TWI545782B - Zener diode - Google Patents

Zener diode Download PDF

Info

Publication number
TWI545782B
TWI545782B TW103137608A TW103137608A TWI545782B TW I545782 B TWI545782 B TW I545782B TW 103137608 A TW103137608 A TW 103137608A TW 103137608 A TW103137608 A TW 103137608A TW I545782 B TWI545782 B TW I545782B
Authority
TW
Taiwan
Prior art keywords
region
zener diode
anode
cathode
type impurity
Prior art date
Application number
TW103137608A
Other languages
English (en)
Other versions
TW201526250A (zh
Inventor
Hiroomi Eguchi
Hiromichi Kinpara
Takashi Okawa
Satoshi Ikeda
Original Assignee
Toyota Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Co Ltd filed Critical Toyota Motor Co Ltd
Publication of TW201526250A publication Critical patent/TW201526250A/zh
Application granted granted Critical
Publication of TWI545782B publication Critical patent/TWI545782B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0626Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a localised breakdown region, e.g. built-in avalanching region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Description

齊納二極體
本說明書所揭示之技術,係與齊納二極體相關。
日本特開平7-321347係揭示著一種齊納二極體。齊納二極體之用以構成pn接合之n區域的n型雜質濃度較低的話,齊納二極體之崩潰時,主要係發生突崩潰。此時,突崩潰因為具有正的溫度係數,齊納二極體之特性因為溫度而變化。相對於此,日本特開平7-321347之齊納二極體,係以高濃度之p區域及高濃度之n區域來形成pn接合。藉此,齊納二極體之崩潰時,十分均衡地發生突崩潰及齊納崩潰之雙方。齊納崩潰,具有與突崩潰相反的溫度係數。所以,使其發生突崩潰及齊納崩潰之雙方,可以提高齊納二極體之溫度特性。
日本特開平7-321347之齊納二極體,構成pn接合之n型區域的n型雜質濃度較高。所以,對齊納二極 體施加逆電壓時,空乏層難以在n型區域內伸展。所以,該齊納二極體,有逆崩潰電壓較低的問題。所以,本說明書,係提供溫度特性優良且逆崩潰電壓較高之齊納二極體。
本說明書所示之齊納二極體,係具有:半導體基板、陽極電極、及陰極電極。半導體基板,係具有:連結在陽極電極之p型陽極區域;連接於陽極區域之n型電流通過區域;以及連接於陽極區域及電流通過區域,為n型,n型雜質濃度比電流通過區域低,直接或介由其他n型區域連結在陰極電極的漂移區域。
該齊納二極體,係在陽極區域與電流通過區域之間形成第1之pn接合,在陽極區域與漂移區域之間形成第2之pn接合。在施加於齊納二極體之逆電壓較低的期間,空乏層從第1及第2之pn接合擴散。此時,因為漂移區域之n型雜質濃度較低,空乏層從第2之pn接合在漂移區域內廣泛伸展。所以,不易對pn接合施加高逆電壓。所以,該齊納二極體為高逆崩潰電壓。
此外,構成第1之pn接合的電流通過區域,n型雜質濃度比構成第2之pn接合的漂移區域高。所以,對齊納二極體施加逆電壓時,第1之pn接合比第2之pn接合更容易崩潰。所以,施加在齊納二極體之逆電壓上昇的話,第1之pn接合崩潰。因為構成第1之pn接合之電流通過區域的n型雜質濃度較高,在第1之pn接合,可以均衡良好地發生突崩潰及齊納崩潰的雙方。所 以,該齊納二極體,有良好的溫度特性。
上述之齊納二極體,半導體基板也可以為具有第1半導體層、層積在第1半導體層上之絕緣層、以及層積在絕緣層上之第2半導體層的SOI基板。此時,陽極區域、電流通過區域、及漂移區域,也可形成在第2半導體層內。此外,第1半導體層也可以連結在陰極電極。
依據該構成的話,齊納二極體在斷路狀態,在漂移區域內,等電位線沿著第1半導體層伸展。藉此,第1之pn接合更容易崩潰。
上述之齊納二極體,以在陽極區域下側形成電流通過區域為佳。
依據該構成的話,可以良好精度來形成電流通過區域。所以,量產時,齊納二極體的特性較為安定。
上述之齊納二極體,半導體基板,也可以具有:連結在陰極電極,n型之n型雜質濃度比漂移區域高的陰極區域;及連接於陰極區域及漂移區域,而使陰極區域從漂移區域分離,n型之n型雜質濃度比陰極區域低,n型雜質濃度比漂移區域高之中間濃度區域。
依據該構成的話,齊納二極體斷路的狀態下,在半導體基板內難以發生高電場。藉此,可以更為提高齊納二極體之崩潰電壓。
10‧‧‧齊納二極體
12‧‧‧SOI基板
14‧‧‧背面層
16‧‧‧絕緣層
18‧‧‧表面層
20‧‧‧陽極區域
22‧‧‧電流通過區域
24‧‧‧漂移區域
26‧‧‧陰極區域
40‧‧‧陽極電極
42‧‧‧陰極電極
50‧‧‧pn接合
52‧‧‧pn接合
60‧‧‧箭頭
70‧‧‧孔
72‧‧‧絕緣膜
74‧‧‧導電層
210‧‧‧齊納二極體
220‧‧‧開口部
310‧‧‧齊納二極體
401‧‧‧中間濃度區域
以下,參照圖式,針對本發明之實施方式的 特徵、優點、技術、及產業重要性進行詳細說明。
第1圖係實施例1之齊納二極體的縱剖面圖。
第2圖係實施例2之齊納二極體的縱剖面圖。
第3圖係實施例1之齊納二極體的電位分佈圖。
第4圖係實施例2之齊納二極體的電位分佈圖。
第5圖係實施例3之齊納二極體的縱剖面圖。
第6圖係實施例4之齊納二極體的縱剖面圖。
第7圖係實施例1之齊納二極體的電場分佈圖。
第8圖係實施例4之齊納二極體的電場分佈圖。
第9圖係實施例1之變形例之齊納二極體的縱剖面圖。
第1圖所示之齊納二極體10,係具有:SOI基板12、陽極電極40、及陰極電極42。SOI基板12,係具有:背面層14、絕緣層16、及表面層18。背面層14,係由矽所構成。絕緣層16,係由氧化矽所構成。絕緣層16,係層積在背面層14上。表面層18,係由矽所構成。表面層18,係層積在絕緣層16上。表面層18,係藉由絕緣層16而對背面層14絕緣。陽極電極40及陰極電極42,係形成在表面層18上。
在表面層18內,形成有:陽極區域20、電流通過區域22、漂移區域24及陰極區域26。陽極區域20,係p型區域,形成在從表面層18上面露出之範圍。 陽極區域20,係連結在陽極電極40。電流通過區域22,係n型區域,形成在陽極區域20下側。電流通過區域22,係連接於陽極區域20。漂移區域24,係n型雜質濃度比電流通過區域22低的n型區域。漂移區域24,係連接於陽極區域20及電流通過區域22。陰極區域26,係n型雜質濃度比電流通過區域22及漂移區域24高的n型區域。陰極區域26,係連接於漂移區域24。陰極區域26,係藉由漂移區域24而從陽極區域20及電流通過區域22分離。陰極區域26,係連結在陰極電極42。而且,以下,將由陽極區域20及電流通過區域22所構成之pn接合,稱為pn接合50,而將由陽極區域20及漂移區域24所構成之pn接合,稱為pn接合52。此外,如第9圖之記載所示,漂移區域24也可連結在陰極電極42。
n型雜質,係以大致一定之濃度分佈在漂移區域24。電流通過區域22,係藉由對漂移區域24注入n型雜質所形成的區域。所以,在電流通過區域22,n型雜質濃度比在漂移區域24內之大致均一的n型雜質濃度高。此外,陰極區域26,係藉由對漂移區域24注入n型雜質所形成的區域。所以,在陰極區域26,n型雜質濃度比在漂移區域24內之大致均一的n型雜質濃度高。亦即,連接於陽極區域20之n型雜質濃度為均一的區域,係漂移區域24,連接於陽極區域20,n型雜質濃度比漂移區域24高之區域,係電流通過區域22,n型雜質濃度比漂移區域24高,藉由漂移區域24而從陽極區域20及電流通 過區域22分離之區域,係陰極區域26。在本實施例,漂移區域24之n型雜質濃度為1×1015atoms/cm3未滿。電流通過區域22之n型雜質濃度為4×1017atoms/cm3以上。此外,電流通過區域22之n型雜質濃度,以6×1017atoms/cm3未滿為佳。陰極區域26之n型雜質濃度為1×1020atoms/cm3以上。
使用齊納二極體10,有時對陽極電極40與陰極電極42之間施加陰極電極42為正之電壓(亦即,逆電壓)。施加逆電壓的話,在電流通過區域22及漂移區域24內,空乏層從pn接合50、52伸展。此時,因為漂移區域24之n型雜質濃度較低,空乏層廣泛地擴散於漂移區域24內。結果,漂移區域24之大致全體被空乏化。因為對被空乏化之漂移區域24施加較高的電壓,而難以對pn接合50、52施加電壓。所以,pn接合50、52難以崩潰,而提高了齊納二極體10的逆崩潰電壓。
此外,電流通過區域22,因為n型雜質濃度較高,pn接合50的內建電位較高。相對於此,漂移區域24,因為n型雜質濃度較低,pn接合52的內建電位較低。所以,pn接合50,比pn接合52更容易崩潰。所以,使上述逆電壓成為更大的話,pn接合50比pn接合52先崩潰。藉此,如第1圖之箭頭60所示,崩潰電流,從陰極區域26經由漂移區域24及電流通過區域22流向陽極區域20。此時,因為電流通過區域22之n型雜質濃度較高,在pn接合50,以大致相同程度之比例發生突崩 潰及齊納崩潰的雙方。因為突崩潰具有正的溫度係數,而齊納崩潰具有負的溫度係數,該等溫度係數互相抵銷。所以,齊納二極體10,溫度特性優良。亦即,齊納二極體10,即使在溫度變化時,其特性也難以變化。
如以上之說明所示,依據實施例1之構成的話,可以實現逆崩潰電壓較高且溫度特性優良的齊納二極體10。
第2圖所示之齊納二極體210,在陰極區域26下方之絕緣層16,形成有開口部220。通過開口部220,背面層14與表面層18形成連接。此外,背面層14,係由具有高濃度之n型雜質的n型半導體所構成。此外,陰極區域26,係通過開口部220到達背面層14為止。所以,齊納二極體210,背面層14係介由陰極區域26連結至陰極電極42。齊納二極體210之其他構成,與實施例1之齊納二極體10相同。
第3圖,係施加pn接合50、52未崩潰之電平之逆電壓時之實施例1之齊納二極體10內的等電位線分佈。此外,第4圖,係與第3圖相同之施加逆電壓時之實施例2之齊納二極體210內的等電位線分佈。由第3、4圖可以得知,在實施例2之齊納二極體210,係類似對pn接合50施加比實施例1之齊納二極體10高之電壓的情形。所以,施加更高之逆電壓時,可以更確實地使pn接合50崩潰。藉此,提高了齊納二極體之量產時的穩定性。亦即,即使因為製造誤差而在各區域之配置上發生偏 離,也可以製造pn接合50確實崩潰的齊納二極體。
第5圖所示之實施例3的齊納二極體310,在陰極區域26的傍邊,形成有貫通表面層18及絕緣層16而到達背面層14之孔70。孔70之側面覆蓋著絕緣膜72。在孔70內形成導電層74。導電層74,係利用絕緣膜72來對表面層18之半導體層進行絕緣。導電層74,係連結在陰極電極42。此外,背面層14,係由具有高濃度之n型雜質的n型半導體所構成。背面層14,係連接於導電層74。亦即,背面層14,係介由導電層74,連結至陰極電極42。齊納二極體310之其他構成,係與實施例1之齊納二極體10相同。
實施例3之齊納二極體310,也與實施例2之齊納二極體210相同,背面層14係連結至陰極電極42。所以,齊納二極體310,pn接合50也容易崩潰。
第6圖所示之實施例4之齊納二極體410,在漂移區域24及陰極區域26之間,形成著4個中間濃度區域401~404。中間濃度區域401之n型雜質濃度n1、中間濃度區域402之n型雜質濃度n2、中間濃度區域403之n型雜質濃度n3、以及中間濃度區域404之n型雜質濃度n4,分別低於陰極區域26之n型雜質濃度,而高於漂移區域24之n型雜質濃度。此外,n型雜質濃度n1~n4,係滿足n1>n2>n3>n4的關係。亦即,中間濃度區域401~404,愈接近陰極區域26的區域,則有愈高的n型雜質濃度。實施例4,中間濃度區域401~404之n型 雜質濃度,為1×1020atoms/cm3未滿且1×1015atoms/cm3以上。齊納二極體410之其他構成,係與實施例1之齊納二極體10相同。
齊納二極體410,被施加pn接合50、52未崩潰之電平之逆電壓的話,漂移區域24及中間濃度區域401~404之大致全體被空乏化。第7圖,係實施例1之齊納二極體10之漂移區域24被空乏化時之第1圖的A-A線電場分佈。第8圖,係實施例4之齊納二極體410之漂移區域24及中間濃度區域401~404被空乏化時之第6圖的B-B線電場分佈。如第7圖所示,實施例1之齊納二極體10,在pn接合52,電場處於峰值。相對於此,實施例4之齊納二極體410,在漂移區域24及中間濃度區域401~404內,電場為大致均一分佈。其係因為中間濃度區域401~404具有比漂移區域24高之n型雜質濃度。此外,藉由中間濃度區域401~404愈靠近陰極區域26之區域具有愈高之n型雜質濃度,也可以使電場分佈一致化。第7、8圖之圖中的面積(積分值),係代表在陽極區域20及陰極區域26之間可承受之電壓。亦即,該面積愈大的話,齊納二極體的逆崩潰電壓愈高。由第7、8圖可以得知,實施例4之齊納二極體410之逆崩潰電壓,高於實施例1之齊納二極體10。換言之,依據實施例4之構造的話,即使縮短陽極區域20及陰極區域26之間的距離,也可以得到與實施例1之齊納二極體10相同之程度的逆崩潰電壓。所以,依據實施例4之構造的話,可以實現齊納 二極體的小型化。
而且,實施例4之齊納二極體410,係具有4個中間濃度區域401~404。然而,只要至少形成1個中間濃度區域即可。
此外,實施例1~4之齊納二極體,係利用SOI基板來形成。然而,該等齊納二極體,也可利用矽之塊狀基板等其他基板來形成。
此外,在上述實施例1~4,電流通過區域22係形成在陽極區域20之下側。然而,只要電流通過區域22連接至陽極區域20,電流通過區域22可以形成在任何位置。例如,電流通過區域22,也可形成在從SOI基板12上面露出之範圍之鄰接於陽極區域20之範圍。但是,電流通過區域22,以形成在陽極區域20下側為佳。如上面所述,電流通過區域22係藉由雜質注入來形成,然而,雜質注入之深度方向(基板之厚度方向)的精度較高,另一方面,雜質注入之橫向(沿著基板表面之方向)的精度則不高。其係因為雜質注入時所使用之遮罩產生位置偏離等。在陽極區域20下側配置電流通過區域22的話,離子注入時就不易受到製造誤差的影響,而可以容易地使陽極區域20與電流通過區域22鄰接。依據該構成的話,可以容易地製造齊納二極體。
此外,實施例1~4之齊納二極體,逆崩潰電壓因為陽極區域20及陰極區域26之間的距離而變化。所以,製造時,只要變更陽極區域20及陰極區域26之間的 距離,無需追加製程,即可變更逆崩潰電壓。
以上,係對本發明之具體例進行詳細說明,然而,其只是例示,而非用以限定申請專利範圍者。記載於申請專利範圍之技術,係包含以上例示之具體例的各種變形、變更者在內。本說明書或圖式所說明之技術要素,係單獨或藉由各種組合即可發揮技術有用性者,並未受限於提出申請時之申請專利範圍所記載之組合。此外,本說明書或圖式之例示技術,係同時達成複數目的者,只要能達成其中一個目的,其本身就具有技術有用性。
10‧‧‧齊納二極體
12‧‧‧SOI基板
14‧‧‧背面層
16‧‧‧絕緣層
18‧‧‧表面層
20‧‧‧陽極區域
22‧‧‧電流通過區域
24‧‧‧漂移區域
26‧‧‧陰極電極
40‧‧‧陽極電極
42‧‧‧陰極電極
50‧‧‧pn接合
52‧‧‧pn接合
60‧‧‧箭頭

Claims (3)

  1. 一種齊納二極體,係具有:半導體基板、陽極電極、及陰極電極,半導體基板,係具有:連結在陽極電極之p型陽極區域、連接於陽極區域之n型電流通過區域、連接於陽極區域及電流通過區域,為n型,n型雜質濃度比電流通過區域低,直接或介由其他n型區域連結在陰極電極的漂移區域、第1半導體層、層積在第1半導體層上之絕緣層、以及層積在絕緣層上之第2半導體層的SOI基板,陽極區域、電流通過區域、及漂移區域,係形成在第2半導體層內,第1半導體層,係連結在陰極電極。
  2. 如申請專利範圍第1之齊納二極體,其中,在陽極區域下側,形成有電流通過區域。
  3. 如申請專利範圍第1項或第2項的齊納二極體,其中,半導體基板,係具有:連結在陰極電極,為n型,n型雜質濃度比漂移區域高之陰極區域;及連接於陰極區域及漂移區域,使陰極區域從漂移區域分離,為n型,n型雜質濃度比陰極區域低,n型雜質濃度比漂移區域高之中間濃度區域。
TW103137608A 2013-10-31 2014-10-30 Zener diode TWI545782B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013227332A JP5924328B2 (ja) 2013-10-31 2013-10-31 ツェナーダイオード

Publications (2)

Publication Number Publication Date
TW201526250A TW201526250A (zh) 2015-07-01
TWI545782B true TWI545782B (zh) 2016-08-11

Family

ID=51999458

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103137608A TWI545782B (zh) 2013-10-31 2014-10-30 Zener diode

Country Status (7)

Country Link
US (1) US10002974B2 (zh)
JP (1) JP5924328B2 (zh)
KR (1) KR101797882B1 (zh)
CN (1) CN105684156B (zh)
DE (1) DE112014005020B4 (zh)
TW (1) TWI545782B (zh)
WO (1) WO2015063574A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6946783B2 (ja) * 2017-06-30 2021-10-06 富士電機株式会社 半導体装置および半導体モジュール
US10845395B2 (en) 2018-02-08 2020-11-24 Honeywell International Inc. Intrinsically safe Zener diode barrier with indication
KR102535796B1 (ko) 2018-11-02 2023-05-25 삼성디스플레이 주식회사 화소, 이를 포함한 표시 장치, 및 표시 장치의 제조 방법
CN116995102B (zh) * 2023-09-26 2023-12-08 成都翌创微电子有限公司 一种低温漂齐纳器件及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144527B2 (ja) 1994-05-25 2001-03-12 ローム株式会社 高濃度pn接合面を有する半導体装置の製造方法
US5578506A (en) * 1995-02-27 1996-11-26 Alliedsignal Inc. Method of fabricating improved lateral Silicon-On-Insulator (SOI) power device
JPH10242159A (ja) 1997-02-25 1998-09-11 Mitsubishi Electric Corp 定電圧ダイオード内蔵トランジスタ
JP3843570B2 (ja) * 1997-12-25 2006-11-08 富士電機デバイステクノロジー株式会社 横型ダイオード
US7465964B2 (en) * 2005-12-30 2008-12-16 Cambridge Semiconductor Limited Semiconductor device in which an injector region is isolated from a substrate
SE532625C2 (sv) * 2007-04-11 2010-03-09 Transic Ab Halvledarkomponent i kiselkarbid
JP2009141019A (ja) * 2007-12-04 2009-06-25 Toshiba Corp 半導体装置及びその製造方法
JP2009158643A (ja) * 2007-12-26 2009-07-16 Toshiba Corp 半導体装置
US7638857B2 (en) * 2008-05-07 2009-12-29 United Microelectronics Corp. Structure of silicon controlled rectifier
US8198703B2 (en) * 2010-01-18 2012-06-12 Freescale Semiconductor, Inc. Zener diode with reduced substrate current
US9184255B2 (en) * 2011-09-30 2015-11-10 Infineon Technologies Austria Ag Diode with controllable breakdown voltage
JP2013149768A (ja) * 2012-01-19 2013-08-01 Tokai Rika Co Ltd サージ保護用半導体装置
JP2013183039A (ja) * 2012-03-02 2013-09-12 Renesas Electronics Corp 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
DE112014005020T5 (de) 2016-08-04
KR20160063370A (ko) 2016-06-03
WO2015063574A1 (en) 2015-05-07
JP2015088670A (ja) 2015-05-07
US20160254390A1 (en) 2016-09-01
JP5924328B2 (ja) 2016-05-25
US10002974B2 (en) 2018-06-19
DE112014005020B4 (de) 2021-06-17
CN105684156A (zh) 2016-06-15
CN105684156B (zh) 2018-12-04
TW201526250A (zh) 2015-07-01
KR101797882B1 (ko) 2017-11-15

Similar Documents

Publication Publication Date Title
US10510882B2 (en) Embedded JFETs for high voltage applications
TWI469350B (zh) Power semiconductor devices
US8232623B2 (en) Semiconductor device
US10903202B2 (en) Semiconductor device
TWI545782B (zh) Zener diode
KR20100019349A (ko) 반도체 장치 및 그 제조 방법
TW201611275A (zh) 半導體裝置
JP6453188B2 (ja) 炭化珪素半導体装置
US9837413B2 (en) Substrate contact land for an MOS transistor in an SOI substrate, in particular an FDSOI substrate
JP2012069797A (ja) 絶縁ゲート型トランジスタ
KR101807334B1 (ko) 멀티 소오스 jfet 디바이스
US8637952B2 (en) Semiconductor device with zener diode and method for manufacturing same
US8629526B2 (en) Semiconductor device
JP6238234B2 (ja) 半導体装置
JP2015230920A5 (zh)
US9437720B2 (en) Semiconductor device
TW201240091A (en) Semiconductor device
US20160071940A1 (en) Semiconductor device
US20150048415A1 (en) Semiconductor device and manufacturing method of the same
TWI492385B (zh) 橫向擴散金屬氧化物半導體電晶體及其製造方法
JP5271694B2 (ja) ダイオード
CN105990401A (zh) 半导体元件
JP2017041491A (ja) 半導体装置
JP2014236159A (ja) 半導体装置および半導体装置の製造方法
JP2014165317A (ja) 半導体装置