07-21 Chromaxome Corporation Methods for generating and screening novel metabolic pathways
US20030219763A1 (en) * 1996-12-13 2003-11-27 Jen Sheen Plant protoplast gene expression systems and uses thereof
EP1159418A2 (en) 1998-12-11 2001-12-05 Biomira Inc. Muc-1 antagonists and methods of treating immune disorders
EP1108783A3 (en) 1999-01-19 2001-09-05 Maxygen, Inc. Oligonucleotide-mediated nucleic acid recombination
ATE538205T1 (de) 1999-11-29 2012-01-15 Midwest Oilseeds Inc Verfahren, medien und vorrichtung zur einführung von molekülen in pflanzenzellen und bakterien mittels aerosolstrahlen
JP3780333B2 (ja) * 2000-09-22 2006-05-31 国立大学法人大阪大学 外来性遺伝物質又は生理活性物質を細胞内へ導入する新規な方法
US7022826B2 (en) 2001-02-26 2006-04-04 The Regents Of The University Of California Non-oligomerizing fluorescent proteins
US20030232410A1 (en) 2002-03-21 2003-12-18 Monika Liljedahl Methods and compositions for using zinc finger endonucleases to enhance homologous recombination
JP4022614B2 (ja) * 2002-03-25 2007-12-19 国立大学法人大阪大学 新規なバイオビーズの作製方法
EP2333082B1 (en) 2004-03-26 2015-01-07 Dow AgroSciences LLC Cry1F and Cry1AC transgenic cotton lines and event-specific identification thereof
MX2009006303A (es) 2006-12-14 2009-10-21 Dow Agrosciences Llc Proteinas de dedo de zinc no canonicas optimizadas.
CN101883863B (zh) 2007-09-27 2018-01-23 桑格摩生物科学股份有限公司 生物活性核酸酶的快速体内鉴定
EP2455454A1 (en) * 2010-11-19 2012-05-23 Albert-Ludwigs-Universität Freiburg Method for introducing a polynucleotide into plant protoplast cells
BR112013031244B1 (pt) * 2011-06-07 2019-10-29 Fraunhofer Ges Forschung método para a geração de uma linhagem de células de planta monoclonal a partir de uma população heterogênea de células de planta

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200815593A (en) * 2006-08-11 2008-04-01 Dow Agrosciences Llc Zinc finger nuclease-mediated homologous recombination

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bastiaan O.R. et al., "Positive Fluorescent Selection Permits Precise, Rapid, and In-Depth Overexpression Analysis in Plant Protoplasts", Plant Physiology, March 2009, Vol. 149, pp. 1231–1239.
Bastiaan O.R. et al., "Positive Fluorescent Selection Permits Precise, Rapid, and In-Depth Overexpression Analysis in Plant Protoplasts", Plant Physiology, March 2009, Vol. 149, pp. 1231–1239. Kageyama, Y., et al.," Plant regeneration from patchouli protoplasts encapsulated in alginate beads", Plant Cell Tissue Organ Cult., 1995, Vol.41, P.65-70. *
Kageyama, Y., et al.," Plant regeneration from patchouli protoplasts encapsulated in alginate beads", Plant Cell Tissue Organ Cult., 1995, Vol.41, P.65-70.

Also Published As

Publication number Publication date
AU2013312198A1 (en) 2015-03-19
KR20150052241A (ko) 2015-05-13
US20140075593A1 (en) 2014-03-13
MX2015002964A (es) 2015-06-05
IL237535A0 (en) 2015-04-30
HK1210220A1 (zh) 2016-04-15
TW201424578A (zh) 2014-07-01
IL237535B (en) 2019-11-28
RU2015112573A (ru) 2016-10-27
AU2013312198B2 (en) 2018-11-08
RU2679510C2 (ru) 2019-02-11
KR102219621B1 (ko) 2021-02-24
WO2014039970A9 (en) 2014-10-09
JP2015527085A (ja) 2015-09-17
IN2015DN01785A (zh) 2015-05-29
AR092482A1 (es) 2015-04-22
BR112015004864B8 (pt) 2023-05-16
CN111118100A (zh) 2020-05-08
WO2014039970A1 (en) 2014-03-13
EP2893024B1 (en) 2019-12-04
EP2893024A4 (en) 2016-03-30
EP2893024A1 (en) 2015-07-15
CA2883800C (en) 2021-07-13
CN104736712A (zh) 2015-06-24
CA2883800A1 (en) 2014-03-13
BR112015004864A2 (pt) 2017-11-21
JP6362600B2 (ja) 2018-07-25
BR112015004864B1 (pt) 2022-10-25
MX367170B (es) 2019-08-07
ZA201501736B (en) 2016-10-26

Similar Documents

Publication Publication Date Title
TWI670004B (zh) 用來產生植物之螢光激活細胞分選富增技術
TWI669396B (zh) 用於基因標定及性狀疊加之經工程處理的轉殖基因整合平台(etip)
Svitashev et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA
EP3036333B1 (en) Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof
CN102821598B (zh) 供植物中基因靶向用的工程化降落场
WO2018106727A1 (en) Engineered nuceic acid-targeting nucleic acids
CN105025702A (zh) Fad2性能基因座及相应的能够诱导靶向断裂的靶位点特异性结合蛋白
CN105264067A (zh) Fad3性能基因座及相应的能够诱导靶向断裂的靶位点特异性结合蛋白
EP3110945A1 (en) Compositions and methods for site directed genomic modification
US11732269B2 (en) Recombinant maize B chromosome sequence and uses thereof
CN113924367A (zh) 提高水稻籽粒产量的方法
KR20160065952A (ko) 제아 메이스 메탈로티오네인-유사 조절 요소 및 그의 용도
BR112018006553B1 (pt) Ácido nucleico recombinante e método para produzir uma célula de milho transgênica