TWI611034B - 成膜裝置及成膜基板製造方法 - Google Patents

成膜裝置及成膜基板製造方法 Download PDF

Info

Publication number
TWI611034B
TWI611034B TW104131974A TW104131974A TWI611034B TW I611034 B TWI611034 B TW I611034B TW 104131974 A TW104131974 A TW 104131974A TW 104131974 A TW104131974 A TW 104131974A TW I611034 B TWI611034 B TW I611034B
Authority
TW
Taiwan
Prior art keywords
workpiece
target
distance
film forming
film
Prior art date
Application number
TW104131974A
Other languages
English (en)
Other versions
TW201612346A (en
Inventor
Yoshio Kawamata
Original Assignee
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Mechatronics Corp filed Critical Shibaura Mechatronics Corp
Publication of TW201612346A publication Critical patent/TW201612346A/zh
Application granted granted Critical
Publication of TWI611034B publication Critical patent/TWI611034B/zh

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Description

成膜裝置及成膜基板製造方法
本發明涉及一種成膜裝置及成膜基板製造方法。
作為在基板等工件(work)的表面進行成膜的裝置,廣泛使用通過濺鍍(sputtering)進行成膜的成膜裝置。濺鍍是如下一種技術:使導入到腔室(chamber)內的氣體電漿(plasma)化而生成離子(ion),通過該離子碰撞到作為成膜材料的靶(target)上而從靶擊出材料的粒子,使所擊出的粒子附著在工件上而形成膜。
這種成膜裝置中,為了提高成膜效率,而開發出如下一種技術:使多個工件循環移動,一邊通過與靶對向的位置,一邊總括地進行成膜。然而,如果工件的尺寸(size)比靶大,那麼膜不會附著在外周側,從而膜厚分佈變差。
另一方面,如果工件的尺寸比靶小,那麼在腔室內附著在工件以外的部分的膜的量增加,因此,成膜效率下降。而且,附著在腔室內的成膜材料如果剝離,會污染工件。因此,必須定期對腔室內進行清洗(cleaning),而耗費工夫。
如果對照工件的尺寸準備多個尺寸的靶,並針對不同尺寸的工件的每一個更換這些靶而進行成膜,那麼會耗費工夫,導致生產效率下降、及成本上升(cost up)。
為了應對該問題,專利文獻1公開了如下一種成膜裝置:具有兩個靶,通過改變該兩個靶的位置,而改變與工件相對向的靶的面積。
而且,在專利文獻1中也公開了如下內容:使對與工件的外周側對向的靶的施加電力(electrical power)大於對與成膜對象物的內周側對向的靶的施加電力,由此,謀求膜厚的面內均勻化。
進而,在專利文獻1中也公開了如下內容:並非使對兩個靶的施加電力不同,而使對兩個靶的施加電力相同,在該條件下,在內周側與外周側改變靶與成膜對象物的距離,從而謀求膜厚的面內均勻化。 [現有技術文獻] [專利文獻]
[專利文獻1]國際公開第07/148536號
[發明所要解決的問題]
然而,專利文獻1中,在一個靶中,工件通過的區域內的成膜分佈固定。而且,各工件以固定的速度、固定的方向通過成膜區域。因此,如果各工件的成為成膜對象的面為平坦面且相對於靶平行,那麼易於確保膜厚的均勻性。
然而,成為成膜對象的面不一定為平坦面,且未必與靶平行。例如,存在工件為彎曲成凹狀或凸狀的基板的情況。這種工件像聚光透鏡(lens)、反射鏡、組合器(combiner)等那樣用於投影儀(projector)、平視顯示器(head up display)等光學設備。在這種彎曲的基板的情況下,在緣部與中央部,成為成膜對象的面與靶的距離產生大的差異。因此,在彎曲的基板的情況下,難以通過濺鍍以均勻的厚度成膜。
因此,當在彎曲的基板以均勻的厚度進行成膜的情況下,一般來說,使用真空蒸鍍裝置。真空蒸鍍裝置是如下一種裝置:通過對投入了蒸發材料的小的蒸發源進行加熱,而使蒸發材料蒸發,從而對包圍蒸發源的大面積的基板進行成膜。如果是真空蒸鍍裝置,那麼在彎曲的基板的情況下,也能夠使蒸發源與基板的距離變長,由此即便因彎曲導致距離存在差異,也能以相對較均勻的厚度成膜。
然而,為了確保使蒸發源與基板的距離長到彌補因基板本身的彎曲而產生的距離差的程度,真空蒸發裝置將大型化。而且,蒸發源需要進行電阻加熱或通過照射電子束來加熱,所以其響應性不迅速。因此,裝置的啟動等會耗費時間,不適合依次高效率地製造中小批量(lot)的產品。
本發明是為了解決如上所述的現有技術的問題而提出的,其目的在於提供一種小型且省空間的成膜裝置及成膜基板製造方法,無論工件的形狀如何,均能夠高速且高效率地以均勻的厚度成膜。 [解決問題的技術手段]
為了達成所述目的,實施方式的成膜裝置是一種使濺射氣體(sputter gas)電漿化且使成膜材料堆積在工件上的成膜裝置,且包括:腔室,被導入濺射氣體;搬送部,設置在所述腔室內,循環搬送工件;濺射(sputter)源,由堆積在所述工件而成為膜的所述成膜材料形成,且具有靶,所述靶設置在與利用所述搬送部使所述工件移動的路徑對向的位置;電源部,對所述靶施加電力;以及電源控制部,在所述工件通過供所述成膜材料堆積的區域即成膜區域期間,根據所述工件相對於所述靶的間隔、方向或從平面方向觀察到的重疊面積的變化,使所述電源部對所述靶施加的電力變化。
所述電源控制部也可以根據所述處理對象物中的成為成膜對象的表面與所述靶的垂直方向的距離,使所述電源部對所述靶施加的電力變化。
所述電源控制部也可以為所述距離越短則使施加的電力越小,所述距離越長則使施加的電力越大。
所述電源控制部也可以使所述電源部施加的電力以指定的振幅及週期變化。
所述電源控制部也可以在所述工件的循環搬送的一圈中,按照所規定的變化模式,使所述電源部對所述靶施加的電力變化。
所述搬送部也可以具有將所述工件相對於所述工件的搬送方向的角度保持為固定的多個保持部,且所述保持部以等間隔配設。
所述保持部也可以將所述工件保持在如下位置,該位置是通過所述成膜區域的工件通過與所述靶的距離成為最大的部位、及與所述靶的距離成為最小的部位的位置。
所述搬送部也可以具有設置著所述保持部的旋轉台。
所述搬送部也可以具有設置著所述保持部的旋轉筒(drum)。
所述濺射源也可以具有多個所述靶,且所述電源部針對每個靶改變使施加的電力變化的時點。
