TWI613465B - 光擴散膜之製造方法 - Google Patents

光擴散膜之製造方法 Download PDF

Info

Publication number
TWI613465B
TWI613465B TW102117984A TW102117984A TWI613465B TW I613465 B TWI613465 B TW I613465B TW 102117984 A TW102117984 A TW 102117984A TW 102117984 A TW102117984 A TW 102117984A TW I613465 B TWI613465 B TW I613465B
Authority
TW
Taiwan
Prior art keywords
coating layer
light
film
active energy
energy ray
Prior art date
Application number
TW102117984A
Other languages
English (en)
Other versions
TW201350926A (zh
Inventor
大類知生
草間健太郎
富岡健太
片桐麥
Original Assignee
琳得科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 琳得科股份有限公司 filed Critical 琳得科股份有限公司
Publication of TW201350926A publication Critical patent/TW201350926A/zh
Application granted granted Critical
Publication of TWI613465B publication Critical patent/TWI613465B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • B29C55/026Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets of preformed plates or sheets coated with a solution, a dispersion or a melt of thermoplastic material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本發明提供一種能夠效率良好地製造有效擴大入射光之擴散面積的長條狀光擴散膜之光擴散膜的製造方法。其係具有規定的百葉窗結構之長條狀光擴散膜的製造方法,包括下述步驟(a)~(e):(a)準備光擴散膜用組合物之步驟;(b)形成第1塗佈層之步驟;(c)對第1塗佈層,使用線狀光源進行第1活性能量線照射,形成第1百葉窗結構之步驟;(d)形成由第1塗佈層及第2塗佈層構成的層疊體之步驟;(e)對第2塗佈層,使用線狀光源進行第2活性能量線照射,形成第2百葉窗結構,其中,從膜上方觀看時,使第1活性能量線照射時的線狀光源之長軸方向與第2活性能量線照射時的線狀光源之長軸方向所成的銳角θ1為10~90°的範圍內的值之步驟。

Description

光擴散膜之製造方法
本發明係有關一種光擴散膜之製造方法。
本發明特別涉及如下光擴散膜之製造方法:其能夠效率良好地製造通過使入射光不僅向沿著其長度方向之方向、亦朝向與其長度方向正交的方向進行光擴散而有效地擴大入射光擴散面積之長條狀光擴散膜。
以往,例如,在液晶顯示裝置等所屬的光學技術領域中,已提出能夠使來自特定方向之入射光向特定方向擴散而使來自該特定方向以外的方向之入射光直接直行透射的光擴散膜之使用。
作為此種光擴散膜,已知有各種方式,特別是,具有將折射率不同的多個板狀區域沿著沿膜面之任一方向交替地配置而成的百葉窗結構之光擴散膜經予廣泛使用(例如,專利文獻1~2)。
即,專利文獻1中已公開一種光控制板(光擴散膜),其特徵在於,其係塑膠片,對該片選擇性地散射2個以上角度範圍之入射光。
另外,專利文獻1中已公開一種光控制板(光擴散膜)之製造方法,其特徵在於,由下述第1步驟及第2步驟構成:第1步驟,將由多個各自折射率存在差別之於分子內具有一個以上的聚合性碳-碳雙鍵之化合物構成的樹脂組合物維持成膜狀,從特定方向照射紫外線而使該組合物固化;第2步驟,在所得的固化物上將樹脂組合物維持成膜狀,並從與第1步驟不同的方向照射紫外線而使其固化,根據需要重複第2步驟。
另外,專利文獻2中已公開一種投影用螢幕,其特徵在於,係將數張光控制膜(光擴散膜)層疊而成的,所述光控制膜(光擴散膜)在霧度方面具有角度依賴性,且在使光以0~180°之角度對其表面入射時,顯示60%以上的霧度之光散射角度域(光擴散入射角度區域)為30°以上,其中,如圖23a~23b所示,數張光控制膜(光擴散膜)中的2張係以光散射角度域(光擴散入射角度區域)之方向幾乎正交的方式層疊而成的。
專利文獻1:日本特開昭63-309902號公報(申請專利範圍)
專利文獻2:日本特開2005-316354號公報(申請專利範圍)
然而,在專利文獻1中,在連續大量生產光擴散膜時,一邊用輸送機等移動由光擴散膜用組合物構成的塗佈層,一邊使用線狀光源對該塗佈層照射活性能量線,從而製造具有規定的百葉窗結構之光擴散膜。
因此,對於專利文獻1而言,發現有如下問題:雖然能夠得到使入射光在沿著塗佈層之移動方向、即膜之長度方向的方向上進行光擴散之光擴散膜,但無法得到使入射光在與膜之長度方向正交的方向上進行光擴散之光擴散膜。
較具體而言,為得到使入射光在與膜之長度方向正交的方向上進行光擴散之光擴散膜,需要形成由在膜之長度方向上延伸的板狀區域構成的百葉窗結構。
因此,在專利文獻1中,如果要形成此種百葉窗結構,則將線狀光源以線狀光源之長軸方向成為沿著塗佈層移動方向之方向的方式進行配置。
但是,即使如此配置線狀光源,由於從塗佈層之移動方向截面觀看 時,在塗佈層表面之寬度方向上的各位置不同,導致來自線狀光源之活性能量線被以不同的角度照射,所以得到的光擴散膜之光擴散特性也會變得不均勻。
因此,在引用文獻1中,如果要得到使入射光在與其長度方向正交的方向上進行光擴散之長條狀光擴散膜,則首先有必要得到從上面觀看膜時具有沿著寬度方向配置板狀區域而成的百葉窗結構之光擴散膜。接著,產生將此等裁斷並改變90°方向而將多個光擴散膜接合的必要。因此,發現有在接縫部分光擴散性變得不均勻、或者膜之強度變得容易降低之類的問題。
另外,在引用文獻1中,第1步驟中所得之百葉窗結構中的板狀區域之延伸方向與第2步驟中所得之百葉窗結構中的板狀區域之延伸方向基本平行。
因此,發現有如下問題,即,根本不可能使入射光也朝向與其長度方向正交的方向進行光擴散。
另一方面,在專利文獻2中,如圖23a~23b所示,使多張光擴散膜中的2張以光擴散入射角度區域之方向幾乎正交的方式層疊,所以乍一看,也會認為能夠使入射光不僅在沿著其長度方向之方向上進行光擴散,也在與其長度方向正交的方向上進行光擴散。
然而,對於專利文獻2而言,在連續大量生產光擴散膜時,也要一邊用輸送機等移動由光擴散膜用組合物構成的塗佈層,一邊使用線狀光源予照射活性能量線。
因此,出於與專利文獻1相同的理由,難以得到如圖23a所示之使入射光在與膜之長度方向正交的方向上進行光擴散之光擴散膜221。
因此,結果是,即使係專利文獻2中公開的光擴散膜,如果要得到如圖23a所示之使入射光在與其長度方向正交的方向上進行光擴散之長條狀光擴散膜221,則也產生將多個光擴散膜接合的必要,所以與專利 文獻1之情況同樣地,在接縫部分光擴散性變得不均勻、或者膜之強度變得容易降低。
因此,發現有如下問題:無法通過使入射光不僅在沿著其長度方向之方向上、也在與其長度方向正交的方向上進行光擴散予以有效地擴大入射光之擴散面積。
在此種情況下,尋求容易應用於大畫面螢幕等且不產生接縫等問題之長條狀光擴散膜。
即,尋求通過使入射光不僅在沿著其長度方向之方向上、也在與其長度方向正交的方向進行光擴散而有效地擴大入射光之擴散面積的長條狀光擴散膜之製造方法。
因此,本發明之發明人等鑒於如上情況而經過深入努力,結果發現在包括已使用線狀光源的2次活性能量線照射步驟之規定的製造方法中,將該2次活性能量線照射步驟中的各線狀光源之配置角度的關係規定為規定的範圍,從而能夠得到解決上述問題之長條狀光擴散膜,從而完成本發明。
即,本發明之目的在於提供一種光擴散膜之製造方法,該製造方法能夠效率良好地製造通過使入射光不僅向沿著其長度方向之方向、也向與其長度方向正交的方向進行光擴散,從而有效地擴大入射光之擴散面積的長條狀光擴散膜。
根據本發明,可提供一種光擴散膜之製造方法,並能夠解決上述問題,上述製造方法之特徵在於係沿著膜之膜厚方向從下方開始依次具有將折射率不同的多個板狀區域在沿著膜面之任一方向交替地平行配置而成的第1百葉窗結構及第2百葉窗結構之長條狀的光擴散膜之製造方法,並且包括下述步驟(a)~(e):
(a)準備含有折射率不同的2個聚合性化合物之光擴散膜用組合物的步驟; (b)對工藝片材塗佈光擴散膜用組合物,形成第1塗佈層之步驟;(c)對第1塗佈層,一邊使該第1塗佈層進行移動,一邊使用線狀光源進行第1活性能量線照射,形成第1百葉窗結構之步驟;(d)對形成有第1百葉窗結構之第1塗佈層,塗佈光擴散膜用組合物,形成由第1塗佈層及第2塗佈層構成的層疊體之步驟;(e)對第2塗佈層,一邊使由第1塗佈層及第2塗佈層構成的層疊體進行移動,一邊使用線狀光源進行第2活性能量線照射,形成第2百葉窗結構,其中,從膜上方觀看時,使第1活性能量線照射時的線狀光源之長軸方向與第2活性能量線照射時的線狀光源之長軸方向所成的銳角θ1為10~90°之範圍內的值之步驟。
即,如果為本發明的光擴散膜之製造方法,則在已使用線狀光源之2次活性能量線照射步驟中,將各線狀光源之配置角度的關係規定為規定的範圍,所以能夠效率良好地製造使第1百葉窗結構中的板狀區域之延伸方向與第2百葉窗結構中的板狀區域之延伸方向以規定的角度交叉而成的長條狀光擴散膜。
因此,能夠效率良好地製造通過使入射光不僅向沿其長度方向之方向、也朝向與其長度方向正交的方向進行光擴散而有效地擴大入射光之擴散面積的長條狀光擴散膜。
更具體而言,可以得到能夠在不若以往般地將多個光擴散膜接合的情況下,使入射光在沿著其長度方向之方向上、以及在與其長度方向正交的方向上進行光擴散之長條狀光擴散膜。
另外,在實施本發明的光擴散膜之製造方法時,宜為在步驟(c)中,從膜上方觀看時,使第1活性能量線照射時的線狀光源之長軸方向與沿著第1塗佈層之移動方向的假想線所成的銳角θ2為10~80°之範圍內的值,並且在步驟(e)中,從膜上方觀看時,宜為使第2活性能量線照射時的線狀光源之長軸方向與由沿著第1塗佈層及第2塗 佈層構成的層疊體之移動方向的假想線所成的銳角θ3為10~80°之範圍內的值。
通過如此實施,能夠更效率良好地製造通過使入射光不僅朝向沿著其長度方向之方向、也朝向與其長度方向正交的方向進行光擴散而有效地擴大入射光之擴散面積的長條狀光擴散膜。
另外,在實施本發明的光擴散膜之製造方法時,宜為在步驟(e)中,從膜上方觀看時,使第1活性能量線照射時的線狀光源之長軸方向與第2活性能量線照射時的線狀光源之長軸方向,相對於與由第1塗佈層及第2塗佈層構成的層疊體之移動方向正交的假想線成為線對稱。
通過如此實施,從而能夠使入射光在所得的光擴散膜中更均勻地進行光擴散。
另外,在實施本發明的光擴散膜之製造方法時,宜為在步驟(c)及步驟(e)中,介由具有長槽狀的活性能量線透射部之遮光板進行第1活性能量線照射及第2活性能量線照射,並且活性能量線透射部之長邊方向宜為與線狀光源之長軸方向平行的方向。
通過如此實施,能夠進一步效率良好地製造通過使入射光不僅朝向沿著其長度方向之方向、也朝向與其長度方向正交的方向進行光擴散而有效地擴大入射光之擴散面積的長條狀光擴散膜。
另外,在實施本發明的光擴散膜之製造方法時,宜為在步驟(c)中,使第1活性能量線照射時的第1塗佈層之表面的峰值照度為0.1~50mW/cm2之範圍內的值,並且使第1塗佈層之表面的累計光量為5~300mJ/cm2之範圍內的值。
通過如此實施,能夠更有效率地形成第1百葉窗結構。
應予說明,此處所謂的峰值照度係指在經予照射的第1塗佈層表面之活性能量線顯示最大值之部分的測定值。
另外,在實施本發明的光擴散膜之製造方法時,宜為在步驟(e)中,使第2活性能量線照射時的第2塗佈層之表面的峰值照度為0.1~50mW/cm2之範圍內的值,並且使第2塗佈層之表面的累計光量為5~300mJ/cm2之範圍內的值。
通過如此實施,能夠更有效率地形成第2百葉窗結構。
應予說明,此處所謂之峰值照度係指在經予照射的第2塗佈層表面之活性能量線顯示最大值的部分之測定值。
另外,在實施本發明的光擴散膜之製造方法時,宜為在步驟(b)中,使第1塗佈層之膜厚為80~700μm之範圍內的值,並且在步驟(d)中,使第2塗佈層之膜厚為80~700μm之範圍內的值。
通過如此實施,能夠進一步有效率地形成第1及第2百葉窗結構。
另外,在實施本發明的光擴散膜之製造方法時,宜為使步驟(c)中的第1塗佈層之移動速度及步驟(e)中之由第1塗佈層及第2塗佈層構成的層疊體之移動速度分別為0.1~10m/分鐘之範圍內的值。
通過如此實施,能夠進一步有效率地形成第1百葉窗結構及第2百葉窗結構。
1a‧‧‧第1塗佈層
1a′‧‧‧形成有第1百葉窗結構之第1塗佈層
1b‧‧‧第2塗佈層
1c‧‧‧由第1塗佈層及第2塗佈層構成的層疊體
2‧‧‧工藝片材
10‧‧‧光擴散膜
12‧‧‧折射率相對高的板狀區域
13‧‧‧百葉窗結構
13a‧‧‧第1百葉窗結構
13b‧‧‧第2百葉窗結構
13′‧‧‧百葉窗結構之邊界面
14‧‧‧折射率相對低的板狀區域
20‧‧‧利用本發明之製造方法而得的光擴散膜
50′‧‧‧光之擴散情況
51′‧‧‧擴散光之擴散情況
120‧‧‧紫外線照射裝置
121‧‧‧熱輻射截止濾光器
123‧‧‧遮光板
125‧‧‧線狀光源
150‧‧‧活性能量線
圖1a~1b係供說明光擴散膜中的百葉窗結構之概略而用的圖。
圖2a~2b係供說明光擴散膜中之入射角度依賴性、各向異性和開口角而用的圖。
圖3a~3c係供對利用本發明之製造方法而得的光擴散膜之基本構成進行說明而用的圖。
圖4a~4d係供說明本發明之製造方法中的各步驟而用的圖。
圖5a~5b係供已使用線狀光源之活性能量線照射進行說明而用的圖。
圖6a~6b係供對線狀光源之配置角度進行說明而用的圖。
圖7係供對已使用線狀光源之活性能量線照射進行說明而用的另一圖。
圖8a~8e係供對線狀光源之配置角度與入射光之擴散面積的關係進行說明而用的圖。
圖9a~9e圖係供對線狀光源之配置角度與入射光之擴散面積的關係進行說明而用的照片。
圖10a~10b係供說明百葉窗結構而用的圖。
圖11a~11b係供對長條狀光擴散膜之形狀進行說明而用的圖。
圖12係供說明實施例1之長條狀光擴散膜的構成而用之圖。
圖13a~13b係供說明實施例1之長條狀光擴散膜的截面之情況而用的照片。
圖14a~14b係供說明實施例1之長條狀光擴散膜的光擴散特性而用之圖。
圖15係供說明比較例1之長條狀光擴散膜的構成而用之圖。
圖16a~16b係供說明比較例1之長條狀光擴散膜的截面之情況而用的照片。
圖17a~17b係供說明比較例1之長條狀光擴散膜的光擴散特性而用之光譜圖及照片。
圖18a~18c係供說明比較例2中之形成有第1百葉窗結構的第1塗佈層之構成而用的圖。
圖19係供說明比較例2之長條狀光擴散膜的構成而用之圖。
圖20a~20b係供說明比較例2之長條狀光擴散膜的截面之情況而用的照片。
圖21a~21b係供說明比較例2之長條狀光擴散膜的非接縫部分之光擴散特性而用的光譜圖及照片。
圖22a~22b係供說明比較例2之長條狀光擴散膜的接縫部分之光擴散特性而用的光譜圖及照片。
圖23a~23b係供對以往的光擴散膜進行說明而用之圖。
本發明之實施方式係一種光擴散膜之製造方法,其特徵在於,其係沿著膜之膜厚方向從下方開始依次具有將折射率不同的多個板狀區域在沿著膜面之任一方向交替地平行配置而成的第1百葉窗結構及第2百葉窗結構之長條狀光擴散膜的製造方法,包括下述步驟(a)~(e):(a)準備含有折射率不同的2個聚合性化合物之光擴散膜用組合物的步驟;(b)對工藝片材,塗佈光擴散膜用組合物,形成第1塗佈層之步驟;(c)對第1塗佈層,一邊使該第1塗佈層進行移動,一邊使用線狀光源進行第1活性能量線照射,形成第1百葉窗結構之步驟;(d)對形成有第1百葉窗結構之第1塗佈層塗佈光擴散膜用組合物,形成由第1塗佈層及第2塗佈層構成的層疊體之步驟;(e)對第2塗佈層,一邊使由第1塗佈層及第2塗佈層構成的層疊體進行移動,一邊使用線狀光源進行第2活性能量線照射,形成第2百葉窗結構,其中,從膜上方觀看時,使第1活性能量線照射時的線狀光源之長軸方向與第2活性能量線照射時的線狀光源之長軸方向所成的銳 角θ1為10~90°之範圍內的值的步驟。
以下,適當地參照圖式,具體說明本發明之實施方式,但為使該說明容易理解,首先,對光擴散膜之光擴散的基本原理及利用本發明的光擴散膜之製造方法而得的規定的光擴散膜之基本構成進行說明。
1.光擴散膜之光擴散的基本原理
最初,使用圖1~2對光擴散膜之光擴散的基本原理進行說明。
首先,圖1a表示光擴散膜10之俯視圖(平面圖),圖1b表示將圖1a所示的光擴散膜10沿著虛線A-A在垂直方向切斷並從箭頭方向觀看切斷面時的光擴散膜10之截面圖。
另外,圖2a表示光擴散膜10的整體圖,圖2b表示從X方向觀看圖2a之光擴散膜10時的截面圖。
如該圖1a之平面圖所示,光擴散膜10具備在沿著膜面之任一方向上,折射率相對高的板狀區域12與折射率相對低的板狀區域14交替地平行配置而成的百葉窗結構13。
換言之,將膜放置於水平面時,膜內具備由在水準方向上延伸而成之板狀區域構成的百葉窗結構。
另外,如圖1b之截面圖所示,相對高折射率的板狀區域12及相對低折射率的板狀區域14分別具有規定厚度,即使在光擴散膜10之法線方向(膜厚方向)上,也保持交替地平行配置的狀態。
由此,如圖2a所示,入射角在光擴散入射角度區域內時,推定入射光經光擴散膜10予以擴散。
即,如圖1b所示,入射光對光擴散膜10之入射角相對於百葉窗結構13之邊界面13′為從平行至規定的角度範圍之值,換言之,為光擴散入射角度區域內的值時,推定入射光(52、54)通過在百葉窗結構內之相對高折射率的板狀區域12之內部,一邊改變方向,一邊沿著膜厚方向 穿過,從而在出光面側之光的行進方向變得不同。
其結果是,入射角為光擴散入射角度區域內時,推定入射光經光擴散膜10予以擴散(52′、54′)。
另一方面,入射光對光擴散膜10之入射角在光擴散入射角度區域外時,如圖1b所示,推定入射光56不經光擴散膜予以擴散,而直接透過光擴散膜10(56′)。
應予說明,在本發明中,“光擴散入射角度區域”係指,相對於光擴散膜,改變來自點光源之入射光的角度時,與發出的擴散光對應的入射光之角度範圍。
另外,上述“光擴散入射角度區域”係指,如圖2a所示,根據光擴散膜中的百葉窗結構之折射率差、傾斜角等而對每個該光擴散膜確定的角度區域。
根據以上基本原理,具備百葉窗結構13之光擴散膜10例如如圖2a所示,能夠在光之透射及擴散中發揮入射角度依賴性。
另外,如圖1a~2b所示,具有單一的百葉窗結構13之光擴散膜通常具有“各向異性”。
此處,在本發明中“各向異性”係指,如圖2a所示,具有在入射光被膜擴散時,經予擴散的射出光之在與膜平行的面內之該光的擴散情況(擴散光之擴大形狀)因在該面內之方向不同而異的性質。
更具體而言,如圖2a所示,對於入射光所含有的成分中與沿著沿膜面之任一方向而延伸的百葉窗結構之朝向垂直的成分而言,會選擇性地發生光之擴散,另一方面,對於入射光中含有的成分中與沿著沿膜面之任一方向而延伸的百葉窗結構之朝向平行的成分而言,難以發生光之擴散,所以實現各向異性光擴散。
因此,如圖2a所示,具有各向異性的光擴散膜之擴散光的擴大形狀 大致呈橢圓形狀。
另外,如上所述,有助於光擴散的入射光之成分主要係與沿著沿膜面之任一方向延伸的百葉窗結構之朝向垂直的成分,所以如圖2b所示,在本發明中,提到入射光之“入射角θ4”時,係指與沿著沿膜面之任一方向延伸的百葉窗結構之朝向垂直的成分之入射角。另外,此時,入射角θ4係指將相對於光擴散膜之入射側面的法線之角度設為0°時的角度(°)。
另外,在本發明中,“光擴散角度區域”係指,相對於光擴散膜,將點光源固定在入射光最擴散的角度,在該狀態下所得的擴散光之角度範圍。
進而,在本發明中,“擴散光之開口角”係上述“光擴散角度區域”的寬度,係指如圖2b所示,從與沿著沿膜面之任一方向延伸的百葉窗結構之朝向平行的方向X觀看膜之截面時的擴散光之開口角θ5。
另外,如圖2a所示,就光擴散膜而言,入射光之入射角被包含於光擴散入射角度區域時,即使該入射角不同,也能夠使幾乎相同的光擴散在出光面側進行。
因此,可以說所得的光擴散膜具有使光集中於規定位置之聚光作用。
應予說明,就百葉窗結構內的高折射率區域12之內部的入射光之方向變化而言,除成為如圖1b所示的通過全反射而呈直線狀地、呈之字型地改變方向之階躍折射率型的情況之外,也可考慮成為呈曲線狀地改變方向之梯度折射率型的情況。
另外,在圖1a~1b中,為簡單起見而將折射率相對高的板狀區域12與折射率相對低的板狀區域14之介面用直線表示,但實際上,介面略有曲折,各板狀區域形成伴隨分支、消失的複雜的折射率分佈結構。
其結果,推定此等複雜地作用於光擴散特性。
2.基本構成
接著,用圖3a~3c對利用本發明之製造方法而得的光擴散膜之基本構成進行說明。
即,如圖3c所示,利用本發明之製造方法而得到的光擴散膜20之特徵係沿著膜的膜厚方向從下方開始依次具有圖3a所示的第1百葉窗結構13a及圖3b所示的第2百葉窗結構13b。
進而,圖3a所示的第1百葉窗結構13a之板狀區域的延伸方向與圖3b所示的第2百葉窗結構13b之板狀區域的延伸方向分別不同,從膜上方向觀看時,發生交叉。
因此,若係利用本發明之製造方法而得到的光擴散膜20,則使向膜入射的光例如首先通過如圖3b所示第2百葉窗結構13b進行各向異性光擴散。
接著,使通過第2百葉窗結構13b而進行各向異性光擴散的擴散光進一步如圖3a所示通過第1百葉窗結構13a,在與第2百葉窗結構13b不同的方向上進行各向異性光擴散。
其結果,如圖3c所示,入射至本發明之光擴散膜20的光被光擴散成矩形形狀,從而能夠有效地擴大入射光之擴散面積。
應予說明,上述“下方”係指,在工藝片材上設有塗佈層時,塗佈層之膜厚方向上的靠近工藝片材之一側。因此,係用於說明本發明之簡便的用語,並不對光擴散膜本身的上下方向進行任何制約。
另外,“入射光之擴散面積”係指,如圖3c所示,入射光經膜予以擴散時,經予擴散的射出光在從膜起規定距離之與膜平行的面內之擴散光分佈的面積。
以下,對本實施方式所涉及的光擴散膜之製造方法進行詳述。
3.步驟(a):光擴散膜用組合物之準備步驟
步驟(a)係準備規定的光擴散膜用組合物之步驟。
較具體而言,宜為將折射率不同的至少2種聚合性化合物、光聚合引發劑及根據所需而定的其他添加劑混合的步驟。
另外,混合時,可以在室溫下直接攪拌,但從提高均勻性之觀點出發,例如,宜為在40~80℃之加熱條件下攪拌,形成均勻的混合液。
另外,較宜為進一步添加稀釋溶劑以成為適合塗裝之所希望的黏度。
以下,對步驟(a)進行更具體的說明。
[29](1)高折射率聚合性化合物
(1)-1種類
折射率不同的2種聚合性化合物中,折射率相對高的聚合性化合物(以下,有時稱為(A)成分)之種類未予特別限定,宜為使其主成分為含有多個芳香環之(甲基)丙烯酸酯。
其理由係由於推定如下:作為(A)成分,通過含有特定的(甲基)丙烯酸酯,從而能夠使(A)成分之聚合速度比折射率相對低的聚合性化合物(以下,有時稱為(B)成分)之聚合速度快,使此等成分間之聚合速度產生規定的差,有效地降低兩成分之共聚性。
其結果,光固化時,能夠效率良好地形成來自(A)成分之板狀區域及來自(B)成分之板狀區域交替地延伸的所謂百葉窗結構。
另外,推定作為(A)成分,通過含有特定的(甲基)丙烯酸酯,從而雖然在單體階段與(B)成分具有充分的相溶性,但是能夠在聚合過程中,在多個相連的階段使與(B)成分之相溶性降低至規定的範圍,進一步效率良好地形成百葉窗結構。
進而,作為(A)成分,通過含有特定的(甲基)丙烯酸酯,從而 能夠提高來自百葉窗結構中之(A)成分的板狀區域之折射率,將與來自(B)成分之板狀區域的折射率之差調節為規定以上的值。
因此,作為(A)成分,通過含有特定的(甲基)丙烯酸酯,從而與後述的(B)成分之特性結合,能夠有效率地得到折射率不同的板狀區域交替地延伸的百葉窗結構。
應予說明,“含有多個芳香環之(甲基)丙烯酸酯”係指在(甲基)丙烯酸酯之酯殘基部分具有多個芳香環的化合物。
另外,“(甲基)丙烯酸”係指丙烯酸和甲基丙烯酸此兩者。
另外,作為此種(A)成分之含有多個芳香環的(甲基)丙烯酸酯,例如可舉出(甲基)丙烯酸聯苯酯、(甲基)丙烯酸萘酯、(甲基)丙烯酸蒽酯、(甲基)丙烯酸苄基苯酯、(甲基)丙烯酸聯苯基氧基烷基酯、(甲基)丙烯酸萘基氧基烷基酯、(甲基)丙烯酸蒽基氧基烷基酯、(甲基)丙烯酸苄基苯基氧基烷基酯等,或者芳香環上的氫原子之一部分被鹵素、烷基、烷氧基、鹵代烷基等取代而得的(甲基)丙烯酸酯等。
另外,對於作為(A)成分之含有多個芳香環的(甲基)丙烯酸酯,宜為包含含有聯苯環之化合物,尤宜為包含由下述通式(1)表示的聯苯化合物。
Figure TWI613465BD00001
[33](通式(1)中,R1~R10各自獨立,R1~R10中之至 少一個為由下述通式(2)表示的取代基,其餘為氫原子、羥基、羧基、烷基、烷氧基、鹵代烷基、羥基烷基、羧基烷基以及鹵原子中的任意取代基)
Figure TWI613465BD00002
(通式(2)中,R11為氫原子或甲基,碳原子數n為1~4的整數,重複數m為1~10的整數)
其理由係由於推定如下:作為(A)成分,通過含有具有特定結構之聯苯化合物,從而能夠使(A)成分及(B)成分之聚合速度產生規定的差,使(A)成分與(B)成分之相溶性降低至規定的範圍,降低兩成分彼此的共聚性。
另外,能夠提高來自百葉窗結構中之(A)成分的板狀區域之折射率,而更容易將與來自(B)成分之板狀區域的折射率之差調節為規定以上的值。
另外,通式(1)中的R1~R10含有烷基、烷氧基、鹵代烷基、羥基烷基以及羧基烷基中之任一種時,宜為使其烷基部分之碳原子數為1~4之範圍內的值。
其理由戲由於如果上述碳原子數為超過4之值,則(A)成分之聚合速度降低,或者來自(A)成分之板狀區域的折射率變得過低,有時難以有效率地形成百葉窗結構。
因此,通式(1)中的R1~R10含有烷基、烷氧基、鹵代烷基、羥基烷基以及羧基烷基中的任一種時,較宜為使其烷基部分之碳原子數為1~3之範圍內的值,尤宜為為1~2之範圍內的值。
另外,通式(1)中的R1~R10宜為含有鹵代烷基或鹵原 子以外的取代基、即不含有鹵素之取代基。
其理由係由於防止在焚燒光擴散膜等時產生戴奧辛,從環境保護的觀點出發而較宜。
應予說明,在以往的具備百葉窗結構之光擴散膜中,在獲得規定的百葉窗結構時,出於使單體成分高折射率化目的,通常在單體成分中進行鹵素取代。
在此方面,若係由通式(1)表示的聯苯化合物,則即使不進行鹵素取代,也能夠為高的折射率。
因此,若係將本發明中之光擴散膜用組合物進行光固化而成的光擴散膜,則即使不含有鹵素,也能夠發揮良好的入射角度依賴性。
應予說明,“良好的入射角度依賴性”係指,光擴散入射角度區域與入射光不被擴散而直接透射的非擴散入射角度區域之區別得到明確控制。
另外,通式(1)中之R2~R9中的任一個宜為由通式(2)表示的取代基。
其理由係由於,通過使由通式(2)表示的取代基之位置為R1及R10以外的位置,從而能夠有效地防止在進行光固化之前的階段,(A)成分彼此取向並結晶化。
進而,在進行光固化之前的單體階段為液態,即使不使用稀釋溶劑等,也能夠在表觀上與(B)成分均勻混合。
由此,在光固化的階段,(A)成分及(B)成分可在細微水準上進行凝結、相分離,能夠更有效率地得到具備百葉窗結構之光擴散膜。
進而,從相同的觀點出發,通式(1)中的R3、R5、R6以及R8中的任一個尤宜為由通式(2)表示的取代基。
另外,通常宜為使由通式(2)表示的取代基之重複數m為1~10的整數。
其理由是由於,如果重複數m成為超過10的值,則連接聚合部位與聯苯環之氧化烯鏈變得過長,有時阻礙聚合部位之(A)成分彼此的聚合。
因此,更宜為使由通式(2)表示的取代基之重複數m為1~4的整數,尤宜為1~2的整數。
應予說明,從相同的觀點出發,通常宜為使由通式(2)表示的取代基之碳原子數n為1~4的整數。
另外,如果考慮到作為聚合部位之聚合性碳-碳雙鍵的位置相對於聯苯環過近、聯苯環成為空間位阻而使(A)成分之聚合速度降低的情況,則較宜為使由通式(2)表示的取代基之碳原子數n為2~4的整數,尤宜為2~3的整數。
另外,作為由通式(1)表示的聯苯化合物之具體例,宜為可舉出由下述式(3)~(4)表示的化合物。
Figure TWI613465BD00003
Figure TWI613465BD00004
(1)-2分子量
另外,宜為使(A)成分之分子量為200~2500之範圍內的值。
其理由係由於推定如下:通過使(A)成分之分子量為規定的範圍,從而能夠進一步加快(A)成分之聚合速度,更有效地降低(A)成分及(B)成分之共聚性。
其結果,在進行光固化時,能夠更有效地形成來自(A)成分之板狀區域及來自(B)成分之板狀區域交替地延伸而成的百葉窗結構。
即,若(A)成分之分子量為小於200的值時,則由於空間位阻而導致聚合速度降低,變得與(B)成分之聚合速度接近,有時容易發生與(B)成分之共聚。另一方面,如果(A)成分之分子量為超過2500的值,則隨著與(B)成分的分子量之差變小,(A)成分之聚合速度也降低,變得與(B)成分之聚合速度接近,推定容易發生與(B)成分之共聚,其結果,有時難以效率良好地形成百葉窗結構。
因此,較宜為使(A)成分之分子量為240~1500之範圍內的值,更宜為為260~1000之範圍內的值。
應予說明,就(A)成分之分子量而言,可根據由分子之組成與構成原子的原子量所得的計算值求得,也可使用凝膠滲透色譜法(GPC)測定重均分子量。
(1)-3單獨使用
另外,本發明中的光擴散膜用組合物之特徵係含有(A)成分作為形成百葉窗結構中之折射率相對高的板狀區域的單體成分,但宜為以單成分含有(A)成分。
其理由是由於,通過如此構成,從而能夠有效地控制來自(A)成分之板狀區域、即折射率相對高的板狀區域之折射率的波動,更有效率地得到具備百葉窗結構之光擴散膜。
即,(A)成分相對於(B)成分之相溶性低時,例如,(A)成分為鹵素系化合物等時,有時並用其他(A)成分(例如,非鹵素系化合物等)作為用於使(A)成分與(B)成分相溶的第3成分。
然而,此時,由於上述第3成分的影響,有時來自(A)成分之折射率相對高的板狀區域之折射率產生波動、或者容易降低。
其結果,有時與來自(B)成分之折射率相對低的板狀區域之折射率差變得不均勻、或者容易過度降低。
因此,宜為選擇與(B)成分有相溶性之高折射率的單體成分,並使用該成分作為單獨的(A)成分。
應予說明,例如,若係作為(A)成分之由式(3)表示的聯苯化合物,則由於是低黏度,所以與(B)成分有相溶性,因此能夠作為單獨的(A)成分使用。
(1)-4折射率
另外,宜為使(A)成分之折射率為1.5~1.65之範圍內的值。
其理由是由於,通過使(A)成分之折射率為上述範圍內的值,從而能夠更容易地調節來自(A)成分之板狀區域的折射率與來自(B)成分之板狀區域的折射率之差,更有效率地得到具備百葉窗結構之光擴散膜。
即,若(A)成分之折射率為未滿1.5的值時,則與(B)成分之折射率之差變得過小,有時難以得到有效的光擴散角度區域。另一方面,若(A)成分之折射率為超過1.65的值時,則雖然與(B)成分之折射率之差變大,但有時連與(B)成分之表觀上的相溶狀態也難以形成。
因此,較宜為使(A)成分之折射率為1.52~1.65之範圍內的值,更宜為1.56~1.6之範圍內的值。
應予說明,上述(A)成分之折射率係指利用光照射進行固化之前 的(A)成分的折射率。
另外,折射率例如可以根据JIS K0062予以测定。
(1)-5含量
另外,宜為使光擴散膜用組合物中的(A)成分之含量相對於作為後述的折射率相對低的聚合性化合物之(B)成分100重量份為25~400重量份之範圍內的值。
其理由是由於,若(A)成分之含量為未滿25重量份的值時,則(A)成分相對於(B)成分之存在比例變少,來自(A)成分之板狀區域的寬度與來自(B)成分之板狀區域的寬度相比過度變小,有時難以得到具有良好的入射角度依賴性的百葉窗結構。另外,光擴散膜之厚度方向的百葉窗的長度變得不充分,有時無法顯示光擴散性。另一方面,若(A)成分的含量為超過400重量份的值時,則(A)成分相對於(B)成分之存在比例變多,來自(A)成分之板狀區域的寬度與來自(B)成分之板狀區域的寬度相比過度變大,有時反而難以得到具有良好的入射角度依賴性之百葉窗結構。另外,光擴散膜之厚度方向上的百葉窗之長度變得不充分,有時不顯示光擴散性。
因此,較宜為使(A)成分之含量相對於(B)成分100重量份為40~300重量份之範圍內的值,更宜為50~200重量份之範圍內的值。
(2)低折射率聚合性化合物
(2)-1種類
折射率不同的2種聚合性化合物中,折射率相對低的聚合性化合物((B)成分)之種類未予特別限定,作為其主成分,例如可舉出尿烷(甲基)丙烯酸酯、在側鏈具有(甲基)丙烯醯基之(甲基)丙烯酸系聚合物、含有(甲基)丙烯醯基之有機矽樹脂、不飽和聚酯樹脂等,但尤宜為尿烷(甲基)丙烯酸酯。
其理由是由於,若係尿烷(甲基)丙烯酸酯,則不僅能夠更容易調節來自(A)成分之板狀區域的折射率與來自(B)成分之板狀區域的折射率之差,還能夠有效抑制來自(B)成分之板狀區域的折射率的波動,更有效率地得到具備百葉窗結構之光擴散膜。
因此,以下,主要對作為(B)成分之尿烷(甲基)丙烯酸酯進行說明。
應予說明,(甲基)丙烯酸酯係指丙烯酸酯及甲基丙烯酸酯此兩者。
首先,尿烷(甲基)丙烯酸酯由(B1)至少含有2個異氰酸酯基之化合物、(B2)多元醇化合物以及(B3)(甲基)丙烯酸羥基烷基酯形成,其中,(B2)宜為二元醇化合物,較宜為聚亞烷基二醇。
應予說明,(B)成分中還含有具有尿烷鍵之重複單元的低聚物。
其中,作為(B1)成分之至少含有2個異氰酸酯基的化合物,例如可舉出2,4-甲苯二異氰酸酯、2,6-甲苯二異氰酸酯、1,3-苯二亞甲基二異氰酸酯、1,4-苯二亞甲基二異氰酸酯等芳香族聚異氰酸酯,六亞甲基二異氰酸酯等脂肪族聚異氰酸酯,異佛爾酮二異氰酸酯(IPDI)、氫化二苯基甲烷二異氰酸酯等脂環式聚異氰酸酯,以及此等的縮二脲體、異氰脲酸酯體、以及作為與乙二醇、丙二醇、新戊二醇、三羥甲基丙烷、蓖麻油等低分子含活性氫化合物之反應物的加合物(例如,苯二亞甲基二異氰酸酯系三官能度加合物)等。
另外,上述中,特宜為脂環式聚異氰酸酯。
其理由是由於,若為脂環式聚異氰酸酯時,則與脂肪族聚異氰酸酯相比,由於空間構象等關係而容易對各異氰酸酯基之反應速度設置差別。
由此,能夠抑制(B1)成分僅與(B2)成分反應、或者(B1)成分僅與(B3)成分反應,使(B1)成分與(B2)成分及(B3)成分可靠地反應,能夠防止多餘的副產物之產生。
其結果,能夠有效抑制百葉窗結構中之來自(B)成分的板狀區域,即,低折射率板狀區域之折射率的波動。
另外,若為脂環式聚異氰酸酯時,則與芳香族聚異氰酸酯相比,能夠將所得的(B)成分與(A)成分之相溶性降低至規定的範圍,更有效率地形成百葉窗結構。
進而,若係脂環式聚異氰酸酯時,則與芳香族聚異氰酸酯相比,能夠減小所得的(B)成分之折射率,所以增大與(A)成分的折射率之差,能夠更可靠地顯示光擴散性,並且進一步效率良好地形成光擴散角度區域內的擴散光之均勻性高的百葉窗結構。
另外,在此種脂環式聚異氰酸酯中,宜為僅含有2個異氰酸酯基之脂環式二異氰酸酯。
其理由是由於,若係脂環式二異氰酸酯時,則能夠與(B2)成分及(B3)成分定量地反應,得到單一的(B)成分。
作為此種脂環式二異氰酸酯,可較宜舉出為異佛爾酮二異氰酸酯(IPDI)。
其理由是由於,能夠對2個異氰酸酯基之反應性設置有效的差異。
另外,在形成尿烷(甲基)丙烯酸酯之成分中,作為(B2)成分即聚亞烷基二醇,例如可舉出聚乙二醇、聚丙二醇、聚丁二醇、聚己二醇等,其中,較宜為聚丙二醇。
其理由是由於,若係聚丙二醇,則由於黏度低,所以可以進行無溶劑處理。
另外,若係聚丙二醇,則在使(B)成分固化時,成為該固化物中之良好的軟鏈段,能夠有效地提高光擴散膜之操作性、安裝性。
應予說明,(B)成分之重均分子量可主要通過(B2)成分之重均分子量進行調節。此處,(B2)成分之重均分子量通常為2300~19500,宜 為4300~14300,較宜為6300~12300。
另外,在形成尿烷(甲基)丙烯酸酯之成分中,作為(B3)成分即(甲基)丙烯酸羥基烷基酯,例如可舉出(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基丙酯、(甲基)丙烯酸3-羥基丙酯、(甲基)丙烯酸2-羥基丁酯、(甲基)丙烯酸3-羥基丁酯、(甲基)丙烯酸4-羥基丁酯等。
另外,從降低所得的尿烷(甲基)丙烯酸酯之聚合速度,更有效率地形成規定的百葉窗結構之觀點出發,尤宜為甲基丙烯酸羥基烷基酯、更宜為甲基丙烯酸2-羥基乙酯。
另外,利用(B1)~(B3)成分進行的尿烷(甲基)丙烯酸酯之合成可以根據常規方法實施。
此時,宜為使(B1)~(B3)成分之配合比例以莫耳比計為(B1)成分:(B2)成分:(B3)成分=1~5:1:1~5的比例。
其理由是由於,通過為上述配合比例,從而能夠有效率地合成(B1)成分具有的一個異氰酸酯基與(B2)成分具有的2個羥基分別反應並鍵合、進而(B3)成分具有的羥基與2個(B1)成分分別具有的另一個異氰酸酯基反應並鍵合而成的尿烷(甲基)丙烯酸酯。
因此,較宜為使(B1)~(B3)成分之配合比例以莫耳比計為(B1)成分:(B2)成分:(B3)成分=1~3:1:1~3的比例,尤宜為2:1:2的比例。
(2)-2重均分子量
另外,宜為使(B)成分之重均分子量為3000~20000之範圍內的值。
其理由是由於,通過使(B)成分之重均分子量為規定的範圍,從而能夠使(A)成分及(B)成分之聚合速度產生規定的差,有效地降低兩成分之共聚性。
其結果,進行光固化時,能夠效率良好地形成來自(A)成分之板狀區域及來自(B)成分之板狀區域交替地延伸而成的百葉窗結構。
即,若(B)成分之重均分子量為小於3000的值時,則(B)成分之聚合速度變快,與(A)成分之聚合速度接近,容易發生與(A)成分之共聚,結果有時難以效率良好地形成百葉窗結構。另一方面,若(B)成分之重均分子量為超過20000的值時,則有時難以形成來自(A)成分及(B)成分之板狀區域交替地延伸而成的百葉窗結構、或者與(A)成分之相溶性過度降低而使(A)成分在塗佈階段析出。
因此,較宜為使(B)成分之重均分子量為5000~15000之範圍內的值,尤宜為為7000~13000之範圍內的值。
應予說明,(B)成分之重均分子量可以使用凝膠滲透色譜法(GPC)予以測定。
(2)-3單獨使用
另外,(B)成分可以並用分子結構、重均分子量不同的2種以上,但從抑制百葉窗結構中之來自(B)成分的板狀區域之折射率的波動之觀點出發,宜為僅使用1種。
即,使用多種(B)成分時,來自(B)成分之折射率相對低的板狀區域之折射率產生波動、或者變高,有時與來自(A)成分之折射率相對高的板狀區域之折射率差變得不均勻、或者過度降低。
(2)-4折射率
另外,宜為使(B)成分之折射率為1.4~1.55之範圍內的值。
其理由是由於,通過使(B)成分之折射率為上述範圍內的值,從而能夠更容易調節來自(A)成分之板狀區域與來自(B)成分之板狀區域的折射率之差,更有效率地得到具備百葉窗結構之光擴散膜。
即,若(B)成分之折射率為小於1.4的值時,則雖然與(A)成分 的折射率之差變大,但與(A)成分之相溶性極度變差,有可能無法形成百葉窗結構。另一方面,若(B)成分之折射率為超過1.55的值時,則與(A)成分的折射率之差變得過小,有時難以得到所希望的入射角度依賴性。
因此,較宜為使(B)成分的折射率為1.45~1.54之範圍內的值,尤宜為1.46~1.52之範圍內的值。
應予說明,上述(B)成分之折射率係指利用光照射進行固化之前的(B)成分之折射率。
而且,折射率例如可以根据JIS K0062予以测定。
另外,宜為使上述(A)成分之折射率與(B)成分之折射率之差為0.01以上的值。
其理由是由於,通過使上述折射率之差為規定的範圍內之值,從而能夠得到具有在光之透射及擴散中的更良好的入射角度依賴性、及更廣的光擴散入射角度區域之光擴散膜。
即,若上述折射率之差為小於0.01的值時,則入射光在百葉窗結構內全反射的角度域變得狹窄,所以有時光擴散之開口角變得過度狹窄。另一方面,若上述折射率之差為過度大的值時,則(A)成分與(B)成分之相溶性過於變差,有可能無法形成百葉窗結構。
因此,較宜為使(A)成分之折射率與(B)成分的折射率之差為0.05~0.5之範圍內的值,尤宜為0.1~0.2之範圍內的值。
應予說明,此處所指的(A)成分及(B)成分之折射率係指在利用光照射進行固化之前的(A)成分及(B)成分之折射率。
(2)-5含量
另外,宜為使光擴散膜用組合物中的(B)成分之含量相對於光擴散膜用組合物之總量100重量%為10~80重量%之範圍內的值。
其理由是由於,若(B)成分之含量為小於10重量%的值時,則(B)成分相對於(A)成分之存在比例變少,來自(B)成分之板狀區域的寬度與來自(A)成分之板狀區域的寬度相比過度變小,有時難以得到具有良好的入射角度依賴性之百葉窗結構。另外,有時光擴散膜之厚度方向上的百葉窗之長度變得不充分。另一方面,若(B)成分之含量為超過80重量%的值時,則(B)成分相對於(A)成分之存在比例變多,來自(B)成分之板狀區域的寬度與來自(A)成分之板狀區域的寬度相比過度變大,有時反而難以得到具有良好的入射角度依賴性之百葉窗結構。另外,有時光擴散膜之厚度方向上的百葉窗之長度變得不充分。
因此,較宜為使(B)成分之含量相對於光擴散膜用組合物之總量100重量%為20~70重量%之範圍內的值,尤宜為30~60重量%之範圍內的值。
(3)光聚合引發劑
另外,在本發明中的光擴散膜用組合物中,根據所需,宜為含有光聚合引發劑作為(C)成分。
其理由是由於,通過含有光聚合引發劑,從而在對光擴散膜用組合物照射活性能量線時,能夠有效率地形成百葉窗結構。
此處,光聚合引發劑係指通過紫外線等活性能量線之照射而產生自由基種的化合物。
作為上述光聚合引發劑,例如可舉出苯偶姻、苯偶姻甲醚、苯偶姻乙醚、苯偶姻異丙醚、苯偶姻正丁醚、苯偶姻異丁醚、苯乙酮、二甲氨基苯乙酮、2,2-二甲氧基-2-苯基苯乙酮、2,2-二乙氧基-2-苯基苯乙酮、2-羥基-2-甲基-1-苯基丙烷-1-酮、1-羥基環己基苯基酮、2-甲基-1-〔4-(甲硫基)苯基〕-2-嗎啉基-丙烷-1-酮、4-(2-羥基乙氧基)苯基-2-(羥基-2-丙基)酮、二苯甲酮、對苯基二苯甲酮、4,4-二乙基氨基二苯甲酮、二氯二苯甲酮、2-甲基蒽醌、2-乙基蒽醌、2-叔丁基丁基蒽醌、2-氨基蒽醌、2-甲基噻噸酮、2-乙基噻噸酮、2-氯噻噸酮、2,4-二甲基噻噸 酮、2,4-二乙基噻噸酮、苯偶醯二甲基縮酮、苯乙酮二甲基縮酮、對二甲胺苯甲酸酯、寡〔2-羥基-2-甲基-1-〔4-(1-甲基乙烯基)苯基〕丙烷〕等,可以單獨使用其中的1種,也可以組合2種以上使用。
應予說明,作為含有光聚合引發劑時的含量,宜為相對於(A)成分及(B)成分之總計量100重量份為0.2~20重量份之範圍內的值,較宜為0.5~15重量份之範圍內的值,尤宜為1~10重量份之範圍內的值。
(4)其他添加劑
另外,在不損害本發明之效果的範圍內,可以適當地添加上述化合物以外的添加劑。
作為此種添加劑,例如可舉出抗氧化劑、紫外線吸收劑、抗靜電劑、聚合促進劑、阻聚劑、紅外線吸收劑、增塑劑、稀釋溶劑以及流平劑等。
應予說明,此種添加劑之含量通常宜為相對於(A)成分及(B)成分之總計量100重量份為0.01~5重量份之範圍內的值,較宜為0.02~3重量份之範圍內的值,尤宜為0.05~2重量份之範圍內的值。
4.步驟(b):第1塗佈步驟
步驟(b)是如圖4a所示對工藝片材2塗佈所準備的光擴散膜用組合物,形成第1塗佈層1a之步驟。
作為工藝片材,可以使用塑膠膜、紙中的任一種。
其中,作為塑膠膜,可舉出聚對苯二甲酸乙二醇酯膜等聚酯系膜,聚乙烯膜、聚丙烯膜等聚烯烴系膜,三乙醯纖維素膜等纖維素系膜,以及聚醯亞胺系膜等。
另外,作為紙,例如可舉出玻璃紙、塗佈紙及層壓紙等。
另外,若考慮及後述的步驟時,則作為工藝片材2,宜為對熱、活性能量線之尺寸穩定性優異的塑膠膜。
作為此種塑膠膜,在上述塑膠膜中,宜為可舉出聚酯系膜、聚烯烴系膜及聚醯亞胺系膜。
另外,對工藝片材進行光固化後,為使所得的光擴散膜容易從工藝片材剝離,宜為在工藝片材之光擴散膜用組合物的塗佈面側設置剝離層。
上述剝離層可以使用有機矽系剝離劑、氟系剝離劑、醇酸系剝離劑、烯烴系剝離劑等以往公知的剝離劑予以形成。
應予說明,工藝片材之厚度通常宜為25~200μm之範圍內的值。
另外,作為在工藝片材上塗佈光擴散膜用組合物之方法,例如可以利用刮刀塗佈法、輥塗法、棒塗法、刮板塗佈法、模塗法以及凹版塗佈法等以往公知的方法進行。
另外,宜為使第1塗佈層之膜厚為80~700μm之範圍內的值。
其理由是由於,通過使第1塗佈層之膜厚為上述範圍內的值,從而能夠進一步有效率地形成第1百葉窗結構。
即,若第1塗佈層之膜厚為小於80μm的值時,則所形成的第1百葉窗結構之長度不足,在第1百葉窗結構內直行的入射光增加,有時難以得到光擴散角度區域內的擴散光之強度的均勻性。另一方面,若第1塗佈層之膜厚為超過700μm的值時,則對第1塗佈層照射活性能量線而形成第1百葉窗結構時,由於初期形成的百葉窗結構而導致光聚合之行進方向擴散,有時難以形成所希望的百葉窗結構。
因此,較宜為使第1塗佈層之膜厚為100~500μm之範圍內的值,尤宜為120~300μm之範圍內的值。
5.步驟(c):第1活性能量線照射步驟
如圖4b所示,步驟(c)係如下步驟:對於第1塗佈層1a,一邊使 該第1塗佈層1a沿著移動方向E進行移動,一邊使用線狀光源125a進行第1活性能量線照射150a,形成第1百葉窗結構13a。
較具體而言,例如,圖5a所示,通過在對線狀的紫外線燈125a中設有聚光用的冷光鏡122之紫外線照射裝置120(例如,若為市售品,則為EYE GRAPHICS株式會社製,ECS-4011GX等)中配置熱輻射截止濾光器121及遮光板123(123a、123b),從而取出僅由照射角度得到控制的直接光構成的活性能量線150a,並對在工藝片材2上形成的第1塗佈層1a進行照射。
另外,如圖6a所示,宜為從膜上方觀看時,使第1活性能量線照射時的線狀光源125a之長軸方向與沿著第1塗佈層1a的移動方向E之假想線E′所成的銳角θ2為10~80°之範圍內的值。
其理由是由於,通過如此規定線狀光源之配置角度,從而與後述步驟(e)中的線狀光源之配置角度相結合,能夠更效率良好地製造通過使入射光不僅向沿著其長度方向之方向、也向與其長度方向正交的方向進行光擴散而有效擴大入射光之擴散面積的長條狀光擴散膜。
即,如果上述θ2為小於10°的值,則雖然也取決於後述步驟(e)中的線狀光源之配置角度,但通常向沿著膜之長度方向的方向的光擴散特性過度降低,有時入射光之擴散面積過度變小。另一方面,若上述θ2為超過80°的值時,則雖然也取決於後述步驟(e)中的線狀光源之配置角度,但通常朝向與膜之長度方向正交的方向之光擴散特性過度降低,有時入射光之擴散面積過度變小。
因此,從膜上方觀看時,較宜為使第1活性能量線照射時的線狀光源之長軸方向與沿著第1塗佈層的移動方向之假想線所成的銳角θ2為35~55°之範圍內的值,尤宜為40~50°之範圍內的值,更宜為44~46°之範圍內的值。
應予說明,宜為線狀光源125a與塗佈層1a之間隔在任意位置均大致相同。
另外,作為活性能量線之照射角度,如圖5b所示,通常宜為使相對於第1塗佈層1a之表面的法線之角度為0°時的照射角度θ6為-80~80°之範圍內的值。
其理由是由於,若上述照射角度為-80~80°之範圍外的值時,則在第1塗佈層1a之表面的反射等的影響變大,有時難以形成充分的百葉窗結構。
另外,照射角度θ6宜為具有1~80°之寬度(照射角度寬度)θ6′。
其理由係由於,若上述照射角度寬度θ6′為小於1°的值時,則必須使塗佈層之移動速度過度降低,有時製造效率降低。另一方面,若上述照射角度寬度θ6′為超過80°的值時,則照射光過於分散,有時難以形成百葉窗結構。
因此,較宜為使照射角度θ6之照射角度寬度θ6′為2~45°之範圍內的值,尤宜為5~20°之範圍內的值。
應予說明,具有照射角度寬度θ6′時,將其正中間位置之角度作為照射角度θ6。
另外,宜為介由具有長槽狀活性能量線透射部之遮光板進行第1活性能量線照射,並且活性能量線透射部之長邊方向為與線狀光源之長邊方向平行的方向。
應予說明,只要活性能量線透射部係透射活性能量線的狀態,就無論為何種方式均可。
例如,可以由石英玻璃構成,也可以是不存在遮光材料之單純的空間等。
具體而言,如圖7所示,宜為介由由2張遮光板123(123a、123b)形成的長槽狀間隙(活性能量線透射部)進行,並且長槽狀間隙之長邊方向為與線狀光源125a之長軸方向平行的方向。
通過如此配置遮光板,從而能夠將如圖5a所示的活性能量線150a的照射角度θ6調節為規定的範圍內的值,能夠有效抑制由於第1塗佈層1a的表面之各位置不同而來自線狀光源125a之活性能量線150a以過度不同的角度照射。
其結果,能夠使形成的百葉窗結構中的板狀區域之傾斜角均勻,進而使所得的長條狀光擴散膜之光擴散特性均勻。
另外,宜為使第1活性能量線照射時的第1塗佈層之表面的峰值照度為0.1~50mW/cm2之範圍內的值。
其理由是由於,通過使第1活性能量線照射時的峰值照度為上述範圍內的值,從而能夠更有效率地形成第1百葉窗結構。
即,若上述峰值照度為小於0.1mW/cm2的值時,則有時難以明確地形成第1百葉窗結構。另一方面,若上述峰值照度為超過50mW/cm2的值時,則推定固化速度變得過快,有時無法明確地形成第1百葉窗結構。
因此,較宜為使第1活性能量線照射時的第1塗佈層之表面的峰值照度為0.3~10mW/cm2之範圍內的值,尤宜為0.5~5mW/cm2之範圍內的值。
另外,宜為使第1活性能量線照射時的第1塗佈層之表面的累計光量為5~300mJ/cm2之範圍內的值。
其理由是由於,通過使第1活性能量線照射時的累計光量為上述範圍內的值,從而能夠更有效率地形成第1百葉窗結構。
即,若上述累計光量為小於5mJ/cm2的值時,則有時難以使第1百葉窗結構從上方充分地伸長至下方。另一方面,偌上述累計光量為超過300mJ/cm2的值時,則有時所得的光擴散膜產生著色。
因此,較宜為使第1活性能量線照射時的第1塗佈層之表面的累計光量為10~200mJ/cm2之範圍內的值,尤宜為20~150mJ/cm2之範圍內的 值。
另外,宜為使第1塗佈層之移動速度為0.1~10m/分鐘之範圍內的值。
其理由是由於,通過使第1塗佈層之移動速度為上述範圍內的值,從而能夠進一步有效率地形成第1百葉窗結構。
即,若第1塗佈層之移動速度為未滿0.1m/分鐘的值時,則有時生產率過度降低。另一方面,若第1塗佈層之移動速度為超過10m/分鐘的值時,則比第1塗佈層之固化,換言之,比第1百葉窗結構之形成快,活性能量線對第1塗佈層之入射角度發生改變,有時第1百葉窗結構之形成變得不充分。
因此,較宜為第1塗佈層之移動速度為0.2~5m/分鐘之範圍內的值,尤宜為0.5~3m/分鐘之範圍內的值。
另外,較宜為對於第1塗佈層之上表面,以層壓有活性能量線透射片之狀態照射活性能量線。
其理由是由於,通過層壓活性能量線透射片,從而能夠有效抑制氧阻礙之影響,更有效率地形成第1百葉窗結構。
即,通過對第1塗佈層之上表面層壓活性能量線透射片,從而能夠一邊穩定地防止第1塗佈層之上表面與氧接觸,一邊使該片透射,有效率地對第1塗佈層照射活性能量線。
應予說明,作為活性能量線透射片,只要是在步驟(b)(塗佈步驟)中記載的工藝片材中活性能量線能夠透射的工藝片材,即可以未予特別限制地使用。
另外,較宜為以成為第1塗佈層充分固化的累計光量之方式,與作為步驟(c)之第1活性能量線照射不同地,進一步照射活性能量線。
由於使第1塗佈層充分固化之目的,所以此時的活性能量線宜為不使用平行光,而使用任意行進方向中隨機的光。
6.步驟(d):第2塗佈步驟
如圖4c所示,步驟(d)是對形成有第1百葉窗結構13a之第1塗佈層1a′塗佈光擴散膜用組合物,形成由第1塗佈層1a′及第2塗佈層1b構成的層疊體1c。
應予說明,在形成第1百葉窗結構13a時,在使用活性能量線透射片的情況下,將該片剝離,露出塗佈層1a′之表面,然後進行上述操作。
另外,第2塗佈層1b之形成中使用的光擴散膜用組合物宜為使用與第1塗佈層1a之形成中使用的光擴散膜用組合物相同的光擴散膜用組合物。
其理由是由於,通過使用相同的光擴散膜用組合物,從而能夠抑制在塗佈層1a′與塗佈層1b′之介面的反射,並且還能夠提高黏合性。
另外,作為在形成有第1百葉窗結構之第1塗佈層上塗佈光擴散膜用組合物的方法,例如,可以利用刮刀塗佈法、輥塗法、棒塗法、刮板塗佈法、模塗法以及凹版塗佈法等與上述步驟(b)相同的方法進行。
另外,宜為使第2塗佈層之膜厚為80~700μm之範圍內的值。
其理由是由於,通過使第2塗佈層之膜厚為上述範圍內的值,從而能夠更進一步有效率地形成第2百葉窗結構。
即,若第2塗佈層之膜厚為未滿80μm的值時,則形成的第2百葉窗結構之長度不足,在第2百葉窗結構內直行的入射光增加,有時難以得到光擴散角度區域內的擴散光之強度的均勻性。另一方面,若第2塗佈層之膜厚為超過700μm的值時,則對第2塗佈層照射活性能量線形成第2百葉窗結構時,由於初期形成的百葉窗結構而導致光聚合之行進 方向發生擴散,有時難以形成所希望的百葉窗結構。
因此,較宜為使第2塗佈層之膜厚為100~500μm之範圍內的值,更宜為120~300μm之範圍內的值。
7.步驟(e):第2活性能量線照射步驟
如圖4d所示,步驟(e)係如下步驟:對第2塗佈層1b,一邊移動由形成有第1百葉窗結構13a之第1塗佈層1a′及第2塗佈層1b構成的層疊體1c,一邊使用線狀光源125b進行第2活性能量線照射,形成第2百葉窗結構13b,並且,如圖6b所示,係如下步驟:從膜上方觀看時,使第1活性能量線照射時的線狀光源125a之長軸方向與第2活性能量線照射時的線狀光源125b之長軸方向所成的銳角θ1為10~90°之範圍內的值。
即,在已使用線狀光源之2次活性能量線照射步驟中,通過將各線狀光源之配置角度的關係規定為規定的範圍,從而能夠效率良好地製造使第1百葉窗結構中的板狀區域之延伸方向與第2百葉窗結構中的板狀區域之延伸方向以規定的角度交叉而成的長條狀光擴散膜。
因此,能夠效率良好地製造通過使入射光不僅向沿著其長度方向之方向、也向與其長度方向正交的方向進行光擴散而有效地擴大入射光之擴散面積的長條狀光擴散膜。
較具體而言,能夠得到在不如以往般將多個光擴散膜接合的情況下,能夠使入射光在沿著其長度方向之方向上以及在與其長度方向正交的方向上進行光擴散之長條狀光擴散膜。
即,如果圖6b所示的銳角θ1為小於10°的值,則有時入射光之擴散面積過度變小。
因此,從膜上方觀看時,較宜為使第1活性能量線照射時的線狀光源之長軸方向與第2活性能量線照射時的線狀光源之長軸方向所成的銳角θ1為80~90°之範圍內的值,更宜為85~90°之範圍內的值,尤宜為 89~90°之範圍內的值。
另外,如圖6b所示,從膜上方觀看時,宜為使第2活性能量線照射時的線狀光源125b之長軸方向與沿著由形成有第1百葉窗結構13a之第1塗佈層1a′及第2塗佈層1b構成的層疊體1c之移動方向E的假想線E′所成的銳角θ3為10~80°之範圍內的值。
其理由是由於,通過如此規定線狀光源之配置角度,從而與上述步驟(c)之線狀光源的配置角度相結合,能夠更效率良好地製造通過使入射光不僅向沿著其長度方向之的方向、也朝向與其長度方向正交的方向進行光擴散而有效地擴大入射光之擴散面積的長條狀光擴散膜。
即,若上述θ3為未滿10°的值時,則雖然也取決於上述步驟(c)中的線狀光源之配置角度,但通常朝向沿著膜之長度方向的方向之光擴散特性過度降低,有時入射光之擴散面積過度變小。另一方面,若上述θ3為超過80°的值時,則雖然也取決於上述步驟(c)中的線狀光源之配置角度,但通常向沿著與膜之長度方向正交方向的光擴散特性過度降低,有時入射光之擴散面積過度變小。
因此,從膜上方觀看時,較宜為使第2活性能量線照射時的線狀光源之長軸方向與沿著由第1塗佈層及第2塗佈層構成的層疊體之移動方向的假想線所成的角度θ3為35~55°之範圍內的值,更宜為40~50°之範圍內的值,尤宜為44~46°之範圍內的值。
應予說明,宜為線狀光源125b與塗佈層1b之間隔在任意位置均大致相同。
另外,對於活性能量線之照射角度及照射角度寬度,宜為與使用圖5a~5b說明的第1活性能量線照射的情況相同的數值範圍。
另外,如圖6b所示,宜為從膜上方觀看時,第1活性能量線照射時的線狀光源125a之長軸方向與第2活性能量線照射時的線狀光源125b之長軸方向,相對於與由第1塗佈層1a′及第2塗佈層1b構成 的層疊體的移動方向E正交的假想線E〞成為線對稱。
其理由是由於,通過如此配置第2活性能量線照射時的線狀光源,從而在得到的光擴散膜中,使入射光更均勻地進行光擴散。
即,特別是,在θ2=45°、θ3=45°時,或者分別為其附近值時,通過以成為線對稱的方式配置線狀光源,從而如後述圖8(a)所示,能夠將擴散光之左右方向上的擴大和上下方向上的擴大分別最大限度地擴大。
因此,在將上述光擴散膜應用於螢幕時,能夠將橫向的視場角及縱向的視場角分別最大限度地擴大。
此處,使用圖8a~8e,對線狀光源的配置角度(
Figure TWI613465BD00005
板狀區域的延伸方向)及入射光的擴散面積之關係進行說明。
即,對於圖8a~8e,分別為在左側表示第1百葉窗結構13a及入射至此之擴散情況50′,在右側表示第2百葉窗結構13b及入射至此之利用第1百葉窗結構13a進行的擴散光之擴散情況51′。
首先,圖8a)表示θ1=90°、θ2=45°、θ3=45°時的入射光之擴散情況,可知最終的入射光擴散面積充分擴大(51′)。
另一方面,圖8b表示θ1=60°、θ2=30°、θ3=30°時的入射光之擴散情況,與圖8a的情況相比,可知向沿著膜之長度方向E′的方向擴散的光擴散特性降低,入射光之擴散面積變小(51′)。
另外,圖8c表示θ1=60°、θ2=60°、θ3=60°時的入射光之擴散情況,與圖8a之情況相比,可知朝向與膜之長度方向E′正交的方向擴散的光擴散特性降低,入射光之擴散面積變小(51′)。
另外,圖8d表示θ1=30°、θ2=15°、θ3=15°時的入射光之擴散情況,與圖8a之情況相比,可知朝向沿著膜之長度方向E′的方向擴散的光擴散特性進一步降低,入射光之擴散面積進一步變小(51′)。
另外,圖8e表示θ1=30°、θ2=75°、θ3=75°時的入射光之擴散情況,與圖8a的情況相比,可知朝向與膜之長度方向E′正交的方向的光擴散特性進一步降低,入射光之擴散面積進一步變小(51′)。
應予說明,將與圖8a~8e對應的擴散光之照片示於圖9a~9e。
另外,如圖7所示,基於與第1活性能量線照射之情況相同的理由,關於第2活性能量線照射,也宜為介由由2張遮光板形成的長槽狀間隙進行,並且長槽狀間隙之長邊方向為與線狀光源之長軸方向平行的方向。
另外,宜為使第2活性能量線照射時的第2塗佈層之表面的峰值照度為0.1~50mW/cm2之範圍內的值。
其理由是由於,通過使第2活性能量線照射時的峰值照度為上述範圍內的值,能夠更有效率地形成第2百葉窗結構。
即,若上述峰值照度為未滿0.1mW/cm2的值時,則有時難以明確地形成第2百葉窗結構。另一方面,若上述峰值照度為超過50mW/cm2的值時,則推定固化速度變得過快,有時無法明確地形成第2百葉窗結構。
因此,較宜為使第2活性能量線照射時的第2塗佈層之表面的峰值照度為0.3~10mW/cm2之範圍內的值,較宜為0.5~5mW/cm2之範圍內的值。
另外,宜為使第2活性能量線照射時的第2塗佈層之表面的累計光量為5~300mJ/cm2之範圍內的值。
其理由是由於,通過使第2活性能量線照射時的累計光量為上述範圍內的值,從而能夠更有效率地形成第2百葉窗結構。
即,若上述累計光量為未滿5mJ/cm2的值時,則有時難以使第2百葉窗結構從上方充分地伸長到下方。另一方面,若上述累計光量為超過300mJ/cm2的值,則有時得到的光擴散膜產生著色。
因此,較宜為使第2活性能量線照射時的第2塗佈層之表面的累計光量為10~200mJ/cm2的範圍內的值,更宜為20~150mJ/cm2之範圍內的值。
另外,在第2活性能量線照射中,基於與第1活性能量線照射之情況相同的理由,宜為使由形成有第1百葉窗結構之第1塗佈層及第2塗佈層構成的層疊體之移動速度為0.1~10m/分鐘之範圍內的值,較宜為0.2~5m/分鐘之範圍內的值,更宜為0.5~3m/分鐘之範圍內的值。
另外,從與步驟(c)之情況相同的觀點出發,也宜為對第2塗佈層之上表面,以層壓有活性能量線透射片之狀態照射活性能量線。
另外,較宜為以成為第2塗佈層充分固化的累計光量之方式,與作為步驟(e)之第2活性能量線照射不同地,進一步照射活性能量線。
由於使第2塗佈層充分固化之目的,所以此時的活性能量線宜為不使用平行光,而使用在任意行進方向上隨機的光。
應予說明,上述步驟(d)~(e)可以使用1個輸送機與步驟(b)~(c)連續進行,也可以將由步驟(b)~(c)得到的形成有第1百葉窗結構之第1塗佈層以輥狀回收,並將其放置於另外的輸送機予以進行步驟(d)~(e)。
因此,對於前者而言,將步驟(c)中的線狀光源及步驟(e)中的線狀光源分開配設,對於後者而言,可以將同一線狀光源變更(旋轉)配置角度予以使用。
8.光擴散膜
以下,對利用本發明之製造方法得到的光擴散膜進行說明。
(1)第1百葉窗結構
(1)-1折射率
在第1百葉窗結構中,宜為使折射率不同的板狀區域間的折射率之差,即,相對高的折射率之板狀區域的折射率與相對低的折射率之板狀區域的折射率之差為0.01以上的值。
其理由是由於,通過使上述折射率之差為0.01以上的值,從而能夠在第1百葉窗結構內使入射光穩定地反射,進一步提高來自第1百葉窗結構之入射角度依賴性。
較具體而言,若上述折射率之差係未滿0.01的值時,則入射光在第1百葉窗結構內全反射的角度域變得狹窄,有時入射角度依賴性過度降低。
因此,較宜為使第1百葉窗結構中之折射率不同的板狀區域間之折射率之差為0.03以上的值,較宜為0.05以上的值。
應予說明,高折射率板狀區域之折射率與低折射率板狀區域之折射率之差越大越較適,但從選定可形成第1百葉窗結構之材料觀點出發,認為0.3左右為上限。
另外,在第1百葉窗結構中,宜為使折射率相對高的板狀區域之折射率為1.5~1.7之範圍內的值。
其理由是由於,若高折射率板狀區域之折射率為未滿1.5的值時,則與低折射率板狀區域之差變得過小,有時難以得到所希望的百葉窗結構。另一方面,若高折射率板狀區域之折射率為超過1.7的值時,則有時光擴散膜用組合物之材料物質間的相溶性過度變低。
因此,較宜為使第1百葉窗結構中的高折射率板狀區域之折射率為1.52~1.65之範圍內的值,更宜為1.55~1.6之範圍內的值。
應予說明,高折射率板狀區域之折射率例如可以根據JIS K0062予以測定。
另外,在第1百葉窗結構中,宜為使折射率相對低的板 狀區域之折射率為1.4~1.5之範圍內的值。
其理由是由於,若上述低折射率板狀區域之折射率為未滿1.4的值時,則有時使得到的光擴散膜的剛性降低。另一方面,若上述低折射率板狀區域之折射率為超過1.5的值,則與高折射率板狀區域的折射率之差變得過小,有時難以得到所希望的百葉窗結構。
因此,較宜為使第1百葉窗結構中的低折射率板狀區域之折射率為1.42~1.48的範圍內的值,更宜為1.44~1.46之範圍內的值。
應予說明,低折射率板狀區域之折射率例如可以根據JIS K0062予以測定。
(1)-2寬度
另外,如圖10a所示,在第1百葉窗結構13a中,宜為使折射率不同的高折射率板狀區域12及低折射率板狀區域14之寬度(S1、S2)分別為0.1~15μm之範圍內的值。
其理由是由於,通過使此等板狀區域之寬度為0.1~15μm之範圍內的值,從而能夠在第1百葉窗結構內使入射光更穩定地反射,更有效地提高來自第1百葉窗結構之入射角度依賴性。
即,若上述板狀區域之寬度為未滿0.1μm的值時,則有無論入射光之入射角度如何,都難以顯示光擴散的情況。另一方面,若上.述寬度為超過15μm的值時,則在第1百葉窗結構內直行的光增加,有時擴散光之均勻性變差。
因此,在第1百葉窗結構中,較宜為使折射率不同的板狀區域之寬度分別為0.5~10μm之範圍內的值,更宜為1~5μm之範圍內的值。
應予說明,構成第1百葉窗結構之板狀區域的寬度、長度等可以通過利用光學數位顯微鏡進行膜截面觀察予以測定。
(1)-3傾斜角
另外,如圖10a所示,在第1百葉窗結構中,宜為折射率不同的多個高折射率板狀區域12及多個低折射率板狀區域14係相對於膜厚方向分別以恒定的傾斜角θa平行配置而成的。
其理由是由於,通過使板狀區域之各傾斜角θa恆定,從而能夠在第1百葉窗結構內使入射光更穩定地反射,進一步提高來自第1百葉窗結構之入射角度依賴性。
應予說明,θa係指在沿相對於沿著膜面之任一方向延伸的第1百葉窗結構垂直的面將膜切斷時的截面,所測定的將相對於膜表面的法線之角度設為0°時的板狀區域之傾斜角(°)。
更具體而言,如圖10a所示,係指第1百葉窗結構之上端面的法線與板狀區域之最上部所成的角度中狹窄側之角度。應予說明,以圖10a所示的板狀區域向右側傾斜時的傾斜角為基準,將板狀區域向左側傾斜時的傾斜角標記為負。
另外,如圖10b所示,也宜為第1百葉窗結構中之折射率不同的板狀區域(12、14)沿著膜之膜厚方向從上方彎曲至下方。
其理由是由於,通過使板狀區域彎曲,從而能夠使第1百葉窗結構中之反射與透射的平衡複雜化,有效地擴大擴散光之開口角。
應予說明,此種彎曲的百葉窗結構可通過減慢在塗膜之厚度方向上的利用紫外線進行的聚合反應速度而得。
具體而言,能夠通過抑制從線狀光源發出的紫外線之照度,使被照射的狀態下的塗膜以低速移動予以形成。
(1)-4厚度
另外,宜為使第1百葉窗結構之厚度,即,如圖10a~10b所示的膜表面之法線方向上的第1百葉窗結構存在部分的長度L1為50~500μm之範圍內的值。
其理由是由於,通過使第1百葉窗結構之厚度為上述範圍內的值,從而能夠穩定地確保沿著膜厚方向之第1百葉窗結構的長度,在第1百葉窗結構內使入射光更穩定地反射,進一步提高來自第1百葉窗結構之光擴散角度區域內的擴散光之強度的均勻性。
即,若上述第1百葉窗結構之厚度L1為未滿50μm的值時,則第1百葉窗結構之長度不足,在第1百葉窗結構內直行的入射光增加,有時難以得到光擴散角度區域內的擴散光之強度的均勻性。另一方面,若上述第1百葉窗結構之厚度L1為超過500μm的值時,則對光擴散膜用組合物照射活性能量線而形成第1百葉窗結構時,由於初期形成的百葉窗結構而導致光聚合的行進方向發生擴散,有時難以形成所希望的第1百葉窗結構。
因此,較宜為使第1百葉窗結構的厚度L1為70~300μm之範圍內的值,更宜為80~200μm之範圍內的值。
(1)-5延伸方向
另外,優選從膜上方觀看時,使第1百葉窗結構中的板狀區域之延伸方向與膜之長度方向所成的銳角為10~80°之範圍內的值。
其理由是由於,通過使第1百葉窗結構中的板狀區域之延伸方向為上述範圍內的值,從而與第2百葉窗結構中的板狀區域之延伸方向相結合,使入射光不僅向沿著其長度方向之方向,也朝向與其長度方向正交的方向進行光擴散,由此能夠有效擴大入射光之擴散面積。
即,若上述銳角為未滿10°的值時,則雖然也取決於第2百葉窗結構中的板狀區域之延伸方向,但通常朝向沿著膜之長度方向的方向之光擴散特性過度降低,有時入射光之擴散面積過度變小。另一方面,若上述銳角為超過80°的值時,則雖然也取決於第2百葉窗結構中的板狀區域之延伸方向,但通常向與膜之長度方向正交的方向擴散的光擴散特性過度降低,有時入射光之擴散面積過度變小。
因此,較宜為從膜上方觀看時,使第1百葉窗結構中的板狀區域之延伸方向與膜之長度方向所成的銳角為35~55°之範圍內的值,由更宜為40~50°之範圍內的值,尤宜為44~46°之範圍內的值。
(2)第2百葉窗結構
第2百葉窗結構之構成基本上與第1百葉窗結構的構成相同,所以省略其說明。
(3)膜厚
另外,宜為使光擴散膜之膜厚為50~500μm之範圍內的值。
其理由是由於,若上述膜厚為未滿50μm的值時,則膜內形成的膜厚方向之百葉窗結構的長度過度變短,在百葉窗結構內直行的入射光增加,有時難以得到充分的入射角度依賴性。另一方面,若上述膜厚為超過500μm的值,則由於長時間照射照射光,所以量產性過度降低,或者照射光由於初期形成的百葉窗結構而發生擴散,有時難以形成所希望的百葉窗結構。
因此,較宜為使光擴散膜之膜厚為70~300μm之範圍內的值,更宜為80~200μm之範圍內的值。
應予說明,在光擴散膜之膜厚方向,例如,在表層部等也可以有不存在百葉窗結構之部分。
因此,光擴散膜之膜厚等於第1百葉窗結構之厚度與第2百葉窗結構的厚度之總計,或超過該第1百葉窗結構之厚度與第2百葉窗結構之厚度的總計。
(4)膜之形狀
另外,利用本發明之製造方法而得的光擴散膜之形狀的特徵係長條狀。
更具體而言,如圖11a所示,宜為使光擴散膜10之寬度方向上的長度L2為0.1~3m之範圍內的值,較宜為0.5~2m之範圍內的值。
另一方面,對於長度方向之長度,未予特別限制。
即,若係本發明之製造方法時,則能夠連續地製造可使入射光不僅在沿著其長度方向之方向,也在與其長度方向正交的方向上能夠進行光擴散之光擴散膜。
因此,宜為使長度方向之長度L3為3m以上的值,較宜為15m以上的值。
其理由是由於,通過形成此種形狀的膜,從而能夠得到能夠使入射光不僅向沿著其長度方向之方向進行光擴散、也朝向與其長度方向正交的方向進行光擴散之長條狀且大面積的光擴散膜。
另外,如圖11b所示,宜為光擴散膜20係捲成輥狀的。
其理由是由於,通過形成輥狀,從而能夠得到可使入射光在與其長度方向正交的方向、或其附近的方向上進行光擴散之長條狀且更大面積的光擴散膜。
另外,能夠提高保存、搬運時的操作性。
較具體而言,若為輥狀時,則與一邊落在片上一邊生產相比,作業性提高。
另外,若為輥狀時,則即使在要應用膜之顯示器等的尺寸多種多樣的情況下,也可以之後切割成需要的尺寸。
另外,若為輥狀時,則在接下來的步驟中能夠用輥至輥法(roll to roll)與其他膜貼合,與片至片法(sheet to sheet)之情況相比,能夠提高生產率。
(5)延伸方向之組合
另外,在利用本發明之製造方法而得的光擴散膜中,宜為從膜上方觀看時,使第1百葉窗結構中的板狀區域之延伸方向與第2百葉窗結構中的板狀區域之延伸方向所成的銳角為10~90°之範圍內的值。
其理由是由於,通過如此構成,從而能夠得到通過使入射光不僅向沿著其長度方向之方向、也朝向與其長度方向正交的方向進行光擴散而有效地擴大入射光之擴散面積的長條狀膜。
即,若上述銳角為小於10°的值時,則有時入射光之擴散面積過度變小。
因此,較宜為從膜上方觀看時,使第1百葉窗結構中的板狀區域之延伸方向與第2百葉窗結構中的板狀區域之延伸方向所成的銳角為80~90°之範圍內的值,更宜為85~90°之範圍內的值,尤宜為89~90°之範圍內的值。
(6)黏合劑層
另外,利用本發明之製造方法而得的光擴散膜在其單面或雙面具備用於對被黏體進行層疊的黏合劑層。
作為構成上述黏合劑層之黏合劑,未予特別限制,可以使用以往公知的丙烯酸系、有機矽系、尿烷系、橡膠系等黏合劑。
實施例
以下,參照實施例,進一步對本發明之光擴散膜的製造方法進行詳細說明。
〔實施例1〕
1.低折射率聚合性化合物(B)成分之合成
在容器內,收容作為(B2)成分之重均分子量9200的聚丙二醇(PPG)1莫耳,並相對於此,收容作為(B1)成分之異佛爾酮二異氰酸酯(IPDI) 2莫耳及作為(B3)成分之甲基丙烯酸2-羥基乙酯(HEMA)2莫耳後,根據常用方法進行聚合,得到重均分子量9900之聚醚尿烷甲基丙烯酸酯。
應予說明,聚丙二醇及聚醚尿烷甲基丙烯酸酯之重均分子量係利用凝膠滲透色譜法(GPC)按照下述條件測定聚苯乙烯換算值。
.GPC測定裝置:TOSOH株式會社製,HLC-8020
.GPCcolumn:TOSOH株式會社製(以下,按通過順序進行記載)
TSK guard column HXL-H
TSK gel GMHXL(×2)
TSK gel G2000HXL
.測定溶劑:四氫呋喃
.測定溫度:40℃
2.光擴散膜用組合物之製備
接著,相對於所得的作為(B)成分之重均分子量9900的聚醚尿烷甲基丙烯酸酯100重量份,添加作為(A)成分之下述式(3)表示的重均分子量268的丙烯酸鄰苯基苯氧基乙氧基乙酯(新中村化學株式會社製,NK ESTER A-LEN-10)100重量份及作為(C)成分之2-羥基-2-甲基苯丙酮5重量份後,在80℃的條件下進行加熱混合,得到光擴散膜用組合物。
應予說明,(A)成分及(B)成分之折射率使用阿貝折射儀(ATAGO株式會社製,阿貝折射儀DR-M2,Na光源,波長589nm)根據JIS K0062予以測定,結果分別為1.58及1.46。
Figure TWI613465BD00006
3.第1塗佈步驟
接著,對作為工藝片材之膜狀透明聚對苯二甲酸乙二醇酯膜(以下,稱為PET)塗佈所得的光擴散膜用組合物,形成膜厚165μm之第1塗佈層。
4.第1活性能量線照射步驟
接著,準備如圖5a所示的線上狀高壓汞燈中附帶聚光用冷光鏡而成的紫外線照射裝置(EYE GRAPHICS株式會社製,ECS-4011GX)。
此時,以從膜上方觀看時,線狀光源之長軸方向與沿著第1塗佈層之移動方向的假想線所成的銳角θ2成為45°的方式設置紫外線照射裝置。
接著,在熱輻射截止濾光器框上設置遮光板,被照射於第1塗佈層之表面的紫外線設定為:在使從線狀光源之長軸方向觀看時的第1塗佈層表面之法線為0°時,從線狀光源直射的紫外線之照射角度(圖5b的θ6)成為16°。
另外,設定為:從第1塗佈層表面至線狀光源之高度為2000mm、峰值照度成為1.26mW/cm2、累計光量成為23.48mJ/cm2
另外,為防止遮光板等的反射光在照射機內部成為雜散光而對第1塗佈層之光固化產生影響,如圖7所示,在輸送機附近也設置2張遮光板,以對第1塗佈層僅照射從線狀光源直接發出的紫外線之方式設定。
較具體而言,如圖7所示,以形成由2張遮光板形成的長槽狀間隙(間隙寬度:35cm)之方式配置,並以該長槽狀間隙的長邊方向成為與線狀光源的長軸方向平行的方向之方式設置。
接著,一邊利用輸送機使第1塗佈層向圖4b中的右邊以1.0m/分鐘之速度移動,一邊照射紫外線,得到長度方向(第1塗佈層之移動方向)上的長度為30m、寬度方向上的長度為1.25m、膜厚165μm的長條狀的形成有第1百葉窗結構之第1塗佈層。
接著,為實現可靠的固化,在第1塗佈層之露出面側層壓厚度38μm之具有紫外線透射性的剝離膜(Lintec株式會社製,SP-PET382050;紫外線照射側之表面的中心線平均粗糙度0.01μm、霧度值1.80%、圖像清晰度425、波長360nm的透射率84.3%)作為活性能量線透射性片。
接著,以成為峰值照度13.7mW/cm2、累計光量213.6mJ/cm2之方式進行散射光照射。
應予說明,上述峰值照度及累計光量係通過將安裝有受光器之UV METER(EYE GRAPHICS株式會社製,EYE紫外線累計照度計UVPF-A1)設置在第1塗佈層之位置予以測定的。
另外,所得的長條狀的形成有第1百葉窗結構之第1塗佈層的膜厚係使用定壓厚度測定器(寶製作所株式會社製,TECLOCK PG-02J)測定的。
5.第2塗佈步驟
接著,將活性能量線透射片從所得的長條狀的形成有第1百葉窗結構之第1塗佈層剝離。
接著,對所得的長條狀的形成有第1百葉窗結構之第1塗佈層的露出面,塗佈與形成第1塗佈層時使用的光擴散膜用組合物相同的光擴散膜用組合物,形成膜厚165μm的第2塗佈層。
6.第2活性能量線照射步驟
接著,從膜上方觀看時,以第1活性能量線照射時的線狀光源之長軸方向與第2活性能量線照射時的線狀光源之長軸方向所成的銳角θ1 成為90°之方式設置紫外線照射裝置,除此之外,與第1活性能量線照射步驟同樣地照射紫外線,得到內部具有第1百葉窗結構及第2百葉窗結構之膜厚330μm的長條狀光擴散膜。
應予說明,從膜上方觀看時,線狀光源之長軸方向與沿著由形成有第1百葉窗結構之第1塗佈層及第2塗佈層構成的層疊體之移動方向的假想線所成的銳角θ3為45°。
另外,對第2塗佈層照射紫外線後,與第1塗佈層的情況同樣地,也以層壓有活性能量線透射片(具有紫外線透射性的剝離膜)之狀態照射散射光,實現可靠的固化。
另外,對於所得的光擴散膜,如圖12所示,確認從膜上方觀看時,第1百葉窗結構中的板狀區域之延伸方向與第2百葉窗結構中的板狀區域之延伸方向所成的銳角為90°。
另外,確認從膜上方觀看時,第1百葉窗結構中的板狀區域之延伸方向與膜之長度方向所成的銳角為45°。
進而,確認從膜上方觀看時,第2百葉窗結構中的板狀區域之延伸方向與膜之長度方向所成的銳角為45°。
另外,在圖13a中示出將所得的光擴散膜沿與膜之長度方向正交的面切斷而成的截面之照片,在圖13b中示出將所得的光擴散膜沿與膜之長度方向平行且與膜面正交的面切斷而成的截面之照片。
應予說明,光擴散膜之切斷係用剃刀進行的,截面照片之拍攝係用光學顯微鏡(反射觀察)進行的。
7.測定
如圖12所示,從所得的光擴散膜之下側(第1百葉窗結構所在側),對該膜從與膜面正交的方向入射光。
接着,使用變角測色計(Suga Test Instruments株式會社製,VC-2), 得到在與膜之長度方向正交的方向上、及在與膜之長度方向平行的方向上的擴散光之光譜圖。
即,如圖14a所示,得到採用經予光擴散膜擴散的擴散光之光擴散角度(°)作為橫軸,採用擴散光之相對強度(-)作為縱軸時的光譜圖。
此處,圖14a所示的光譜圖A對應於與膜之長度方向正交的方向上之擴散光,光譜圖B對應於與膜之長度方向平行的方向上之擴散光。
另外,使用錐光偏振儀(autronic-MELCHERS GmbH公司製),如圖14b所示,得到從圖12之Z方向觀看時的擴散光之照片。
上述圖14a~14b所示的結果與根據具有如圖12所示的內部結構之膜所預測的光擴散特性一致。
〔比較例1〕
在比較例1中,不實施第2塗佈步驟及第2活性能量線照射步驟,除此之外,與實施例1同樣地製造光擴散膜。
另外,就所得的光擴散膜而言,如圖15所示,確認從膜上方觀看時,百葉窗結構中的板狀區域之延伸方向與膜之長度方向所成的銳角為45°。
另外,在圖16a中示出將所得的光擴散膜沿與膜之長度方向正交的面切斷而成的截面之照片,在圖16b中示出將所得的光擴散膜沿與膜之長度方向平行且與膜面正交的面切斷而成的截面之照片。
另外,與實施例1同樣地,測定從所得的光擴散膜之下側,對該膜從與膜面正交的方向入射光時的光擴散情況。
將所得的擴散光之光譜圖示於圖17a,將從圖15中之Z方向觀看時的擴散光之照片示於圖17b。
其中,圖17a表示沿著圖17b所示的擴散光之擴散方向(長軸方向) 的方向之光譜圖。
上述圖17a~17b所示的結果與根據具有由圖15所示的內部結構之膜所預測的光擴散特性一致。
〔比較例2〕
在比較例2中,在第1活性能量線照射步驟中,從膜上方觀看時,使線狀光源之長度方向與沿著第1塗佈層的移動方向之假想線所成的銳角θ2為90°,除此之外,與實施例1同樣地,對第1塗佈層進行第1活性能量線照射步驟,得到第1塗佈層(內部形成有第1百葉窗結構之塗佈層)。
對於此時得到的形成有第1百葉窗結構之第1塗佈層,如圖18a所示,確認從膜上方觀看時,百葉窗結構中的板狀區域之延伸方向與其長度方向所成的銳角為90°。
接著,如圖18b所示,將得到的形成有第1百葉窗結構的長條狀的第1塗佈層在長度方向上每1.1m地進行切斷,得到形成有第1百葉窗結構的多個非長條狀的第1塗佈層。
接著,如圖18c所示,將所得的形成有第1百葉窗結構之多個非長條狀的第1塗佈層分別在平面內旋轉90°後,以橫向排列且間隔為0.5mm以下的方式分別接合。
由此,如圖18c所示,得到從膜上方觀看時,百葉窗結構中的板狀區域之延伸方向與其長度方向所成的銳角為0°的形成有第1百葉窗結構的長條狀的第1塗佈層(內部形成有第1百葉窗結構之塗佈層)。
接著,對由第18c圖所示之所得到的形成有第1百葉窗結構之長條狀的第1塗佈層,介由膜厚25μm之丙烯酸系透明黏合劑層層疊由圖18a所示之長條狀的塗佈層作為形成有第2百葉窗結構之長條狀的第2塗佈層,得到光擴散膜。
另外,就所得的光擴散膜而言,如圖19所示,確認從膜上方觀看時,第1百葉窗結構中的板狀區域之延伸方向與第2百葉窗結構區域中的板狀區域之延伸方向所成的銳角為90°。
另外,確認從膜上方觀看時,第1百葉窗結構中的板狀區域之延伸方向與膜之長度方向所成的銳角為0°。
進而,確認從膜上方觀看時,第2百葉窗結構中的板狀區域之延伸方向與膜之長度方向所成的銳角為90°。
另外,在圖20a中示之將得到的光擴散膜沿與膜之長度方向正交的面切斷而成的截面之照片,在圖20b中示出將所得的光擴散膜沿與膜之長度方向平行且與膜面正交的面切斷而成截面之照片。
另外,與實施例1同樣地,測定從所得的光擴散膜之下側,對該膜從與膜面正交的方向入射光時之光擴散情況。
將在沒有接縫的部分入射光而得到的擴散光之光譜圖示於圖21a,將此時從圖19中之Z方向觀看時的擴散光之照片示於圖21b。
上述圖21a~21b所示的結果與根據具有如圖19所示的內部結構之膜所預測的光擴散特性一致。
但是,在接縫的部分入射光時,確認如圖22a~22b所示,由於膜之接縫部分而導致光擴散性容易變得不均勻的不良情況。
[產業上的可利用性]
如上詳述,根據本發明,在包括使用線狀光源之2次活性能量線照射步驟之規定的製造方法中,通過將該2次活性能量線照射步驟中的各線狀光源的配置角度之關係規定為規定的範圍,從而能夠效率良好地製造通過使入射光不僅朝向沿著其長度方向之方向、也向與其長度方向正交的方向進行光擴散而有效地擴大入射光之擴散面積的長條狀光擴散膜。
因此,本發明的光擴散膜之製造方法,係特別予以期待顯著地有助於投影螢幕、反射型液晶裝置等所使用的大面積之光擴散膜的生產率、高品質化。
13a‧‧‧第1百葉窗結構
13b‧‧‧第2百葉窗結構
20‧‧‧光擴散膜

Claims (7)

  1. 一種光擴散膜之製造方法,其係沿著膜之膜厚方向從下方開始依次具有將折射率不同的多個板狀區域在沿著膜面之任一方向交替地平行配置而成的第1百葉窗結構及第2百葉窗結構之長條狀的光擴散膜之製造方法;該光擴散膜之製造方法包括下述步驟(a)~(e):(a)準備含有折射率不同的2個聚合性化合物之光擴散膜用組合物的步驟,(b)對工藝片材塗佈該光擴散膜用組合物,形成第1塗佈層之步驟,(c)對該第1塗佈層,一邊使該第1塗佈層進行移動,一邊使用線狀光源,從膜上方觀看時,使該線狀光源之長軸方向與沿著該第1塗佈層之移動方向的假想線所成的銳角θ 2成為10~80°之範圍內的值進行第1活性能量線照射,形成第1百葉窗結構之步驟,(d)對形成有該第1百葉窗結構之所述第1塗佈層,塗佈該光擴散膜用組合物,形成由該第1塗佈層及第2塗佈層構成的層疊體之步驟,(e)一邊移動由該第1塗佈層及第2塗佈層構成的層疊體,一邊使用線狀光源,從膜上方觀看時,使該線狀光源之長軸方向,與沿著由該第1塗佈層及第2塗佈層構成的層疊體之移動方向的假想線所成的銳角θ 3為10~80°之範圍內的值,對該第2塗佈層進行第2活性能量線照射,形成第2百葉窗結構,其中,從膜上方觀看時,使該第1活性能量線照射時的線狀光源之長軸方向與所述第2活性能量線照射時的線狀光源之長軸方向所成的銳角θ 1為10~90°之範圍內的值的步驟。
  2. 如申請專利範圍第1項所述的光擴散膜之製造方法,其中在該步驟(e)中,從膜上方觀看時,該第1活性能量線照射時的線狀光源之長軸方向與該第2活性能量線照射時的線狀光源的長軸方向,相對於與由該第1塗佈層及第2塗佈層構成的層疊體之移動方向正交的假想線成線對稱。
  3. 如申請專利範圍第1項所述的光擴散膜之製造方法,其中在該步驟(c)及步驟(e)中,介由具有長槽狀的活性能量線透射部之遮光板進行第1活性能量線照射及第2活性能量線照射,並且該活性能量線透射部之長邊方向為與該線狀光源之長軸方向平行的方向。
  4. 如申請專利範圍第1項所述的光擴散膜之製造方法,其中在該步驟(c)中,使該第1活性能量線照射時之所述第1塗佈層的表面之峰值照度為0.1~50mW/cm2之範圍內的值,並且使該第1塗佈層之表面的累計光量為5~300mJ/cm2之範圍內的值。
  5. 如申請專利範圍第1項所述的光擴散膜之製造方法,其中在該步驟(e)中,使該第2活性能量線照射時的該第2塗佈層之表面的峰值照度為0.1~50mW/cm2之範圍內的值,並且使該第2塗佈層之表面的累計光量為5~300mJ/cm2之範圍內的值。
  6. 如申請專利範圍第1項所述的光擴散膜之製造方法,其中在該步驟(b)中,使該第1塗佈層之膜厚為80~700μm之範圍內的值,並且在該步驟(d)中,使該第2塗佈層之膜厚為80~700μm之範圍內的值。
  7. 如申請專利範圍第1項所述的光擴散膜之製造方法,其中使該步驟(c)中的該第1塗佈層之移動速度及該步驟(e)中的由該第1塗佈層及該第2塗佈層構成的層疊體之移動速度分別為0.1~10m/分鐘之範圍內的值。
TW102117984A 2012-06-15 2013-05-22 光擴散膜之製造方法 TWI613465B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012135601A JP6016470B2 (ja) 2012-06-15 2012-06-15 光拡散フィルムの製造方法
JPJP2012-135601 2012-06-15

Publications (2)

Publication Number Publication Date
TW201350926A TW201350926A (zh) 2013-12-16
TWI613465B true TWI613465B (zh) 2018-02-01

Family

ID=49896313

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102117984A TWI613465B (zh) 2012-06-15 2013-05-22 光擴散膜之製造方法

Country Status (4)

Country Link
JP (1) JP6016470B2 (zh)
KR (1) KR102000510B1 (zh)
CN (1) CN103513302B (zh)
TW (1) TWI613465B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156421A1 (ja) 2013-03-29 2014-10-02 リンテック株式会社 光拡散フィルムおよび光拡散フィルムの製造方法
US9753191B2 (en) 2013-03-29 2017-09-05 Lintec Corporation Light diffusion film and light diffusion film manufacturing method
EP2993497A4 (en) 2013-04-30 2016-12-07 Lintec Corp OPTICAL DIFFUSION FILM FOR AN INDICATION AND DISPLAY DEVICE THEREFOR
WO2014178230A1 (ja) 2013-04-30 2014-11-06 リンテック株式会社 ディスプレイ用光拡散フィルムおよびそれを用いた反射型表示装置
JP6288672B2 (ja) * 2014-03-28 2018-03-07 株式会社巴川製紙所 異方性光学フィルム
US10222522B2 (en) 2014-10-01 2019-03-05 Lintec Corporation Optical diffusion film and method for manufacturing optical diffusion film
JP6955885B2 (ja) 2017-03-31 2021-10-27 リンテック株式会社 プロジェクションスクリーン
JP6955884B2 (ja) 2017-03-31 2021-10-27 リンテック株式会社 プロジェクションスクリーン

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003506A (ja) * 2004-06-16 2006-01-05 Toppan Printing Co Ltd 拡散フィルム、偏光素子及び液晶表示素子
JP2007293288A (ja) * 2006-03-30 2007-11-08 Sumitomo Chemical Co Ltd プロジェクションスクリーン用光制御膜積層体、その製造方法、及びプロジェクションスクリーン
JP2009157252A (ja) * 2007-12-27 2009-07-16 Sumitomo Chemical Co Ltd 光制御膜の製造装置及びその製造方法
JP2009237418A (ja) * 2008-03-28 2009-10-15 Nitto Denko Corp 指向性拡散フィルム、偏光板、液晶表示装置および指向性拡散フィルムの製造方法
JP2010066296A (ja) * 2008-09-08 2010-03-25 Nitto Denko Corp 光拡散フィルムの製造方法、光拡散フィルム、偏光板および液晶表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547416B2 (ja) * 1987-08-07 1996-10-23 日本板硝子株式会社 光制御板の製造方法
JPH0758361B2 (ja) 1987-06-11 1995-06-21 住友化学工業株式会社 光制御板およびその製造方法
US5767935A (en) * 1995-08-31 1998-06-16 Sumitomo Chemical Company, Limited Light control sheet and liquid crystal display device comprising the same
JPH09127331A (ja) * 1995-08-31 1997-05-16 Sumitomo Chem Co Ltd 光学フィルターおよび該フィルターを装着した液晶表示装置
KR20070035481A (ko) * 2004-03-16 2007-03-30 가부시키가이샤 도모에가와 세이시쇼 이방성 확산 매체 및 그 제조 방법
US20070110957A1 (en) * 2004-03-16 2007-05-17 Kensaku Higashi Anisotropic diffusing medium and production method therefor
JP4665457B2 (ja) 2004-03-31 2011-04-06 住友化学株式会社 プロジェクション用スクリーン
JP4518213B2 (ja) * 2008-12-09 2010-08-04 ソニー株式会社 ブラインド、ロールカーテン、および障子
JP2012089782A (ja) * 2010-10-22 2012-05-10 Dainippon Printing Co Ltd 導電性外光遮蔽材、導電性外光遮蔽シート体、画像表示装置前面用フィルタ、および画像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003506A (ja) * 2004-06-16 2006-01-05 Toppan Printing Co Ltd 拡散フィルム、偏光素子及び液晶表示素子
JP2007293288A (ja) * 2006-03-30 2007-11-08 Sumitomo Chemical Co Ltd プロジェクションスクリーン用光制御膜積層体、その製造方法、及びプロジェクションスクリーン
JP2009157252A (ja) * 2007-12-27 2009-07-16 Sumitomo Chemical Co Ltd 光制御膜の製造装置及びその製造方法
JP2009237418A (ja) * 2008-03-28 2009-10-15 Nitto Denko Corp 指向性拡散フィルム、偏光板、液晶表示装置および指向性拡散フィルムの製造方法
JP2010066296A (ja) * 2008-09-08 2010-03-25 Nitto Denko Corp 光拡散フィルムの製造方法、光拡散フィルム、偏光板および液晶表示装置

Also Published As

Publication number Publication date
KR102000510B1 (ko) 2019-07-16
KR20130141363A (ko) 2013-12-26
JP2014002186A (ja) 2014-01-09
TW201350926A (zh) 2013-12-16
CN103513302A (zh) 2014-01-15
CN103513302B (zh) 2017-04-12
JP6016470B2 (ja) 2016-10-26

Similar Documents

Publication Publication Date Title
KR101883941B1 (ko) 광확산 필름 및 광확산 필름의 제조 방법
TWI613465B (zh) 光擴散膜之製造方法
TWI578026B (zh) 各向異性光擴散膜
JP6307497B2 (ja) ディスプレイ用光拡散フィルムおよびそれを用いた表示装置
JP5324728B1 (ja) 光拡散フィルムの製造方法および光拡散フィルム
TWI606273B (zh) 光擴散膜
KR101883939B1 (ko) 이방성 광확산 필름용 조성물 및 이방성 광확산 필름
TWI577728B (zh) 各向異性光擴散膜用組合物及各向異性光擴散膜
JP5999992B2 (ja) 光拡散フィルムの製造方法
TW201437692A (zh) 光擴散層及光擴散膜的製造方法
JP5883629B2 (ja) 光拡散フィルムの製造方法
JP6037822B2 (ja) 光拡散フィルムの製造方法および光拡散フィルム
KR20130111268A (ko) 이방성 광확산 필름 및 이방성 광확산 필름의 제조 방법
JP2013148712A (ja) 光拡散フィルム用組成物および光拡散フィルム
JP7132746B2 (ja) モアレ抑制フィルム、モアレ抑制フィルム積層体、モアレ抑制フィルムを備えた複合表示装置
TWI760454B (zh) 層合體及層合體之製造方法