TWI630915B - 無細胞百日咳疫苗 - Google Patents

無細胞百日咳疫苗 Download PDF

Info

Publication number
TWI630915B
TWI630915B TW103108076A TW103108076A TWI630915B TW I630915 B TWI630915 B TW I630915B TW 103108076 A TW103108076 A TW 103108076A TW 103108076 A TW103108076 A TW 103108076A TW I630915 B TWI630915 B TW I630915B
Authority
TW
Taiwan
Prior art keywords
fim
vaccine
pertussis
composition according
vaccine composition
Prior art date
Application number
TW103108076A
Other languages
English (en)
Other versions
TW201440786A (zh
Inventor
珍 休尼斯 普爾門
Original Assignee
傑森疫苗防護公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 傑森疫苗防護公司 filed Critical 傑森疫苗防護公司
Publication of TW201440786A publication Critical patent/TW201440786A/zh
Application granted granted Critical
Publication of TWI630915B publication Critical patent/TWI630915B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/099Bordetella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0016Combination vaccines based on diphtheria-tetanus-pertussis
    • A61K39/0018Combination vaccines based on acellular diphtheria-tetanus-pertussis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/05Actinobacteria, e.g. Actinomyces, Streptomyces, Nocardia, Bifidobacterium, Gardnerella, Corynebacterium; Propionibacterium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/08Clostridium, e.g. Clostridium tetani
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/102Pasteurellales, e.g. Actinobacillus, Pasteurella; Haemophilus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/125Picornaviridae, e.g. calicivirus
    • A61K39/13Poliovirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/235Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bordetella (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1225Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Bordetella (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55544Bacterial toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/32011Picornaviridae
    • C12N2770/32611Poliovirus
    • C12N2770/32634Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本發明涉及一種無細胞百日咳(aP)疫苗組合物,包含百日咳博多特氏菌抗原百日咳類毒素(PT)、絲狀血凝素(FHA)、以及2型和3型菌毛(FIM)、和隨意地百日咳桿菌粘附素(PRN),其中FIM係以每一人類劑量12-100μg之量存在。

Description

無細胞百日咳疫苗
本發明涉及健康護理領域。更確切地說,本發明涉及無細胞百日咳(acellular pertussis)疫苗領域。
百日咳博多特氏菌(Bordetella pertussis)係百日咳(whooping cough)之病原體。在1940年代引入已殺死的全細胞百日咳博多特氏菌(wP)疫苗已成功降低了兒童和嬰兒因百日咳所導致的發病率和死亡率[http://www.cdc.gov/vaccines/pubs/pinkbook/downloads/pert.pdf;比斯加德(Bisgard),K.M.http://www.cdc.gov/vaccines/pubs/pertussisguide/downloads/chapter1.pdf.2000;愛德華(Edwards),K.M.和德克爾(Decker),M.D.百日咳疫苗(Pertussis vaccines).見《疫苗》(Vaccines)(編輯普洛特金(Plotkin),S.A.,奧倫斯坦(Orenstein),W.A.以及奧菲特(Offit),P.A.)愛思唯爾健康科學出版社(Elsevier Health Sciences),2008.467-517;這一讀本在下文被稱為“《疫苗》,普洛特金2008”]。儘管如此,在世界範圍內, 百日咳仍為兒童中的重要問題。來自WHO的評估表明,在2008年發生了約1,600萬例百日咳,並且約195,000名兒童死于這一疾病。
自1990年代以來,wP疫苗已在大部分高收入國家並且近年來也在一些中等收入國家被無細胞百日咳(aP)疫苗替換。無細胞百日咳疫苗與wP疫苗相比誘發相對更少的副作用,該等wP疫苗與發燒(38℃)、在注射部位之反應原性以及(儘管程度較小)驚厥和低滲性低應答間期(hypotonic-hyporesponsive episode)的高風險相關[張(Zhang),科克倫系統綜述數據庫(Cochrane Database Syst Rev)2011]。
在引入aP疫苗後十到二十年,青少年和成人百日咳通報升高已被若干國家報導,包括US、UK、澳大利亞、挪威以及荷蘭。可能的解釋包括已改善之診斷和監測、循環百日咳博多特氏菌菌株適應成疫苗、和/或與aP疫苗相關的免疫性減弱之增加[田中(Tanaka),《美國醫學會雜誌》(Jama)2003,290:2968-2975;佐藤(Satoh),《比較免疫學、微生物學與傳染病》(Comp Immunol Microbiol Infect Dis)2010,33:e81-88;策普(Zepp),《柳葉刀傳染病》(Lancet Infect Dis)2011;德格裡夫(De Greeff),《第一公共科學圖書館》(PLoS One)2010,:e14183;談(Tan),《兒科傳染病雜誌》(Pediatr Infect Dis J)2005,24(5增刊):S10-18]。
目前,所有被許可的aP疫苗由最少一種、但多數情況係多種、直到最多五種(已被脫毒的)百日咳博多特氏菌毒力因數組成。所有aP疫苗含有百日咳類毒素(PT)。多組分aP疫苗至少包括PT和百日咳博多特氏菌表面粘附素 絲狀血凝素(FHA)。在價數增加情況下,另外存在粘附素百日咳桿菌粘附素(PRN)和2型和3型菌毛(FIM2和FIM3,在此合起來稱為FIM或FIM2/3)中的一種或多種[愛德華,見《疫苗》,普洛特金,2008.467-517]。
WO 96/34883描述了每一人類劑量1-10μg FIM之劑量,以aP疫苗中每一人類劑量10和5μg之劑量為例,而實際上僅測試每一人類劑量5μg之劑量,並且測試疫苗被認為有效。
普遍認為aP5疫苗(具有五種組分PT、FHA、PRN、FIM2/3的無細胞百日咳疫苗;DTaP5為進一步包含破傷風類毒素和白喉類毒素之aP5疫苗)為當前可獲得的最有效aP疫苗。可購得的已註冊aP5疫苗中存在的aP組分之單獨量(以每一人類劑量的微克數為單位):2.5-20 PT、5-20 FHA、3 PRN以及5 FIM。
在1990年代中期歐洲進行的若干無細胞百日咳疫苗功效試驗中,嘗試測定單獨aP疫苗組分的保護的免疫相關性。使用來自瑞典DTaP5(PT+FHA+PRN+FIM2/3)試驗之數據,證明了臨床保護與暴露前血清中的針對PRN、FIM2以及PT(而不是針對FHA)的IgG抗體的存在之間的統計學上顯著的相關性[斯托薩特(Storsaeter),《疫苗》1998,16:1907-1916]。FIM3似乎為DTaP5內的非保護組分[波曼(Poolman),《疫苗專家評論》(Expert Reviews Vaccines)2007,6:47-56]。
在德國從來自疫苗試驗的受試者所採集的血清允許評估與保護相關的針對PT、FHA、PRN以及FIM2的抗體之具體水平,它顯示僅針對PRN和PT的抗體與保護顯著相關[斯蒂爾(Stehr),1998,《兒科學》(Pediatrics)101: 1-11;徹麗(Cherry),1998,《疫苗》16:1901-1906]。此外,臨床前研究已顯示,添加PRN增強了在鼠類鼻內感染模型中由含有PT和FHA的疫苗所賦予的保護水平[吉索(Guiso),1999,《疫苗》17:2366-2376;德諾埃(DeNoel),2005,《疫苗》23:5333-5341]並且針對PRN的抗體係調理吞噬百日咳博多特氏菌的關鍵[赫爾維希(Hellwig),2003,《傳染病雜誌》(JID)188:738-742]。該等數據合起來表明PT和PRN為當前無細胞百日咳疫苗的主要保護性抗原。
作為前瞻性aP疫苗功效試驗的一部分,歷經18個月時間,測量了從參與者獲得的連續血清樣品中的針對PT、FHA、PRN以及FIM2/3的保護性IgG。歷經18個月,針對PT的IgG衰減之百分比最強(幾何平均IgG效價減少73%)並且顯著高於針對PRN、FHA以及FIM的抗體減少的百分比。相比之下,針對PRN的IgG抗體具有最低衰減率(幾何平均IgG效價減少56%)[萊(Le),2004,《傳染病雜誌》,190:535-544]。
組合1)PT和PRN為aP疫苗中的主要保護性抗原和2)針對PT的抗體具有比針對PRN的抗體顯著更高的衰減率這兩個觀察結果,突出了抗PRN抗體為提供aP介導的針對百日咳博多特氏菌感染的長期保護的關鍵。
然而,在過去幾年中,已在全世界觀察到不表達PRN的百日咳博多特氏菌菌株之出現,例如在法國、日本、荷蘭、USA、芬蘭、挪威以及瑞典[布歇(Bouchez),2009,《疫苗》27:6034-41;黑格勒(Hegerle),2012,《臨床微生物學和感染》(Clin.Microbiol.Infect.)18:E340-346;大塚(Otsuka),2012,《第一公共科學圖書館》7:e31985;阿德瓦尼(Advani),2013,《臨床微生物 學雜誌》(J.Clin.Micro)51:422-428]。美國最近一項研究顯示,在2011年和2012年間由來自在費城就醫的兒童的樣本所培養的百日咳博多特氏菌的12種分離株中的11種事實上為PRN陰性[昆南(Queenan),2013,《 新英格蘭醫學雜誌》 ( N Engl J Med. )368:583-4]。目前不瞭解此菌株適應是否主要為疫苗推動的。有可能該等PRN陰性菌株可以避開疫苗誘發之免疫性,尤其在抗PT效價已衰退時,並且這已造成所觀察到的百日咳博多特氏菌疾病增加。
目前已被許可並銷售的aP疫苗因此似乎不夠有效,尤其針對新近出現的PRN陰性菌株。仍需要其他aP疫苗,該等aP疫苗具有特別是針對該等PRN陰性百日咳博多特氏菌菌株之改善功效。
我們已意外發現包含高劑量FIM2/3的aP疫苗顯示顯著改善的抵抗PRN陰性百日咳博多特氏菌菌株之保護。本發明提供一種無細胞百日咳(aP)疫苗組合物,該疫苗組合物包含百日咳博多特氏菌抗原百日咳類毒素(PT)、絲狀血凝素(FHA)以及2型和3型菌毛(FIM)、和隨意地百日咳桿菌粘附素(PRN),其中FIM係以每一人類劑量12-100μg之量存在。
在某些實施方式中,FIM係以每一人類劑量15-80、15-60、20-60、或12-50、15-50、20-50、20-30、20-25、或12-30、或12-25、或約13、14、15、16、17、18、19、20、21、22、23、24或25μg之量存在。
在較佳的實施方式中,本發明之aP疫苗包含百日咳桿菌粘附素(PRN)。
在某些實施方式中,PT被基因地脫毒。
在某些實施方式中,本發明之組合物進一步包含來自除百日咳博多特氏菌以外的一種或多種病原體之抗原。
在其某些實施方式中,該等組合物包含以下一者或多者:a)破傷風類毒素;b)白喉類毒素;c)b型流感嗜血桿菌(Haemophilus influenzae)(Hib)寡糖或多糖結合物;d)B型肝炎病毒表面抗原(HBSAg);以及e)失活的脊髓灰質炎病毒(IPV)。在某些實施方式中,本發明之組合物包含據本發明的無細胞百日咳疫苗組合物、破傷風類毒素以及白喉類毒素。
在某些實施方式中,根據本發明之組合物進一步包含一佐劑。在某些實施方式中,該佐劑包含鋁鹽,如磷酸鋁、氫氧化鋁、或磷酸鋁和氫氧化鋁兩者。
本發明還提供了一種在受試者中誘發抵抗百日咳博多特氏菌的免疫反應或對該受試者進行疫苗接種以抵抗百日咳博多特氏菌之方法,該方法包括給予該受試者根據本發明之組合物。
本發明還提供了一種保護受試者免受由百日咳博多特氏菌的PRN陰性菌株感染所引起的百日咳之方法,該方法包括給予該受試者根據本發明之組合物。
本發明還提供了根據本發明之組合物,用於藉由給予受試者該組合物在受試者中誘發抵抗百日咳博多特氏菌的免疫反應或對該受試者進行疫苗接種以抵抗百日咳博多特氏菌。本發明還提供了根據本發明之組合物,用於製備藉由給予受試者該組合物在受試者中誘發抵抗百日咳博多特氏菌的免疫反應或對 該受試者進行疫苗接種以抵抗百日咳博多特氏菌的藥劑。在某些實施方式中,需要免疫反應來抵抗的百日咳博多特氏菌包括PRN陰性菌株。
本發明還提供了一種對人類受試者進行疫苗接種以抵抗百日咳博多特氏菌、隨意地百日咳博多特氏菌的PRN陰性菌株之方法,該方法包括給予該受試者以下百日咳博多特氏菌抗原:百日咳類毒素(PT)、絲狀血凝素(FHA)以及2型和3型菌毛(FIM)、和隨意地百日咳桿菌粘附素(PRN),其中FIM係以12-100μg的量給予。
發明之詳細說明
本發明涉及組合物,該等組合物包含已脫毒的百日咳博多特氏菌毒力因數,特別是百日咳類毒素(PT)、絲狀血凝素(FHA)以及2型和3型菌毛(FIM)、和隨意地百日咳桿菌粘附素(PRN),其中FIM係以每一人類劑量12-100μg之量存在。該等組合物可被用作無細胞百日咳(aP)疫苗,並且在此被證明意外地比當前可獲得的業界最好aP5疫苗更有效。
具體來說,增加劑量的FIM與這一組分先前描述和推薦的劑量相比,產生與已銷售的aP5疫苗和其他已銷售的aP疫苗相比改善的針對新近出現的百日咳博多特氏菌PRN陰性菌株的疫苗效力。這是非常令人驚訝的,因為先前技術並未提供增加每一人類劑量的FIM的量超過推薦量5μg之任何建議,並且該技術實際上提供了增加這一組分的量並不產生改善功效的建議。
已例如在人類和動物模型中研究增加疫苗中FIM的劑量的作用。在17-19個月大的嬰兒中,顯示出在具有10μg PT、5μg FHA、3μg PRN以及5μg FIM2/3或包括兩倍量的所有該等抗原的兩種5組分aP疫苗之間不存在不良反應頻率、抗體效價或免疫後平均倍數效價升高之差異(哈爾珀林(Halperin),《兒童和 青少年醫學文獻》(Arch Pedi Adol Med)1994,148:1220-1224)。
在動物模型中,發現當小鼠接種三個種類的含有不同量FIM的百日咳疫苗時,體重、脾臟重量、外周白細胞計數以及肺的百日咳博多特氏菌之清除率不存在差異(諸熊(Morokuma),《生物學標準化的發展》(Devel Biol Stand)1991,73:223-232)。
另一研究顯示,接受高劑量(20μg)或低劑量(4μg)的重組FIM2或FIM3的小鼠之間的IgG抗體水平不存在差異。鼻內激發七天后,對照小鼠、接種FIM2的小鼠或接種FIM3的小鼠的肺的細菌接種量不存在差異(徐(Xu),《BMC微生物學》(BMC Microbiology)2009,9:274-281)。
我們關於在小鼠鼻咽激發模型中使用高劑量FIM接種的功效增加之發現因此非常令人驚訝。
因此,先前技術中不存在增加aP疫苗中FIM的量超過常用量會產生針對新近出現的PRN陰性突變體菌株的改善功效之指示或建議。
如在此使用的“人類劑量”(有時稱為“單次人類劑量”)意思指在單次給藥中給予人類的疫苗之量。典型地,這一量係以0.1-2ml,例如0.2-1ml,典型地0.5ml的體積存在。指定量可因此例如以每0.5ml原液疫苗的微克數的濃度存在。在某些實施方式中,(單次)人類劑量因此等於0.5ml。
正在銷售或已銷售的若干aP疫苗的組分描述於“《疫苗》第5版.S.普洛特金,W.奧倫斯坦,P.奧菲特,2008,第2部分,第21章“百日咳疫苗”,K.M.愛德華和M.D.德克爾.第467-517頁的表21-3和21-4中,該文獻係藉由引用 結合在此。本發明之aP疫苗組合物包含PT、FHA以及FIM2/3,且較佳的是PRN。該等組分係多種已銷售aP疫苗的標準組分,並且可購自不同製造商(參見例如《疫苗》,普洛特金2008的第21章的表21-3),並且例如可購自李斯特生物實驗室公司(List Biological Laboratories,Inc)(加利福尼亞州坎貝爾(Campbell,California))。本發明之組合物包含已脫毒的百日咳毒素,也稱為百日咳類毒素(PT)。PT可被化學地或基因地脫毒。化學地脫毒可例如藉由多種常規化學脫毒方法中的任一種來進行,如用甲醛、過氧化氫、四硝基甲烷或戊二醛處理。舉例來說,脫毒可如WO 96/34883第17頁和實例3所述來進行,該文獻係藉由引用結合在此。在某些較佳的實施方式中,PT被基因地脫毒。這可藉由在百日咳毒素基因中進行突變以使百日咳毒素的催化亞單位S1的酶促活性失活來完成,並且已例如被描述於US 7,144,576、US 7,666,436以及US 7,427,404中。使百日咳毒素脫毒的特別有利的突變被例如提供於US 7,427,404中,該文獻係藉由引用結合在此。一特別有利的實施方式係一種百日咳毒素,其中S1亞單位中百日咳全毒素胺基酸序列中的胺基酸殘基Glu129被Gly取代(E129G)並且Arg9被Lys取代(R9K)(美國專利7,427,404;布斯裡(Buasri),《BMC微生物學》2012,12:61)。該等被基因地脫毒的PT(E129G、R9K)還可便利地從被基因工程改造的顯示這一PT生產增強的菌株中分離出[布斯裡,2012,同上]。使用被基因地脫毒的突變體的優勢為不使用或較少使用脫毒所需的危險化學品、改善PT抗原的抗原決定基的保存並且因此與其的免疫反應更好、和/或可用於疫苗的抗原之量降低。在其他實施方式中,PT被化學地脫 毒。被化學地或基因地脫毒的PT被廣泛用於aP疫苗中(參見例如《疫苗》,普洛特金2008的第21章的表21-3)。PT可例如如WO 96/34883的第16頁和實例2中所述來獲得並且純化,該文獻係藉由引用結合在此。PT還可使用如例如US5085862、WO96/34623、US4705868、EP0336736、WO9115505、EP0306318、EP0322533、EP0396964、EP0275689、WO91/12020、EP0427462、WO9819702以及US4784589中所述的方法來獲得,該等文獻各自是藉由引用結合在此。
