TWI565092B - 接觸端子/電解蝕刻模組設計的多孔半導體光伏電池以及相關的生產線 - Google Patents

接觸端子/電解蝕刻模組設計的多孔半導體光伏電池以及相關的生產線 Download PDF

Info

Publication number
TWI565092B
TWI565092B TW100108235A TW100108235A TWI565092B TW I565092 B TWI565092 B TW I565092B TW 100108235 A TW100108235 A TW 100108235A TW 100108235 A TW100108235 A TW 100108235A TW I565092 B TWI565092 B TW I565092B
Authority
TW
Taiwan
Prior art keywords
substrate
station
module
deposition
etching
Prior art date
Application number
TW100108235A
Other languages
English (en)
Other versions
TW201145553A (en
Inventor
馬克 巴勒康尼
Original Assignee
瑞斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞斯科技有限公司 filed Critical 瑞斯科技有限公司
Publication of TW201145553A publication Critical patent/TW201145553A/zh
Application granted granted Critical
Publication of TWI565092B publication Critical patent/TWI565092B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1642Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/32Anodisation of semiconducting materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/026Electroplating of selected surface areas using locally applied jets of electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • C25D7/126Semiconductors first coated with a seed layer or a conductive layer for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/6723Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one plating chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67236Apparatus for manufacturing or treating in a plurality of work-stations the substrates being processed being not semiconductor wafers, e.g. leadframes or chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Weting (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Formation Of Insulating Films (AREA)

Description

接觸端子/電解蝕刻模組設計的多孔半導體光伏電池以及相關的生產線
依據本發明一個或多個具體實施例中,本解決方案即光伏領域上的應用。更具體而言,本解決方案即關於光伏電池的應用。再者,依據本發明進一步的具體實施例中,本解決方案即關於電解過程和蝕刻加工的應用領域。更具體來說,這些解決方案為電解模組(如用於陽極氧化加工和沉積加工)及蝕刻模組,應用於光伏電池的生產線。
光伏電池通常用於將光能轉換成電能(也稱太陽光能電池),最常見的太陽能電池使用半導體基板的設計(如矽基板),其中的PN接面在前端面和背端面間形成,太陽光能由基板的前端面吸收,然後產生電荷(如電洞對),提供外部負載供相應的電流。
每個太陽能電池通常在前端面有一個前接觸端子,在背端面有一個背接觸端子,用於連接外部負載。背接觸端子可延伸到整個背端面上(因為它通常在陽光不會到達的位置點的),因此,外形可能較薄。相反地,前接觸端子應儘量保持小尺寸的設計,才能夠避免前端面阻礙太陽光線的照射(例如,構成一個窄網格狀的接觸帶)。因此,前接觸端子尺寸設計應較厚(用於降低前端面接觸帶上的阻抗)。
在科技工藝中,每個太陽能電池所面臨的問題,就是難以將接觸端子固定在基板上,尤其是前接觸端子的小尺寸和高厚度設計,更難以固定背接觸端子。事實上,各接觸端子因為不均勻的外形或接觸部位的低穩定性,導致失去輕微的附著力,讓電流濃度集中於接觸端子的其他部位上。因此,接觸端子的溫升會讓附著力逐漸流失。所有上述內容,都會對太陽能電池的效率,產生不利影響。
為此,本文提出一些技術用於改善基板上,前接觸端子的附著力(以及背接觸端子的附著力)。
例如,本已知的技術即先進行金屬的粘貼(如藉由網印加工處理),然後再進行燒製加工(才能將金屬板固定在基板上)。但燒製過程中,需使用非常高的溫度(400-750℃),將在太陽能電池上產生機械應力(因為材質不同而有不同的熱膨脹係數)。因此,太陽能電池的尺寸需較厚(例如,使用厚度至少為150-200μm的),才能夠讓機械應力不造成潰裂。金屬黏膠的應用導致高生產成本。此外,金屬黏膠讓接觸端子有較高的阻抗(對太陽能電池的效率產生不利的影響)。
另一種已知的技術,則是在基板的前端面設計成溝槽狀(例如,藉由激光燒蝕的加工處理),然後在內部沉積有一個金屬層,讓溝槽變得較深(如3-60μm),讓前接觸端子(至少有一部分)埋入基板中(藉此保持機械性的固定力量)。但溝槽設計削弱了太陽能電池的機械結構。因此,如上所述,太陽能電池的尺寸需相對較厚(為了避免其潰裂)。
多孔矽也用於太陽能電池的生產上,在基本的前端面構成抗反射塗層(ARC)。
例如,Vinod的研究報告“The ohmic properties and current-voltage characteristics of the screen-printed silicon solar cells with porous silicon surface”,Solid State Communications,Pergamon,GB LNKD-DOI:10.1016/J.SSC.2009.02.019,vol.149,no.23-24,pages 957-961,XP026098082 ISSN:0038-1098(如本文中的參考資料全文),顯示太陽能電池可藉由銀質的網印加工,然後進行燒製加工(725℃),在n+-Si表面,經由電化學蝕刻加工而構成多孔矽(在大多數情況下,銀觸點上無任何的保護)。另外(為避免相關問題的產生),相同的研究報告文件,也指出可先構成多孔矽層,然後再構成銀觸點,在700-825℃進行燒製加工,在450℃下退火,有助於在銀和n+-Si之間構成一個歐姆接點(藉由玻璃熔融料載於銀觸點上,可幾乎完全穿透整個多孔矽層的厚度,而生成穗狀的銀矽互連層)。Vinod的研究報告明確指出,需使用非常高的溫度來進行燒製加工(因為700℃的低溫,不足以進行多孔矽薄膜層整個厚度的蝕刻)。冷卻後,銀/矽層再結晶化,構成所需的歐姆接點。
多孔矽層的形成步驟,在恒定的加工參數下進行(如電流密度)。此外,再結晶的過程(尤其像是銀/矽合金)通常會產生均勻的結構(例如,見B.Arzamasov,Material Science Edit,Mir Publisher Moscow,English translation 1989,chapter 4.3,page 91,ISBN 5-03-000074-7,如本文的參考資料全文,其中所謂的「再結晶化為有少量結構缺陷的新粒子,其成核和生長現象,再結晶形成全新的結構,最常見的是等軸晶」,而「一般而言,再結晶化的合金具有均勻結構,而無各向異性出現。」的相關研究報告內容)。再者,在形成多孔矽層後,高溫會降低表面的孔隙度(例如,參看M. Banerjee et al.,“Thermal annealing of porous silicon to develop a quasi monocrystalline structure”,J Mater Sci: Mater Electron(2009) 20:305-311 DOI 10.1007/s10854-008-9725-y中,如本文中的參考資料全文,其中所謂高溫加工處理的「多孔矽則形成準單晶多孔矽層,具有光滑的表面,幾乎沒有空隙嵌入晶體內」)。
此外,US-A-2009/0188553(如本文的參考資料全文)指出,在前端面的多孔矽層可避免生成電荷的重組。另外,多孔矽層可用於基板的吸氣雜質上,在此情況下,基板退火將雜質擴散進入多孔矽層中,然後將其移除。同一份研究報告,也建議將前接觸端子貼在已改善附著力的多孔矽層上。為此,在前接觸端子設計有溝槽,多孔矽層內則有溝槽形成。然後,提供已改善附著力的表面,用於黏貼埋入的電觸點上(讓另一個多孔矽層也在背表面上形成,為讓其鈍化,隨後再打開窗口,藉由此鈍化層上的金屬化層,再接觸到基板上)。在另一個具體實施例中,金屬化層直接沉積在多孔矽層上,形成整個背表面。在此情況下,前接觸端子黏貼在相應的電氣接觸區上,可使用塗有電洞清除劑的光催化層來達成上述的應用。最後,不同的具體實施例中,前接觸端子黏貼在相應的導線電接點上,藉由網印和蝕刻加工,在多孔矽層上形成導線電接點。但這些技術也面臨上述相同的缺點,例如,溝槽設計弱化了機械結構(太陽能電池需相對較厚的尺寸),電接點區域及導線電接點的形成,需較高的生產成本。
多孔矽還有完全不同的應用。例如,在WO/2007/104799A1(如本文中的參考資料全文)中,基板上所形成的多孔矽層,有助於上方的導線接電功能,而獲得相應的互連元件(在移除基板後)。為此,多孔矽層的結構配置,可讓部分的導線自基板處剝離,但同時可防止完全的剝離,特別是多孔矽層具有低孔隙度,可減少部分部位翹起剝離的可能性。任何情況下,多孔矽層應較厚(例如,至少2μm),也可移向基板來降低孔隙度(結構弱化則不成問題,因為翹起的導線形成後,即可解決此問題)。
整體而言,依據本專利一個或多個的具體實施例,其構想依據,即使用多孔矽層連接固定於太陽能電池基板上的接觸端子上(或更普遍來說,為所謂的光伏電池)。此外,本解決方案根據一個或多個體現本發明是基於這樣一種想法,使用實施動態半月板電解蝕刻模塊或模塊(電解模塊和/或蝕刻模塊也可以用來實現生產線的光伏電池)。
特別是,依據本發明各個獨立的專利申請範圍中,提出一個或多個具體實施例的解決方案中,具有跟各個獨立專利申請範圍中相同的優勢功能,悉如本文中的參考資料全文(依據本專利具體實施例,比照適用所有其他方面,其解決方案提供的優勢功能)。更具體來說,依據本發明具體實施例,所提出的解決方案中,即一個光伏電池(或太陽能電池),其中包括有半導體材質的基板(如矽材質)。光伏電池含多個接觸端子,各接觸端子跟基板相應的接觸面上,用於收集光能在基板上所產生的電荷(例如,在基板上的前端面和/或背端面)。在一個或多個接觸面上,基板含至少一個半導體多孔區(如多孔矽),它自接觸面延伸進入到基板中,用於固定連接基本上所有相應的接觸端子。依據本發明具體實施例,所提出的解決方案中,各半導體多孔區,隨著移離基板內部的接觸區,而逐漸降低其孔隙度。
依據本發明具體實施例,所提出的另一個解決方案中,即提供蝕刻模組,用於基板上的蝕刻加工(例如,光伏電池的加工處理)。此蝕刻模組含一個蝕刻頭,而蝕刻頭含一個具有功能運作表面的支撐元件,蝕刻頭再含一個或多個傳輸嘴,在功能運作表面上用於傳輸蝕刻溶液。蝕刻頭可再含一個或多個吸入口(完全圍繞功能運作表面上的傳輸嘴),用於吸吮所傳輸的蝕刻溶液,以這種方式,在接觸到相應的基板部位時,功能運作表面即形成一個動態的半月板表面。
依據本發明具體實施例,所提出的另一個解決方案中,即提供一個電解模組,在基板上(如進行光伏電池的加工),進行電解加工(陽極氧化加工和沉積加工)。電解模組含一個加工頭裝置,而加工頭裝置含一個具有功能運作表面的支撐元件,此加工頭裝置可再含一個或多個傳輸嘴,用於傳輸基板上的溶液(此支撐元件至少有部分是導電材質,用於接觸到溶液)。此蝕刻頭可再含一個或多個吸入口(完全圍繞功能運作表面上的傳輸嘴),用於吸吮所傳輸的溶液,以這種方式,在接觸到相應的基板部位時,功能運作表面即形成一個動態的半月板表面。其中一個加工頭裝置,作為接觸電解液的半月板區域。此電解模組可再含第一個偏壓裝置,提供整個電解頭中,對電解液的第一個偏壓功能,含第二個偏壓裝置,用於執行對基板的第二個偏壓功能。
依據本發明具體實施例,所再提出的解決方案中,提供一個生產線,用於製造這些光伏電池產品。本生產線含一個蝕刻站設備,而本蝕刻站含一組上述的蝕刻模組,各模組用於蝕刻站中,清理各基板接觸區的相應部位。在其他或類似的替代情況下,本生產線再含一個陽極氧化站,本陽極氧化站含一組電解模組,各電解模組在陽極氧化站中的各基板接觸面上,用於構成半導體多孔區的相應部位。在其他或類似的替代情況下,此生產線再含一個沉積站,此沉積站含一組上述的電解模組,各電解模組在沉積站中的各基板接觸面上,用於構成接觸端子的相應部位。
依據本發明具體實施例,所再提出的不同解決方案中,提供一個光伏電池的製程。特別是,此製程含半導體材質基板的製造步驟,提供一個前端面用於吸收光能。然後,至少構成一個接觸端子,此接觸端子位於前端面的前接觸區上,用於收集基板接收光能所產生的電荷。依據本發明具體實施例,所提出的解決方案中,前接觸面和前接觸端子有平坦的外形輪廓。此步驟至少含一個前接觸端子,此前接觸端子至少含一個半導體多孔區,它自接觸面延伸進入到基板中,用於固定連接基本上的整個前接觸端子。此過程還包括前接觸端子的化學沉積加工處理。
在本發明的具體實施例中,同樣的步驟,也在基板的背表面用於構成至少一個背接觸端子(相對於前表面位置)。
依據本發明一個或多個具體實施例,所提出的解決方案,以及本文進一步所提出的優勢功能中,可由下列的詳細內容,得到最佳的瞭解,應用範圍不僅限於本文的說明內容,可參考附圖資料(其中標註有相應的元件,即屬相同或類似的參考內容,不再重複贅述)。相關說明中的數字內容,僅為提供圖說繪製比例所需(內容可能或有誇大和/或省略),除非另有說明者,否則僅為方便說明本發明的結構和製程,而使用相關數字。
依據本發明具體實施例,參考圖1內容,即顯示太陽能電池100簡化的橫截面圖說內容。
尤其是,太陽能電池100使用矽質基板105製作(如156mmx 156mm的尺寸大小)。此基板105有一個前端面(上),太陽能電池100運作時,曝露於陽光下,含一個跟其反向的背端面(下)。此基板105含一個上端的N型層115,和一個下端的P型層120,而構成了(冶金)PN接面(基板105的前端面和背端面,分別由N型層115的曝露面,與P型層120的曝露面所構成)。
分別在基板105的前端面和背端面上,構成一個前接觸端子Tf(或多個)和一個背接觸端子Tb(或多個),用於收集基板接收光能所產生的電荷。通常,前接觸端子Tf延伸到基板105前端面的小接觸區122,基板105的保護層123,以開啟的窗口,將其曝露在外(用於阻礙前端面曝露於陽光下),例如,前接觸端子Tf具有網格結構,有多個狹窄的接觸條帶(延伸擴及整個太陽能電池,如條帶寬度為5-200μm),這些條帶接有一對較寬的接觸條帶或匯流帶(如條帶寬度為0.5-3mm)。因此,前接觸端子Tf較厚(如厚度為10-50μm),用於降低相應的阻力(沿著基板105前端面的接觸條帶和接觸匯流帶的長緣)。相反地,通常背接觸端子Tb延伸擴及整個基板105的背端面(在此情況下,陽光不會透射到此部位上),無需限制其大小和厚度。
依據本發明具體實施例,所提出的解決方案中,詳細說明如下,有一多孔矽區域125(或更多)從基板105中的接觸區122延伸而出(位於前接觸端子Tf下方)。
此多孔矽區域125,強力附著在接觸區122的前接觸端子Tf上。因此,前接觸端子Tf可牢靠固定在基板105上,確保穩定的接觸阻抗特性。
此外,發明者極為驚喜地發現到,以這樣的方法,即使在彼此都是平坦外形的情況下,前接觸端子Tf仍可固定在基板105的前端面上,而無需考慮到前接觸端子Tf的尺寸和/或厚度。如下文所引用,所謂的平坦,即表示基板105的前端面,沒有任何先前工藝用於增加附著力的溝槽設計(寬度和/或深度等同於前接觸端子Tf的量級,如各別的寬度和高度)。當然,這並不排除在基板105表面上,具有細微不規則狀的可能性(即寬度和/或深度至少低於前接觸端子Tf的尺寸一或兩個量級)。例如,這通常發生於基板105的前端面上,用於降低光能主波長的反射量(如各向異性的腐蝕加工過程)。
所有上述的設計,可作用在製作太陽能電池100的基板105上(如厚度為20-100μm),可降低成本。
同時,多孔矽區125還可作為基板105的吸除雜質中心(如金屬和氧的雜質),可增加基板105上,電子和電洞的存續壽命。因此,上述的解決方案,有利於太陽能電池100延長光電荷(即電子和電洞)的存續壽命。
在其他或類似的替代情況下,多孔矽區域130(或更多)同樣地,可延伸到背接觸端子Tb下方,基板105中的背端面中。如上述內容,此多孔矽區域130的整個背端面,具有高附著力,讓背端面也可牢靠附著在基板105上(也可作為基板105的雜質去除中心)。
在這兩種情況下,多孔矽區域125、130所增加的附著力,可藉由化學(或濕式)沉積加工處理,來製成前接觸端子Tf和/或背接觸端子Tb,無需冒任何自基板105剝離的風險(可確保穩定的接觸阻抗特性)。因此,可在製程中,降低太陽能電池100的作用溫度(如室溫下作用,或在任何情況下,隨時低於300-350℃),可避免或至少大量降低作用在太陽能電池100上的機械應力(因為材質不同的熱膨脹係數所導致)。此法可進一步降低太陽能電池100的生產成本,並大幅降低前接觸端子Tf和背接觸端子Tb的阻抗,可相對改善太陽能電池100的能源生成效率。
關於圖2A-2H顯示本發明具體實施例中,太陽能電池製程的主要階段。
如圖2A實施例所示,此生產過程開始於矽晶片(單結晶或多晶矽),構成基板105,而晶圓105是P型導體設計(如電阻率為1-3Ω‧cm)。另外,可選用高摻雜度的P型接面(無參考圖說),也可構成自晶圓105中的背端面延伸而出的設計(為了提供相應的背接觸端子良好的歐姆接點)。多孔矽區域130的設計,自晶圓105的背端面延伸而出。例如,可延伸擴及整個0.05-1μm的深度(如0.3μm)。為此,晶圓105進行陽極加工處理(詳細說明如下),其中的晶圓105作為電解電池具有正電壓的陽極(而陰極具有負電壓)。
生產過程持續至圖2B的內容,其中的N型層115,從前端面延伸到晶圓105(如擴散或植入加工處理)內部,在這種方式下,晶圓105的其他部分構成P型層120(跟N型層115構成PN接面,埋入晶圓105靠近前端面的部位)。例如,N型層115的深度為0.2-1.5μm(如0.3~0.7μm)。N型層115的摻雜濃度具有高斯曲線特性,從晶圓105的前端面處,峰值逐減直到P型層120的介面處,而達到相同的數值水準。N型層115的摻雜濃度峰值最好是5‧1019-2‧1020atoms/cm3。如果N型層115的摻雜濃度低於1‧1019atoms/cm3時,最好構成一個或多個高摻雜度的N型接觸區(無參考圖說),最好從前端面延伸進入晶圓105內部(進入相應的前接觸端子內,而提供良好的歐姆觸點),例如,這些N型接觸區深度為2-3μm,摻雜濃度的峰值為1‧1020-1‧1021atoms/cm3(自晶圓105的前端面起算)。
參照圖2C,即分別為在晶圓105的前端面和背端面,於薄氧化層205和210上,N型層115的擴散過程。抗反射層215塗覆在氧化層205上(氧化層210和抗反射層215,則構成晶圓105的保護層123),例如,抗反射層215為氮化矽材質(Si3N4),通常以電漿輔助式化學氣相沈積法(PECVD)進行沉積加工處理。然後移除晶圓105背端面的氧化層210,例如,將晶圓105浸入氫氟酸(HF)的緩衝液中。
進行圖2D的加工處理,以無電鍍沉積加工處理法,將薄金屬層220建構在晶圓105的背端面上(如在多孔矽層130上方),例如,薄金屬層220為鎳材質,厚度為0.1-2μm。
如圖2E所示,前端面的接觸窗口,在保護層123中開啟(如氧化層205和抗反射塗層215),例如,此接觸窗口為標準的光刻加工處理(其中的一個光阻層,以光刻法,取得相應的光罩,具有抗反射塗層215和氧化層205,在不受到光罩的保護下進行蝕刻,例如,進行乾式或濕式的蝕刻)。接觸窗口曝露晶圓105前端面的相應接觸區122,此設計可能含N型接觸區(無參考圖說)。
在接觸區122中,多孔矽區域125自晶圓105的前端面延伸而出,深度為0.05-1μm(如0.2μm)。為此,晶圓105再次進行陽極加工處理(詳細說明如下),其中的晶圓105作為陽極(正電壓),位於電解電池中(使用的電解質溶液,不破壞抗反射塗層215,或使用光罩230,但無參考圖說內容,而用於保護抗反射塗層215),在此方面,應注意到,正電壓施於晶圓105的背端面,面向PN接面120-115,而不會干擾陽極加工處理。
進行圖2F的加工處理,以無電鍍沉積加工處理法,將薄金屬層225建構在晶圓105的前端面上(如在移開保護光罩後,建構在多孔矽區域125和抗反射層215之上),例如,薄金屬層220為鎳材質,厚度為0.1-1μm。另外,晶圓105進行快速高溫退火處理,在多孔矽層130和薄金屬層220間,以及多孔矽區域125和薄金屬層225(為能夠降低相應的接觸阻抗)的接面間,形成鎳矽化物(Ni2Si)層,此退火過程在較低的溫度下進行,一般低於350℃,進行短時間的加工處理(如在200℃下,加工處理60秒)。
製程繼續圖2G的內容,其中的光罩230建構在薄金屬層225上方,可將其曝露在晶圓105前端面的相應接觸窗口上(如使用光刻加工處理)。厚金屬軌235建構在薄金屬層225上方,由光罩230將其曝露在外(如接觸窗口),而厚金屬層240,藉由電解沉積加工處理,建構在薄金屬層225上方(將所需的偏壓施加於晶圓105上,穿透整個薄金屬層220和225),例如,厚金屬軌235和厚金屬層240使用銅材質,厚度為5-50μm。然後將光罩230剝離。
參照圖2H,晶圓105的前端面進行乾式或濕式蝕刻加工處理,直到受厚金屬軌235保護的薄金屬層225移除為止,藉此曝露抗反射塗層215(例如,使用乾式或濕式的蝕刻加工處理,厚金屬軌235作為光罩使用)。如此,即可製成所需的太陽能電池100。尤其是,薄金屬層225的其餘部分,以及在其上方的厚金屬軌235,構成前接觸端子Tf,同樣地,薄金屬層220和在其上方的厚金屬層240,構成背接觸端子Tb。
上述的電解沉積加工處理,可在更短的時間內,製成很厚的前接觸端子TF和背接觸端子Tb(可因此降低太陽能電池100的生產成本)。在此方面,應注意到,使用傳統的電解電池(用於執行上述的),此時的晶圓105作為陰極使用。因此,需對晶圓105進行偏壓處理的相應負電壓裝置,可用於背端面上,構成前接觸端子Tf上的厚金屬軌235(因為PN接面120-115將進行反向偏壓,作為一個隔離觸點),因此,薄金屬層225可事先以無電鍍沉積加工處理法,建構在晶圓105上,以生成本發明應用所需的負電壓。
進行圖3A-3B的內容,不同的技術可用於各多孔矽區域(晶圓的前端面或背端面)。例如,在本發明的一個具體實施例中,多孔矽區域可由陽極加工處理支撐(其中的晶圓作為電解電池中的陽極,其中含高濃度的HF酸電解液)。當陽極加工處理的電流密度低於某一臨界值JPS(取決於多種實驗因素)時,電解液只跟曝露在晶圓表面的電洞產生反應(此反應受限於電洞餵養量,而非取決於擴散到電解液中的離子數)。當然,這需在晶圓表面出現有自由電洞,當多孔矽區域建構在晶圓的背端面時,可在相應的P型層上,明顯看到電洞的存在。反之,當多孔矽區域建構在晶圓的前端面上,相應的N型層與電解液間的介面,則構成反向偏壓的Schottkly接面(即構成一個耗盡區,其寬度隨N型層雜質濃度的增加而減小)。因此,當N型層具有高濃度的雜質(即至少1.1017atoms/cm3),N型層中的自由電洞可穿透此接面中,由量子力學隧道所構成的障礙。反之,需提供電洞能量,讓電洞穿透潛在的障礙,例如,藉由在晶圓的背端面和前端面施加的光能。即表示,假如陽極加工處理是在黑暗的環境下進行(例如,低於0.2-2 lux,如低於1 lux),只能夠在摻雜濃度至少為1‧1017atoms/cm3的N型層外部,構成多孔矽區域。因此,N型層的摻雜濃度特性曲線,可簡單準確地控制多孔矽區域的深度。為此,即可提供N型層外部足夠的摻雜濃度,用於多孔矽區域所需的厚度,讓N型層的其餘部分有較低的摻雜濃度(可讓這陽極加工處理,在N型層的整個外部進行轉換後,即自動停止)。在任何情況下(當需要更小的深度,N型層具有較高的摻雜濃度,或晶圓接收光能時),多孔矽區域的深度,可藉由陽極加工處理來控制。
這樣即可製成多孔矽,而具有複雜與隨機分佈的小型氣孔網路結構。多孔矽的特性取決於它的形態,是由不同的參數所定義屬陽極加工處理的一個函數(如矽雜質的長度、濃度和類型、電流密度和電解液的類型等)。在本段內容中,多孔矽的相關特性為其孔隙度(P PS %),將矽材質(精簡型(compact))矽定義如下:
多孔矽層的形成步驟,在恒定的加工參數下進行(如電流密度)。多孔矽的密度ρPS可使用下列公式算出:
其中的P Si 值(陽極加工處理前的晶圓初始重量),P e 值(陽極加工處理後的晶圓重量)和d PS 值(多孔矽區域的厚度)即可算出,而S值(晶圓進行陽極加工處理的表面曝露程度)即可得知。特別是,N型層的孔隙度隨摻雜濃度的增加而增加,而P型層的孔隙度隨摻雜濃度的增加而減少。此外,孔隙度隨電流密度的增加而增加(高於最低值),和/或隨電解液濃度的減少而增加。
多孔矽區域的孔隙度,則用作為良好附著力(高孔隙度)和良好機械穩定性(低孔隙度)相對需求上的權衡工具。例如,在本發明實施例中,多孔矽區域的孔隙度範圍介於P PS %=20%-80%,最好是P PS %=30%-70%,如P PS %=50%。在任何情況下,多孔矽區域應保持相對較薄的尺寸,例如,本發明具體實施例中,多孔矽區域的厚度小於1μm,最好小於0.5μm,如0.2μm。事實上,這樣的方法下,可在多孔矽區域內構成接觸端子,鞏固其結構,避免發生任何機械穩定性的問題,並確保穩定的接觸阻抗。
最好是在各接觸區,構成一個多孔矽區域,此區域延伸到整個表面(具有整體性的均勻孔隙度),這可藉由簡單的方法,來提供相應接觸端子最佳的附著力。
另外,多個多孔矽區域可在各接觸區上形成。這些多孔矽區域(可為任意形狀,如矩形、方形或圓形)均勻分佈在整個接觸區上。在接觸區中的多孔矽區域濃度,可決定其附著力(平均值)。例如,單一的多孔矽區域,其尺寸為10mm2(即一個多孔矽提供20MPa的附著力),產生附著力(20‧106)‧(10‧10-6)=200N;相同的結果可構成5個多孔矽區域,各多孔矽面積為1mm2,提供40Mpa的附著力,可產生(40‧106)‧(5‧1‧10-6)=200N的附著力。以此方法,但精簡結構的矽材質(可保持良好的機械穩定性),可改變多孔矽區域的影響效果(增加附著力,但會降低機械穩定性)。
本發明另一個具體實施例中,多孔矽區域的附著力(在接觸區上),自邊緣處移入,會降低其附著力。例如,附著力自最大值(接觸區邊緣處)降到最小值(接觸區的中心點),一般等於10%-50%,最好是等於20%-40%,最大值可為25%-35%。例如,接觸區邊緣的附著力約為150-250MPa,而中心點的附著力約為60-90MPa。可藉由降低多孔矽區域的濃度(如尺寸和/或數量),同時自邊緣處移向中心點,而得到所需的結果。藉由此方法,可在最可能剝離的部位,達到高附著力的效果(如邊緣處),而同時確保高機械穩定性(讓接觸端子可能剝離部位,將多孔矽區域的部位,如中心點的附著力降到最低)。
進一步改善下,多孔矽區域法孔隙度,可藉由自接觸區的中心點移離,來調節降低附著力。藉由此方式,在接觸區有較高的孔隙度(增加相應接觸端子的附著力),而在晶圓內部有較低的孔隙度(確保機械穩定性)。尤其是,接觸區上的孔隙度,也可設定到非常高的數值,讓晶圓具有低機械穩定性,即會構成接觸端子的金屬部位,而穿透多孔矽區內部的孔隙,鞏固其結構(同時將接觸端子固定在晶圓上)。藉由此方法,可得到非常高的附著力,也具有良好的機械穩定性,確保穩定的接觸阻抗。例如,孔隙度自接觸區上的P PS %=70%-90%(如P PS %=75%-85%,如P PS %=80%)降到最大深度部位的P PS %=10%-30%(如P PS %=15%-25%,如P PS %=20%)。可藉由加工參數得到此結果(例如,以時間線性法則來降低電流密度)。
特別是,實施例中多孔矽區域125的電子顯微鏡圖像,如圖3A顯示的晶圓前端面(類似的設計想法也可應用於晶圓的背端面上)。多孔矽區域125(其中在頂端的高孔隙度區域較亮,低孔隙度的底部則較暗。)得到的電解液濃度為HF體積量的9%,可在6秒內,將電流密度自150mA/cm2調整到15mA/cm2,多孔矽區域125的孔隙度,則自P PS %=80%變為P PS %=30%。此多孔矽區域125的附著力,即高於0.25μm鎳質和20μm銅質前接觸端子的210MPa附著力。如另一個例子,多孔矽區域可再得到電解液濃度為HF體積量的25%,可在6秒內,將電流密度自120mA/cm2調整到10mA/cm2,多孔矽區域125的孔隙度,則自P PS %=80%變為P PS %=50%。此多孔矽區域的附著力(用於晶圓的背端面),即高於0.4μm鎳質和15μm銅質前接觸端子的40-50MPa附著力。在這兩種情況下,接觸端子(正面和背面)經過標準膠帶測試,再者,接觸端子加熱到600℃後,或進行溫度調適,自-70℃到200℃溫度變化後,未看到接觸端子翹起。
或者,如圖3B的橫截面視圖,晶圓105前端面的多孔矽區域125(類似的考慮也可應用於晶圓的背端面),除了具有上述可調節孔隙度的外部層325e以外,可再含有均勻孔隙度的內部層325i。內部層325i的孔隙度,最好介於外部層325e孔隙度最大和最小值之間(例如,外部層的孔隙度範圍介於P PS %=80%到P P S %=20%之間,可為P PS %=20-40%,最好是P PS %=25-35%,如P PS %=20%)。例如,可使用上述變動的加工參數(構成外部層325e),進行陽極加工處理後,然後立刻以上述恒定的加工參數(構成內部層325i),進行陽極加工處理後,而得到此結果。內部層325i的厚度最好大於外部層325e厚度(例如,此厚度是外部層325e厚度的1-6倍,而最好是1.5-2.5倍)。例如,多孔矽區域125的厚度為0.75μm,外部層325e厚度可為0.25μm,而內部層325i可為0.5μm。內部層325i則強調多孔矽區域125的吸除效果。
參考圖4A-4B內容,分別顯示本發明具體實施例中,用於太陽能電池加工處理,加工頭裝置,其簡單的橫截面視圖和底視圖。
特別是,加工頭裝置400的裝置是在矽質基板405上形成。傳輸管410橫跨矽質基板405,從上表面橫跨到下表面,傳輸管410延伸到矽質基板405下表面相應的傳輸口412為止。傳輸泵415連接到矽質基板405上表面的傳輸管410上,同樣地,吸入管420橫跨整個矽質基板405,自上表面橫跨到下表面。吸入管420延伸到矽質基板405下表面相應的吸入口422為止,此吸入口422為框架式(寬度10-200μm),完成圍繞著傳輸口412(距離為1-250μm)。吸泵425(真空型調節閥)連接到矽質基板405上表面的吸入管420(藉由吸肺系統)。
作用時,傳輸泵415將一般的化學液泵入傳輸管410中。矽質基板405上表面的傳輸口412,即可傳輸此化學液。同時,吸泵425可在吸入管420上生成一個凹陷處。此吸入口422的凹陷處,環繞傳輸口412,立刻將傳輸口412傳輸的化學液吸回(未經加工頭裝置400鬆開),如圖說箭頭標示處。因此,在矽質基板405的下表面上,由化學液形成動態滴液力(相應的傳輸口412和吸入口422),動態滴液430傳輸,在接觸面下方形成動態的半月板區域。特別是此動態滴液430是由部分的化學液所形成,而殘留附著在矽質基板405上,動態滴液430位於固定位置上,但其內容物持續更新(因為化學液自傳輸管410流向吸入管420)。動態滴液430的尺寸大小,可藉由改變傳輸管410吸入的化學液量(經過傳輸泵415),和/或吸入管420凹陷處的液量(經過吸入泵425),來進行動態控制(使用相應的控制方法,無參考圖說),和/或可由設定吸入口422和傳輸口412的距離和尺寸,來加以控制。
圖5A-5B顯示本發明具體實施例中,關於加工頭裝置,其製程的主要階段。
如圖5A,製程始於兩個矽晶圓505u和505d,可使用N型或P型層相同或不同的導電類型(如與電阻率為0.001-200Ω.cm)。為一個或多個小型通入孔510u矽晶圓,橫跨整個矽晶圓505u(上)(上下表面間)。例如,通入孔式的矽晶圓,可由深反應離子蝕刻法(DRIE)製成,通入孔510u的圓截面直徑,可降到10μm,深度可達750μm。同時,有一個凹槽520ad自矽晶圓505d的上表面,延伸到矽晶圓下表面處(例如,採用濕蝕刻或電漿刻蝕)。
如圖5B,晶圓505u和505d疊加(晶圓505u的下表面接觸到晶圓505d的上表面)互相對齊,晶圓505u和505d即粘合在一起(例如,藉由矽鍵結合的加工處理)。此時,通入孔510d則橫跨整個晶圓505d(下表面與上表面之間),如平面圖所示,通入孔510d嵌入通入孔510u所有的部位中(凹槽520ad內部),以接觸到這些部位。此外,凹槽520bd自晶圓505d的下表面,延伸到其內部(例如,藉由DRIE加工處理),凹槽520bd如平面圖所示,沿通入孔式矽晶圓的外架,接觸到凹槽520ad,靠近內部端緣視處,同樣地,凹槽520u自晶圓505u的上表面,延伸到其內部(例如DRIE),接觸到凹槽520ad接近外緣處。如此,通入孔510u和510d構成加工頭裝置法傳輸管,而凹槽520u、520ad和520bd則構成吸入管。加工頭裝置即可連接傳輸泵和吸入泵(無參考圖說),分別在晶圓505u的上表面,接觸到通入孔510u和凹槽520u。為此,相應的連接管道密封接到晶圓505u上(例如,焊接或金一矽的共熔處理)。
上述的結構,可以一個非常簡單的方法製成。事實上,在此情況下,加工頭裝置不同的元件,可由橫跨各分離的晶圓來構成(減少厚度)。同時,晶圓可粘合無需嚴格的精度要求。
上述的加工頭裝置,也可使用聚合物的材質(如聚偏二氟乙烯或PVDF)。例如,此結果可藉由上述科技,如圖5B所示,將矽晶圓插入而稍微破壞結構來達成。更具體地說,當兩個矽晶圓彼此分離時,小通入孔橫跨晶圓上方,即構成通入孔510u,而大通入孔(有外架設計)橫跨晶圓下方,此處即可構成通入孔510d和凹槽520bd。更具體地說,當兩個矽晶圓彼此分離時,小通入孔橫跨晶圓上方,即構成通入孔510u,而大通入孔(有外架設計)橫跨晶圓下方,此處即可構成通入孔510d和凹槽520bd。此插入孔設計,即可放入於射出成型用的貼紙,其溫度高於聚合物注入料的融化溫度(聚偏氟乙烯為175-200℃)。此時,聚合物的注入料則加壓注入貼紙中,可填滿插入孔(相應於加工頭裝置上的加工處理)。貼紙則冷卻到室溫下,即可構成此結構。然後移除此插入孔(依據聚合物材質,選定蝕刻加工處理方法),此加工頭裝置可瞭解傳輸管和吸入泵,完成整個架構(在沖壓階段之前或之後)。上述的加工頭裝置,可用於簡化上述的太陽能電池製程,因為其動態半月板設計,可在晶圓的特定部位進行加工處理(前端面和/或背端面)。在此方面,應注意到,這是第一次提出此動態半月板設計,用於太陽能電池製程的設計概念。事實上,例如,美國A-7.078,344專利(如本文中的參考資料全文),只說明半月板用於選擇性的蝕刻加工,以修正導電材料覆蓋層的不均勻性(即形成雙鑲嵌的製程)。在任何情況下,相應的鄰近加工頭裝置即彼此分離、平行或同心環狀間隔排列。
尤其是,圖6A-6B顯示本發明具體實施例中,蝕刻模組600的實施例(可用於清理太陽能電池前接觸端子的部位)。如圖6A,為此目的,此蝕刻模組600含一個蝕刻(加工)頭(標註為601),提供有蝕刻液(如HF液)。晶圓105安裝在傳輸650上(如傳輸帶帶),將晶圓105傳輸到蝕刻模組600下方。
一旦晶圓105前端面接觸到蝕刻頭601的動態滴液上(如將晶圓105拉起靠向蝕刻頭601),動態滴液即變成為動態半月板630,動態半月板630裝置,即可進行抗反射塗層215和氧化層205的蝕刻加工。例如,動態半月板630由48%濃度的HF液製成,其液量足以在60秒內,移除抗反射塗層215和氧化層205(此時,可藉由降低蝕刻液和/或改用其他的蝕刻液來達成)。藉由此方法,可清除接觸區122,而不需任何的光刻加工處理。
如圖6B,為達成進一步的改善,傳輸帶650將晶圓傳輸到蝕刻模組600下方(沿相應的傳輸方向,如圖說的由左到右傳輸)。藉由此方法,蝕刻頭601可清除接觸區122,同時橫跨晶圓105的相應部位(在晶圓下方移動)。因此,接觸區122可形成一個接觸帶,藉由較小的蝕刻頭601橫跨整個晶圓105(沿運輸方向),而相同尺寸的接觸區122只能橫向傳輸。此外,這可進行晶圓105的批次加工處理,無需停止作業(在蝕刻頭601下方)。
參考圖7A-7B顯示本發明具體實施例中,關於陽極模組700的實施例(可用於製成太陽能電池前端面的多孔矽區域125)。如圖7A,為此,陽極模組700含3個加工頭裝置(標註為701a、701b和701c)。陽極頭(加工處理)701b提供有電解液(如HF液)。同時,陽極頭701b連接到端子703b,提供基板偏壓值V-。偏壓頭(加工)701a和701c提供有不會蝕刻晶圓105的導電液(如氯化鉀液)。同時,偏壓頭701a和701c接到共同的端子703ac上,此端子提供兩個基板偏壓值V+(高於偏壓值V-)。晶圓105安裝在傳輸系統750上(如傳輸帶),將晶圓105傳輸到陽極模組700下方(沿相應的傳輸方向,如圖說中的由左到右。)加工頭裝置701a、701b和701c,沿傳輸方向連續排列。
一旦晶圓105的前端面接觸到各加工頭裝置701a、701b和701c上的動態滴液730a、730b和730c,即變成為相應的半月板區域(標註如參考圖說)。實際上,晶圓105的厚度遠小於圖說內容,動態滴液730a-730c在晶圓105外部,接觸到傳輸帶750。
特別是,當接觸區122接觸到偏壓頭701a和陽極頭701b(藉此形成相應的動態半月板730a和730b),電解電池由偏壓頭701a和陽極頭701b構成,有相應的電流經過偏壓頭701a、動態半月板730a、N型層115、動態半月板730b和陽極頭701b(提供電解液),然後進行陽極加工處理,而形成多孔矽區域125的相應部位。
繼續如圖7B,當接觸區122接觸到偏壓頭701c(藉此構成相應的動態半月板730c),偏壓頭701c新增成為上述電解電池的陽極,有相應的電流經過偏壓頭701c、動態半月板730c、早已形成的多孔矽區域125、N型層115、動態半月板730b和陽極頭701b。當接觸區122離開偏壓頭701a,即由偏壓頭701c和陽極頭701b構成電解電池。如上所述,N型層115接觸到動態半月板730b,進行陽極氧化,繼續形成多孔矽區域125,直到接觸區122離開陽極頭701b為止。
藉由此方法,可使用簡單的方法來製作多孔矽區域125(不必接觸到背端面上的晶圓105),這也提高了多孔矽區域125的均勻度,因為藉此可避免接觸到晶圓105上,任何的PN接面。此外,多孔矽區域125可形成條帶,此條帶可藉由尺寸較小的加工頭裝置701a-701c,橫跨整個晶圓105(沿運動方向),進行晶圓的連續批次性的加工處理,無需停止作業(在加工頭裝置701a-701c下方)。
如圖7C,依據本發明另一個具體實施例,提供有陽極模組700的實施例。在此情況下,陽極模組700只含陽極頭701b(無任何偏壓頭)的裝置。反之,端子703藉由接觸到背端面的金屬層220,而直接提供晶圓105相同的偏壓值V+。
此實際應用可簡化陽極模組700的結構,因為它含一個陽極頭701b(為此,晶圓105的背端面將有更複雜的結構,用於接觸上)。
如圖8A-8B,顯示本發明具體實施例中,提供有沉積模組800的實施例(可藉由電解沉積,製成太陽能電池前端面的部位)。如圖8A,為此,沉積模組800含3個加工頭裝置(標註為801a、801b和801c)。沉積頭(加工)裝置801b提供有電解液,含沉積用的金屬鹽(如Au,Ag,Pt,Ni,Cu,Co,Mo,Ru,PdCo,Pd,PdNi)。同時,沉積頭801b接到端子803b,此端子提供基板偏壓值V+。偏壓頭(加工)801a和801c提供不會蝕刻晶圓105的導電液(如氯化鉀,或加入有機添加劑,以減少金屬沉積的溶解量、液態金屬體(如汞或鎵)、或導電液墨(如非離子液加上金屬納米粒子或碳納米管),或非離子型溶液(如去離子水),用於交流電的偏壓處理),同時,偏壓頭801a和801c接到共同端子803ac,此端子提供兩個基板偏壓值V-。晶圓105安裝在傳輸系統850上(如傳輸帶),將晶圓105傳輸到沉積模組800下方(沿相應的傳輸方向,如圖說中的由左到右。)加工頭裝置801a、801b和801c,沿傳輸方向連續排列。
一旦晶圓105的前端面接觸到各加工頭裝置801a、801b和801c上的動態滴液830a、830b和830c,即變成為相應的半月板區域(標註如參考圖說)。實際上,晶圓105的厚度遠小於圖說內容,動態滴液830a-830c在晶圓105外部,接觸到傳輸帶850。
特別是,當多孔矽區域125接觸到偏壓頭801a和沉積頭801b(藉此分別形成相應的動態半月板830a和830b),電解電池由偏壓頭801b和基板105構成,其封閉的圓形部位由基板105連接偏壓頭801a所構成,有相應的電流經過沉積頭801b、動態半月板830b、多孔矽區域125、動態半月板830a和偏壓頭801a,沉積於多孔矽區域125上,接觸到動態半月板830b(提供電解液,持續提供金屬鹽),構成前接觸端子Tf的部位。
如圖8B,當多孔矽區域125接觸到偏壓頭801c(藉此構成相應的動態半月板830c),偏壓頭801c新增成為上述電解電池的陽極,有相應的電流經過偏壓頭801b、動態半月板830b、多孔矽區域125、早已形成的前接觸端子Tf、動態半月板830c和陽極頭801c。當多孔矽區域125離開偏壓頭801a,藉由沉積頭801b和偏壓頭801c的沉積作用,構成電解電池。如上所述,金屬層沉積在多孔矽區域125上方,有動態半月板830b,繼續形成前接觸端子Tf,直到多孔矽區域125離開沉積頭801b,才完成此作用。
藉由此方法,由完整的沉積加工處理,構成前接觸端子Tf,無需藉由無電鍍沉積加工處理法,來製成薄金屬層(晶圓105所需的負偏壓,則用於前端面上)。這將讓前接觸端子Tf,在短時間內,變得非常厚(即可降低太陽能電池的生產成本)。例如,前接觸端子可為鎳材質,沉積率可達20μm x minute,或是銅材質,沉積率為5-15μm x minute。此外,上述的前接觸端子Tf可形成條帶,此條帶可藉由尺寸較小的加工頭裝置801a-801c,橫跨整個晶圓105(沿運動方向),進行晶圓的連續批次性的加工處理,無需停止作業(在加工頭裝置801a-801c下方)。
如圖8C,依據本發明另一個具體實施例,提供沉積模組800’的實施例。沉積模組800’用於上述太陽能電池的加工處理,即可構成N型層的晶圓105’(如P型層115’在上和N型層120’在下的晶圓105’構造)。在此情況下,沉積模組800’只含沉積模組801b(無任何偏壓頭)的裝置。反之,端子803’藉由接觸到背端面的金屬層220,而直接提供晶圓105’相同的偏壓值V-‘。此為可達成的設計構造,因為沉積頭801b(V+’)和晶圓105’背端面(V-‘)間的偏壓,即偏向PN接面115’-120’,這樣就不會干擾沉積加工的過程。
如上所述,此發明的實現,簡化沉積模組800’結構,因為它可含單一的沉積頭801b裝置。
進一步改善下,在這兩種情況中(見圖8A、圖8B和圖8C),條帶850也可將晶圓105、105’,沿前接觸端子Tf金屬層的沉積方向,將晶圓105、105’自沉積頭801b以垂直方向移離(例如,降低晶圓105、105’的位置)。藉由此方法,即可構成長形的前接觸端子Tf,垂直方向自晶圓105、105’的前端面延伸而出(如向上)。此外,傳輸系統850也可將晶圓105、105’橫向移到沉積方向(如旋轉),藉由此方法,即可構成任何複雜形狀的前接觸端子Tf(如螺旋式)。
上述的新增功能,可藉由有助於彼此連接的形狀和結構(剛性或彈性結構),構成前接觸端子Tf。再者,以非常簡單的方法達成此結果。
如圖9A顯示本發明具體實施例中,提供太陽能電池生產線900的方塊圖。
特別是,此生產線900含一個蝕刻站905,一個陽極站910和沉積站915,一個入料系統950(如條帶架構),橫跨蝕刻站905,進行晶圓105、105’的連續入料、陽極站910和沉積站915(沿相應的入料方向,如圖說由左到右)。蝕刻站905由一個或多個上述的蝕刻模組構成(跟入料方向呈橫向,如圖說的垂直方向),各用於清理晶圓105、105’下方,其相應的接觸部位。陽極站910由一個或多個上述的陽極模組構成(跟入料方向呈橫向,如圖說的垂直方向),各用於清理晶圓105、105’下方,其相應的多孔矽區域。沉積站915由一個或多個上述的沉積模組構成(跟入料方向呈橫向,如圖說的垂直方向),各用於清理晶圓105、105’下方,其相應的接觸端子部位(前/後面)。
藉由此方法,晶圓105、105’進行連續加工處理,在不同的加工處理站905-915,仍無需停止作業。即可得到非常高產量的生產線900,大幅降低太陽能電池的生產成本,例如,經過一段延遲時間(須由晶圓105、105’經過整條生產線900),生產線900的產量可達每小時3000-4000個太陽能電池。
蝕刻站905、陽極站910和沉積站915,可能有不同的架構。
尤其是,在本發明具體實施例中(如圖9B),蝕刻站905就各前接觸端子的接觸條帶(實施例中有7個條帶),含一個上述的蝕刻模組600。本實施例中,蝕刻頭沿入料方向,長度短於晶圓105(由左到右)。陽極站910就各前接觸端子的接觸條帶,含一個上述的陽極模組700,它有3個加工頭裝置(一個陽極頭和兩個偏壓頭),沿入料方向,長度短於晶圓105。同樣地,沉積站915就各前接觸端子的接觸條帶,含一個上述的沉積模組800,它有3個加工頭裝置(一個電鍍頭和兩個偏壓頭),沿入料方向,長度短於晶圓105。
如圖9C,當晶圓105經過蝕刻站905,各蝕刻模組600,可清理晶圓105中,其接觸區122的相應條帶部位(接觸區122的條帶部位,沿入料方向橫跨整個晶圓105)。
如圖9D,當晶圓105經過陽極站910,各陽極模組700在相接觸的多孔矽區域125,構成相應的條帶(多孔矽區域125的條帶,沿入料方向橫跨整個晶圓105)。
最後,如圖9E,當晶圓105經過沉積站915,各沉積模組800,在多孔矽區域的前接觸端子Tf上,構成接觸條帶(接觸條帶沿入料方向,橫跨整個晶圓105)。
上述結構可形成前接觸端子Tf,無需在晶圓的抗反射塗層上,設計有光罩,因為陽極模組700,必要時,只需使用電解液(即多孔矽區域上的相應條帶)。此外,在此情況下,可使用任何電解液,而沒有損壞抗反射塗層的風險。
在本發明不同的具體實施例中(如圖9F所示)中,蝕刻站905悉如上述。反之,陽極站910含單一的陽極模組700,用於所有的前接觸端子條帶上,此裝置有3個加工頭,沿晶圓105整個寬度橫向延伸,直到入料方向(如圖說中的垂直方向)。同樣地,沉積站915含單一的沉積模組800,用於所有的前接觸端子條帶上,此裝置有3個加工頭,沿晶圓105整個寬度橫向延伸,直到入料方向。
如圖9G,如上所述,當晶圓105經過蝕刻站905,各蝕刻模組600,可清理晶圓105中,其接觸區122的相應條帶部位(接觸區122的條帶部位,沿入料方向橫跨整個晶圓105)。
參照圖9G,當晶圓105經過陽極站910,陽極模組700構成接觸區上,多孔矽區域125的所有條帶(接觸區122的條帶部位,沿入料方向橫跨整個晶圓105)。在此方面,應注意到,即使陽極模組700作用於整個晶圓105上,但只對未被晶圓105保護層所覆蓋的接觸區產生效果。
最後,如圖9I,當晶圓105經過沉積站915,各沉積模組800,在多孔矽區域的前接觸端子Tf上,構成所有的接觸條帶(接觸條帶沿入料方向,橫跨整個晶圓105)。如上所述,即使沉積模組800作用於整個晶圓105上,但只對未被晶圓105保護層所覆蓋的接觸區產生效果。
上述結構可簡化生產線(但需使用不損壞晶圓105抗反射塗層的電解液,如使用濃度低於20%的HF液)。
在這兩種情況下,可使用類似的結構,構成前接觸端子Tf的兩個接觸匯流排(晶圓旋轉90度,可得到相應的旋轉平臺),例如,可再使用一個蝕刻站、陽極站和沉積站,分別排列在上述蝕刻站、陽極站和沉積站的下游處。
在本發明另一個具體實施例中(如圖9J),蝕刻站905含一個蝕刻模組600,跟前接觸端子有相同的形狀(含接觸條帶和接觸匯流排)。同樣地,陽極站910含單一的陽極模組700’,跟前接觸端子有相同的形狀。反之,沉積站915含跟上述相同的沉積模組800,有3個加工頭,沿晶圓105橫向延伸到入料方向(類似的設計想法,也可應用於電鍍站,此電鍍站含3個加工頭,各用於前接觸端子的接觸條帶上)。
如圖9K,晶圓105移向蝕刻站905,但無需跟其接觸(因為位置較低或是側向隔開),在晶圓105到達蝕刻站905下方的位置點時,即可停止,然後進行接觸(例如,將其上移或側移)。藉由此方法,蝕刻模組600可一次清除晶圓105中的整個接觸區122(前接觸端子的接觸區)。
參照圖9L,晶圓105自蝕刻站905移開(如下移或側移),然後前移到陽極站910,即可停止,開始進行接觸(如上移或側移)。藉由此方法,陽極模組700可一次構成接觸區中的整個多孔矽區域。
最後,如圖9M,晶圓105經過沉積站915,其中的沉積模組800,如上所述,在多孔矽區域上,構成整個前接觸端子。
上述結構可單次構成任何形狀的多孔矽區域,無需限用任何特殊的電解液(但無法讓晶圓105不停地連續加工處理)。
在本發明進一步的具體實施例中(如圖9N),此生產線用於製作N型層的晶圓105’。在此情況下,蝕刻站905含單一的蝕刻模組600,跟上述前接觸端子有相同的形狀。同樣地,沉積站915含單一的沉積模組800’,跟前接觸端子有相同的形狀。反之,陽極站910含上述相同的陽極模組700,有3個加工頭,沿晶圓105’橫向延伸到入料方向(類似的設計想法,也可應用於陽極站,此陽極站含3個加工頭,各用於前接觸端子的接觸條帶上)。
如圖9O,晶圓105’再移向蝕刻站905,但無需跟其接觸,在晶圓105’到達蝕刻站905下方的位置點時,即可停止,然後進行接觸,蝕刻模組600即可單次清理晶圓105’中的整個接觸區122。
參照圖9P,如上所述,晶圓105’經過陽極站910,其中的陽極模組700構成接觸區中的整個多孔矽區域125。
最後,如圖9M,晶圓105’移向沉積站915,但無需跟其接觸(因為位置較低或是側向隔開),在晶圓105’到達沉積站915下方的位置點時,即可停止,然後進行接觸(如上移或側移)。藉由此方法,沉積模組800’可單次構成多孔矽區域上的整個前接觸端子。
上述結構可藉由任何形狀,來構成前接觸端子Tf,無需限用任何特殊的電解液(但無法讓晶圓105’不停地連續加工處理)。
此生產線的其他結構,可藉由不同的方法,整合上述的蝕刻站、陽極站和沉積站。例如,在本發明進一步的具體實施例中,圖9B中的蝕刻站905和陽極站910,在晶圓105經過時,分別用於構成接觸條帶的接觸區和多孔矽區域。具有相同結構的蝕刻站和陽極站,在晶圓105(旋轉90度後)經過時,分別用於構成接觸匯流排的接觸區和多孔矽區域。圖9F中的沉積站915,在晶圓105經過(旋轉0-90度後,如旋轉40度、50度或45度)時,用於構成接觸條帶的接觸匯流排。另外,如圖9F的陽極站910,也有相同的結果,在晶圓105(旋轉45度)經過時,可構成整個多孔矽區域。
藉由此方法,晶圓105可在不同的加工站905-915,減少作業次數,不停地持續加工處理。為能夠符合當地的特殊法規,有熟練技藝的人,可使用上述的解決方案,進行邏輯和/或物理性的修改和改造。更具體地說,儘管本解決方案某些程度上,具有一個或多個具體實施例的特殊性,應瞭解到,本文說明有許多的省略、替換和變化的形式和細節,以及其他的具體實施例內容。特別是,本發明不同的具體實施例中,即使沒有進行上述的詳細內容(如以編號提供的實施例說明),而提供更深入的了解。反之,可眾所周知的功能說明可能被省略或簡化,而避免不必要的贅述。此外,本文中揭露的任何具體實施例,其相關的元件和/或方法,可整合於一般設計中,其他相關的具體實施例。例如,類似的設計想法,也可應用於不同結構或具有同等元件設計的太陽能電池(不管是彼此結合或分離的設計)。此外,太陽能電池可有不同的操作功能。例如,太陽能電池可為單層型和多接面型等設計。更普遍而言,相同的解決方案也適用於任何的光伏電池設計(適合任何的光能轉換為電能的設計)。同樣地,太陽能電池也可使用不同的基板材質(如N型層單晶型或多晶型)和/或不同的半導體材質製成,可構成相應的半導體多孔矽層(如Ge,GaP,InP,SiC和Si1-xGex)。接觸端子可使用一個或多個不同的半導體材質(如熔濕層的附加設計)。此外,接觸端子可為任何外形(如格狀結構的接觸端子),可為任何數量和任何位置(可同時位於基板的前端面或背端面,例如,只安裝於背端面而非前端面上。)的安裝設計。
同樣地,各接觸區的半導體多孔區域,可為任何形狀、任何數量和任何位置點的安裝設計。例如,可在部分的接觸區上,提供單一的半導體多孔區域(例如,邊緣部位的條帶或框帶設計)。各半導體多孔區域可能有不同的孔隙度。此外,孔隙度隨遠離基板的相應表面而逐減(如不同範圍內)。
各半導體多孔區域可能有不同的厚度(有相應的接觸端子,此接觸端子也可能無法穿透整個厚度)。多孔半導體(作為清除雜質中心)的外加層(均勻結構),可為任何厚度和/或孔隙度(即使僅為選項功能)。同樣地,多孔矽區域在接觸區可能有不同孔隙度(甚至自邊緣向內不斷改變)。類似的設計想法也適用於不同結構或同等元件設計的加工頭裝置(不管是彼此分離或結合的設計)。例如,各傳輸口和/或吸入口,可為任何形狀和尺寸大小(如圓形、方形、交叉狀或任何複雜的外形)。同樣地,吸入管跟傳輸管可為任何的間距(甚至會隨著傳輸管的寬度調整而改變)。在任何情況下,加工頭裝置可用於太陽能電池,在前端面和/或背端面上的加工處理。此外,可藉由同等的加工處理過程,得到同樣結構的產品(如直接製作通入孔,讓此通入孔以任何的機械和鐳射加工,來促成橫跨整個基板的設計)。在任何情況下,本文提出的加工頭裝置,適用於自上而下的作動(在基板上加工)。
本加工頭裝置可為其他任何的材質(導電和/或隔熱),讓插入的金屬進行接觸,造成加工頭裝置和晶圓間的偏壓(不管是陽極加工處理或是沉積加工處理)。特別是,可構成有不同的P型和N型基板,各個矽質的加工頭裝置(彼此粘合後),此加工頭裝置可為反向或正向,取決於所施加的電壓。
在任何情況下,吸入管(在陽極氧化/沉積頭)可使用不同的方法環繞傳輸管,以不同的元件彼此靠近排列(尤其是,本法無需被吸入管完全環繞,可使用簡單的外形設計)。在陽極或沉積加工處理過程中,可使用不同的電壓(例如,進行脈衝沉積加工處理時,電壓會在平均值附近變動,在短時間的沉積加工處理中,電壓呈反極性,而增加接觸端子的功能特性等)。更普遍而言,陽極/沉積加工頭裝置和晶圓,可進行任何電壓值的偏壓處理,形成兩者間的導電路徑。無需再使用其他的方法,來控制動態半月板的尺寸大小,或將半月板固定在一定的尺寸下。類似的設計想法適用也適用於晶圓和加工頭裝置,以不同的方式,進行彼此間的作動(例如,可隨同晶圓移動加工頭,或獨自移動)。在本發明不同的具體實施例中,陽極/沉積模組作用於晶圓的單一表面上,可在兩個加工頭裝置上,形成此設計(即陽極/沉積加工頭裝置和一個偏壓頭的設計)。在此情況下,一般無法進行所有接觸區域的加工(兩個加工頭裝置構成的導電路徑兩,在其中一個加工頭裝置遠離晶圓後,即立刻分開)。但這並不構成本發明應用上的問題(例如,當陽極模組用於構成半導體多孔區域時,此區域可能也不會延伸到整個接觸區域)。
沉積加工頭裝置對晶圓所需的作動(構成加長型的接觸端子),可使用任何其他方式來達成,例如,藉由隨同晶圓移沉積加工頭裝置或獨自移動下的作動。此外,可為任何其他的作動(例如,只垂直於晶圓的前/後端面、平行或任何的組合)。
同樣地,此生產線可有不同的結構或同等的元件(不管是彼此分離或結合的設計)。例如,多個太陽能電池同時進行加工時,無需提供防範性的平行架構設計(可再增加生產線的產能)。此外,上述的生產線架構可彼此結合(可使用不同的模組,進行連續或交錯性的排列)。在任何情況下,此生產線也可使用不同的方法,進行太陽能電池的加工處理。例如,可實現上述部分的作業內容,或簡化為單一的上作業內容(例如,無需使用蝕刻站),即可使用類似的方法,來加工處理背端面等情況。類似的設計想法也適用於接觸端子、多孔矽區域和接觸區,可有不同的尺寸和/或外形(例如,使用任何數量的條帶、任何的寬度和任何的排列方法)。基板可使用其他同等的方法和/或角度,在任何位置上,沿著生產線旋轉。
本文提出的解決方案適用於同等的作業方法(使用類似步驟,移除類似的不必要步驟或新增選項步驟)。此外,這些步驟可為不同的作業次序、同時進行或交錯進行(至少有某部分)。
特別是,多孔半導體可由其他的技術製成,如使用電火花腐蝕或染色腐蝕(例如,見“Pits and Pores II: Formation,properties,and significance for advanced materials,ISBN 1566772923”,如本文中的參考資料全文)。類似的設計想法也適用於接觸端子的沉積加工處理,可為完全無電鍍型的或是任何其他的組合(或更普遍的情況下,接觸端子可由其他新增和/或替代的加工過程來製成)。此外,可使用不同的方法調節孔隙度(晶圓內部),例如,改變不同的電流密度值和/或其他的時間模式(例如,根據線性、拋物或對數法則)。相同的結果,也可藉由陽極加工處理中,改變任何其他的參數來達成(或組合),如改變溫度,或改變基板的摻雜濃度。在任何情況下,可在基板中,使用具有均勻孔隙度的半導體多孔區的相關設計。雖然上述參考內容,已應用於太陽能電池的製造,應了解到相同的技術也適用於不同的發明應用上。例如,半導體多孔區可用於將薄金屬層固定在基板上,來粘合其他的結構,特別是在微機電系統(MEMSs)的共晶矽和黃金間的粘合封裝,或更普遍的是,用於半導體基板的薄或厚金屬層的高附著力粘合。
在任何情況下,上述的加工頭裝置、模組和/或生產線,也適用於其他的發明應用上(不管是必要的蝕刻、陽極和/或沉積加工處理)。更普遍的是,本文提出的結構適用於電解電池的一般應用實施例。例如,在一個不同的具體實施例中,可在導電的基板上,進行三維結構的沉積處理(如金屬或矽材質),不管是多個加工頭裝置(相同端面的基板偏壓處理),或單個加工頭裝置(基板性的面的直接偏壓處理)的設計。為此,各加工頭裝置和基板,在沉積加工處理時,則彼此移離(例如拉起加工頭裝置和/或壓低基板),形成加長型的結構,可為任何的高度和外形(根據相應的傳輸管和吸入口構成的動態半月板,其幾何外形而定)。例如,長棒(帶有任何部位)的設計中,可裝有上述的加工頭裝置,或是長管的設計中,可在傳輸管內添加吸入口,在動態半月板內部形成一個騰出的空間。此外,還可藉由彼此隔開期間(如使用轉動元件),沿軸線(螺旋型)橫向移動加工頭裝置和/或基板,而構成此設計的結構。特別是,此結構可用於探測卡、包裝基材、電子醫療電極、微機電系統的結構等(可其間附加聚合物或陶瓷材質)。
100...太陽能電池
105...基板
105...晶圓
115...N型層
120...P型層
Tf...接觸端子
Tb...接觸端子
122...接觸區
123...保護層
125...多孔矽區域
130...多孔矽區域
205...氧化層
210...氧化層
215...抗反射層
220...金屬層
225...金屬層
230...光罩
235...金屬軌
240...金屬層
325e...外部層
325i...內部層
400...加工頭裝置
405...基板
410...傳輸管
412...傳輸口
415...傳輸泵
420...吸入管
422...吸入口
425...吸泵
430...動態滴液
505u...晶圓
505d...晶圓
510u...通入孔
520ad...凹槽
510d...通入孔
520bd...凹槽
520u...凹槽
600...蝕刻模組
601...蝕刻頭
630...動態半月板
650...傳輸帶
700...陽極模組
701a...偏壓頭
701c...偏壓頭
701b...陽極頭
703b...端子
703ac...端子
750...傳輸系統
730a...動態滴液
730b...動態滴液
730c...動態滴液
730a...動態半月板
730b...動態半月板
730c...動態半月板
800...沉積模組
801a...偏壓頭
801b...沉積頭
801c...偏壓頭
803b...端子
803ac...端子
850...傳輸系統
830a...動態滴液
830b...動態滴液
830c...動態滴液
830a...動態半月板
830b...動態半月板
830c...動態半月板
800’...沉積模組
105’...晶圓
115’...P型層
120’...N型層
803’...端子
900...生產線
905...蝕刻站
910...陽極站
915...沉積站
950...入料系統
700’...陽極模組
圖1顯示本發明具體實施例一個簡化的橫截面圖說內容;
圖2A-2H顯示本發明具體實施例中,太陽能電池製程的主要階段;
圖3A顯示本發明具體實施例中,一個多孔矽區域的電子顯微鏡掃描圖;
圖3B顯示本發明具體實施例中,一個多孔矽區域上,簡化的橫截面圖說內容;
圖4A-4B顯示本發明具體實施例中,分別顯示太陽能電池加工處理,其加工頭裝置的橫截面視圖和底視圖的簡化圖說內容;
圖5A-5B顯示本發明具體實施例中,此加工頭裝置製程的主要階段;
圖6A-6B顯示本發明具體實施例中,在不同的作業條件下,有一個實施例說明的蝕刻模組,用於太陽能電池的加工處理;
圖7A-7C顯示本發明具體實施例中,在不同的作業條件下,有一個實施例說明的陽極氧化模組,用於太陽能電池的加工處理;
圖8A-8C顯示本發明具體實施例中,在不同的作業條件下,有一個實施例說明的沉積模組,用於太陽能電池的加工處理;
圖9A顯示本發明具體實施例中,太陽能電池生產線的方塊圖;
圖9B-9Q顯示本發明具體實施例中,在不同作業條件下,此生產線不同的實施例說明架構。
100...太陽能電池
105...基板
115...N型層
120...P型層
Tf...接觸端子
Tb...接觸端子
122...接觸區
123...保護層
125...多孔矽區域
130...多孔矽區域

Claims (27)

  1. 一種用於基板(105、105’)上建構電解加工過程之電解模組(700、700’、800或800’),該電解模組包括一組加工頭裝置(710a-701c,801a-801c),該加工頭裝置包括:一個具有作用面的支撐元件(405);至少一個傳輸口(412),用於傳輸該作用面上的溶液,該支撐元件至少有部分是導電材質且用於跟溶液接觸;至少一個吸入口(422),被設置環繞於該作用面上之該至少一個傳輸口,用於吸入所傳輸的溶液,在作用面上形成一個動態壓降(430),該動態壓降維持附著於該作用面上且未接觸任何其他的面,其中該加工頭包括一個電解加工頭裝置(701b、801b),該溶液藉由該電解加工頭裝置之該至少一個傳輸口(412)傳輸而作為電解溶液;及其中該電解模組進一步包括:一傳輸系統(750、850),用於移動該基板(105、105’)及彼此相對應之加工頭(701a-701c、801a-801c),該傳輸系統(750、850)輸送該基板之相應部分用於接觸每個動態壓降從而轉化該動態壓降成相應之動態半月板(730a、730b、730c、830a、830b、830c);第一偏壓裝置(703b,803b),將偏壓傳輸給整個電解加工頭裝置上的電解液使用;且第二偏壓裝置(703ac、703’、803ac、803’),將第二個偏壓提供給基板使用。
  2. 依據專利申請範圍第1項所述之電解模組(700、700’、800、800’),其中該加工頭裝置(710a-701c、801a-801c)的支撐元件(405),由一個半導體或是聚合物材質及一個接觸端子接觸到電解液所構成。
  3. 依據專利申請範圍第1或2項所述之電解模組(700、700’、800、800’),其中該電解加工頭裝置作用於基板(105、105’)第一個端面上,該第二偏壓裝置(703’、803’)係將第二偏壓施加於基板相對第一個端面之第二個端面上,以形成該電解加工頭通過 該基板之導電路徑。
  4. 依據專利申請範圍第1或2項所述之電解模組(700、700’、800、800’),其中該電解加工頭裝置,作用於基板(105、105’)的第一個端面上,該第二個偏壓裝置(703ac、703’、803ac、803’)含至少一個偏壓頭(701a-701c、801a-801c),該溶液藉由該偏壓頭之至少一傳輸口傳送作為一電鍍液,該第二個偏壓裝置(703ac、803ac)將第二個偏壓藉由各偏壓頭裝置提供給電鍍液使用,該至少有一個偏壓頭作用於基板的第一個端面上,使電解頭(701b、801b)經過基板形成一個導電路徑。
  5. 依據專利申請範圍第4項所述之電解模組(700、800),進一步包括有移動裝置(750、850),用於移動基板(105、105’)和電解模組,各自沿運動方向移動,至少有一個偏壓頭(701a、701c、801a、801c)含第一個偏壓頭裝置(701a、801a)和第二個偏壓頭裝置(701c、801c),分別排列在上游和下游處,當該基板通過該電解模組時,該電解頭(701b、801b)沿運動方向維護導電路徑。
  6. 依據專利申請範圍第1項所述之電解模組(800、800’),進一步包括一裝置,用於在各吸入口中藉由改變溶液的流入量或凹陷量以控制動態半月板的大小。
  7. 依據專利申請範圍第1項所述之電解模組(800、800’),其中該電解模組為陽極模組,用於構成基板(105、105’)上的陽極加工過程。
  8. 依據專利申請範圍第7項所述之電解模組(800、800’),其中該陽極模組所包含的裝置,可在基板(105、105’)上構成多孔半導體的區域。
  9. 依據專利申請範圍第1項所述之電解模組(800、800’),其中該電解模組為基板(105、105’)沉積導電結構(Tf、Tb)的沉積模組。
  10. 依據專利申請範圍第9項所述之電解模組(800、800’),其中該沉積模組可再包含一裝置(750、850),用於將其移離基板(105、105’),且電解頭(801b)在沉積處理期間,沿導電結構(Tf,Tb) 的方向,橫向靠近基板(105、105’),沿沉積方向形成加長型的導電結構。
  11. 依據專利申請範圍第10項所述之電解模組(800、800’),其中該沉積模組可再包含一裝置(750、850),用於將其移離基板(105、105’),且電解頭(801b)在導電結構(Tf,Tb)沉積處理期間,橫向靠近沉積方向,沿沉積方向形成可變動長度的導電結構。
  12. 依據專利申請範圍第11項所述之電解模組(800、800’),其中該裝置(750、850)沿變動方向,用於移動基板(105、105’)和電解頭(801b)所含的裝置,在導電結構(Tf,Tb)沉積處理期間,對應電解頭來轉動基板。
  13. 依據專利申請範圍第12項所述之電解模組(800、800’),其中該電解頭包含至少一個吸入口,位於作用面的各傳輸口內部,用於吸入電解液,而形成中空的導電結構(Tf,Tb)。
  14. 一種用於對基板(105、105’)進行電解處理的方法,該方法包括:提供該基板,於表面上沒有加工任何保護的抗蝕膜;及依據專利申請範圍第1至13項中之任一項所述之電解模組對該基板加工。
  15. 依據專利申請範圍第14項所述之方法,其中該基板是一晶片,沒有任何保護的抗蝕膜,用於生產具有防反射塗層的太陽能電池,以及其中該電解模組是根據專利申請範圍第7或8項所述之陽極化模組(800)。
  16. 一種用於執行基板(105、105’)上的蝕刻加工之蝕刻模組(600),該蝕刻模組包括一個蝕刻頭(601),該蝕刻頭再包括:一個具有作用面的支撐元件(405);至少有一個傳輸口(412),用於傳輸作用面上的蝕刻液;及至少一個吸入口(422),完全環繞在作用面上之至少一個傳輸口,用於吸入所傳輸的蝕刻液,在作用面上形成一個動態壓降(430),該動態壓降(430)維持附著於該作用面上且未接觸任何其他的面; 其中,該蝕刻模組(600)進一步包括:一傳輸系統(650),用於移動該基板(105、105’)及彼此相對應之蝕刻頭(601),該傳輸系統(650)輸送該基板之相應部分用於接觸每個動態壓降(430)從而轉化該動態壓降(430)成相應之動態半月板(630)。
  17. 依據專利申請範圍第16項所述之蝕刻模組(600),進一步包括一裝置,用於在各吸入口中藉由改變溶液的流入量或凹陷量以控制動態半月板的大小。
  18. 一種於基板(105、105’)上執行蝕刻加工之方法,該方法包括:提供該基板,於表面上沒有加工任何保護的抗蝕膜;及依據專利申請範圍第16項所述之蝕刻模組對該基板加工。
  19. 一種光伏電池(100)之生產線(900),該生產線包括:一個蝕刻站(905),包括專利申請範圍第16或17項所述之一組蝕刻模組(600),在蝕刻站中用於各基板(105、105’)上清理相應的接觸區(122);一個陽極加工處理站(910),包括專利申請範圍第7或8項所述之一組陽極模組(700、700’),在陽極站中用於各基板(105、105’)的接觸區上清理相應的多孔矽區域(125);及一個沉積站(915),包括專利申請範圍第9到13項中任一項所述之一組沉積模組(800),在沉積站中用於各基板的接觸區上構成相應的接觸端子(Tf,Tb)。
  20. 依據專利申請範圍第19項所述之生產線(900),進一步包括一裝置(950),用於各基板(105、105’)的入料,而橫跨蝕刻站(905)、陽極站(910)或沉積站(915)的入料方向。
  21. 依據專利申請範圍第20項所述之生產線(900),其中該蝕刻站(905)包括,接觸區(122)之各別的數條帶,一蝕刻模組(600)用於當基板通過該蝕刻站時形成該接觸區之相應條帶;陽極站(910)包括,半導體多孔區(125)之各別的數條帶,一陽極模組(700、700’)用於當基板通過該陽極站時形成該半導體多孔區之相應條帶;及 沉積站(915)包括,接觸端子(Tf、Tb)之各別的數條帶,一沉積模組(800、800’)用於當基板通過該沉積站時形成該接觸端子之相應條帶。
  22. 依據專利申請範圍第20或21項所述之生產線(900),其中該陽極站(910)包含單一的陽極模組(700、700’)橫向延伸到入料方向,形成接觸區(122)的許多條帶,同時基板也經過陽極站;及沉積站(915),包含單一的沉積模組(800、800’)橫向延伸到入料方向,構成接觸端子的許多條帶,同時基板也經過沉積站。
  23. 依據專利申請範圍第19項所述之生產線(900),其中該蝕刻站(600)的各個電解頭(601、703b、803b)、陽極站(700)或沉積站(800),沿入料方向的長度短於基板(105、105’)。
  24. 依據專利申請範圍第20或21項所述之生產線(900),進一步包括:一裝置,用於第一轉動基板(105、105’),藉由第一旋轉角度90度將該基板移離蝕刻站(905),及另一個蝕刻站,當該第一轉動的基板通過該另一個蝕刻站時用以構成接觸區(122)另一許多條帶並垂直延伸到接觸區的條帶;一裝置,用於第二轉動基板,藉由第二旋轉角度90度將該基板移離陽極站(910),及另一個陽極站,當該第二轉動的基板通過該另一個陽極站時用以構成半導體多孔矽區域的另一許多條帶並垂直延伸到半導體多孔矽區域(125)的條帶;及一裝置,用於第三轉動基板,藉由第三旋轉角度90度將該基板移離沉積站(915),及另一個沉積站,當該第三轉動的基板通過該另一個沉積站時用以構成接觸端子(Tf)的另一許多條帶並垂直延伸到接觸端子的條帶。
  25. 依據專利申請範圍第20或21項所述之生產線(900),進一步包括:一裝置,用於第四轉動基板(105、105’),藉由第四旋轉角度介於0度至90度間將該基板移離蝕刻站(905),當該第四轉動的基板通過該陽極站時可讓陽極站(910)構成半導體多孔區 (125);及一裝置,用於第五轉動基板,藉由第五旋轉角度介於0度至90度間將該基板移離陽極站(910),當該第五轉動的基板通過沉積站時可讓沉積站(915)構成接觸端子(Tf)。
  26. 依據專利申請範圍第25項所述之生產線(900),其中該第四旋轉角度及第五旋轉角度為45度。
  27. 依據專利申請範圍第20或21項所述之生產線(900),其中該蝕刻站(905)含單一的蝕刻模組(600),當基板(105、105’)停留在蝕刻站彼此結合時,用以構成該接觸區(122);該陽極站(910)含單一的陽極模組(700、700’),當基板停留在陽極站彼此結合時,用以構成該半導體多孔區(125);及該沉積站(915)含單一的沉積模組(800、800’),當基板停留在沉積站彼此結合時,用以構成該接觸端子(Tf)。
TW100108235A 2010-03-12 2011-03-11 接觸端子/電解蝕刻模組設計的多孔半導體光伏電池以及相關的生產線 TWI565092B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000407A ITMI20100407A1 (it) 2010-03-12 2010-03-12 Cella foto-voltaica con regioni di semiconduttore poroso per ancorare terminali di contatto

Publications (2)

Publication Number Publication Date
TW201145553A TW201145553A (en) 2011-12-16
TWI565092B true TWI565092B (zh) 2017-01-01

Family

ID=42931928

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100108235A TWI565092B (zh) 2010-03-12 2011-03-11 接觸端子/電解蝕刻模組設計的多孔半導體光伏電池以及相關的生產線

Country Status (7)

Country Link
US (3) US20130061920A1 (zh)
EP (1) EP2545596B1 (zh)
JP (1) JP2013522895A (zh)
CN (2) CN102870237B (zh)
IT (1) ITMI20100407A1 (zh)
TW (1) TWI565092B (zh)
WO (1) WO2011110682A2 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20100407A1 (it) * 2010-03-12 2011-09-13 Rise Technology S R L Cella foto-voltaica con regioni di semiconduttore poroso per ancorare terminali di contatto
DE102013219342A1 (de) * 2013-09-26 2015-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Strukturierung von Schichten oxidierbarer Materialien mittels Oxidation sowie Substrat mit strukturierter Beschichtung
DE102013219886A1 (de) 2013-10-01 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur kontinuierlichen Herstellung poröser Siliciumschichten
WO2015090423A1 (en) * 2013-12-19 2015-06-25 Applied Materials Italia S.R.L. Method for producing a conductive contact pattern for a solar cell
KR101622091B1 (ko) * 2014-08-20 2016-05-18 엘지전자 주식회사 태양 전지 및 이의 제조 방법
US11702692B2 (en) 2014-11-05 2023-07-18 Fundación De Investigación Hospital 12 De Octubre Method of treatment of disease and method for quantifying the level of minimal residual disease in a subject
WO2017002265A1 (ja) * 2015-07-02 2017-01-05 三菱電機株式会社 太陽電池セルおよび太陽電池セルの製造方法
US10181428B2 (en) * 2015-08-28 2019-01-15 Skyworks Solutions, Inc. Silicon on porous silicon
US10483010B2 (en) * 2016-09-07 2019-11-19 Lam Research Ag Reduction of surface and embedded substrate charge by controlled exposure to vacuum ultraviolet (VUV) light in low-oxygen environment
USD841571S1 (en) 2017-08-25 2019-02-26 Flex Ltd. Solar panel
USD841570S1 (en) 2017-08-25 2019-02-26 Flex Ltd Solar cell
CN110335902A (zh) * 2017-03-09 2019-10-15 伟创力有限公司 叠瓦式阵列太阳能电池及制造包括叠瓦式阵列太阳能电池的太阳能组件的方法
US10784348B2 (en) * 2017-03-23 2020-09-22 Qualcomm Incorporated Porous semiconductor handle substrate
US20180337630A1 (en) 2017-05-18 2018-11-22 Andersen Corporation Insulating glazing unit with photovoltaic power source
PL425045A1 (pl) * 2018-03-28 2019-10-07 Uniwersytet Jagielloński Sposób wytwarzania nanoporowatych warstw półprzewodzących tlenków metali
EP3588584A1 (en) * 2018-06-29 2020-01-01 Total SA Solar cells and metallization process and device
IT201800009071A1 (it) * 2018-10-01 2020-04-01 Rise Tech Srl Realizzazione di strutture multi-componente tramite menischi dinamici
CN109065656A (zh) 2018-10-31 2018-12-21 伟创力有限公司 形成用于集成在太阳能电池组件中的有色导电焊带的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006039225A2 (en) * 2004-09-30 2006-04-13 Lam Research Corporation Proximity head substrate meniscus flow modulation
US20060260932A1 (en) * 2002-09-30 2006-11-23 Lam Research Corp. Apparatus and method for depositing and planarizing thin films of semiconductor wafers
WO2007123677A2 (en) * 2006-03-31 2007-11-01 Lam Research Corporation Apparatus and method for confined area planarization
WO2008079389A1 (en) * 2006-12-22 2008-07-03 Lam Research Corporation Proximity head with configurable delivery
US20080314756A1 (en) * 2007-06-20 2008-12-25 John Boyd Methods and systems for three-dimensional integrated circuit through hole via gapfill and overburden removal
EP1612845B1 (en) * 2004-06-30 2012-05-02 Lam Research Corporation Cleaning Apparatus and Method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3162589A (en) * 1954-06-01 1964-12-22 Rca Corp Methods of making semiconductor devices
US5458755A (en) * 1992-11-09 1995-10-17 Canon Kabushiki Kaisha Anodization apparatus with supporting device for substrate to be treated
JP3416190B2 (ja) * 1993-03-23 2003-06-16 キヤノン株式会社 陽極化成装置及び陽極化成方法
JPH07230983A (ja) * 1994-02-15 1995-08-29 Sony Corp 多孔質状シリコンの形成方法およびその多孔質状シリコンを用いた光半導体装置
JPH08148280A (ja) * 1994-04-14 1996-06-07 Toshiba Corp 半導体装置およびその製造方法
US6406984B1 (en) * 1997-10-06 2002-06-18 The United States Of America As Represented By The Secretary Of The Navy Method of making improved electrical contact to porous silicon using intercalated conductive materials
JP2001203184A (ja) * 2000-01-19 2001-07-27 Matsushita Electric Ind Co Ltd 加工装置及び加工方法
JP2002146595A (ja) * 2000-11-14 2002-05-22 Sony Corp 電解メッキ装置および電解メッキ方法
US7202412B2 (en) * 2002-01-18 2007-04-10 Sharp Kabushiki Kaisha Photovoltaic cell including porous semiconductor layer, method of manufacturing the same and solar cell
US7240679B2 (en) * 2002-09-30 2007-07-10 Lam Research Corporation System for substrate processing with meniscus, vacuum, IPA vapor, drying manifold
US6954993B1 (en) * 2002-09-30 2005-10-18 Lam Research Corporation Concentric proximity processing head
JP2004134428A (ja) * 2002-10-08 2004-04-30 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
TWI245739B (en) 2002-12-05 2005-12-21 Ibm Method and device for flowing a liquid on a surface
US7078344B2 (en) * 2003-03-14 2006-07-18 Lam Research Corporation Stress free etch processing in combination with a dynamic liquid meniscus
JP4466231B2 (ja) * 2004-06-25 2010-05-26 パナソニック電工株式会社 圧力波発生素子およびその製造方法
ITMI20060478A1 (it) 2006-03-16 2007-09-17 Eles Semiconductor Equipment Spa Sistema per contattare dispositivim elettronici e relativo metodo di produzione basato su filo conduttore annegato in materiale isolante
KR20070099840A (ko) * 2006-04-05 2007-10-10 삼성에스디아이 주식회사 태양 전지 및 이의 제조 방법
CN101055899A (zh) * 2006-04-10 2007-10-17 上海太阳能科技有限公司 多孔硅层结构的晶体硅太阳电池
AU2007313050B2 (en) * 2006-08-29 2012-05-31 Liao, Hsiu-Chen A foam spring mattress configured with variable firmness
WO2008048259A2 (en) * 2006-10-16 2008-04-24 Materials And Technologies Corporation Wet processing using a fluid meniscus, apparatus and method
US7897213B2 (en) * 2007-02-08 2011-03-01 Lam Research Corporation Methods for contained chemical surface treatment
US20090188553A1 (en) 2008-01-25 2009-07-30 Emat Technology, Llc Methods of fabricating solar-cell structures and resulting solar-cell structures
DE102009008152A1 (de) * 2009-02-09 2010-08-19 Nb Technologies Gmbh Siliziumsolarzelle
ITMI20100407A1 (it) * 2010-03-12 2011-09-13 Rise Technology S R L Cella foto-voltaica con regioni di semiconduttore poroso per ancorare terminali di contatto

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060260932A1 (en) * 2002-09-30 2006-11-23 Lam Research Corp. Apparatus and method for depositing and planarizing thin films of semiconductor wafers
EP1612845B1 (en) * 2004-06-30 2012-05-02 Lam Research Corporation Cleaning Apparatus and Method
WO2006039225A2 (en) * 2004-09-30 2006-04-13 Lam Research Corporation Proximity head substrate meniscus flow modulation
WO2007123677A2 (en) * 2006-03-31 2007-11-01 Lam Research Corporation Apparatus and method for confined area planarization
WO2008079389A1 (en) * 2006-12-22 2008-07-03 Lam Research Corporation Proximity head with configurable delivery
US20080314756A1 (en) * 2007-06-20 2008-12-25 John Boyd Methods and systems for three-dimensional integrated circuit through hole via gapfill and overburden removal

Also Published As

Publication number Publication date
CN102870237B (zh) 2017-04-05
US20170186890A1 (en) 2017-06-29
CN102870237A (zh) 2013-01-09
JP2013522895A (ja) 2013-06-13
US20130061920A1 (en) 2013-03-14
ITMI20100407A1 (it) 2011-09-13
US20180012782A1 (en) 2018-01-11
TW201145553A (en) 2011-12-16
WO2011110682A2 (en) 2011-09-15
EP2545596A2 (en) 2013-01-16
CN106935671A (zh) 2017-07-07
EP2545596B1 (en) 2016-05-11
WO2011110682A3 (en) 2012-03-08
US10109512B2 (en) 2018-10-23

Similar Documents

Publication Publication Date Title
TWI565092B (zh) 接觸端子/電解蝕刻模組設計的多孔半導體光伏電池以及相關的生產線
TWI614912B (zh) 太陽能電池金屬化之強化化學鍍導電性之方法
US9385247B2 (en) Passivation scheme for solar cells
TWI643351B (zh) 太陽能電池金屬化及互連方法
US20100108134A1 (en) Thin two sided single crystal solar cell and manufacturing process thereof
KR20100075467A (ko) Ⅳ족 나노입자 접합 및 이로부터 형성된 장치
MX2011001146A (es) Celda fotovoltaica de silicio cristalino con emisor selectivo producido con un procedimiento de grabado al agua fuerte posterior de precision y pasivacion a baja temperatura.
TW201424011A (zh) 太陽能電池及背接觸式太陽能電池
US8852981B2 (en) Electrical contacts to nanostructured areas
US20130153019A1 (en) Methods of forming a high efficiency solar cell with a localized back surface field
TWI611589B (zh) 太陽電池及太陽電池模組
US10269995B2 (en) Screen printing electrical contacts to nanostructured areas
US10553743B2 (en) Flexible crystalline ultra-thin Si solar cells
EP2999005A1 (en) Solar cell, manufacturing method therefor, solar-cell module, and manufacturing method therefor
Milenkovic et al. Epitaxial N-type silicon solar cells with 20% efficiency
JPH11307796A (ja) 太陽電池及びその製造方法
JP2014501456A (ja) 薄い半導体膜上に支持要素を構築することによって装置を形成するための方法
Xu et al. A novel method to form nano-gridlines on textured CZ silicon wafers