實施方式的成膜裝置也可以具有檢測距離的感測器(sensor),且所述電源控制部連接於所述感測器,根據由所述感測器檢測出的到所述工件的表面的距離,使所述電源部施加的電力變化。
所述感測器也可以設置在對到所述工件表面的距離成為最大的部位、與到所述工件表面的距離成為最小的部位進行檢測的位置。
而且,此外,所述各實施方式也能夠作為所要成膜的工件為基板的成膜基板製造方法的發明來理解。
這種實施方式的成膜基板製造方法是在被導入有濺射氣體的腔室內,利用搬送部循環搬送基板,通過電源部對與該被循環搬送的所述基板的移動路徑對向地配置的靶施加電力,而使腔室內的濺射氣體電漿化,且使成膜材料堆積在基板上,通過所述搬送部使所述基板移動,根據隨著所述基板的移動而產生的基板與靶的位置的變化,而改變所述電源部對靶施加的電力。 [發明的效果]
根據本發明,通過根據工件的形狀,在搬送中使工件W相對於靶的位置變化,即便在靶與工件的表面的距離產生變化的情況下,也會與其對應地控制施加電力,所以能夠確保膜厚的均勻性。因此,能夠利用濺鍍高速且高效率地以均勻的厚度對工件W進行成膜,且不會像真空蒸鍍裝置那樣大型化,能夠提供一種小型且省空間的成膜裝置及成膜基板製造方法。
參照附圖具體地對本發明的實施方式(以下,稱為本實施方式)進行說明。本實施方式是作為電漿處理裝置1的一部分而構成的成膜裝置。
[電漿處理裝置] [概要] 電漿處理裝置1是如下一種裝置:如圖1所示,當旋轉台31旋轉時,被保持部33保持的工件W以描繪圓的軌跡移動,當通過與濺射源4對向的位置時,從靶41濺射的粒子附著而接受成膜。該電漿處理裝置1具有逆濺射源6,當工件W通過與逆濺射源6對向的位置時,通過蝕刻(etching)、或氮化、氧化等生成化合物膜。
此外,作為本實施方式的處理對象物的工件W例如為方形的基板。如圖9的(A)、圖9的(B)所示,該基板具有在側視(從與長邊對向的方向觀察到的狀態)時成為大致圓弧狀的彎曲。如圖9的(A)所示,在工件W以成為凹狀、也就是大致U字狀的方式被保持的情況下,工件W的成為成膜對象的面為凹陷側的凹陷面。而且,如圖9的(B)所示,在工件W以成為凸狀、也就是大致倒U字狀或圓頂(dome)狀的方式被保持的情況下,工件W的成為成膜對象的面為擴展側的隆起面。而且,工件W的成為成膜對象的面也可以為工件W的表面露出的面,也可以為已形成著單個或多個膜的面。
[構成] 如圖1~圖4所示,本實施方式中的電漿處理裝置1包括腔室2、搬送部3、濺射源4、第一電源部5、逆濺射源6、第二電源部7、加載互鎖(load lock)部8、及控制裝置9。
[腔室] 腔室2是內部被導入濺射氣體G1的容器。濺射氣體G1是用來實施濺鍍的氣體,所述濺鍍是利用通過施加電力而產生的電漿,使產生的離子等碰撞到處理對象物。例如,氬氣(argon gas)可用作濺射氣體G1。
腔室2內部的空間形成真空室21。該真空室21是具有氣密性且能夠通過減壓而成為真空的空間。例如,如圖1及圖2所示,真空室21為圓柱形狀的密閉空間。
腔室2具有排氣口22、及導入口24。排氣口22是用來在真空室21與外部之間確保氣體的流通並進行排氣E的開口。該排氣口22例如形成在容器2的底部。在排氣口22連接著排氣部23。排氣部23具有配管及未圖示的泵(pump)、閥(valve)等。通過由該排氣部23進行的排氣處理,而使真空室21內減壓。
進而,腔室2具有導入口24。導入口24是用來將濺射氣體G1導入到真空室21的靶41附近的開口。在該導入口24連接著第一氣體供給部25。第一氣體供給部25除了具有配管以外,還具有未圖示的濺射氣體G1的氣體供給源、泵、閥等。利用該第一氣體供給部25,將濺射氣體G1從導入口24導入到真空室21內。
[搬送部] 搬送部3是設置在腔室2內、循環搬送工件W的裝置。如上所述,搬送部3中的供工件W移動的路徑為搬送路徑P。循環搬送是指使工件W在環形的移動路徑移動。該搬送部3具有旋轉台31、馬達(motor)32、及保持部33。
旋轉台31是圓形的板。馬達32是對旋轉台31賦予驅動力,使旋轉台31以圓的中心為軸旋轉的驅動源。保持部33是保持由搬送部3搬送的工件W的構成部。利用該保持部33,從而工件W以成為成膜對象的面朝上的方式定位在旋轉台31上。
被保持部33保持的工件W通過旋轉台31的旋轉,而沿旋轉台31的圓周方向以描繪圓的軌跡在真空室21內移動。這樣,工件W移動的軌跡為工件W的搬送路徑P。以下,在簡稱為“搬送方向”的情況下,是指“搬送路徑P上的工件W的移動方向”、“旋轉台31的圓周方向”。在簡稱為“半徑方向”的情況下,是指“旋轉台31的半徑方向”。
多個保持部33將各工件W相對於搬送方向的角度保持為固定。而且,多個保持部33以等間隔配設。例如,各保持部33在旋轉台31的圓周方向的與圓的切線平行的方向上以等間隔設置。更具體來說,保持部33是保持與各工件W中的成為成膜對象的面為相反側的面及緣部的槽、孔、突起、夾具、支持器(holder)、托盤(tray)等。在托盤的情況下,也可以將工件W與托盤一同搬入、搬出。也能由靜電吸盤(chuck)、機械吸盤、黏附吸盤、或它們與槽、孔、突起、夾具、支持器、托盤等的組合構成保持部33。在托盤的情況下,也可以設置將托盤保持在旋轉台31的槽、孔、突起、夾具、支持器、靜電吸盤、機械吸盤、黏附吸盤等保持單元。在該情況下,保持部33包含托盤及保持單元。此外,在圖1的例子中,保持部33設置了六個,所以在旋轉台31上保持六個工件W。
[濺射源] 濺射源4是堆積在工件W上而成為膜的成膜材料的供給源。濺射源4具有靶41、背襯板(backing plate)42、及電極43。靶41由堆積在工件W上而成為膜的成膜材料形成,且設置在與搬送路徑P隔開並對向的位置。成膜材料例如可使用鈦(titanium)、矽(silicon)等。但是,只要為通過濺鍍而成膜的材料,則可應用眾所周知的所有材料。該靶41例如為圓柱形狀。但也可以是長圓柱形狀、角柱形狀等其他形狀。
將靶41的材料以膜的形式堆積在通過與靶41對向的位置的工件W的區域設為成膜區域F。圖2的成膜區域F是為了方便而圖示的區域,根據靶41中的與工件W對向的面的面積、靶41與工件W的距離、施加到靶41的電力等而變動。因此,所述面積、距離、電力較理想的是設為靶41整體進入到成膜區域F並且與靶41錯開的成膜區域F盡可能減少者。此外,成膜區域F比靶41中的與搬送路徑P對向的面的正下方區域擴寬。
進而,在靶41的周圍設置著罩殼(cover)44。罩殼44例如是設置在真空室21的頂板上且包圍濺射源4的圓筒形的壁。通過具有該罩殼44,能夠抑制濺射氣體G1擴散到真空室21。在該情況下,抑制成膜區域F擴大到罩殼44的外部。
背襯板42是保持靶41的部件。電極43是用來從腔室2的外部對靶41施加電力的導電性構件。此外,在濺射源4中,視需要適當地具備磁鐵(magnet)、冷卻機構等。
如圖1所示,這種濺射源4在腔室2的上蓋沿圓周方向設置著多個。此外,在圖1的例子中,濺射源4設置了六個。各濺射源4的靶41的底面側與利用搬送部3而移動的工件W隔開並對向。本實施方式的保持部33較理想的是將工件W保持在如下位置,該位置是通過各靶41的成膜區域F的工件W通過與靶41的距離成為最大的位置、及與靶41的距離成為最小的位置的位置。但是,不一定限定為準確的“最大”“最小”的位置,也可以是與成為“最大”的位置、成為“最小”的位置近似的位置。也就是說,只要根據作為目標的膜厚分佈的精度,通過靶41與工件W的距離的差相對較大地產生的位置即可。
也就是說,旋轉台31上的工件W在彎曲的情況下,產生與靶41的距離近的部分、及與靶41的距離遠的部分。例如,如圖7的(a)、圖7的(b)、圖7的(c)、圖9的(A)、圖9的(B)、圖21的(A)、圖21的(B)、圖21的(C)所示,工件W設為通過對向的兩邊(長邊)成為大致圓弧狀而彎曲的長方形狀的基板。這種工件W呈凹狀保持在保持部33。在該情況下,工件W的直線狀的兩邊(短邊)的緣部變高,所以與靶41的距離成為最小,工件W的中央變低,所以與靶41的距離成為最大。
與此相反,如圖22的(A)、圖22的(B)、圖22的(C)所示,設為工件W呈凸狀保持在保持部33。在該情況下,工件W的直線狀的兩邊的緣部變低,所以與靶41的距離成為最大,工件W的中央變高,所以與靶41的距離成為最小。這樣一來,成膜區域F中的工件W以包含距離成為最大的部位及成為最小的部位的方式移動。
此外,為了使工件W的成膜對象面整體均勻地成膜,必須使工件W整體通過成膜區域F。但是,如上所述,成膜區域F比靶41中的與搬送路徑P對向的面的正下方區域擴寬。因此,不一定必須使工件W整體通過靶41的正下方區域。
[第一電源部] 第一電源部5是對靶41施加電力的構成部。通過利用該第一電源部5對靶41施加電力,而能夠使濺射氣體G1電漿化,且能夠使成膜材料堆積在工件W上。在本實施方式中,第一電源部5例如為施加高電壓的直流(Direct Current,DC)電源。此外,在進行高頻濺射的裝置的情況下,也能設為射頻(Radio Frequency,RF)電源。旋轉台31與接地的腔室2為相同電位,通過對靶41側施加高電壓,而產生電位差。由此,將可動的旋轉台31設為負(minus)電位,因此,避免與第一電源部5連接的難度。
[逆濺射源] 逆濺射源6是進行逆濺射處理的處理單元(unit)。逆濺射是氮化膜、氧化膜等化合物膜的生成、蝕刻等處理。該逆濺射源6具有筒形電極61。筒形電極61是有底的筒狀體,一端的真空室21側開口,另一端封閉。筒形電極61的開口側的端部配置在與搬送路徑P隔開並對向的位置。封閉的另一端貫通設置在腔室2上表面的貫通孔,而露出到外部。
而且,在筒形電極61設置著導入口62。在該導入口62連接著第二氣體供給部63。第二氣體供給部63具有配管及未圖示的用來導入反應氣體G2的反應氣體G2的氣體供給源、泵、閥等。利用該第二氣體供給部63,將反應氣體G2從導入口62導入到筒形電極61內部。反應氣體G2例如可設為氮氣、氧氣。此外,逆濺射源6也能進行蝕刻。在該情況下,反應氣體G2例如能夠使用氬氣(Argon)等惰性氣體。
[第二電源部] 第二電源部7是用來對筒形電極61施加高頻電壓的RF電源。旋轉台31與接地的腔室2為相同電位,通過對筒形電極61側施加高電壓,而產生電位差。
加載互鎖部8是如下一種裝置:在維持著真空室21的真空的狀態下,利用未圖示的搬送單元,將未處理的工件W從外部搬入到真空室21,且將已處理完畢的工件W向真空室21的外部搬出。該加載互鎖部8可應用眾所周知的構造,所以省略說明。
控制裝置9是控制電漿處理裝置1的各部的裝置。該控制裝置9可由例如專用的電子電路或以指定的程式(program)進行動作的電腦(computer)等構成。也就是說,關於與濺射氣體G1及反應氣體G2向真空室21的導入及從真空室21的排出相關的控制、濺射源4及逆濺射源6的電源的控制、旋轉台31的旋轉的控制等,其控制內容被編程,並由可編程邏輯控制器(Programmable Logic Controller,PLC)或中央處理器(Central Processing Unit,CPU)等處理裝置執行,可應對多種多樣的成膜規格。
作為具體進行控制的內容,可列舉初始排氣壓力、濺射源4的選擇、對靶41的施加電力、濺射氣體G1的流量、種類、導入時間及排氣時間、成膜時間、對筒形電極61的施加電力、反應氣體G2的流量、種類、導入時間及排氣時間、逆濺射時間等。
參照假想的功能方塊圖即圖3對如上所述那樣用來執行各部的動作的控制裝置9的構成進行說明。即,控制裝置9包括機構控制部90、電源控制部91、記憶部92、設定部93、及輸入輸出控制部94。
機構控制部90是控制排氣部23、第一氣體供給部25、搬送部3的馬達32、第二氣體供給部63、加載互鎖部8等的驅動源、閥、開關(switch)、電源等的處理部。電源控制部91是控制第一電源部5、第二電源部7的處理部。
本實施方式的電源控制部91在工件W利用搬送部3通過成膜區域F期間,根據工件W相對於靶41的位置的變化,使第一電源部5對靶41施加的電力變化。位置的變化包含靶41與工件W的間隔的變化、靶41與工件W的方向的變化、從平面方向觀察到的靶41與工件W的重疊面積的變化等。
這種位置的變化在各工件W不平坦的情況下,與靶41的表面與工件W的表面的距離的變化為相同含義。此外,靶41的表面與工件W的表面的距離只要以從靶41表面的任意一點下降到工件W表面的垂線的長度進行考慮即可。如果將該任意一點設為工件W必定通過其正下方的點,那麼隨著不平坦的工件W移動,與靶41的距離發生變化。
關於掌握各工件W與靶41的位置及位置的變化的方法,例如,如以下所述那樣考慮各種方法。首先,利用保持部33對工件W的保持位置、與旋轉台31中的包含旋轉軸在內的各部分的位置的關係已決定。在旋轉台31以旋轉軸為中心進行旋轉的情況下,可利用感測器等檢測器檢測旋轉台31的旋轉方向的位置、也就是旋轉角、旋轉量等。因此,根據旋轉台31的旋轉方向的位置,可知保持部33與工件W的位置。因為靶41固定,且保持部33與工件W的姿勢也已決定,所以根據旋轉台31的旋轉方向的位置,可知工件W與靶41的位置關係。
此處,為了檢測旋轉台31的旋轉方向的位置,也可以設置對旋轉台31的基準位置進行檢測的感測器等檢測器。而且,也可以通過檢測馬達32的旋轉位置,而檢測旋轉台31的旋轉方向的位置。例如,可利用馬達32的內置或外置的感測器、編碼器(encoder)、電位計(potentiometer)等檢測器,檢測馬達32的旋轉位置。進而,也可以利用感測器等檢測器直接檢測工件W的位置,或直接測定靶41與工件W的距離。使用下述感測器K的其他實施方式是其一例。因此,通過將像上文所例示的檢測器連接於控制裝置9,電源控制部91也能進行與各工件W相對於靶41的位置變化對應的控制。
記憶部92是記憶旋轉台31的旋轉方向的位置、旋轉速度、施加電力的變化形態、靶41與工件W表面的距離等本實施方式的控制所需的信息的構成部。作為施加電力的變化形態,基本上是工件W與靶41的距離越短則越小,距離越長則越大。這是因為,如果距離短,那麼膜會變厚,所以減小電力而使堆積量變少,如果距離長,那麼膜會變薄,所以增大電力而使堆積量增加,由此,整體上獲得均勻性。
而且,如果將施加電力的變化形態設為根據各工件W與靶41的位置變化而以指定的振幅及週期變化的形態,那麼只要決定振幅及週期即可,因此容易設定。進而,只要不更換各工件W,那麼各工件W與靶41的位置在每一圈重複相同的變化。因此,也可以是如下形態:在工件W的循環移動的一圈中,根據所規定的工件W與靶41的位置或距離的變化模式,使施加電力變化。
設定部93是將從外部輸入的信息設定在記憶部92的處理部。輸入輸出控制部94是控制與成為控制對象的各部之間的信號轉換或輸入輸出的接口(interface)。
進而,在控制裝置9連接著輸入裝置95、輸出裝置96。輸入裝置95是用來供操作員(operator)經由控制裝置9對電漿處理裝置1進行操作的開關、觸控面板(touch panel)、鍵盤(keyboard)、滑鼠(mouse)等輸入單元。所述施加電力的變化形態可從輸入裝置95輸入。
輸出裝置96是將用來確認裝置的狀態的信息設為操作員能夠視認的狀態的顯示器(display)、指示燈(lamp)、儀錶(meter)等輸出單元。所述施加電力的變化形態顯示在輸出裝置96。
[作用] [成膜處理] 以下,除了參照圖1~圖4以外,還參照圖5~圖8對如上所述的本實施方式的成膜處理進行說明。首先,利用加載互鎖部8的搬送單元,將應進行成膜處理的工件W依次搬入到腔室2內。旋轉台31使空的保持部33依次移動到從加載互鎖部8算起的搬入部位。保持部33將由搬送單元搬入的工件W分別個別地保持。
以這種方式,工件W全部被載置到旋轉台31上。此外,保持部33既能以工件W的上表面成為凹狀的方式進行保持,也能以上表面成為凸狀的方式進行保持。以下的說明為呈凹狀保持的情況。
排氣部23通過對真空室21進行排氣使其減壓而使真空室21成為真空。第一氣體供給部25將濺射氣體G1供給到靶41的周圍。第二氣體供給部63將反應氣體G2供給到筒形電極61內。
旋轉台31旋轉而達到指定的旋轉速度。由此,被保持部33保持的工件W的整體或一部分以描繪圓的軌跡在搬送路徑P上移動,而通過與濺射源4、逆濺射源6對向的位置。
第一電源部5對靶41施加電力。第二電源部7對逆濺射源6施加電力。由此,真空室21內的濺射氣體G1電漿化。在濺射源4中,由電漿產生的離子碰撞到靶41而使成膜材料的粒子飛濺。由此,使成膜材料的粒子堆積在通過成膜區域F的工件W的表面而生成膜。例如,形成鈦膜或矽膜。
而且,在逆濺射源6中,由電漿產生的離子使所生成的膜成為化合物膜。例如,形成氧化鈦膜、氮化鈦膜、氮化矽膜或氧化矽膜等化合物膜。因為通過一次濺射而形成的膜非常薄,所以通過使旋轉台31旋轉多圈,而能夠逐漸製成所需的厚度。但是,每當在濺射源4中形成非常薄的膜,則在逆濺射源6中化合物化,所以與在相同的部位進行膜形成與化合物化的情況相比,不會妨礙膜形成。而且,化合物化的進行也迅速。
以這種方式連續地進行利用多個濺射源4的成膜、及利用逆濺射源6的化合物化的狀態。當成膜結束時,第一電源部5停止施加電力,其後,第二電源部7停止施加電力。由此,在各工件W上生成化合物膜。
[電力的變化] 在所述成膜過程中,第一電源部5利用記憶在記憶部92的電力的變化形態,按照電源控制部91的指示,對濺射源4的靶41施加電力。
此處,將工件W與靶41的位置變化的例子表示在圖4及圖5的(A)、圖5的(B)、圖5的(C)中。在該例中,如圖4所示,旋轉台31在從平面方向觀察時沿逆時針方向旋轉。圖5的(A)、圖5的(B)、圖5的(C)只表示一個工件W相對於一個靶41的位置的變化。如該圖5的(A)所示,隨著旋轉台31的旋轉,工件W逐漸接近靶41,當進入到圖2所示的成膜區域F之後,工件W的一角與靶41的一部分重疊。
當旋轉台31從圖5的(A)的狀態旋轉45°時,如圖5的(B)所示,從平面方向觀察時,工件W的大半部分與靶41重疊。進而,當旋轉台31旋轉45°時,如圖5的(C)所示,成為只有與圖5的(A)的一角在對角線上對向的一角重疊的狀態。進而,工件W不再與靶41重疊後,從圖2所示的成膜區域F離開。隨著旋轉台31的旋轉,各工件W與各靶41的位置關係重複如上所述的變化。
參照圖6對這種根據各工件W與靶41的位置變化而改變對靶41施加的電力的實施方式的一例進行說明,所述各工件W與靶41的位置變化是隨著利用搬送部3使工件W移動而產生。此外,圖6的橫軸為以圖5的(A)、圖5的(B)、圖5的(C)中的0°的線(line)作為基準的工件W的旋轉角,縱軸為施加的電力的大小。
首先,如圖5的(A)所示,在工件W的一角與靶41重疊的瞬間,工件W的旋轉角為-45°。在該階段,如圖6所示,第一電源部5施加的電力相對較小。從該狀態到像圖5的(B)所示那樣工件W的大半部分重疊且旋轉角變為0°為止,第一電源部5使施加的電力增大。在旋轉角成為0°後,如圖5的(C)所示,到工件W的一角離開靶41的瞬間為止,使施加的電力減少。然後,下一個工件W像圖5的(A)那樣一角與靶41重疊,因此,再次使施加的電力變大。
這種電力的變化形態與如下情況對應,即,工件W中的成為成膜對象的表面與靶41的距離越短則使施加的電力越小,距離越長則使施加的電力越大。也就是說,如圖5的(A)、圖5的(C)及與其對應的圖7的(a)、圖7的(c)所示,在工件W為凹狀的基板且工件W的一角與靶41重疊的情況下,工件W與靶41的距離變短。因此,施加的電力變小。然後,如圖5的(B)及與其對應的圖7的(b)所示,在工件W的大半部分與靶41重疊的情況下,工件W與靶41的距離變長。因此,施加的電力變大。
如上所述,將針對一個工件W的電力的增減作為1個循環(cycle)c,以固定的振幅及週期變化。該情況設為如下模式:每當旋轉台31旋轉一圈,重複與工件W對應的次數的循環。也就是說,決定圖8所示的工件W為六個r時的變化模式,在每一圈重複該模式。
[成膜處理的實驗例] 將本實施方式的成膜處理、與不使電力變化的情況下的成膜處理進行比較的實驗例如下。
[工件的形狀] 用於實驗的工件W是長邊的長度(X)為210 mm、短邊也就是寬度(Y)為90 mm、厚度為5 mm的長方形狀的基板。該工件W的長邊彎曲成大致圓弧狀,且水平的載置面到最高部的高度h為20 mm。因彎曲而凹陷最深的部分的表面與兩緣部的高低差Δ為15 mm。關於工件W,對像圖9的(A)所示那樣呈凹狀保持的情況、與像圖9的(B)所示那樣呈凸狀保持的情況進行實驗。
[裝置條件] 此外,用於實驗的裝置的條件如下。 靶41的尺寸為f127 mm。 濺射所需的時間為300秒,旋轉速度為60 rpm。 在氧化鈦膜的成膜中,向濺射源4的氬氣流量為480 sccm,向逆濺射源6的氧氣流量為150 sccm。關於對濺射源4施加的直流電力,初始電力為1.3 kw,在成膜面不變的情況下電力保持不變,在使成膜面以凹狀變化的情況下,呈1.3 kw-2.6 kw-1.3 kw產生2倍的變化,與此相反,在使成膜面以凸狀變化的情況下,呈2.6 kw-1.3 kw-2.6 kw產生2倍的變化。對逆濺射源6施加的RF電力是設為300 W。 在氧化矽膜的成膜中,向濺射源4的氬氣流量為120 sccm,逆濺射源6的氧氣流量為200 sccm。關於對濺射源4施加的直流電力,初始電力為1.5 kw,在成膜面不變的情況下,電力保持不變,在使成膜面以凹狀變化的情況下,呈1.5 kw-3.0 kw-1.5 kw產生2倍的變化,與此相反,在使成膜面以凸狀變化的情況下,呈1.5 kw-3.0 kw-1.5 kw產生2倍的變化。對逆濺射源6施加的RF電力是設為200 W。
[實驗結果] 圖10~圖17表示利用本實驗的成膜裝置進行的成膜處理的膜厚分佈。橫軸表示將基板的長邊方向X的中心設為0的水平長度為±100 mm的位置。縱軸表示在將基板中心的膜厚設為1的情況下,短邊方向即Y位置為0點處的膜厚的比率(無單位)。圖10~圖13是在相對於靶41呈凹狀對向的面成膜所得的結果,圖14~圖17是在相對於靶41呈凸狀對向的面成膜所得的結果。
圖10、圖11、圖14、圖15是氧化鈦膜的成膜例,圖12、圖13、圖16、圖17是氧化矽膜的成膜例。而且,圖10、圖12、圖14、圖16是不進行像本實施方式那樣的電力控制而進行成膜所得的結果,圖11、圖13、圖15、圖17是進行本實施方式的電力控制而進行成膜所得的結果。
如圖10所示,在生成氧化鈦膜時,在不使電力變化的情況下,表示膜厚不均的成膜分佈為±11.2%,相對於此,如圖11所示,在本實施方式的情況下,抑制為±6.2%。而且,如圖12所示,在生成氧化矽膜時,在不使電力變化的情況下,成膜分佈為±9.3%,相對於此,如圖13所示,在本實施方式的情況下,抑制為±3.7%。
進而,如圖14所示,在生成氧化鈦膜時,在不使電力變化的情況下,成膜分佈為±6.6%,相對於此,如圖15所示,在本實施方式的情況下,抑制為±5.3%。而且,如圖16所示,在生成氧化矽膜時,在不使電力變化的情況下,成膜分佈為±7.2%,相對於此,如圖17所示,在本實施方式的情況下,抑制為±3.2%。
如上所述,根據本實施方式,可明確膜厚的均勻性提高。
[效果] 如上所述的本實施方式是一種成膜裝置,使濺射氣體G1電漿化,且使成膜材料堆積在工件W上,且包括:腔室2,被導入濺射氣體G1;搬送部3,設置在腔室2內,循環搬送工件W;濺射源4,由堆積在工件W而成為膜的成膜材料形成,且具有靶41,該靶41設置在與利用搬送部3使工件W移動的路徑對向的位置;以及電源部5,對靶41施加電力。而且,本實施方式的成膜裝置包括電源控制部91,該電源控制部91在工件W利用搬送部3而通過供成膜材料堆積的區域即成膜區域F期間,根據工件W相對於靶41的位置的變化,使第一電源部5對靶41施加的電力變化。
因此,在工件W的搬送過程中,工件W相對於靶41的位置變化,由此,即便在靶41與工件W的表面的距離產生變化的情況下,也與之對應地控制施加電力,因此,能夠確保膜厚的均勻性。
在工件W的形狀存在彎曲等的情況下,如果靶41與工件W表面的距離短,那麼膜會變厚,如果靶41與工件W表面的距離長,那麼膜會變薄。而且,電力越大則膜變得越厚,電力越小則膜變得越薄。因此,在工件W相對於靶41的位置和工件W與靶41的距離的關係已決定的情況下,通過根據工件W位於哪個位置來改變電力的大小,能夠使膜厚均勻。
因此,利用濺鍍,可高速且高效率地以均勻的厚度對工件W成膜,並且不會像真空蒸鍍裝置那樣大型化,可製成小型且省空間的成膜裝置。
電源控制部91根據工件W的位置使電力變化,由此,根據工件W中的成為成膜對象的面與靶41的距離,使第一電源部5對靶41施加的電力變化。尤其是,電源控制部91是距離越短則使施加的電力越小,距離越長則使施加的電力越大,因此,結果為能夠使膜厚均勻。
而且,電源控制部91使所控制的第一電源部5的電力以指定的振幅及週期變化。由此,可通過進行振幅與週期這種簡單的設定而確保膜厚的均勻。
電源控制部91在工件W的循環搬送的一圈中,按照所規定的變化模式,使第一電源部5對靶41施加的電力變化。工件W與靶41的距離的關係是在每一圈中重複相同的關係。因此,如果決定一圈的變化模式,那麼其後無論多少圈均能夠進行準確的膜厚調整。
搬送部3具有將各工件W相對於工件W的搬送方向的角度保持為固定的多個保持部33,且保持部33以等間隔配設。因此,各工件W與各靶41的位置變化所引起的距離的變化形態固定,因此,將與之對應的電力的變化形態設為固定,從而設定變得容易。
保持部33將工件W保持在如下位置,該位置是通過成膜區域F的工件W通過與靶41的距離成為最大的部位、及與靶41的距離成為最小的部位的位置。因此,能將工件W整體的與靶41的距離的變化的最大幅度作為對象,來控制電力的變化,因此能夠確保工件W整體的膜厚的均勻性。
搬送部3具有設置著保持部33的旋轉台31。由此,能以簡易的構成形成進行循環的搬送路徑P。尤其是,如果旋轉台31的軸的位置確定,那麼移動中的工件W的表面與靶41的距離的關係也易於固定地維持。
[其他實施方式] 本發明並不限定於所述實施方式,還包含如下實施方式。 (1)也可以為濺射源4具有多個靶41,且第一電源部5針對每個靶41改變使施加的電力變化的時點。在該情況下,多個靶41可通過改變工件W相對於搬送方向的角度,而使成膜區域F的寬窄變化。該情況是只要設為旋動濺射源4的構成即可。在多個靶41中越是工件W先接近的靶41,越是使施加的電力上升的時點提早。該現象在靶41為三個以上的情況下也同樣。
此外,旋轉台31的外周側的周長比內周側長。因此,成膜對象物在外周側比在內周側更快地通過濺射源4的下方,從而外周側的成膜速率(rate)比內周側下降。即,在外周側膜厚更容易變薄。因此,多個靶41中,越是遠離旋轉的軸的外周側,則使施加的電力越大。該現象在靶41為三個以上的情況下也同樣。
更具體來說,如圖18的(A)、圖18的(B)、圖18的(C)所示,在兩個靶41在與搬送方向正交的方向、也就是半徑方向上排列的情況下,兩個靶41的電力變化的時點相同。但是,使對遠離軸的靶41施加的電力升高。
而且,如圖19的(A)、圖19的(B)、圖19的(C)所示,在兩個靶41在與搬送方向傾斜地交叉的方向上排列的情況下,使對更先接近工件W的靶41施加的電力變化的時點更早。而且,使對遠離軸的靶41施加的電力升高。
而且,如圖20的(A)、圖20的(B)、圖20的(C)所示,在兩個靶41在與搬送方向相同的方向或搬送方向的切線方向上排列的情況下,使對更先接近工件W的靶41施加的電力變化的時點更早。但是,因為兩個靶41相對於軸的距離大致相同,所以施加的電力設為同等。
(2)成膜裝置也可以具有檢測距離的感測器,且電源控制部91連接於感測器,根據由感測器檢測出的從感測器到工件W的表面的距離,使第一電源部5施加的電力變化。
例如,將對到檢測對象的距離進行檢測的感測器連接於控制裝置9。該感測器配置在能夠檢測從感測器到工件W的表面的距離的位置。例如,作為感測器,可使用雷射感測器(laser sensor)。而且,例如,可將感測器設置在濺射源4之間的真空室21的頂板等。所謂“從感測器”是指“從指定的基準位置”,根據感測器的距離的運算方法而不同。例如,能夠將感測器下表面設為指定的基準位置,但並不限定於此。
圖21的(A)、圖21的(B)、圖21的(C)、圖22的(A)、圖22的(B)、圖22的(C)表示利用感測器K進行的到工件W表面的距離的測量。圖21的(A)、圖21的(B)、圖22的(A)、圖22的(B)是表示測量工件W的緣部的狀態的透視側視圖,圖21的(C)、圖22的(C)是表示測量中央部的狀態的透視側視圖。基板的旋轉角與電力的圖表(graph)的關係與圖5的(A)、圖5的(B)、圖5的(C)、圖6相同。圖21的(A)、圖21的(B)、圖21的(C)是將工件W配置成凹狀的例子,所以到緣部的距離變短,到中央部的距離變長。圖22的(A)、圖22的(B)、圖22的(C)是將工件W配置成凸狀的例子,所以到緣部的距離長,到中央部的距離短。也就是說,也可以將感測器K設置在對到工件W表面的距離成為最大的部位、與到工件W表面的距離成為最小的部位進行檢測的位置。
因為感測器K與靶41的高低差固定,所以感測器K與工件W的距離和靶41與工件W的距離成比例。因此,根據利用感測器K所得的距離的檢測值改變電力,由此可獲得與所述實施方式相同的作用效果。在圖21的(A)、圖21的(B)、圖21的(C)、圖22的(A)、圖22的(B)、圖22的(C)中,例示改變電力的形態。工件W與感測器K的距離越短,則電力越小,距離越長,則電力越大,但對照工件W的曲面,電力的上升與下降成為平緩的曲線(curve)。
在該實施方式中,基於距離的實際測量值改變電力,所以能夠進行更準確地反映工件W的形狀的精密的膜厚控制。進而,在將所搬入的工件W全部保持在保持部33的狀態下,使旋轉台31旋轉一圈並利用感測器K檢測距離。而且,例如,控制裝置9的設定部93設定與距離成比例的電力的變化形態並記憶在記憶部92中。如果電源控制部91按照該變化形態控制第一電源部5,那麼可節省操作員的工夫,且能夠實施最佳的電力的變化形態的成膜。
(3)搬送部3所具有的搬送單元並不限定於旋轉台31。搬送部3也可以包括具有保持部的旋轉筒。例如,如圖23所示,可由角柱形狀的旋轉筒34構成搬送部3。該旋轉筒34是在側面設置保持工件W的保持部35,且利用驅動源以軸為中心旋轉。在收容旋轉筒34的腔室26內,在與工件W的搬送路徑對向的位置設置著與上文所述相同的濺射源4、逆濺射源6等。
在該實施方式中,可將通過旋轉筒34的旋轉來搬送工件W的搬送方向與工件W的配置方向設為平行。例如,在與所述實施方式同樣地設為長方形狀的工件W的情況下,工件W的長邊與搬送方向平行。因此,與旋轉台31相比,可減少與搬送方向正交的方向上的膜厚的不均。此外,旋轉筒34並不限定於角形筒狀,也可以為圓形筒狀。
(4)由搬送部3同時搬送的工件W的數量、保持部33、保持部35的數量只要至少為一個即可,並不限定於所述實施方式中所例示的數量。也就是說,既可以為一個工件W循環而重複成膜的實施方式,也可以為兩個以上的工件W循環而重複成膜的實施方式。因此,例如,也可以為如下實施方式:搬送部3具有一個將工件W相對於搬送路徑P的搬送方向的角度保持為固定的保持部33、保持部35。濺射源4、逆濺射源6的數量既可以為單數,也可以為多個,並不限定於所述實施方式中所例示的數量。而且,一個濺射源4所具備的靶41的個數也是既可以為單數,也可以為多個。而且,也可以為如下構成:使多個靶41的材料不同,在成膜對象物形成複合膜、或者不同材料的多層膜。
(5)成為成膜對象的工件W的形狀也並不限定於所述實施方式中所示的形狀。也可以成為成膜對象的面形成為凹狀或凸狀,而保持在保持部33、保持部35一側的面為平坦面。例如,也適合製造成為成膜對象的面呈研缽狀或盤狀凹陷的凹面鏡。而且,也可以為成為成膜對象的面重複凹凸的工件W。在該情況下,如果可知因凹凸所引起的與靶41的距離的變化形態,那麼只要對照該變化形態使施加電力變化即可。而且,如上所述,如果利用感測器K測定距離,那麼可準確地施加對照凹凸的電力。
也能夠利用與搬送路徑P對應地具有多個靶41的情況,針對每個成膜區域F改變靶41與工件W的位置關係,從而提高寬度方向的膜厚分佈。例如,考慮改變各靶41的高度、角度等位置,或改變被各保持部33、保持部35保持的工件W的高度、角度等位置等。
1‧‧‧電漿處理裝置
2、26‧‧‧腔室
3‧‧‧搬送部
4‧‧‧濺射源
5‧‧‧第一電源部
6‧‧‧逆濺射源
7‧‧‧第二電源部
8‧‧‧加載互鎖部
9‧‧‧控制裝置
10‧‧‧檢測器
21‧‧‧真空室
22‧‧‧排氣口
23‧‧‧排氣部
24、62‧‧‧導入口
25‧‧‧第一氣體供給部
31‧‧‧旋轉台
32‧‧‧馬達
33、35‧‧‧保持部
34‧‧‧旋轉筒
41‧‧‧靶
42‧‧‧背襯板
43‧‧‧電極
44‧‧‧罩殼
61‧‧‧筒形電極
63‧‧‧第二氣體供給部
90‧‧‧機構控制部
91‧‧‧電源控制部
92‧‧‧記憶部
93‧‧‧設定部
94‧‧‧輸入輸出控制部
95‧‧‧輸入裝置
96‧‧‧輸出裝置
c‧‧‧一個循環
E‧‧‧排氣
F‧‧‧成膜區域
G1‧‧‧濺射氣體
G2‧‧‧反應氣體
h‧‧‧高度
K‧‧‧感測器
P‧‧‧搬送路徑
r‧‧‧六個工件
W‧‧‧工件
Δ‧‧‧高低差
圖1是具有實施方式的成膜裝置的電漿處理裝置的示意立體圖。 圖2是實施方式的示意剖視圖。 圖3是表示實施方式的控制裝置的方塊圖。 圖4是表示旋轉台上的處理對象物的示意平面圖。 圖5的(A)、圖5的(B)、圖5的(C)是表示從平面方向觀察到的隨著旋轉台的旋轉而移動的處理對象物與靶的位置關係的說明圖。 圖6是表示與圖5的(A)、圖5的(B)、圖5的(C)對應的施加電力與工件的旋轉角的關係的說明圖。 圖7的(a)、圖7的(b)、圖7的(c)是表示與圖5的(A)、圖5的(B)、圖5的(C)及圖6對應的靶與工件表面的距離的變化的說明圖。 圖8是表示旋轉台的一圈中的電力的變化形態的說明圖。 圖9的(A)、圖9的(B)是表示用作工件的彎曲的基板的剖視圖。 圖10是表示對於配置成凹狀的基板,不使電力變化而形成著氧化鈦膜的情況下的膜厚的不均的說明圖。 圖11是表示對於配置成凹狀的基板,使電力變化且形成著氧化鈦膜的情況下的膜厚的不均的說明圖。 圖12是表示對於配置成凹狀的基板,不使電力變化而形成著氧化矽膜的情況下的膜厚的不均的說明圖。 圖13是表示對於配置成凹狀的基板,使電力變化且形成著氧化矽膜的情況下的膜厚的不均的說明圖。 圖14是表示對於配置成凸狀的基板,不使電力變化而形成著氧化鈦膜的情況下的膜厚的不均的說明圖。 圖15是表示對於配置成凸狀的基板,使電力變化且形成著氧化鈦膜的情況下的膜厚的不均的說明圖。 圖16是表示對於配置成凸狀的基板,不使電力變化而形成著氧化矽膜的情況下的膜厚的不均的說明圖。 圖17是表示對於配置成凸狀的基板,使電力變化且形成著氧化矽膜的情況下的膜厚的不均的說明圖。 圖18的(A)、圖18的(B)、圖18的(C)是表示將濺射源中的多個靶配置在相對於搬送方向正交的方向上的情況下的施加電力與工件的旋轉角的關係的說明圖。 圖19的(A)、圖19的(B)、圖19的(C)是表示將濺射源中的多個靶配置在相對於搬送方向傾斜的方向上的情況下的施加電力與工件的旋轉角的關係的說明圖。 圖20的(A)、圖20的(B)、圖20的(C)是表示將濺射源中的多個靶配置在相對於搬送方向平行的方向上的情況下的施加電力與工件的旋轉角的關係的說明圖。 圖21的(A)、圖21的(B)、圖21的(C)是針對配置成凹狀的工件,表示與由感測器檢測出的距離對應的電力的變化的說明圖。 圖22的(A)、圖22的(B)、圖22的(C)是針對配置成凸狀的工件,表示與由感測器檢測出的距離對應的電力的變化的說明圖。 圖23是表示使用旋轉筒作為搬送部的成膜裝置的一例的局部透視立體圖。
2‧‧‧腔室
4‧‧‧濺射源
5‧‧‧第一電源部
6‧‧‧逆濺射源
7‧‧‧第二電源部
21‧‧‧真空室
22‧‧‧排氣口
23‧‧‧排氣部
24、62‧‧‧導入口
25‧‧‧第一氣體供給部
31‧‧‧旋轉台
32‧‧‧馬達
33‧‧‧保持部
41‧‧‧靶
42‧‧‧背襯板
43‧‧‧電極
44‧‧‧罩殼
61‧‧‧筒形電極
63‧‧‧第二氣體供給部
G1‧‧‧濺射氣體
G2‧‧‧反應氣體
E‧‧‧排氣
F‧‧‧成膜區域
W‧‧‧工件

Claims (15)

  1. 一種成膜裝置,使濺射氣體電漿化,且使成膜材料堆積在工件上,其特徵在於包括:腔室,被導入濺射氣體;搬送部,設置在所述腔室內,循環搬送工件;濺射源,由堆積在所述工件而成為膜的所述成膜材料形成,且具有靶,所述靶設置在與利用所述搬送部使所述工件移動的路徑對向的位置;電源部,對所述靶施加電力;以及電源控制部,在經由所述搬送部被循環搬送而移動中的所述工件通過作為供所述成膜材料堆積的區域的成膜區域期間,當所述工件相對於所述靶的間隔、方向或從平面方向觀察到的重疊面積變化時,根據該變化使所述電源部對所述靶施加的電力變化。
  2. 如申請專利範圍第1項所述的成膜裝置,其中,當所述工件中的成為成膜對象的面與所述靶的垂直方向的距離變化時,所述電源控制部根據該變化使所述電源部對所述靶施加的電力變化。
  3. 如申請專利範圍第2項所述的成膜裝置,其中,所述電源控制部是所述距離越短則使施加的電力越小,所述距離越長則使施加的電力越大。
  4. 如申請專利範圍第1項至第3項中任一項所述的成膜裝置,其中, 所述電源控制部使所述電源部施加的電力以指定的振幅及週期變化。
  5. 如申請專利範圍第4項所述的成膜裝置,其中,所述電源控制部在所述工件的循環搬送的一圈中,按照所規定的變化模式,使所述電源部對所述靶施加的電力變化。
  6. 如申請專利範圍第1項所述的成膜裝置,其中,所述搬送部具有將所述工件相對於所述工件的搬送方向的角度保持為固定的多個保持部,且所述保持部以等間隔配設。
  7. 如申請專利範圍第6項所述的成膜裝置,其中,所述保持部將所述工件保持在通過所述成膜區域的工件通過與所述靶的距離成為最大的部位、及與所述靶的距離成為最小的部位的位置。
  8. 如申請專利範圍第7項所述的成膜裝置,其中,所述搬送部具有設置著所述保持部的旋轉台。
  9. 如申請專利範圍第7項所述的成膜裝置,其中,所述搬送部具有設置著所述保持部的旋轉筒。
  10. 如申請專利範圍第1項所述的成膜裝置,其中,所述濺射源具有多個所述靶,所述電源部針對每個靶改變使施加的電力變化的時點。
  11. 如申請專利範圍第1項所述的成膜裝置,其中,具有檢測距離的感測器,所述電源控制部連接於所述感測器,根據由所述感測器檢測 出的到所述工件的表面的距離,使所述電源部施加的電力變化。
  12. 如申請專利範圍第11項所述的成膜裝置,其中,所述感測器設置在對到所述工件的表面的距離成為最大的部位、與到所述工件的表面的距離成為最小的部位進行檢測的位置。
  13. 一種成膜基板製造方法,其特徵在於:在被導入有濺射氣體的腔室內,利用搬送部循環搬送基板,電源部對與被循環搬送的所述基板的移動路徑對向地配置的靶施加電力,由此,使腔室內的濺射氣體電漿化,且使成膜材料堆積在經由所述搬送部被循環搬送而移動中的基板上,通過所述搬送部使所述基板移動,當隨著所述基板的移動而基板與靶的位置變化時,根據該變化改變所述電源部對靶施加的電力。
  14. 如申請專利範圍第13項所述的成膜基板製造方法,其中,當所述基板中的成為成膜對象的面與所述靶的距離變化時,所述電源部根據該變化使對濺射源施加的電力變化。
  15. 如申請專利範圍第14項所述的成膜基板製造方法,其中,所述距離越短則使施加的電力越小,所述距離越長則使施加的電力越大。
TW104131974A 2014-09-30 2015-09-30 成膜裝置及成膜基板製造方法 TWI611034B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014202501 2014-09-30
JP2015172085A JP6411975B2 (ja) 2014-09-30 2015-09-01 成膜装置及び成膜基板製造方法

Publications (2)

Publication Number Publication Date
TW201612346A TW201612346A (en) 2016-04-01
TWI611034B true TWI611034B (zh) 2018-01-11

Family

ID=55864037

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104131974A TWI611034B (zh) 2014-09-30 2015-09-30 成膜裝置及成膜基板製造方法

Country Status (3)

Country Link
JP (1) JP6411975B2 (zh)
KR (1) KR102410186B1 (zh)
TW (1) TWI611034B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039224B2 (ja) * 2016-10-13 2022-03-22 芝浦メカトロニクス株式会社 電子部品の製造装置及び電子部品の製造方法
JP7002302B2 (ja) * 2016-12-13 2022-02-10 芝浦メカトロニクス株式会社 成膜装置
JP7000083B2 (ja) * 2017-09-07 2022-01-19 芝浦メカトロニクス株式会社 成膜装置
JP7039234B2 (ja) * 2017-09-29 2022-03-22 芝浦メカトロニクス株式会社 成膜装置
WO2019130471A1 (ja) * 2017-12-27 2019-07-04 キヤノンアネルバ株式会社 成膜方法および成膜装置
JP7144219B2 (ja) * 2018-03-22 2022-09-29 芝浦メカトロニクス株式会社 真空処理装置及びトレイ
JP7138504B2 (ja) * 2018-07-31 2022-09-16 キヤノントッキ株式会社 成膜装置及び電子デバイスの製造方法
JP7064407B2 (ja) * 2018-08-31 2022-05-10 キヤノントッキ株式会社 成膜装置及び成膜装置の制御方法
CN111286712B (zh) * 2018-12-10 2022-05-17 苏州能讯高能半导体有限公司 一种靶材溅镀设备以及靶材溅镀系统
KR20220010562A (ko) 2019-06-24 2022-01-25 트럼프 휴팅거 에스피 제트 오. 오. 플라즈마에 전력을 공급하는 전력 공급부의 출력 전력을 조정하는 방법, 플라즈마 장치 및 전력 공급부
JP7111380B2 (ja) * 2020-04-01 2022-08-02 株式会社シンクロン スパッタ装置及びこれを用いた成膜方法
EP4043608A4 (en) * 2020-07-30 2023-07-05 Shincron Co., Ltd. TRANSFER DEVICE AND FILM-GENERATING DEVICE IMPLEMENTING SUCH A DEVICE
CN113789500B (zh) * 2021-08-04 2023-07-25 湖北三峡职业技术学院 自动调整离子束溅射角和入射角的离子镀装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113760A (en) * 1997-02-20 2000-09-05 Shibaura Mechatronics Corporation Power supply apparatus for sputtering and a sputtering apparatus using the power supply apparatus
WO2007148536A1 (ja) * 2006-06-22 2007-12-27 Shibaura Mechatronics Corporation 成膜装置及び成膜方法
TW201000663A (en) * 2008-02-13 2010-01-01 Shibaura Mechatronics Corp Magnetron sputtering apparatus and magnetron sputtering method
TW201339341A (zh) * 2012-03-19 2013-10-01 Shibaura Mechatronics Corp 成膜方法及濺鍍裝置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409451A1 (en) * 1989-07-18 1991-01-23 Optical Coating Laboratory, Inc. Process for depositing optical thin films on both planar and non-planar substrates
JPH03264667A (ja) * 1990-03-12 1991-11-25 Shin Meiwa Ind Co Ltd カルーセル型スパッタリング装置
JP4345869B2 (ja) * 1997-05-16 2009-10-14 Hoya株式会社 スパッタ成膜用の膜厚補正機構
JP2009228062A (ja) * 2008-03-24 2009-10-08 Panasonic Corp スパッタ成膜装置及びスパッタ成膜方法
EP2437280A1 (en) * 2010-09-30 2012-04-04 Applied Materials, Inc. Systems and methods for forming a layer of sputtered material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113760A (en) * 1997-02-20 2000-09-05 Shibaura Mechatronics Corporation Power supply apparatus for sputtering and a sputtering apparatus using the power supply apparatus
WO2007148536A1 (ja) * 2006-06-22 2007-12-27 Shibaura Mechatronics Corporation 成膜装置及び成膜方法
TW201000663A (en) * 2008-02-13 2010-01-01 Shibaura Mechatronics Corp Magnetron sputtering apparatus and magnetron sputtering method
TW201339341A (zh) * 2012-03-19 2013-10-01 Shibaura Mechatronics Corp 成膜方法及濺鍍裝置

Also Published As

Publication number Publication date
KR20160038809A (ko) 2016-04-07
TW201612346A (en) 2016-04-01
JP6411975B2 (ja) 2018-10-24
KR102410186B1 (ko) 2022-06-20
JP2016069727A (ja) 2016-05-09

Similar Documents

Publication Publication Date Title
TWI611034B (zh) 成膜裝置及成膜基板製造方法
CN105463386B (zh) 成膜装置及成膜基板制造方法
KR102083955B1 (ko) 스퍼터링 장치, 박막증착 방법 및 컨트롤 디바이스
TWI612165B (zh) 成膜裝置以及成膜工件製造方法
TWI643970B (zh) Film forming apparatus, method of manufacturing film-forming product, and method of manufacturing electronic component
JP6707559B2 (ja) 被覆された基板の製造方法
KR20160141802A (ko) 멀티-캐소드를 갖는 증착 시스템 및 그 제조 방법
KR102175620B1 (ko) 성막 장치
US11193200B2 (en) PVD processing method and PVD processing apparatus
TWI620232B (zh) Film forming device and film forming method
TWI719295B (zh) 等離子體處理裝置
JP2017008374A (ja) ずれ量の測定方法
JP5731085B2 (ja) 成膜装置
TW202006166A (zh) 使用減低的腔室覆蓋面積的用於線性掃描物理氣相沉積的方法及設備
WO2019173730A1 (en) Methods and apparatus for physical vapor deposition via linear scanning with ambient control
US20190078196A1 (en) Film-forming method and sputtering apparatus
JP7162483B2 (ja) 成膜装置及び成膜製品の製造方法
TWI785798B (zh) 成膜裝置
KR20170134739A (ko) 기판 상의 재료 증착을 위한 방법, 재료 증착 프로세스를 제어하기 위한 제어기, 및 기판 상의 층 증착을 위한 장치
KR102337791B1 (ko) 마그네트론 스퍼터링을 위한 방법 및 장치
JP2022156094A (ja) 成膜装置及び成膜方法
JP2008106311A (ja) コーティング装置及びコーティング方法