被化學地或基因地脫毒的PT可購自多種商業來源。在某些實施方式中,根據本發明的疫苗中PT的量為每一人類劑量(典型地為0.5ml)2-50μg、5-40μg、10-30μg或20-25μg。
根據本發明之組合物在某些實施方式中包含百日咳桿菌粘附素(PRN),百日咳博多特氏菌的69kD外膜蛋白(因此有時也稱為69K抗原)。PRN可例如如WO 96/34883的第18-19頁和實例2中所述來獲得並且純化,該文獻係藉由引用結合在此。它還可例如如EP0162639、EP0484621、US6444211、US5276142、US5101014、EP0336736、WO96/34623、WO90/16651以及WO90/56076中所述來獲得,該等文獻都是藉由引用結合在此。PRN也可便利地從已被基因工程改造以表達高水平的PRN的百日咳博多特氏菌菌株中分離出,如例如[布斯裡,2012,同上]中所述。
在某些實施方式中,根據本發明的疫苗中PRN的量為每一人類劑量(典型地為0.5ml)0.5-100μg、1-50μg、2-20μg、3-30μg、5-20μg或6-10μg[參見例如EP 0928198]。
根據本發明之組合物包含絲狀血凝素(FHA);百日咳博多特氏菌的一重要的230-kDa粘附素,該粘附素對於百日咳博多特氏菌粘附於呼吸道宿主睫狀上皮細胞來說是重要的;以及已銷售的多價aP疫苗中的一確定組分。FHA可例如如WO 96/34883的第17-18頁和實例2中所述來獲得並且純化,該文獻係藉由引用結合在此。FHA還可例如如WO9013313、EP0484621、WO9634623、EP0336736、WO9115505、US4784589以及WO9004641中所述來獲得,該等文獻都是藉由引用結合在此。
在某些實施方式中,根據本發明的疫苗中FHA的量為每一人類劑量(典型地為0.5ml)2-50μg、5-40μg、10-30μg或20-25μg。
根據本發明之組合物包含菌毛凝集原2和3,也稱為菌毛2和3或凝集原2和3或Agg 2和3(在此稱為FIM2和FIM3,或“FIM”或“FIM2/3”,它係呈混合物形式的FIM2和FIM3的一組合)。典型地,在根據本發明之組合物中,FIM 2與FIM 3的重量比係從約1:3到約3:1,例如從約1:1到約3:1,例如從約1.5:1到約2:1。FIM的製備被詳細描述於WO 96/34883的第12-13頁和實例2中,該文獻係藉由引用結合在此。FIM還可例如如WO9634623、US4784589、US6475754、EP0555894、WO9858668以及WO0207764中所述來獲得,該等文獻都是藉由引用結合在此。
根據本發明的疫苗中FIM的量為每一人類劑量(典型地為0.5ml)12-100μg。在某些實施方式中,這一量為每一人類劑量(典型地為0.5ml)12-50μg或12-30μg。在本發明的較佳的實施方式中,FIM的量為每一人類劑量(典型 地為0.5ml)至少15μg。在某些實施方式中,這一量為每一人類劑量(典型地為0.5ml)15-100μg、15-80μg、15-60μg、15-50μg、15-30μg或15-25μg。在本發明的其他較佳的實施方式中,FIM的量為每一人類劑量(典型地為0.5ml)至少20μg。在某些實施方式中,這一量為每一人類劑量(典型地為0.5ml)20-100μg、20-80μg、20-60μg、20-50μg、20-30μg、20-25μg或25-50μg。
FIM可從百日咳博多特氏菌中分離出,或可重組產生,或例如可購自李斯特生物實驗室公司(加利福尼亞州坎貝爾;http://www.listlabs.com,線上目錄中的產品號186)。
在某些較佳的實施方式中,根據本發明的疫苗組合物包含每一人類劑量(或每0.5ml原液疫苗):10-25μg PT、10-25μg FHA、3-8μg PRN以及12-50μg FIM。在某些較佳的實施方式中,根據本發明的疫苗組合物包含每一人類劑量(或每0.5ml原液疫苗):20-25μg PT、20-25μg FHA、3-8μg PRN以及12-50μg FIM。在某些較佳的實施方式中,根據本發明的疫苗組合物包含每一人類劑量(或每0.5ml原液疫苗):20-25μg PT、20-25μg FHA、3-8μg PRN以及12-25μg FIM。在某一實施方式中,本發明提供一種疫苗,該疫苗包含每一人類劑量(或每0.5ml原液疫苗):約20μg PT、約20μg FHA、約3μg PRN以及約15-20μg FIM。
製備根據本發明的疫苗的一簡單方式係向一可購得的aP5疫苗中添加可購得的FIM。本發明的疫苗還可簡單地藉由向一可購得的包含PT和FHA但還沒有FIM的aP疫苗(aP2)或一可購得的包含PT、FHA以及PRN但還沒有FIM 的aP疫苗(aP3)中添加FIM來製備。在某些實施方式中,FIM可首先被吸附於佐劑(如果需要這樣的話),例如氫氧化鋁和/或磷酸鋁,隨後添加到其他組分。在其他實施方式中,FIM在沒有預先吸附到佐劑的情況下被添加到其他組分。
如本揭露中所用的關於數值的術語‘約’意思指值±10%。
在某些實施方式中,本發明之組合物還可包含非百日咳蛋白質組分,例如以便獲得組合疫苗[德克爾,M.D.,愛德華,K.M.以及柏格茨(Bogaerts),H.H.組合疫苗(Combination vaccines).見《疫苗》(編輯普洛特金,S.,奧倫斯坦,W.A.以及奧菲特,P.A.)愛思唯爾健康科學出版社,2008.1069-1101]。在某些實施方式中,根據本發明之組合物可因此進一步包含來源於除百日咳博多特氏菌以外的一種或多種病原體之抗原。在某些實施方式中,根據本發明之組合物包含以下一者或多者:破傷風類毒素(TT)、白喉類毒素(DT)、b型流感嗜血桿菌寡糖或多糖結合物(Hib)、B型肝炎病毒表面抗原(HBsAg)、失活的脊髓灰質炎病毒(IPV)。
aP與該等非百日咳組分的組合疫苗係已知並且被廣泛使用的。組合疫苗的製備已例如被描述在WO2010/046935、US6013264、WO2007/054820、WO98/000167以及EP1946769中,該等文獻都是藉由引用結合。
在某些實施方式中,根據本發明的aP5(或aP4:PT、FHA、FIM2/3)在進一步包含DT和TT的一組合物中,從而提供根據本發明之DTaP5(或DTaP4)疫苗。DTaP5疫苗被廣泛用於預防白喉、破傷風以及百日咳。根據本發明之疫 苗具有比之前描述的DTaP5疫苗更高量的FIM,並且比常規DTaP5疫苗更有效地針對PRN陰性百日咳博多特氏菌菌株。
用於使DT分離、純化以及脫毒的一種方式被描述在WO 96/34883的第33-34頁,該文獻係藉由引用結合在此。DT還可例如如US4709017、US5843711、US5601827、US5917017以及WO96/34623中所述來獲得,該等文獻都是藉由引用結合。
用於使TT分離、純化以及脫毒的一種方式被描述在WO 96/34883的第34-36頁,該文獻係藉由引用結合在此。TT還可例如如EP0209281、EP0478602以及WO96/34623中所述來獲得,該等文獻都是藉由引用結合。
Hib寡糖或多糖結合物可例如如WO2007/054820、WO2004/110480、US6333036、WO2010/046935、US4372945、US4474757、WO95/08348、WO2010/046935、US4673574、EP0161188、EP0208375以及EP0477508中所述來獲得,該等文獻都是藉由引用結合。Hib抗原可例如是Hib的莢膜多糖,或該多糖或其衍生寡糖與載體蛋白的結合物,該載體蛋白如DT、TT或CRM197(從白喉棒狀桿菌(Corynebacterium diphtheriae)C7分離出的白喉毒素的一無毒變異體(b197))。
HBsAg可例如如EP0226846、EP0299108、US6013264、WO2007/054820、WO2010/046935以及WO9324148中所述來獲得,該等文獻都是藉由引用結合。
IPV可以是單價,含有一種類型的脊髓灰質炎病毒(1型、2型或3型),或二價(含有兩種類型的脊髓灰質炎病毒,例如1型和2型、1型和3型或2 型和3型),或三價(含有三種類型的脊髓灰質炎病毒,即1型、2型以及3型)。較佳的是,根據本發明的IPV含有失活的1型、2型以及3型脊髓灰質炎病毒。IPV可例如如US 4525349和WO2011/006823中所述來獲得,該等文獻係藉由引用結合在此。
該等非百日咳組分可從多個製造商獲得。實例被描述在[《疫苗》第5版.S.普洛特金,W.奧倫斯坦,P.奧菲特,2008,第2部分,第38章(《組合疫苗》,M.D.德克爾,K.M.愛德華,H.H.柏格茨,第1069-1101頁)]中。
在某些實施方式中,根據本發明之組合物包含一組合物,該組合物包含根據上述實施方式中的任何一個的百日咳組分(aP5或aP4疫苗)(即包含每一人類劑量12-100μg FIM,和PT、FHA以及隨意地PRN;下文中稱為“根據本發明之aP”、或簡稱為“aP5*”)和DT。
在某些實施方式中,根據本發明之組合物包含根據本發明的aP,和TT。
在某些實施方式中,根據本發明之組合物包含根據本發明的aP,和IPV(在此稱為“aP5*-IPV”)。
在某些實施方式中,根據本發明之組合物包含根據本發明的aP,DT以及TT(在此稱為“DTaP5*”)。
在某些實施方式中,根據本發明之組合物包含根據本發明的aP,DT、TT以及Hib(在此稱為“DTaP5*-Hib)。
在某些實施方式中,根據本發明之組合物包含根據本發明的aP,DT、TT以及IPV(在此稱為“DTaP5*-IPV”)。
在某些實施方式中,根據本發明之組合物包含根據本發明的aP,DT、TT以及HBSAg(在此稱為“DTaP5*-HepB”)。
在某些實施方式中,根據本發明之組合物包含根據本發明的aP,DT、TT、Hib以及HBSAg(在此稱為“DTaP5*-Hib-HepB”)。
在某些實施方式中,根據本發明之組合物包含根據本發明的aP,DT、TT、Hib以及IPV(在此稱為“DTaP5*-Hib-IPV”)。
在某些實施方式中,根據本發明之組合物包含根據本發明的aP,DT、TT、HBSAg以及IPV(在此稱為“DTaP5*-HepB-IPV”)。
在某些實施方式中,根據本發明之組合物包含根據本發明的aP,DT、TT、Hib、HBSAg以及IPV(在此稱為“DTaP5*-Hib-HepB-IPV”)。
可隨意地添加其他非百日咳組分,例如有時在組合疫苗中與aP組合的組分,如來自腦膜炎球菌和/或肺炎雙球菌的抗原。
關於組合疫苗,非百日咳組分的量可變化。一般來講,可根據本發明使用如典型地存在於個別或組合疫苗中的該等組分的量。參見例如《疫苗》第5版.S.普洛特金,W.奧倫斯坦,P.奧菲特,2008,第2部分,關於各種組分和組合疫苗;具體地說,第38章描述了包含aP疫苗與上文提及的組分的組合疫苗[德克爾,第1069-1101頁];第10章描述了DT[維特克(Vitek),第139-156頁];第31章描述了TT[瓦希拉克(Wassilak),第805-840頁];第25章描述了IPV疫苗[普洛特金,第605-630頁];第11章描述了Hib疫苗[錢德蘭(Chandran),第157-176頁];以及第13章描述了B型肝炎疫苗(基於HBsAg) [馬斯特(Mast),第205-242頁],這些都是藉由引用結合。每一劑量的抗原之合適量(它也常以IU或Lf(絮凝單位)形式來表示DT和TT的量,參見例如[德克爾,見《疫苗》,第1069-1101頁,同上],但此處我們提供微克數)的非限制性實例將例如為:1-100μg、例如2-40μg、例如6-25μg、例如15-25μg DT;1-50μg、例如2-20μg、例如5-10μg TT;每毫升1-100μg、例如3到40μg HBsAg蛋白質;0.1-100μg、例如0.2到50μg、例如1到25μg、例如2-10μg呈與載體蛋白的結合物形式的Hib莢膜多糖或其寡糖;含有野生型衍生的IPV的產物(wt-IPV)一般被配製成每一劑量對應地含有40-8-32 D-Ag單位的1型、2型以及3型脊髓灰質炎病毒。然而,該等量也可變化,對於1型IPV而言例如也可使用更低的量,如10-20 D-Ag單位,並且也可改變2型和3型IPV的量(參見例如EP 2066344)。量也可根據預定用途而改變,例如加強疫苗可在某些實施方式中含有比初免疫苗更少單位之某些組分。
根據本發明之組合物中的蛋白質組分打算在給予合格受試者後誘發免疫反應。技術人員應清楚,本文中無論哪裡提到蛋白質或其突變體(例如類毒素),也可使用該等蛋白質的一部分並且該等蛋白質的一部分可具有等效的或在一些情況下較佳的用於誘發免疫反應的性質。另外,該等蛋白質可含有(另外)突變,如缺失、插入、取代等。因此,指定蛋白質組分的免疫原性片段和變異體被包括於在此指定的蛋白質的含義內。
根據本發明之組合物可用作無細胞百日咳疫苗,或用作組合疫苗的組分,該等組合物在給予合格的受試者後引起針對該等組合物中的一個或多個組分 的免疫反應。免疫反應可包括細胞反應和/或體液反應。該等免疫反應較佳的是賦予抵抗病原體感染或抵抗疾病的保護,或至少降低由衍生出相應組分的病原體所引起的症狀之嚴重程度(即在任何情況下較佳的是抵抗百日咳博多特氏菌,並且也較佳的是抵抗其PRN陰性突變體)。根據本發明之組合物可因此合適地稱為疫苗。疫苗的劑量係在單次給藥中給予受試者的量。受試者可合適地為動物或人類,並且在某些較佳的實施方式中,該受試者為人類。許多疫苗合適地並且實際上較佳的是在足夠的時間間隔下給予同一個體一次以上以便在該個體中獲得加強作用,例如給藥之間相隔至少四周、到若干年以至約二十年。多次免疫通常給予未處理的嬰兒(naive infant)。根據本發明之組合物也可被給予一次以上,例如在一非限制性實施方式中,兩次或三次或更多次,而每次給藥之間相隔至少4周,例如相隔一個月或兩個月的時間。一個非限制性實例係根據EPI時間表在6周、10周以及14周齡時給藥。另一療程將在2個月、4個月、6個月齡時。在某些實施方式中,加強疫苗接種係在10-20年後,例如在青春期的時候給予。可給予其他十年一次的加強疫苗接種。在某些實施方式中,根據本發明的aP在生命第一年被給予兩次或三次,另一加強在生命第二年被給予,並且另一加強在四到五歲時被給予,之後在約十二歲時給予青春期加強。接下來也可以是Td(被給予青少年的含有TT-DT的疫苗)加強劑建議,即每十年一次並且用Tdap替換Td,其中該無細胞百日咳組分係根據本發明之aP。然而,技術人員應清楚,根據本發明之aP疫苗的疫苗接種方案可被適當地改變,這從不同國家管理機構的已銷售aP疫苗的廣泛多樣的免疫時間表(療 程)中清楚地看出(例如《疫苗》第5版.S.普洛特金,W.奧倫斯坦,P.奧菲特,2008,第2部分,第21章“百日咳疫苗”,K.M.愛德華和M.D.德克爾 第467-517頁的表21-5)。
根據本發明之組合物還可合適地用作先前已接種其他疫苗的群體的加強疫苗,該等其他疫苗係那些具有與本發明之疫苗不同組成的wP或aP疫苗或具有與本發明的疫苗不同組成的包含wP或aP的組合疫苗。該等加強劑可例如被用於已未接種抵抗百日咳博多特氏菌的疫苗超過十年的成人或老年人的疫苗接種。重複該等加強劑疫苗接種(例如約每五年、十年或十五年一次)可為有用的。也已建議在每次懷孕時給予孕婦破傷風類毒素、減少的白喉類毒素以及無細胞百日咳疫苗(Tdap)而不考慮先前Tdap史。在某些實施方式中,根據本發明之aP被給予嬰兒、兒童、青少年、成人、老年人或孕婦,例如以aP形式或以Tdap形式。
根據本發明之組合物為藥物組合物。該等組合物包含根據本發明之組合物和典型地藥學上可接受的載體或賦形劑。在本發明上下文中,術語“藥學上可接受的”意思指載體或賦形劑在所用劑量和濃度下不會在給予它們的受試者中造成不希望有的或有害的影響。該等藥學上可接受的載體和賦形劑在本領域中眾所周知[雷明頓(Remington).《藥學科學和實踐》(The Science and Practise of Pharmacy),麥克出版公司(Mack Publishing Company)1990;福羅加爾(Frokjaer),S.和霍夫高(Hovgaard),L.《肽和蛋白質的藥物製劑開發》(Pharmaceutical Formulation Development of Peptides and Proteins),2000;《藥 用賦形劑手冊》(Handbook of Pharmaceutical Excipients),英國醫藥出版社(Pharmaceutical Press)2000]。該等組合物較佳的是以無菌溶液形式配製和給予。無菌溶液係藉由無菌過濾或藉由本領域中本身已知的其他方法來製備。該等溶液可接著被凍幹或填充到藥物劑量容器中。溶液pH值一般在pH 3.0到9.5的範圍內,例如pH 5.0到7.5。組合物之組分典型地在具有合適的藥學上可接受的緩衝劑的溶液中,並且該溶液還可含有鹽。在某些實施方式中,清潔劑係存在的。在某些實施方式中,疫苗可被配製成可注射製劑。該等配製品含有有效量之蛋白質組分,為無菌液體溶液、液體懸浮液或凍乾版本,並且隨意地含有穩定劑或賦形劑。用於aP疫苗或組合疫苗的儲存和藥物給予的合適配製品的若干實例係已知的(例如[《疫苗》第5版.S.普洛特金,等人,同上]中的表21-3和21-4)。合適稀釋劑之實例為PBS或生理鹽水。防腐劑可隨意地存在,例如苯氧乙醇、硫柳汞或對羥基苯甲酸酯。如果存在一防腐劑,那麼它較佳的是以低水平存在。假如一組合疫苗包含IPV,較佳的是避免使用硫柳汞,因為硫柳汞會導致IPV組分效能損失(參見例如索耶(Sawyer)LA,1994,《疫苗》12:851-856;EP 2066344)。可隨意地以痕量成分形式存在的其他組分為聚山梨醇酯-80、明膠以及化學毒化的殘餘物(例如,如果PT被化學地毒化),如戊二醛、甲醛。
較佳的是,根據本發明之疫苗被儲存在2-8℃之間。
在某些實施方式中,本發明之組合物包含其他一種或多種佐劑。佐劑係本領域中已知進一步增加對一種已施加的抗原決定簇的免疫反應(關於對佐劑的 綜述,參見例如蒙特莫利(Montomoli),2011,《疫苗專家評論》10:1053-1061)。合適佐劑之實例包括鋁鹽,如氫氧化鋁和/或磷酸鋁;油-乳液組合物(或水包油型組合物),包括角鯊烯-水乳液,如MF59(參見例如WO 90/14837);皂素配製品,如例如QS21和免疫刺激複合物(ISCOMS)(參見例如US 5,057,540、WO 90/03184、WO 96/11711、WO 2004/004762、WO 2005/002620);Toll樣受體(TLR)促效劑,例如TLR7激動劑(參見例如WO 2012/117377,例如第15-18頁),例如與鋁鹽(例如可吸附TLR激動劑的氫氧化鋁)組合;細菌或微生物衍生物,它們的實例為單磷醯脂質A(MPL)、3-O-去醯MPL(3dMPL)、含有CpG基序的寡核苷酸、ADP核糖基化細菌毒素或其突變體,如大腸桿菌熱不穩定腸毒素LT、霍亂毒素CT等。舉例來說,PT和破傷風類毒素也具有它們自己的佐劑特性。在某些實施方式中,本發明之組合物包含鋁作為佐劑,例如呈氫氧化鋁、磷酸鋁、磷酸鉀鋁或其組合的形式,濃度為每一劑量0.05-5mg(例如0.075-1.0mg)的鋁含量。
在其他實施方式中,本發明中所用的組合物不包含其他佐劑。
較佳的是,根據本發明之疫苗組合物包含一佐劑。在某些較佳的實施方式中,該佐劑為鋁鹽,如磷酸鋁、氫氧化鋁或其組合。較佳的是,一個、多個或全部aP抗原被吸附到鋁鹽上。其他抗原也可被吸附到鋁鹽上。在某些實施方式中,一個、多個或全部aP抗原(PT、FHA、FIM、PRN(如果存在的話))被吸附到氫氧化鋁上。在某些實施方式中,一個、多個或全部aP抗原(PT、FHA、FIM、PRN(如果存在的話))被吸附到磷酸鋁上。aP疫苗和aP組合疫 苗與鋁鹽的配製品被例如描述在[德諾爾(Denoël),2002,《疫苗》20:2551-2555]。典型地,個別組分被單獨地吸附到鋁鹽上,並且該等組分此後被混合形成疫苗配製品。這也允許製備某些組分被吸附到第一鋁鹽[例如Al(PO)4],而其他組分被吸附到第二鋁鹽[例如Al(OH)3]的疫苗。組合疫苗的其他組分也可被吸附到鋁鹽上,例如DT和TT可被吸附到氫氧化鋁或磷酸鋁或這些的組合上。DT和TT組分可被吸附到相同或不同的鋁鹽作為aP組分。具有增加價數的組合疫苗之其他組分也可被吸附到鋁鹽上,例如HBsAg、Hib和/或IPV可以或可以不被吸附到鋁鹽上。在其中組合疫苗包含HBsAg的某些較佳的實施方式中,HBsAg被吸附到磷酸鋁上(參見例如WO 93/24148)。如果Hib被包含在組合疫苗中並且某些其他組分(如DT、TT或aP中的一個或多個)被吸附到氫氧化鋁上,那麼干擾(降低Hib組分的功效)的風險可例如藉由以下而減小:將Hib吸附到磷酸鋁上或使用不被吸附到鋁佐劑上的Hib,並且藉由同時(即剛好在給藥之前)添加該Hib,或藉由以氫氧化鋁佐劑已被預飽和的方式與已被吸附到氫氧化鋁佐劑上的其他組分混合而使這一Hib與其他組分組合,如WO 99/48525中所詳細描述。技術人員因此意識到以合適方式配製根據本發明之組合疫苗的多種方式。
在某些實施方式中,根據本發明之疫苗組合物包含PT、FHA、FIM2/3以及氫氧化鋁,和隨意地PRN。在某些實施方式中,根據本發明之疫苗組合物包含PT、FHA、FIM2/3以及磷酸鋁,和隨意地PRN。在某些實施方式中,根據本發明之疫苗組合物包含PT、FHA、FIM2/3、氫氧化鋁以及磷酸鋁,和隨意 地PRN。在某些實施方式中,根據本發明之疫苗組合物包含DTaP5*和氫氧化鋁。在某些實施方式中,根據本發明之疫苗組合物包含DTaP5*和磷酸鋁。在某些實施方式中,根據本發明之疫苗組合物包含DTaP5*、氫氧化鋁以及磷酸鋁。在某些實施方式中,根據本發明之疫苗組合物包含aP5*-IPV,和氫氧化鋁或磷酸鋁或氫氧化鋁和磷酸鋁。在某些實施方式中,根據本發明之疫苗組合物包含DTaP5*-IPV,和氫氧化鋁或磷酸鋁或氫氧化鋁和磷酸鋁。在某些實施方式中,根據本發明之疫苗組合物包含DTaP5*-Hib,和氫氧化鋁或磷酸鋁或氫氧化鋁和磷酸鋁。在某些實施方式中,根據本發明之疫苗組合物包含DTaP5*-HepB,和氫氧化鋁或磷酸鋁或氫氧化鋁和磷酸鋁。在某些實施方式中,根據本發明之疫苗組合物包含DTaP5*-Hib-HepB,和氫氧化鋁或磷酸鋁或氫氧化鋁和磷酸鋁。在某些實施方式中,根據本發明之疫苗組合物包含DTaP5*-Hib-IPV,和氫氧化鋁或磷酸鋁或氫氧化鋁和磷酸鋁。在某些實施方式中,根據本發明之疫苗組合物包含DTaP5*-HepB-IPV,和氫氧化鋁或磷酸鋁或氫氧化鋁和磷酸鋁。在某些實施方式中,根據本發明之疫苗組合物包含DTaP5*-Hib-HepB-IPV,和氫氧化鋁或磷酸鋁或氫氧化鋁和磷酸鋁。
可使用標準給藥途徑進行根據本發明之組合物的給藥。非限制性實施方式包括不經腸給藥,如藉由例如皮內、肌肉內、經皮、鼻內注射等。在一個實施方式中,疫苗係藉由肌肉內注射到大腿中或注射到三角肌中而被給予。技術人員已知給予根據本發明之疫苗以便誘發對該疫苗中的至少一個抗原的免疫反應的多種可能性。一般來講,百日咳疫苗的標準劑量為在前外側大腿或(如果 需要的話)三角肌中肌肉內給予的0.5mL。然而,在一次給藥期間提供給患者的組合物中組分的量可如熟練的開業醫師所已知的而變化。也可使佐劑(如果使用的話)適應於遞送系統。
雖然較佳的是具有用於疫苗接種以抵抗百日咳的單一組合物,但技術人員應意識到如在此描述的本發明的作用也可藉由接種aP疫苗的組分,即在12-100μg人類劑量下的PT、FHA、FIM,以及隨意地PRN來獲得,其中該等組分不一定都在同一組合物中,例如其中(一部分)FIM在單獨的組合物中。舉例來說,可購得的aP疫苗(具有在每一人類劑量0-5μg之劑量下的FIM)可藉由以下來補充:以獨立組分形式共給予FIM到給予12-100μg、例如15-80μg、20-60μg、20-50μg或20-25μg FIM的總劑量,例如藉由注射包含PT、FHA、隨意地5μg劑量的FIM以及隨意地PRN的一第一aP疫苗組合物,並且注射包含(其餘部分的)FIM的一獨立組合物以補充到12-100μg、例如15-80μg、20-60μg、20-50μg或20-25μg FIM的總劑量。在該等實施方式中,共給予意思指獨立組合物在給藥之間的一小時內、較佳的是幾分鐘內被給予(例如注射),較佳的是它們基本上同時被給予(例如藉由共注射或藉由連續注射)。可替代地,化合物可剛好在給藥之前被混合,以使得單次注射(在組合物係根據本發明之組合物的情況下)係足夠的。本發明因此還提供了一種用於對人類受試者進行疫苗接種以抵抗百日咳博多特氏菌,隨意地百日咳博多特氏菌的PRN陰性菌株之方法,該方法包括給予該受試者以下百日咳博多特氏菌抗原:百日咳類毒素(PT)、絲狀血凝素(FHA)以及2型和3型菌毛(FIM),和隨意地 百日咳桿菌粘附素(PRN),其中FIM係以12-100μg的量被給予。在較佳的實施方式中,這係藉由給予根據本發明的一單一組合物來完成的。
圖1. 接種DTaP5疫苗(aP5)或aP5+FIM之小鼠在鼻內激發後第0天、第2天、第5天以及第8天每一個肺的百日咳博多特氏菌的平均log10 CFU。小鼠在4周和7周齡時進行疫苗接種並且在9周時用不同的百日咳博多特氏菌菌株經鼻內激發:WHO 18323(圖1A)、一臨床PRN陰性分離株PRN-STOP(圖1B)以及一臨床PRN陰性分離株PRN-IS(圖1C)。
*p<0.05使用威爾科克森精確檢驗(Wilcoxon Exact Test),比較在接種aP5和aP5+FIM後在每一特定時間點的平均log10 CFU計數。
#p<0.01使用協方差分析,比較接種aP5和aP5+FIM後從第0天到第8天的log10 CFU反應-時間概況。
圖2. 在4周和7周齡時接種1/10人類劑量的aP2疫苗外加漸增量的FIM後,在第9周用PRN陰性百日咳博多特氏菌菌株I195激發的小鼠的肺的平均 Log10 CFU計數。關於詳情,參見實例2。
圖3. 在4周和7周齡時接種添加或未添加5μg FIM的1/10人類劑量的aP5疫苗後,在第9周用4種百日咳博多特氏菌菌株激發後5天的小鼠的肺的平均Log10 CFU計數。關於詳情,參見實例3。
本發明進一步用以下實例解釋。該等實例不以任何方式限制本發明。它們僅僅用來闡明本發明。
實例
實例1. aP5疫苗中高劑量FIM改善了抵抗PRN陰性百日咳博多特氏菌之保護
方法:已驗證的與aP疫苗臨床功效有關的小鼠百日咳博多特氏菌肺激發模型(吉索,1999,《疫苗》17;2366-2376;德諾埃,2005,《疫苗》23:5333-5341;戈弗雷(Godfroid),2004,《國際醫學微生物學雜誌》(Int.J.Med.Microbiol.)294;269-276)被用以測試添加或未添加2μg已純化的FIM2/3抗原(李斯特生物實驗室公司)的在四分之一人類劑量下的被許可的5組分無細胞百日咳疫苗(ADACELTM,賽諾菲巴斯德(Sanofi Pasteur);在這一實例中另外稱為aP5)的功效。每一0.5mL劑量的ADACELTM含有5 Lf破傷風類毒素、2 Lf白喉類毒素以及5種無細胞百日咳抗原(2.5μg已脫毒的百日咳毒素、5μg絲狀血凝素、3μg百日咳桿菌粘附素以及5μg 2型和3型菌毛)。簡單地說,雌性Balb/c小鼠在4周和7周齡時以¼人類劑量皮下接種有或無FIM2/3抗原的aP5。因此,動物接受1.25μg FIM2/3(aP5組)或3.25μg FIM2/3(aP5+FIM組),對應地 等於人類中的5μg和13μg。在9周齡時,小鼠經鼻內用約106 cfu百日咳博多特氏菌WHO 18323(一百日咳桿菌粘附素陽性菌株)、一百日咳桿菌粘附素陰性菌株PRN-STOP以及一百日咳桿菌粘附素陰性菌株PRN-IS激發[昆南,2013,《 新英格蘭醫學雜誌 》368:583-4]。在激發後2小時、2天、5天以及8天(n=5/組),藉由在塗覆肺勻漿連續稀釋液後計數博-讓二氏瓊脂板(Bordet-Gengou agar plate)上生長的百日咳博多特氏菌菌落測定肺清除率。
結果:在接種添加或未添加FIM2/3抗原的aP5後的治療反應隨時間推移的概況被描繪在圖1中。為了測試在接種aP5或aP5+FIM的小鼠之間在第5天和第8天的平均log10 CFU計數之間的統計學顯著差異,使用威斯康辛精確檢驗(Wilcoxon Exact Test)。此外,治療反應隨時間推移(從第0天到第8天)的概況數據係藉由協方差分析來建模(米利肯(Milliken)GA等人《協方差分析》,統計學系(Dept of Statistics),堪薩斯州州立大學(Kansas State University),1989.;SAS軟體研究所(SAS Institute Inc.),《SAS/STAT用戶指導》(SAS/STAT User's Guide),版本6,第四版,第2卷.凱裡(Cary),NC:SAS軟體研究所,1989)。
對於百日咳博多特氏菌WHO18323菌株(一PRN陽性菌株,圖1A),在第5天使用單側威斯康辛精確非參數檢驗的log10 CFU計數差異比較顯示,在接種aP5+FIM後的平均log10 CFU計數顯著低於(p<0.05)僅接種aP5後的那些計數。樣品治療反應-時間概況數據由藉由以天數作為斜率項並且以天數 ×天數作為二次曲率項之協方差分析的擬合建模,顯示從第0天到第8天的治療反應無統計學顯著差異。
在用百日咳博多特氏菌PRN-STOP菌株激發後(圖1B),在第5天使用單側威斯康辛精確非參數檢驗的log10 CFU計數差異比較顯示,在接種aP5+FIM後的平均log10 CFU計數顯著低於(p<0.02)僅激發aP5後的那些計數。樣品治療反應-時間概況數據由藉由協方差分析模型的擬合建模顯示,從第0天到第8天治療反應無統計學顯著差異。
對於百日咳博多特氏菌PRN-IS菌株(圖1C),使用單側威斯康辛精確非參數檢驗在第5天的log10 CFU計數的差異比較指示,疫苗治療之間無顯著差異。使用威斯康辛精確非參數檢驗,在第8天存在接種aP5+FIM後的平均log10 CFU計數與僅接種aP5的平均log10 CFU計數相比更低(P<0.08)的趨勢。威斯康辛精確檢驗的漸近類比顯示出在第8天的顯著疫苗差異(p<0.03)。樣品治療反應-時間概況數據由藉由以天數作為斜率項並且以天數×天數×trt作為二次曲率項的協方差分析的擬合建模表明了從第0天到第8天的治療反應差異。
為了檢驗治療作用的差異,從第0天到第8天治療概況之間的線性對比指示,接種aP5+FIM後的平均log10 CFU計數顯著低於(p<0.01)僅接種aP5後所測量的那些計數。
總而言之,該等結果顯示添加2μg FIM2/3到1/4人類劑量的阿得賽(Adacel)疫苗顯著增加了這一疫苗在小鼠鼻咽激發模型中針對一PRN陰性百 日咳博多特氏菌分離株之功效。這一發現係令人驚訝的,因為先前還沒有任何增加百日咳疫苗中FIM的量將增加它的功效之提議。這一結果特別切合目前在全世界出現並且引發疾病的PRN陰性菌株的情形。
實例2. 添加FIM後在小鼠激發模型中增加的疫苗功效具有劑量依賴性
方法:為了研究增加的FIM劑量是否與增加的疫苗功效相關(這將表明該作用具有FIM特異性),使用如上所述的已驗證的小鼠百日咳博多特氏菌肺激發模型。給動物接種添加或未添加FIM2/3(李斯特生物實驗室公司;材料另外稱為FIM)的1/10人類劑量的被許可的2組分aP疫苗(PENTAVAC®,賽諾菲巴斯德MSD;疫苗在下文稱為aP2)。每一人類0.5mL劑量的PENTAVAC®含有:(至少)40 IU破傷風類毒素(TT);(至少)30 IU白喉類毒素(DT);對應地為40、8以及32 D-抗原單位的1型、2型以及3型失活的脊髓灰質炎病毒(IPV);10μg與TT結合的B型流感嗜血桿菌多糖(Hib-TT);以及2種無細胞百日咳抗原(25μg已脫毒的百日咳毒素(PT)和25μg絲狀血凝素(FHA))。對應地相當於每一人類劑量5、10、15、20、25或50μg FIM的0.5;1.0;1.5;2.0;2.5或5.0μg量的FIM被吸附到氫氧化鋁並且與被許可的aP2疫苗共給予(以一獨立的注射形式)(由此類比根據本發明的具有高劑量FIM的aP疫苗)。在9周大時,小鼠經鼻內用約106 cfu的PRN陰性百日咳博多特氏菌菌株(I195)激發。在2小時(n=5/組)和第5天(n=10/組),藉由在塗覆肺勻漿連續稀釋液後計數博-讓二氏瓊脂板上生長的百日咳博多特氏菌菌落測定肺清除率。
結果:在FIM的量增加的情況下,觀察到由已接種小鼠的肺培養的百日咳博多特氏菌菌落的數目呈劑量依賴性減少。類似地,在接種1/25稀釋和增加量的FIM的小鼠中觀察到,由已接種小鼠的肺培養的百日咳博多特氏菌菌落的數目呈劑量依賴性減少。圖2示出了在用百日咳博多特氏菌菌株I195激發後5天,由在增加量的FIM存在下接種1/10人類劑量的aP2的小鼠的肺獲得的log10 CFU計數。表1示出了平均Log10 CFU計數和使用曼-惠特尼(Mann-Whitney)(繪製醫學圖表(GraphPad Prism))比較在以1/10人類劑量接種有或無FIM的aP2後的平均log10 CFU計數所計算的p值。在添加2μg或更多FIM到1/10人類劑量(人類劑量等於20μg)的aP2後,疫苗功效顯著增加。
結論:增加的FIM劑量對於疫苗功效的劑量依賴性作用證明FIM的這一作用具有特異性。此外,包含高劑量FIM的疫苗比含有目前可購得的aP5疫苗中存在的最大量(每一人類劑量5μg)FIM的疫苗更加有效。這與實例1中的發現保持一致,顯示增加aP疫苗中FIM的劑量超過每一人類劑量10μg改善功效,並且進一步將發現擴展到不同aP疫苗和額外的PRN陰性百日咳菌株。
實例3. 觀察到添加有FIM的aP5疫苗針對多種百日咳博多特氏菌菌株之增加功效
方法:如上所述已驗證的小鼠百日咳博多特氏菌肺激發模型被用以研究增加劑 量的FIM是否改善針對多種百日咳博多特氏菌菌株的疫苗功效。使用1/10人類劑量的ADACEL®(賽諾菲巴斯德;每一人類劑量含有2.5μg PT、5μg FHA、3μg PRN以及5μg FIM2/3,也參見實例1;在此稱為aP5)或BOOSTRIX®(葛蘭素史克生物製品有限公司(GlaxoSmithKline Biologicals);每一人類劑量含有5 Lf破傷風類毒素、2.5 Lf白喉類毒素、8μg PT、8μg FHA以及2.5μg PRN;在此稱為aP3),添加或未添加(以吸附到氫氧化鋁後的獨立注射形式)5μg FIM(李斯特生物實驗室公司),相當於每一人類劑量50μg。在4周和7周齡時被疫苗接種的動物在9周齡時用以下百日咳博多特氏菌菌株中的一種激發:WHO 18323(PRN陽性)、24422(PRN陰性)、24421(PRN陰性)或I195(PRN陰性)。在2小時(n=5/組)和第5天(n=10/組),藉由在塗覆肺勻漿連續稀釋液後計數博-讓二氏瓊脂板上生長的百日咳博多特氏菌菌落測定肺清除率。
結果:添加5μg FIM到1/10人類劑量的aP5改善了針對所有百日咳博多特氏菌菌株的疫苗功效,這達到了針對3種所測試的百日咳菌株的統計顯著性(WHO 18323(p=0.04)、PRN-24421(p=0.03)以及PRN-I195(p=0.001))(圖3、表2)。
這一實驗也使用aP3(1/10人類劑量)來進行。關於三種激發菌株(WHO 18323、24422以及24421),使用這一aP3疫苗(BOOSTRIX®)在添加FIM後並未觀察到減少,雖然這可能部分藉由這一特定aP3在無FIM給予時對於該等激發菌株已經觀察到高功效來解釋。然而,當用百日咳博多特氏菌菌株I195 激發時,在添加FIM到這一aP3的情況下觀察到log10 CFU計數顯著減少。
總的來說,該等數據表明具有高劑量FIM的疫苗將具有針對一系列百日咳菌株的改善功效。
結論:在用高水平FIM與可購得的aP5疫苗的組合免疫後觀察到的針對一組百日咳博多特氏菌菌株的增加功效表明,所觀察到的高FIM劑量的益處也針對不同百日咳菌株。因此,根據本發明的包含高劑量FIM的疫苗可有助於降低百日咳疾病率。
實例4. 添加FIM對於目前可購得的不同aP疫苗之增加功效
方法:如上所述已驗證的小鼠百日咳博多特氏菌肺激發模型被用以研究增加劑量的FIM(李斯特生物實驗室公司)是否改善ADACEL®(賽諾菲巴斯德;每一人類劑量含有2.5μg PT、5μg FHA、3μg PRN以及5μg FIM2+3作為aP組分)、Pentavac®(賽諾菲巴斯德MSD;每一人類劑量含有25μg PT和25μg FHA作為aP組分)或Boostrix®(葛蘭素史克生物製品有限公司;每一人類劑量含有8μg PT、8μg FHA以及2.5μg PRN作為aP組分)的疫苗功效。
小鼠在4周和7周齡時接種1/10人類劑量添加或未添加5μg FIM的商業疫苗(相當於每一人類劑量添加50μg FIM),在9周齡時用百日咳博多特氏菌百日咳桿菌粘附素陰性菌株I195激發,並且激發後5天(n=10/組)藉由計數博-讓二氏瓊脂板上生長的百日咳博多特氏菌菌落來測定肺清除率。
結果:對於所有三種疫苗,添加FIM導致平均Log10 CFU計數與僅接種商業疫苗後的平均Log10 CFU計數相比顯著更低(表3)。
結論:所有三種疫苗的疫苗功效在添加FIM後顯著改善。這表明FIM的作用可被推廣到含有不同量百日咳抗原和不同量FIM的一系列商業aP疫苗。已包含FIM的疫苗(ADACEL®)或不包含FIM的疫苗(PENTAVAC®或BOOSTRIX®)的功效改善,顯示不僅FIM的存在有助於疫苗功效,而且FIM的劑量也是重要的。
實例5. 在接種高劑量FIM後針對各種各樣百日咳菌株之抗FIM抗體功能性增加
抗體針對百日咳組分的功能活性已被確定為有待考慮的重要附加參數,特別是在評估含有已知誘發抗體功能活性(對應地如毒素中和與細菌凝集)的PT和FIM的新配製品時。已建立測量全細胞百日咳博多特氏菌凝集抗體的分析。雖然不存在已被發現與百日咳疫苗的保護性功效直接相關之功能閾值,但儘管如此它們仍是作為新疫苗配製品與已證明那些是安全和有效的的那些(來自aP疫苗的WHO草案建議,WHO/BS/2011.2158,第C.2.1.2部分)總體比較的一部分要確定的重要免疫參數。因此,考慮到關於含有FIM的aP疫苗的該等分析的相關性,我們使用凝集分析來進一步針對多種百日咳博多特氏菌菌株測試本發明的疫苗。
方法:從在4周和7周齡時接種添加或未添加FIM(李斯特生物實驗室公司)的1/10人類劑量的Pentavac®(賽諾菲巴斯德MSD;每一人類劑量含有25μg PT和25μg FHA作為aP抗原;在此稱為aP2)的小鼠採集血清。對應地相當於每一人類劑量5或20μg FIM的0.5或2.0μg量的FIM被吸附到氫氧化鋁並且與可購得的aP2疫苗共給予(以獨立注射形式)。在第9周,犧牲每一給藥組的5只動物,並且集中從末端血液分離的血清用於抗FIM(功能)抗體水平之研究。為了評估功能抗體對FIM的反應,進行凝集分析。在這一分析中,在測試血清中功能抗體的存在導致在與百日咳博多特氏菌混合時抗原/抗體複合物的形成。陽性凝集被定義為孔中因抗原/抗體複合物的存在而存在不透明溶液。陰性凝集係以所定義的在孔底部的細菌沈降物形式被觀察到。簡單地說,50μl測試血清在PBS中被連續稀釋並且與50μl的OD600為1.0的百日咳博多特氏菌懸浮液混合。這一混合物被培育過夜,並且次日使用倒鏡測定存在或不存在細菌沈降物。凝集效價被定義為導致完全凝集的最高稀釋度。
為了研究藉由對小鼠進行疫苗接種所誘發的抗FIM抗體是否功能性針對一組百日咳博多特氏菌菌株,測試血清是否具有使10種表達FIM的不同百日咳博多特氏菌菌株凝集的能力。從一組30種最新臨床百日咳博多特氏菌分離株(由費城聖.克里斯多夫兒童醫院(St.Christopher's Hospital for Children)的艾倫埃萬傑利斯塔醫生(Dr.Alan Evangelista)好意地提供),24種分離株在陽性對照商業抗FIM單克隆抗體(06/128,NIBSC,UK)下顯示清楚的凝集讀數, 證實該等菌株表達FIM抗原。從這組24種菌株中選擇5種PRN陰性菌株和5種PRN陽性菌株用於測試小鼠血清。
結果:在FIM存在下的疫苗接種誘發功能抗體效價。在FIM存在下接種的小鼠的全部6個小鼠血清池觀察到針對全部10種百日咳博多特氏菌菌株的陽性凝集。未接種的對照組和僅接受1/10人類劑量aP2(不包含FIM)的組不顯示任何凝集(表4)。雖然在已驗證的小鼠百日咳博多特氏菌肺激發模型中已顯示高劑量的FIM比低劑量的FIM更加有效(實例2),但是不存在明確的FIM劑量-反應相關性(未顯示其他FIM劑量之數據),這可能歸因於這一WHO標準化分析的局限性,該分析並未敏感到足以檢測到凝集中的小差異。
結論:在FIM存在下接種商業疫苗導致誘發針對一大組百日咳博多特氏菌菌株(PRN陰性或PRN陽性菌株)的功能抗體。這一發現表明,包含高劑量FIM的疫苗將有效減少由各種各樣的百日咳博多特氏菌菌株所引起的百日咳疾病。
表1:如使用曼-惠特尼,比較在4周和7周齡時在接種添加FIM的在1/10人類劑量下的aP2與僅以1/10人類劑量給予的aP2後,在第9周用PRN陰性百日咳博多特氏菌菌株I195激發的小鼠的肺的平均Log10 CFU計數的差異來確定P值。關於詳情,參見實例2。
表2:在4周和7周齡時接種添加或未添加5μg FIM的在1/10人類劑量下的aP5後,在第9周用4種不同百日咳博多特氏菌菌株激發後5天的小鼠的肺的平均Log10 CFU計數。使用曼-惠特尼確定P值。關於詳情,參見實例3。
表3:在4周和7周齡時接種添加或未添加5μg FIM的在1/10人類劑量下的3種被許可的不同aP疫苗後,在第9周用百日咳博多特氏菌菌株I195激發後5天,小鼠的肺的平均Log10 CFU計數。使用曼-惠特尼確定P值。關於詳情,參見實例4。
表4:如從在4周和7周齡時接種添加或未添加FIM的1/10人類劑量aP2的每一組5只小鼠採集的血清池所測定的抗FIM抗體水平和針對一組百日咳博多特氏菌菌株的凝集效價。關於詳情,參見實例5
<:低於檢測下限(LLOD)

Claims (22)

  1. 一種無細胞百日咳(aP)疫苗組合物,包含百日咳博多特氏菌(Bordetella pertussis)抗原百日咳類毒素(PT)、絲狀血凝素(FHA)、以及2型和3型菌毛(FIM),其中FIM係以每一人類劑量12-100μg之量存在。
  2. 如請求項1之aP疫苗組合物,其中FIM係以每一人類劑量15-60μg之量存在。
  3. 如請求項1或2之aP疫苗組合物,其中FIM係以每一人類劑量20-60μg之量存在。
  4. 如請求項1或2之aP疫苗組合物,其中FIM係以每一人類劑量20-50μg之量存在。
  5. 如請求項1或2之aP疫苗組合物,其中FIM係以每一人類劑量20-25μg之量存在。
  6. 如請求項1或2之aP疫苗組合物,進一步包含百日咳桿菌粘附素(PRN)。
  7. 如請求項5之aP疫苗組合物,進一步包含百日咳桿菌粘附素(PRN)。
  8. 如請求項1或2之aP疫苗組合物,其中PT被基因地脫毒。
  9. 如請求項1或2之aP疫苗組合物,進一步包含除百日咳博多特氏菌以外的一種或多種病原體之抗原。
  10. 如請求項5之aP疫苗組合物,進一步包含除百日咳博多特氏菌以外的一種或多種病原體之抗原。
  11. 如請求項7之aP疫苗組合物,進一步包含除百日咳博多特氏菌以外的一種或多種病原體之抗原。
  12. 如請求項9之aP疫苗組合物,包含破傷風類毒素和白喉類毒素。
  13. 如請求項10之aP疫苗組合物,包含破傷風類毒素和白喉類毒素。
  14. 如請求項12之aP疫苗組合物,包含以下一者或多者:a)流感嗜血桿菌(Haemophilus influenzae)(Hib)寡糖或多糖結合物;b)B型肝炎病毒表面抗原(HBsAg);以及c)失活的脊髓灰質炎病毒(IPV)。
  15. 如請求項1或2之aP疫苗組合物,進一步包含一佐劑。
  16. 如請求項5之aP疫苗組合物,進一步包含一佐劑。
  17. 如請求項9之aP疫苗組合物,進一步包含一佐劑。
  18. 如請求項12之aP疫苗組合物,進一步包含一佐劑。
  19. 如請求項15之aP疫苗組合物,其中該佐劑包含氫氧化鋁、磷酸鋁或其組合。
  20. 一種如請求項1至19中任一項之aP疫苗組合物用於製備藥物之用途,該藥物係用於對受試者進行疫苗接種以抵抗百日咳博多特氏菌。
  21. 一種如請求項1至19中任一項之aP疫苗組合物用於製備藥物之用途,該藥物係用於保護受試者免受由百日咳博多特氏菌的一PRN陰性菌株感染所引起的百日咳。
  22. 一種百日咳博多特氏菌抗原用於製備藥物之用途,該藥物係用於對人類受試者進行疫苗接種以抵抗百日咳博多特氏菌的PRN陰性菌株,其中該百日咳博多特氏菌抗原包含百日咳類毒素(PT)、絲狀血凝素(FHA)、以及2型和3型菌毛(FIM),其中該藥物包含百日咳桿菌粘附素(PRN),且其中FIMI之量係12-100μg。
TW103108076A 2013-03-08 2014-03-07 無細胞百日咳疫苗 TWI630915B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361774993P 2013-03-08 2013-03-08
US61/774,993 2013-03-08
EP13169328 2013-05-27
??13169328.5 2013-05-27

Publications (2)

Publication Number Publication Date
TW201440786A TW201440786A (zh) 2014-11-01
TWI630915B true TWI630915B (zh) 2018-08-01

Family

ID=48470836

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103108076A TWI630915B (zh) 2013-03-08 2014-03-07 無細胞百日咳疫苗

Country Status (22)

Country Link
US (2) US8916173B2 (zh)
EP (1) EP2863943B1 (zh)
JP (1) JP6282673B2 (zh)
KR (1) KR102236498B1 (zh)
CN (1) CN105007936B (zh)
AP (1) AP2015008702A0 (zh)
AU (1) AU2014224556B2 (zh)
BR (1) BR112015021523A8 (zh)
CA (1) CA2903937C (zh)
CL (1) CL2015002513A1 (zh)
DK (1) DK2863943T3 (zh)
EA (1) EA030749B1 (zh)
ES (1) ES2597832T3 (zh)
IL (1) IL241271A (zh)
MX (1) MX362793B (zh)
MY (1) MY172181A (zh)
NZ (1) NZ630868A (zh)
PE (1) PE20151720A1 (zh)
PH (1) PH12015501875A1 (zh)
SG (1) SG11201506858SA (zh)
TW (1) TWI630915B (zh)
WO (1) WO2014135651A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2596919C2 (ru) * 2015-01-16 2016-09-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение по медицинским иммунобиологическим препаратам "Микроген" Министерства здравоохранения Российской Федерации Комбинированная вакцина для профилактики коклюша, дифтерии, столбняка
RU2626532C2 (ru) * 2015-01-16 2017-07-28 Федеральное государственное унитарное предприятие "Научно-производственное объединение по медицинским иммунобиологическим препаратам "Микроген" Министерства здравоохранения Российской Федерации Комбинированная вакцина для профилактики коклюша, дифтерии, столбняка, гепатита в и инфекции, вызываемой haemophilus influenzae тип в
KR102426041B1 (ko) 2017-08-01 2022-07-29 주식회사 녹십자 냉동 및 해동 과정을 포함하는 백일해균 유래 단백질 수득 방법
KR102362777B1 (ko) 2018-03-27 2022-02-15 주식회사 녹십자 친화성 크로마토그래피 공정을 포함하는 백일해균 유래 단백질 수득 방법
JP7469302B2 (ja) 2018-11-06 2024-04-16 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 免疫原性組成物
CN111053898B (zh) * 2019-12-26 2023-05-16 北京科兴中维生物技术有限公司 一种疫苗组合物及其应用
US20230072809A1 (en) * 2020-03-09 2023-03-09 Dynavax Technologies Corporation Active booster immunization against tetanus, diphtheria and pertussis
WO2024064579A1 (en) * 2022-09-20 2024-03-28 Ohio State Innovation Foundation Immunogenic proteins from bordetella pertussis

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372945A (en) 1979-11-13 1983-02-08 Likhite Vilas V Antigen compounds
IL61904A (en) 1981-01-13 1985-07-31 Yeda Res & Dev Synthetic vaccine against influenza virus infections comprising a synthetic peptide and process for producing same
US4673574A (en) 1981-08-31 1987-06-16 Anderson Porter W Immunogenic conjugates
US4525349A (en) 1981-12-29 1985-06-25 Societe Anonyme Dite: Institut Merueux Process for the large-scale production of a vaccine against poliomyelitis and the resulting vaccine
US4695624A (en) 1984-05-10 1987-09-22 Merck & Co., Inc. Covalently-modified polyanionic bacterial polysaccharides, stable covalent conjugates of such polysaccharides and immunogenic proteins with bigeneric spacers, and methods of preparing such polysaccharides and conjugates and of confirming covalency
GB8412207D0 (en) 1984-05-12 1984-06-20 Wellcome Found Antigenic preparations
US4709017A (en) 1985-06-07 1987-11-24 President And Fellows Of Harvard College Modified toxic vaccines
GB8516442D0 (en) 1985-06-28 1985-07-31 Wellcome Found Cloned antigen
IT1187753B (it) 1985-07-05 1987-12-23 Sclavo Spa Coniugati glicoproteici ad attivita' immunogenica trivalente
DE3528006A1 (de) 1985-08-05 1987-02-05 Degussa Verfahren zur herstellung von epoxidierten organosiliziumverbindungen
US4895800A (en) 1985-11-26 1990-01-23 Phillips Petroleum Company Yeast production of hepatitis B surface antigen
GB8601279D0 (en) 1986-01-20 1986-02-26 Public Health Lab Service Purification of pertussis antigens
DE3781541T2 (de) 1986-12-23 1993-05-06 Univ Leland Stanford Junior Modifiziertes pertussistoxin.
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
EP0299108B1 (en) 1987-07-17 1994-05-18 Rhein Biotech Gesellschaft für biotechnologische Prozesse und Produkte mbH DNA-molecules coding for FMDH control regions and structured gene for a protein having FMDH-activity and their uses
WO1989001976A1 (en) 1987-09-04 1989-03-09 Amgen Inc. Recombinant dna-derived bordetella toxin subunit analogs
US7144576B1 (en) 1987-09-04 2006-12-05 Amgen, Inc. Modified pertussis toxin
IT1223334B (it) 1987-11-02 1990-09-19 Sclavo Spa Polipeptidi immunologicamente attivi con una tossicita' alterata utili per la preparazione di un vaccino antipertosse
GB8727489D0 (en) 1987-11-24 1987-12-23 Connaught Lab Detoxification of pertussis toxin
GB8807860D0 (en) 1988-04-05 1988-05-05 Connaught Lab Pertussis vaccine
NZ230747A (en) 1988-09-30 1992-05-26 Bror Morein Immunomodulating matrix comprising a complex of at least one lipid and at least one saponin; certain glycosylated triterpenoid saponins derived from quillaja saponaria molina
CA1341123C (en) 1988-10-27 2000-10-17 David A. Relman Filamentous hemagglutinin of b. pertussis
US5101014A (en) 1989-02-10 1992-03-31 United States Of America Process for the purification of a 69,000 da outer membrane protein of Bordetella pertussis
DK0396964T3 (da) 1989-04-28 1995-10-30 Sclavo Spa Pertussistoxin-mutanter, Bordetella-stammer, der er i stand til at producere sådanne mutanter, samt deres anvendelse til udvikling af antipertussis-vacciner
GB8910570D0 (en) 1989-05-08 1989-06-21 Wellcome Found Acellular vaccine
CA2017507C (en) 1989-05-25 1996-11-12 Gary Van Nest Adjuvant formulation comprising a submicron oil droplet emulsion
GB8914122D0 (en) 1989-06-20 1989-08-09 Wellcome Found Polypeptide expression
CY1934A (en) 1989-11-06 1990-11-01 Smithkline Beecham Biolog Process
US5276142A (en) 1989-12-11 1994-01-04 American Cyanamid Company Process for purification of a 69000 dalton antigenic protein from Bordetella pertussis
DE69113991T2 (de) 1990-02-12 1996-03-21 Smithkline Beecham Biologicals S.A., Rixensart Impfstoff.
GB9007657D0 (en) 1990-04-04 1990-05-30 Connaught Lab Purification of a pertussis outer membrane protein(omp69)
EP0484621A3 (en) 1990-07-11 1992-08-26 American Cyanamid Company Efficacious vaccines against bordetella pertussis comprising a combination of individually purified pertussis antigens
US5153312A (en) 1990-09-28 1992-10-06 American Cyanamid Company Oligosaccharide conjugate vaccines
US6444211B2 (en) 1991-04-03 2002-09-03 Connaught Laboratories, Inc. Purification of a pertussis outer membrane protein
AU662783B2 (en) 1992-01-08 1995-09-14 De Staat Der Nederlanden Vertegenwoordigd Door De Minister Van Welzijn, Volksgezonheid En Cultuur Whooping cough vaccine
AU4230493A (en) 1992-05-06 1993-11-29 President And Fellows Of Harvard College Diphtheria toxin receptor-binding region
EP0835663B1 (en) 1992-05-23 2009-09-30 GlaxoSmithKline Biologicals S.A. Combined vaccines comprising Hepatitis B surface antigen and other antigens
JP3428646B2 (ja) 1992-06-18 2003-07-22 プレジデント アンド フェローズ オブ ハーバードカレッジ ジフテリア毒素ワクチン
JP3828145B2 (ja) 1993-09-22 2006-10-04 ヘンリー エム.ジャクソン ファウンデイション フォー ザ アドバンスメント オブ ミリタリー メディスン 免疫原性構成物の製造のための新規シアン化試薬を使った可溶性炭水化物の活性化方法
US5917017A (en) 1994-06-08 1999-06-29 President And Fellows Of Harvard College Diphtheria toxin vaccines bearing a mutated R domain
AUPM873294A0 (en) 1994-10-12 1994-11-03 Csl Limited Saponin preparations and use thereof in iscoms
FI951970A (fi) 1995-04-25 1996-10-26 Borealis As Olefiinipolymeerit, jotka sisältävät polaarisia ryhmiä, ja menetelmä niiden valmistamiseksi
EP1233022B1 (en) 1995-05-04 2015-12-09 Aventis Pasteur Limited Methods of preparation of components of acellular pertussis vaccines
US5877298A (en) * 1995-05-04 1999-03-02 Connaught Lab Acellular pertussis vaccines and methods of preparing thereof
FR2734484B1 (fr) 1995-05-24 1997-06-27 Pasteur Merieux Serums Vacc Composition vaccinale liquide et procede de fabrication
EP1762246A1 (en) 1996-07-02 2007-03-14 Sanofi Pasteur Limited Multivalent DTP-Polio vaccines
GB9623233D0 (en) 1996-11-07 1997-01-08 Smithkline Beecham Biolog Vaccine composition
GB9713156D0 (en) * 1997-06-20 1997-08-27 Microbiological Res Authority Vaccines
GB9806456D0 (en) 1998-03-25 1998-05-27 Smithkline Beecham Biolog Vaccine composition
US6475754B1 (en) 1999-05-14 2002-11-05 University Of Tennessee Research Corporation Polynucleotides encoding Bordatella bronchiseptica fimbrial proteins (FimN), vectors, and expression systems therefor
PT1296715E (pt) 2000-06-29 2012-01-19 Smithkline Beecham Biolog Composição vacinal multivalente
EP1174505A1 (en) * 2000-06-30 2002-01-23 De Staat Der Nederlanden Vertegenwoordigd Door De Minister Van Welzijn, Volksgezondheid En Cultuur (Poly)peptides for the preparation of vaccines against Bordetella pertussis and/or Bordetella parapertussis, vaccines based upon such (poly)peptides, and antibodies against such peptides
GB0018031D0 (en) 2000-07-21 2000-09-13 Microbiological Res Authority Improvements relating to vaccines containing bordetella pertussis antigen
SE0202110D0 (sv) 2002-07-05 2002-07-05 Isconova Ab Iscom preparation and use thereof
GB0313916D0 (en) 2003-06-16 2003-07-23 Glaxosmithkline Biolog Sa Vaccine composition
SE0301998D0 (sv) 2003-07-07 2003-07-07 Isconova Ab Quil A fraction with low toxicity and use thereof
GB0522765D0 (en) 2005-11-08 2005-12-14 Chiron Srl Combination vaccine manufacture
AU2007293673B2 (en) 2006-09-07 2013-06-27 Glaxosmithkline Biologicals S.A. Vaccine
PE20100366A1 (es) * 2008-10-24 2010-05-21 Panacea Biotec Ltd Novedosas composiciones de vacuna con tos ferina acelular asi como el metodo para su elaboracion
AU2010272685B2 (en) 2009-07-16 2015-02-26 Crucell Holland B.V. Production of polio virus at high titers for vaccine production
EP2680885B8 (en) 2011-03-02 2018-07-25 GlaxoSmithKline Biologicals SA Combination vaccines with lower doses of antigen and/or adjuvant

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Halperin et al : "Safety and imunogenicity of a flve-component acel1ular pertussis vaccine withvarying antigen quantities", ARCHIVES OF PEDIATRICS AND ADOLESCENT MEDICINE, Vol.148, No.11,1994, p1220-1224 *
Halperin et al : "Safety and imunogenicity of a flve-component acel1ular pertussis vaccine withvarying antigen quantities", ARCHIVES OF PEDIATRICS AND ADOLESCENT MEDICINE, Vol.148, No.11,1994, p1220-1224。
Langley et al: "An ado1escent-adult formulation tetanus and diptheria toxoids adsorbed combined with acellular pertussis vaccine has comparable imunogenicity but less reactogenicity in children 4-6 years of age than a pediatric formulation acel1ular pertussis vaccine and diphtheria and tetanus toxoids adsorbed com", VACCINE, Vol.25, No.6, 20 October 2006, p1121-1125 *
Langley et al: "An ado1escent-adult formulation tetanus and diptheria toxoids adsorbed combined with acellular pertussis vaccine has comparable imunogenicity but less reactogenicity in children 4-6 years of age than a pediatric formulation acel1ular pertussis vaccine and diphtheria and tetanus toxoids adsorbed com", VACCINE, Vol.25, No.6, 20 October 2006, p1121-1125。
Pichichero M E et al,"Safety and Immunogenicity of Six Acellular Pertussis Vaccines and One Whole-Cell Pertussis Vaccine Given as a Fifth Dose in Four- or Six-Year-Old Children", PEDIATRICS Vol.105 N0.1 JAN 2000,p1-8 *
Pichichero M E et al,"Safety and Immunogenicity of Six Acellular Pertussis Vaccines and One Whole-Cell Pertussis Vaccine Given as a Fifth Dose in Four- or Six-Year-Old Children", PEDIATRICS Vol.105 N0.1 JAN 2000,p1-8。

Also Published As

Publication number Publication date
EA030749B1 (ru) 2018-09-28
BR112015021523A2 (pt) 2017-07-18
AU2014224556A1 (en) 2015-09-17
CL2015002513A1 (es) 2016-05-27
EP2863943B1 (en) 2016-07-13
AP2015008702A0 (en) 2015-09-30
IL241271A (en) 2016-07-31
PH12015501875A1 (en) 2015-12-07
TW201440786A (zh) 2014-11-01
DK2863943T3 (en) 2016-11-07
US8916173B2 (en) 2014-12-23
EA201591663A1 (ru) 2016-01-29
MY172181A (en) 2019-11-15
WO2014135651A1 (en) 2014-09-12
PE20151720A1 (es) 2015-12-10
CN105007936B (zh) 2018-10-02
CA2903937A1 (en) 2014-09-12
US20140255446A1 (en) 2014-09-11
MX2015011879A (es) 2016-01-08
ES2597832T3 (es) 2017-01-23
BR112015021523A8 (pt) 2021-06-29
NZ630868A (en) 2017-02-24
AU2014224556B2 (en) 2016-10-06
IL241271A0 (en) 2015-11-30
MX362793B (es) 2019-02-13
CN105007936A (zh) 2015-10-28
EP2863943A1 (en) 2015-04-29
US20150086586A1 (en) 2015-03-26
KR102236498B1 (ko) 2021-04-06
JP2016510056A (ja) 2016-04-04
JP6282673B2 (ja) 2018-02-21
SG11201506858SA (en) 2015-09-29
CA2903937C (en) 2021-11-09
KR20150124973A (ko) 2015-11-06

Similar Documents

Publication Publication Date Title
TWI630915B (zh) 無細胞百日咳疫苗
Bottero et al. Characterization of the immune response induced by pertussis OMVs-based vaccine
JP7337107B2 (ja) 髄膜炎菌(Neisseria meningitidis)組成物およびその方法
Locht Will we have new pertussis vaccines?
Van Damme et al. Safety and immunogenicity of non-typeable Haemophilus influenzae-Moraxella catarrhalis vaccine
EP1028750B1 (en) Method for preparing multivalent vaccines
PT914153E (pt) Vacinas dtp-polio multivalentes
KR20180099912A (ko) 나이세리아 메닌지티디스 조성물 및 그의 방법
JP2015521595A (ja) 血清群x髄膜炎菌のためのワクチン
Prygiel et al. Diphtheria–tetanus–pertussis vaccine: past, current & future
Pajon et al. A native outer membrane vesicle vaccine confers protection against meningococcal colonization in human CEACAM1 transgenic mice
AU2019376832B2 (en) Immunogenic compositions
Fukasawa et al. Adjuvant can improve protection induced by OMV vaccine against Neisseria meningitidis serogroups B/C in neonatal mice
Lee et al. Immunogenicity and safety of a Haemophilus influenzae B (Hib)–hepatitis B vaccine with a modified process hepatitis B component administered with concomitant pneumococcal conjugate vaccine to infants
Gaspari Application of prime-boost as a novel vaccination strategy against microbial pathogens
OA17719A (en) Acellular pertussis vaccine.
Plosker Combined, Reduced-Antigen Content Tetanus, Diphtheria, and Acellular Pertussis Vaccine (Boostrix®) A Review of its Use as a Single-Dose Booster Immunization in Individuals Aged 10–64 Years in the US
Soonthornarrak et al. Comparison of Hepatitis B Surface Antibody Levels After Vaccination With Combined One Dose of Hexavalent Vaccine and Two Doses of Pentavalent Vaccine Versus Three Doses of Pentavalent Vaccine
Shankar Diphtheria and Pertussis in adults: Are we witnessing a shift in their epidemiology?

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees