TWI539027B - 用於在基板上連續形成電化學薄膜之設備及方法 - Google Patents

用於在基板上連續形成電化學薄膜之設備及方法 Download PDF

Info

Publication number
TWI539027B
TWI539027B TW100114086A TW100114086A TWI539027B TW I539027 B TWI539027 B TW I539027B TW 100114086 A TW100114086 A TW 100114086A TW 100114086 A TW100114086 A TW 100114086A TW I539027 B TWI539027 B TW I539027B
Authority
TW
Taiwan
Prior art keywords
chamber
active material
energy
substrate
spray
Prior art date
Application number
TW100114086A
Other languages
English (en)
Other versions
TW201207152A (en
Inventor
楊彔
柏藍迪佛曼
布朗卡爾M
彼比尼多維多
K 奧葛多唐諾得J
Original Assignee
應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 應用材料股份有限公司 filed Critical 應用材料股份有限公司
Publication of TW201207152A publication Critical patent/TW201207152A/zh
Application granted granted Critical
Publication of TWI539027B publication Critical patent/TWI539027B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

用於在基板上連續形成電化學薄膜之設備及方法
本發明之實施例大體而言係關於鋰離子電池,且更特別地係關於一種利用薄膜沉積處理來製造此種電池的方法。
快速充電、高容量之能量儲存裝置(例如超級電容器與鋰(Li)離子電池)係用於越來越多的應用中,包含可攜式電子元件、醫藥裝置、傳輸、格柵連接之大型能量儲存器、可再生能源儲存器,以及不斷電電源供應器(UPS)。在現代的可重複充電能源儲存裝置中,電流收集器是由導電體所製成。正電流收集器(陰極)之材料實例包含鋁、不鏽鋼與鎳。該等收集器可具有箔片、薄膜,或薄板之形式,該等收集器具有之厚度概介於約6至50微米之範圍。
在鋰離子電池的正電極中之活性電極材料通常係選自鋰過渡金屬氧化物,例如LiFePO4、LiMn2O4、LiCoO2、LiNiO2或鋰、鎳、錳與鈷等氧化物之組合物,且該活性電極材料包含導電粒子(例如碳黑或石墨)與黏結劑材料。此種正電極材料係視為鋰摻雜化合物,其中傳導材料的量係介於重量百分比為0.1%至15%之範圍。
活性材料係分散於聚合性黏結劑基質中,接著則施用至電流收集器。黏結劑基質之聚合物係由熱塑性聚合物所製成,該等熱塑性聚合物包含具橡膠彈性之聚合物。聚合性黏結劑用於將陰極活性材料黏結在一起,以排除裂縫生成並避免活性材料在電流收集器的表面上分散。聚合性黏結劑的量係介於重量百分比為0.5%至30%的範圍內。
用於形成陰極之現有製造技術需消耗能量與時間兩者。在現有方法中,活性材料的合成需要高溫與嚴格的反應條件。活性材料的合成也會花費數小時至數天才能完成。一旦完成了活性材料之合成,活性材料係與傳導性添加物、黏結劑及有毒且昂貴的溶劑結合而形成漿體。漿體接著即沉積在正電流收集器上。塗布在電流收集器上的漿體需要經過長期且加強能量的乾燥處理。為完成漿體之乾燥所建立的乾燥線路可為非常長,端視於合成與沉積處理的輸出而定。
因此,在本領域中需要可快速且更具能量效率之系統和方法來產生能量儲存裝置之陰極。
在一實施例中,揭露了一種用於在基板上連續形成電化學薄膜之設備。該設備通常包含了至少一個前驅物供應源、一反應腔室與一噴塗腔室。該反應腔室通常包含了腔室管件,該腔室管件具有流體耦接至該至少一個前驅物供應源之入口;能量施加器,該能量施加器係定位以運作性供給該腔室管件中之前驅物能量;以及能量來源,該能量來源耦接至該能量施加器。該噴塗腔室係流體耦接至該腔室管件之出口。
在另一實施例中,揭露了一種用於在基板上連續形成膜層的方法。該方法通常係包含使一或多種前驅物連續流入反應器腔室中;使能量連續耦接於該一或多種前驅物,以形成活性材料之晶體;使基板連續通過噴塗腔室,以及將該活性材料連續噴塗至噴塗腔室,噴塗以於該基板上沉積活性材料膜層。
本文所揭露之實施例通常係提供了用於在基板上連續形成薄膜的方法與設備。在一實施例中,該薄膜係薄膜電池(例如鋰離子電池)之電化學薄膜。其他的應用包括燃料電池製造、半導體製造,以及太陽能電池製造。前驅物或特定化合物之前驅物的混合物係提供至反應器腔室,且對該反應器腔室施加能量以產生反應。在反應時,特定的化合物係變成電化學活性材料。前驅物可為懸浮在載體媒介或溶解溶液中之粒子。活性材料合成產生了奈米或微米晶體,該晶體接著會被噴塗至基板表面以形成膜層或薄膜。
第1圖為根據本發明一實施例電連接至負載101之鋰離子電池100的示意圖。鋰離子電池100的主要功能組件包括陽極結構102、陰極結構103、流體可通過之分離層104,以及置於相對的電流收集器111、113之間區域內的電解質(未圖示)。有多種材料都可作為電解質,例如在有機溶劑中之鋰鹽。電解質係含於在電流收集器111、113之間所限定的區域中之陽極結構102、陰極結構103與分離層104中。
陽極結構102與陰極結構103各作為鋰離子電池100的一半單元,且一起形成鋰離子電池100的整個工作單元。陽極結構102包含電流收集器111或負電極,以及材料層110(例如用於主導鋰離子之含碳摻雜母質材料)。同樣地,陰極結構103包含電流收集器113或正電極,以及第二材料層112(例如金屬氧化物),該第二材料層由電化學活性材料與懸浮在黏結劑中之其他傳導材料結合而組成。材料層112也是鋰離子之母質,因為在鋰離子電池100的放電期間,鋰離子可從陽極結構102通行至陰極結構103。電流收集器111與113係由導電材料所製成,例如金屬。分離層104(其係電子絕緣、多孔性、且流體可通過的)係用以避免陽極結構102與陰極結構103中的組件間之直接電性接觸。
在陰極結構103中之材料層112的電化學活性材料係由層狀氧化物(例如鋰鈷氧化物)、橄欖石(例如磷酸鋰鐵)、尖晶石(例如鋰錳氧化物),或其混合物所製成。在非鋰實施例中,示例性陰極是由TiS2(二硫化鈦)所製成。示例性含鋰氧化物可為層狀鋰鈷氧化物,或混合之金屬氧化物,例如LiNixCo1-2xMnO2(其中x係介於0與0.5之間)或尖晶石,例如LiMn2O4。其他示例性混合金屬氧化物為LiNi0.8Co0.15Al0.05O2與LiNixMnyCozO2,其中x、y與z係介於0與1之間。示例性磷酸鹽為鐵橄欖石(LiFeO4)與其變體(例如LiFe1-xMgPO4,其中x係介於0與1之間)、LiMoPO4、LiCoPO4、LiNiPO4、Li3V2(PO4)3、LiVOPO4、LiMP2O7或LiFe1.5P2O7。示例性氟基磷酸鹽可為LiVPO4F、LiAlPO4F、Li5V(PO4)2F2、Li5Cr(PO4)2F2、Li2CoPO4F或Li2NiPO4F。示例性矽酸鹽可為Li2FeSiO4、Li2MnSiO4或Li2VOSiO4。示例性非鋰化合物為Na5V2(PO4)2F3
陽極結構102中的材料層110係由分散於聚合物基質中之石墨微珠所製成。此外,含矽、錫或鋰鈦酸鹽(Li4Ti5O12)之微珠或合金係可與石墨微珠一起使用,或取代石墨微珠,以提供傳導芯材之陽極材料。
第2圖為一流程圖,該圖概述了根據一實施例之用於形成薄膜的方法200。該方法200係用於在基板上形成含電化學劑體之薄膜或膜層,該電化學劑體例如包括含電解質之材料、陰極材料及/或上述之陽極材料。基板係具有表面,該表面包含如上述結合第1圖所述之電池結構的傳導性電流收集器材料。舉例而言,基板具有銅或鋁電極表面。方法200開始於方塊201,其中一或多種前驅物(以溶劑或膠體方式供應)係與載體媒介混合。該一或多種前驅物可包含但不限於:LiOH、FeSO4、H3PO4、Ni(NO3)2、Co(NO3)2與AlCl3。載體媒介可為混有鹽類的水、混有鹽類之有機溶劑(例如醇類或碳氫化合物),或其組合。載體媒介也可包含含碳材料,例如糖類。載體媒介也可以是氣體,例如氦氣、氬氣或氮氣。
另外參照第3A圖,一或多種前驅物係從前驅物供應源301被泵送至混合器303。可藉由其中一個泵360而從前驅物供應源泵送前驅物。載體媒介係從載體媒介供應源302被泵送至混合器303,例如藉由其中一個泵360而進行,載體媒介係於混合器303中與來自前驅物供應源301的前驅物混合。混合器303可為超音波式靜力混合器或攪拌混合器之其中一個。在一替代實施例中,前驅物係已保持在前驅物供應源301的載體媒介中,且因而不需由混合器303進行混合。在離開混合器303之後,前驅物與載體媒介的混合物係液體溶液或包含分散於載體媒介內之粒子。粒子通常係包含了用於形成上述電化學活性材料,或陰極材料之成分。
在方法200的方塊202處,前驅物與載體媒介之混合物(以下稱「漿體」)係由混合器303供應至反應腔室319。反應腔室319可包含由能量施加器305所圍繞之腔室管件304,該腔室管件304具有入口322與出口323,如第3A圖所示。腔室管件304係由例如氟聚合物(例如聚四氟乙烯(PTFE))、石英,或含塗佈於氟聚合物或石英中之不同微波及/或RF透明材料的管件所構成,以進行腐蝕保護。
在方法200的方塊203處,係對漿體供給能量以合成活性材料。能量會激發漿體中所分散之粒子的原子熱運動,使該等粒子傾向於運動而找到較低能量之晶格位置。活性材料可為但不限於上列之材料層110、112之任何活性材料。能量來源306對能量施加器305供應能量,該能量施加器305可於腔室管件304上均勻分佈能量。所供應之能量可為微波能量、超音波能量、DC電壓、RF能量,或該等能量之組合。能量可在兩個階段中施加。舉例而言,在第一階段中施加RF能量,然後在第二階段中施加微波能量。此能量係透過裝置組合而施加,例如電氣與熱裝置之組合。在對漿體施加能量期間,可能需要改變腔室管件304內的條件。利用調節閥312使腔室管件304內的壓力維持在10巴(bar)至100巴之間,例如介於20巴與80巴之間,以避免在加熱時因漿體膨脹而損害腔室管件304。
可在方法200的方塊203處使活性材料之粒子合成為控制大小與形態。活性粒子的大小與形態係藉由控制進入腔室管件304中之漿體流率、腔室管件304內部之壓力、能量來源306對漿體所提供之能量大小,或其他變數(例如漿體中的碳含量)中之至少一個而加以控制。也可改變前驅物組合或各前驅物的濃度以及載體媒介來達到不同的粒子大小目標或活性材料組成。對流經腔室管件304之漿體持續施加能量,以提供活性材料之連續產生而於方法200中使用。活性材料的粒子(可為奈米或微米粒子或晶體)可具有片狀或針狀形狀,且具有介於約10奈米至20000奈米之大小,例如介於約75奈米與750奈米之間,或介於約90奈米與500奈米之間。活性材料的粒子係視情況而具有[020]結晶表面紋理。活性材料的粒子在離開腔室管件304之後也可具有傳導性塗層(例如碳塗層)。碳塗層係介於1奈米至25奈米厚,例如介於5奈米至10奈米厚。所合成之活性材料係上述示例性含電解質材料之一。
在一實施例中,係從黏結劑供應源307供應非必要之黏結劑至混合器308,例如藉由其中一個泵360來進行,黏結劑係於混合器308中與離開腔室管件304的活性材料混合物混合,如第3B圖所示。黏結劑材料可為聚合物、聚合物之混合物或單體。視情況者,可由碳源供應源313提供碳源(例如,溶液中的糖)至混合器308,例如藉由其中一個泵360而進行,碳源係混合至活性材料混合物中。視情況將在活性材料合成反應期間所產生的副產物過濾出來,並經由排放導管314加以移除。副產物的存在係端視於所使用之載體媒介與前驅物而定,但可包含如Li2SO4
在方法200的方塊204處,活性材料係噴塗至基板310以於基板310上方形成含活性材料之膜層。在使用黏結劑材料時,活性材料與黏結劑兩者都沉積在基板上,且黏結劑材料係均勻分佈於活性材料內。基板310是由電流收集材料片材或捲材所構成,例如銅或鋁。基板310也可具有高起結構,例如網孔,以提升活性材料和基板310之間的連接介面。基板310係通過噴塗腔室309運送且位於滾輪(未圖示)上之噴塗噴嘴318下方。基板310係位於滾筒(未圖示)上,且在通過噴塗腔室後可噴塗置於另一滾筒(未圖示)上。噴塗噴嘴318係裝設至噴塗腔室309之腔室本體321的上部。在一實施例中,所應用之噴塗方法為電漿噴塗,例如DC電漿噴塗,或RF感應電漿噴塗,其中材料係由電漿噴流攜帶至基板並進而沉積。
在噴塗處理期間,添加之含碳材料係與活性材料的晶體結合以形成薄碳層。薄碳層有助於對基板310產生傳導性連接,且其係介於5nm至10nm厚。若在載體媒介中添加有含碳化合物,活性材料的晶體也可在離開反應腔室319之後至少部分塗佈於薄碳層內。沉積在基板310上的活性材料膜層含有活性材料之晶體,其中各活性材料之晶體係塗佈於薄碳薄膜中。晶體可與彼此接觸,且至少一部分晶體與薄碳薄膜係與基板310接觸。活性材料之膜層也可含有分佈於活性材料晶體間之黏結劑材料,以使活性材料之晶體黏結在一起,並將活性材料之膜層黏結至基板。黏結劑材料係以此方式分佈,以在活性材料之晶體之間產生接觸,並使活性材料之晶體與基板310接觸。
在活性材料混合物中的載體媒介為液體,該液體在進入噴塗腔室309之後係經霧化。可選擇載體媒介以於活性材料粒子周圍成核,以減少對噴塗腔室309之壁體的附著。基板310係視情況而第二次通過噴塗腔室309,以於基板310的相對側塗佈活性材料。
噴塗噴嘴318含有排列成陣列之一或多個噴塗噴嘴。藉由在與基板310運行方向垂直的方向側部相鄰地放置多個噴嘴,該陣列係配置以有效地覆蓋正通過之基板310的寬度。有利的是可在基板310上建置多重或較厚之活性材料膜層。噴塗噴嘴318含有在平行於基板310運行方向之方向彼此前後配置的一或多個噴嘴,以沉積含活性材料之較厚膜層。基板310運行通過噴塗腔室309之速率係可改變,以調整正沉積在基板310上之活性材料層的厚度。在另一實施例中,第二噴塗噴嘴(未圖示)或噴嘴陣列係位於噴塗腔室309內且在基板310下方,以對基板310的底部進行噴塗。
第二噴塗噴嘴320與噴塗噴嘴318結合使用可在基板通過噴塗腔室309時同時對基板的頂部與底部進行噴塗,如第3D圖所示。基板310也可垂直定向,且噴塗噴嘴係排列為從基板310的兩側進行噴塗。
活性材料混合物係以介於1ml/min至5000ml/min之速率而從噴塗噴嘴318或噴塗噴嘴陣列中的各噴塗噴嘴進行噴塗,例如介於1ml/min至15ml/min,或介於約2ml/min至10ml/min。在噴塗腔室中的條件係經控制,因此在腔室內的壓力係介於1托耳至125托耳之間,例如介於5托耳至100托耳之間;且溫度係介於攝氏100度至1500度之間,例如介於攝氏200度至1000度之間。
視情況者,如第3C圖所示,藉由噴嘴315而將黏結材料與含碳材料噴塗至噴塗腔室309中,而從噴嘴318噴塗活性材料。透過不同的噴塗噴嘴315來提供黏結材料有利於不阻塞噴塗噴嘴318。淬火氣體(例如氮或其他惰性氣體)係從淬火氣體供應源316而由例如其中一個泵360藉由噴嘴317泵送至噴塗腔室309中。以經控制之速率來供應該氣體,以控制活性材料的溫度變化率,從而使最近沉積的活性材料退火至所需退火程度。退火處理係有利於使晶粒結構與活性材料粒子的大小固化。在噴塗腔室309內基板310下方係置有加熱滾筒或輻射加熱器(未圖示),以確保對沉積在基板310上之活性材料進行均勻加熱。在方法200之方塊205處,收集在方法200中所使用之載體溶劑,並透過排放導管311而使該載體溶劑排出噴塗腔室309以進行循環。
所述活性材料合成方法係有效率且有利地產生活性材料,以供能量儲存裝置生產之用。
前述說明係與本發明之特定實施例有關,然可在不背離本發明之基本範疇的情況下設計本發明的其他和進一步實施例,而本發明之範疇係由下述申請專利範圍所決定。
100...鋰離子電池
101...負載
102...陽極結構
103...陰極結構
104...分離層
110...材料層
111...電流收集器
112...材料層
113...電流收集器
200...方法
201...方塊
202...方塊
203...方塊
204...方塊
205...方塊
301...前驅物供應源
302...載體媒介供應源
303...混合器
304...腔室管件
305...能量施加器
306...能量來源
307...黏結劑供應源
308...混合器
309...噴塗腔室
310...基板
311...排放導管
312...調節閥
313...碳源供應源
314...排放導管
315...噴塗噴嘴
316...淬火氣體供應源
317...噴嘴
318...噴塗噴嘴
319...反應腔室
320...第二噴塗噴嘴
321...腔室主體
322...入口
323...出口
360...泵
為使本發明之上述特徵可以被詳細了解,本發明之更特定描述(簡要說明於上文)係可參照實施例而得知。然應注意所附圖式僅說明本發明之典型實施例,且因此不應被視為限制本發明之範疇,本發明也允許其他的等效實施例。
第1圖為根據一實施例之鋰離子電池的示意圖。
第2圖為一流程圖,該圖概述了根據一實施例之用於形成薄膜之方法。
第3A圖為根據一實施例之薄膜形成設備的示意圖。
第3B圖為根據另一實施例之薄膜形成設備的示意圖。
第3C圖為根據另一實施例之薄膜形成設備的示意圖。
第3D圖為根據另一實施例之薄膜形成設備的示意圖。
為助於理解,已盡可能在圖式中使用相同的元件符號來代表相同的元件。可知在一實施例中所揭露之元件係可有利地使用於其他實施例中,而無須特別載述。
200...方法
201...方塊
202...方塊
203...方塊
204...方塊
205...方塊

Claims (19)

  1. 一種用於在一基板上連續形成一電化學薄膜之設備,該設備包含:至少一個前驅物供應源;一反應腔室,該反應腔室包含:一腔室管件,該腔室管件具有流體耦接至該至少一個前驅物供應源之一入口;一能量施加器,該能量施加器係定位以運作性供給該腔室管件中之前驅物能量;及一能量來源,該能量來源耦接至該能量施加器;及一噴塗腔室,該噴塗腔室係流體耦接至該腔室管件之一出口,其中該噴塗腔室包含:一腔室本體;及至少一個噴塗噴嘴,該噴塗噴嘴流體耦接至該腔室管件的該出口。
  2. 如申請專利範圍第1項之設備,其中該腔室管件包含由聚四氟乙烯或石英所製成之一管件。
  3. 如申請專利範圍第1項之設備,其中該腔室管件包含由在聚四氟乙烯或石英中塗佈有微波透明材料之一管件。
  4. 如申請專利範圍第1項之設備,其中該能量來源產生微波能量、超音波能量、DC電壓以及RF能量中之至 少一個,且其中該能量施加器係圍繞該腔室管件。
  5. 如申請專利範圍第1項之設備,其中該至少一個噴塗噴嘴係一DC電漿噴塗噴嘴或一RF感應電漿噴塗噴嘴。
  6. 如申請專利範圍第1項之設備,進一步包含:一載體媒介供應源;及一混合器,其係流體耦接至該至少一個前驅物供應源、該載體媒介供應源以及該腔室管件之該入口。
  7. 如申請專利範圍第1項之設備,進一步包含一排放導管,該排放導管係流體耦接至該腔室管件的該出口,以提供一路徑供在流體進入該噴塗腔室前自離開該腔室管件之流體移除副產物之用。
  8. 如申請專利範圍第1項之設備,進一步包含:一黏結劑供應源;及一混合器,其中該混合器係流體耦接至該黏結劑供應源、該腔室管件的該出口以及該噴塗腔室。
  9. 如申請專利範圍第1項之設備,進一步包含:一碳源供應源;及一混合器,其中該混合器係流體耦接至該碳源供應源、該腔室管件的該出口以及該噴塗腔室。
  10. 如申請專利範圍第1項之設備,進一步包含一淬火氣體供應源,該淬火氣體供應源流體耦接至該噴塗腔室。
  11. 一種用於在一基板上連續形成一膜層的方法,該方法 包含以下步驟:使一或多種前驅物流入一反應器腔室中;使能量耦接於該一或多種前驅物,以形成活性材料之晶體;及將該活性材料之晶體噴塗至置於一噴塗腔室中之一基板上,以於該基板上沉積一活性材料膜層。
  12. 如申請專利範圍第11項之方法,進一步包含以下步驟:混合一黏結劑材料與該活性材料,其中該膜層進一步包含該黏結劑材料,且其中該黏結劑材料係均勻分佈於該活性材料之晶體間。
  13. 如申請專利範圍第11項之方法,進一步包含以下步驟:在使該一或多種前驅物流入該反應器腔室之前,連續混合該一或多種前驅物與一載體媒介。
  14. 如申請專利範圍第13項之方法,其中該載體媒介包含水與鹽類、混有一鹽類之一有機溶劑、水與混有一鹽類之有機溶劑之組合、一惰性氣體中的一種。
  15. 如申請專利範圍第13項之方法,其中該載體媒介含有一含碳化合物。
  16. 如申請專利範圍第11項之方法,其中該一或多種前驅物包含LiOH、FeSO4、H3PO4、Ni(NO3)2、Co(NO3)2以及AlCl3中之至少一個。
  17. 如申請專利範圍第11項之方法,其中該活性材料係選自由LiFePO4、LiNi0.8Co0.15Al0.05O2,、鋰鈷二氧化物(LiCoO2)、鋰錳二氧化物(LiMnO2)、二硫化鈦(TiS2)、 LiNixCo1-2xMnO2、LiMn2O4、LiFePO4、LiFe1-xMgPO4、LiMoPO4、LiCoPO4、Li3V2(PO4)3、LiVOPO4、LiMP2O7、LiFe1.5P2O7、LiVPO4F、LiAlPO4F、Li5V(PO4)2F2、Li5Cr(PO4)2F2、Li2CoPO4F、Li2NiPO4F、Na5V2(PO4)2F3、Li2FeSiO4、Li2MnSiO4、Li2VOSiO4、LiNiO2及前述物質的組合組成之群組。
  18. 如申請專利範圍第11項之方法,進一步包含以下步驟:在該活性材料之各晶體周圍形成一薄碳層。
  19. 如申請專利範圍第11項之方法,進一步包含以下步驟:藉由使一淬火氣體流入該噴塗腔室中而對該活性材料之膜層進行退火。
TW100114086A 2010-05-05 2011-04-22 用於在基板上連續形成電化學薄膜之設備及方法 TWI539027B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US33163510P 2010-05-05 2010-05-05

Publications (2)

Publication Number Publication Date
TW201207152A TW201207152A (en) 2012-02-16
TWI539027B true TWI539027B (zh) 2016-06-21

Family

ID=44902123

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100114086A TWI539027B (zh) 2010-05-05 2011-04-22 用於在基板上連續形成電化學薄膜之設備及方法

Country Status (3)

Country Link
US (1) US8967076B2 (zh)
TW (1) TWI539027B (zh)
WO (1) WO2011139574A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766392B (zh) * 2019-10-18 2022-06-01 台灣積體電路製造股份有限公司 沉積設備、沉積系統及半導體裝置的形成方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130029227A1 (en) * 2011-07-26 2013-01-31 Toyota Motor Engineering & Manufacturing North America, Inc. Polyanion active materials and method of forming the same
JP5753043B2 (ja) * 2011-09-20 2015-07-22 株式会社Screenホールディングス 電池用電極の製造方法および電池の製造方法
WO2014007866A2 (en) * 2012-03-15 2014-01-09 William Marsh Rice University Methods of making multilayer energy storage devices
US8753724B2 (en) * 2012-09-26 2014-06-17 Front Edge Technology Inc. Plasma deposition on a partially formed battery through a mesh screen
KR101565303B1 (ko) * 2012-11-27 2015-11-03 주식회사 엘지화학 수열 합성 장치 및 이를 사용한 양극 활물질의 제조방법
US20140272580A1 (en) 2013-03-15 2014-09-18 Perfect Lithium Corp Complexometric Precursor Formulation Methodology For Industrial Production Of Fine And Ultrafine Powders And Nanopowders Of Layered Lithium Mixed metal Oxides For Battery Applications
JP6425706B2 (ja) * 2013-03-15 2018-11-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated リチウムイオンバッテリのためのエレクトロスプレーを用いた複合シャワーヘッドコーティング装置
US9159999B2 (en) 2013-03-15 2015-10-13 Nano One Materials Corp. Complexometric precursor formulation methodology for industrial production of fine and ultrafine powders and nanopowders for lithium metal oxides for battery applications
US10374232B2 (en) * 2013-03-15 2019-08-06 Nano One Materials Corp. Complexometric precursor formulation methodology for industrial production of fine and ultrafine powders and nanopowders for lithium metal oxides for battery applications
US9698419B1 (en) 2013-03-15 2017-07-04 Nano One Materials Corp. Complexometric precursor formulation methodology for industrial production of fine and ultrafine powders and nanopowders of layered lithium mixed metal oxides for battery applications
US8968669B2 (en) 2013-05-06 2015-03-03 Llang-Yuh Chen Multi-stage system for producing a material of a battery cell
US9637827B2 (en) 2013-10-01 2017-05-02 William Marsh Rice University Methods of preventing corrosion of surfaces by application of energy storage-conversion devices
US9570736B2 (en) 2013-10-16 2017-02-14 William Marsh Rice University Electrodes with three dimensional current collectors and methods of making the same
WO2015172278A1 (en) * 2014-05-12 2015-11-19 GM Global Technology Operations LLC Lithium battery fabrication process using multiple atmospheric plasma nozzles
CN105140515A (zh) * 2015-08-27 2015-12-09 北大先行科技产业有限公司 一种锂离子电池正极材料的制备方法
US11001695B2 (en) * 2016-01-07 2021-05-11 The Board Of Trustees Of The Leland Stanford Junior University Fast and reversible thermoresponsive polymer switching materials
US11376559B2 (en) 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material
US11121354B2 (en) 2019-06-28 2021-09-14 eJoule, Inc. System with power jet modules and method thereof
US11673112B2 (en) 2020-06-28 2023-06-13 eJoule, Inc. System and process with assisted gas flow inside a reaction chamber
CN111211325B (zh) * 2020-03-09 2021-09-17 广东工业大学 一种锂离子电池负极材料及其制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989648A (en) * 1997-05-06 1999-11-23 The Penn State Research Foundation Plasma generation of supported metal catalysts
US20020192137A1 (en) * 2001-04-30 2002-12-19 Benjamin Chaloner-Gill Phosphate powder compositions and methods for forming particles with complex anions
CN100480217C (zh) * 1999-10-12 2009-04-22 Toto株式会社 复合构造物及其制作方法和制作装置
US6652822B2 (en) * 2001-05-17 2003-11-25 The Regents Of The University Of California Spherical boron nitride particles and method for preparing them
US7824706B2 (en) 2003-05-09 2010-11-02 Freedom Health, Llc Dietary supplement and method for the treatment of digestive tract ulcers in equines
JP2005146406A (ja) * 2003-10-23 2005-06-09 Zenhachi Okumi 微粒子の製造方法及びそのための装置
CN102782176B (zh) 2009-08-24 2014-10-15 应用材料公司 通过热喷涂原位沉积电池活性锂材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766392B (zh) * 2019-10-18 2022-06-01 台灣積體電路製造股份有限公司 沉積設備、沉積系統及半導體裝置的形成方法
US11530479B2 (en) 2019-10-18 2022-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic layer deposition tool and method

Also Published As

Publication number Publication date
US20110274850A1 (en) 2011-11-10
US8967076B2 (en) 2015-03-03
WO2011139574A3 (en) 2012-04-05
TW201207152A (en) 2012-02-16
WO2011139574A2 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
TWI539027B (zh) 用於在基板上連續形成電化學薄膜之設備及方法
Li et al. A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery
TWI795264B (zh) 無烯烴隔板之鋰離子電池
CN102473902B (zh) 锂离子电池用负极及其制造方法以及锂离子电池
JP4288621B2 (ja) 負極及びそれを用いた電池、並びに負極の製造方法
KR101109285B1 (ko) 비수 전해질 2차 전지와 비수 전해질 2차 전지용 음극의제조 방법
US20150110971A1 (en) Composite electrodes for lithium ion battery and method of making
US20130189577A1 (en) Apparatus and method for hot coating electrodes of lithium-ion batteries
CN106663786A (zh) 硅在纳米线上的结构受控的沉积
JP2010097843A (ja) リチウムイオン二次電池
JP2014517473A (ja) 制御された樹枝状結晶成長を有する充電可能なアルカリ金属電極およびアルカリ土類電極、ならびにそれらの製造方法および使用方法
US20160006018A1 (en) Electrode surface roughness control for spray coating process for lithium ion battery
JP2010073571A (ja) リチウムイオン二次電池およびその製造方法
Wu et al. Interface engineering in solid state Li metal batteries by quasi-2D hybrid perovskites
CN107768720A (zh) 基于液态电解液的无负极二次锂电池
US20120064225A1 (en) Spray deposition module for an in-line processing system
CN105304860B (zh) 一种制备石墨烯基底电极及电池和超级电容器的方法
WO2011100487A2 (en) HYDROTHERMAL SYNTHESIS OF LiFePO4 NANOPARTICLES
US20230072774A1 (en) Pre-lithiation process for electrode by dry direct contact to lithium targets
CN109148894A (zh) 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件
CN112186135B (zh) 一种包覆有金属氧化物层的氟磷酸钒钠电极及其制备方法
CN102800867A (zh) 一种用于锂离子电池的硅基负极材料
KR101697249B1 (ko) 리튬 이온 이차전지의 제조 장치 및 제조 방법
Yu et al. Graphene quantum dot surface coating for improving the electrochemical performance of Li-rich Li1. 2Mn0. 54Ni0. 13Co0. 13O2
WO2020140941A1 (zh) 层状结构的LiNi0.69Mn0.23Co0.08O2化合物及其合成方法和应用

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees