TWI503437B - Hvpe腔室硬體與hvpe方法 - Google Patents

Hvpe腔室硬體與hvpe方法 Download PDF

Info

Publication number
TWI503437B
TWI503437B TW099111313A TW99111313A TWI503437B TW I503437 B TWI503437 B TW I503437B TW 099111313 A TW099111313 A TW 099111313A TW 99111313 A TW99111313 A TW 99111313A TW I503437 B TWI503437 B TW I503437B
Authority
TW
Taiwan
Prior art keywords
gas
chamber
reactive
source
coupled
Prior art date
Application number
TW099111313A
Other languages
English (en)
Other versions
TW201100575A (en
Inventor
Tetsuya Ishikawa
David H Quach
Anzhong Chang
Olga Kryliouk
Yuriy Melnik
Harsukhdeep S Ratia
Son T Nguyen
Lily Pang
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201100575A publication Critical patent/TW201100575A/zh
Application granted granted Critical
Publication of TWI503437B publication Critical patent/TWI503437B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4673Plural tanks or compartments with parallel flow
    • Y10T137/479Flow dividing compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4673Plural tanks or compartments with parallel flow
    • Y10T137/4807Tank type manifold [i.e., one tank supplies or receives from at least two others]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4673Plural tanks or compartments with parallel flow
    • Y10T137/4824Tank within tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7504Removable valve head and seat unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8376Combined

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Description

HVPE腔室硬體與HVPE方法
本文揭露之實施例大致係關於氫化物氣相磊晶(HVPE)腔室。
現今發現III族氮化物半導體在短波發光二極體(LEDs)、雷射二極體(LDs)、與電子元件(包括高功率、高頻率與高溫電晶體與積體電路)的發展與製造中越來越重要。一種已經用來沉積III族氮化物之方法為HVPE。HVPE中,氫化物氣體與III族金屬反應,其接著與氮前驅物反應以形成III族金屬氮化物。
隨著對LEDs、LDs、電晶體與積體電路的需求提高,沉積III族金屬氮化物的效率便較具重要性。因此,技術中需要一種改良的HVPE沉積方法與HVPE設備。
本文揭露之實施例大致係關於HVPE腔室。腔室可具有一或多個與其耦接之前驅物源。當兩個不同前驅物源與其耦接時,可沉積兩個不同層。舉例而言,鎵源與不同的鋁源可耦接至處理腔室,以便在相同處理腔室中分別地沉積氮化鎵與氮化鋁於基板上。一實施例中,五個前驅物源可耦接至腔室。上述前驅物源能夠分配前驅物,諸如鎵、銦、鋁、矽與鎂。當前驅物係用來形成含氮化合物時,可應用含氮氣體(例如,NH3 )。可在較低溫度下在與前驅物不同的位置處將氮導入處理腔室。腔室的幾何結構可經設定以致將前驅物與反應性氣體分別地導入腔室以避免高濃度混合。腔室係經設計以藉由流動、擴散與對流來混合氣體。一實施例中,不同的溫度造成氣體混合在一起、反應並沉積於基板上,且極少或沒有沉積於腔室壁上。
一實施例中,設備包括腔室主體,其具有腔室壁;反應性產物舟,耦接至腔室主體;第一反應性產物源,配置於反應性產物舟中;及第二反應性源,配置於反應性產物舟中。設備亦可包括第一電阻式加熱器,耦接至反應性產物舟;第三反應性源,耦接至腔室主體且配置於反應性產物舟外;第二電阻式加熱器,嵌於腔室壁中;及氣體分配噴頭,配置於腔室主體中且與第三反應性源耦接。設備亦可包括基座,配置於腔室主體中且在噴頭對面;一或多個加熱元件,配置於基座下方;第一氣體環,沿著腔室壁配置於腔室主體中,且耦接至第一反應性產物與第二反應性產物兩者;及第二氣體環,耦接至第一氣體環,第二氣體環具有複數個開口穿過其中,以允許氣體進入腔室主體。
另一實施例中,方法包括將基板插入處理腔室。處理腔室具有一氣體分配噴頭,配置於基座上方,而基板係配置於基座上。處理腔室亦具有氣體入口環,配置於處理腔室中且在氣體分配噴頭與基座之間。方法亦包括在處理腔室遠端加熱第一反應性氣體、透過氣體入口環將第一反應性氣體導入處理腔室、透過氣體分配噴頭將第二反應性氣體導入處理腔室、並加熱處理腔室壁。方法亦包括旋轉基板並於基板上沉積層,層係第一反應性氣體與第二反應性氣體之反應性產物。
本文揭露之實施例大致係關於HVPE腔室。腔室可具有一或多個與其耦接之前驅物源。當兩個不同前驅物源與其耦接時,可沉積兩個不同層。舉例而言,鎵源與不同的鋁源可耦接至處理腔室以便在相同處理腔室中分別地沉積氮化鎵與氮化鋁於基板上。一實施例中,五個前驅物源可耦接至腔室。上述前驅物源能夠分配前驅物,諸如鎵、銦、鋁、矽與鎂。當前驅物係用來形成含氮化合物時,可應用含氮氣體(例如,NH3 )。可在較低溫度下在與前驅物不同的位置處將氮導入處理腔室。腔室的幾何結構可經設定以致將前驅物與反應性氣體分別地導入腔室以避免高濃度混合。腔室係經設計以藉由流動、擴散與對流來混合氣體。一實施例中,不同的溫度造成氣體混合在一起、反應並沉積於基板上,且極少或沒有沉積於腔室壁上。此外,腔室設有金屬氧化物源輸送系統。此外,腔室設有活性物種產生器,諸如電漿順流、氣體加熱器、熱金屬線等。
第1圖係根據一實施例之HVPE設備100的示意圖。設備包括蓋104所封圍之腔室102。透過氣體分配噴頭106將來自第一氣體源110之處理氣體輸送至腔室102。一實施例中,氣體源110可包括含氮化合物。另一實施例中,氣體源110可包括氨。一實施例中,亦可透過氣體分配噴頭106或透過腔室102之壁108任一者導入惰性氣體(諸如,氦或雙原子氮)。能量源112可配置於氣體源110與氣體分配噴頭106之間。一實施例中,能量源112可包括加熱器。能量源112可破開來自氣體源110之氣體(例如,氨),以致來自含氮氣體之氮更具反應性。
為了與來自第一源110之氣體反應,可自一或多個第二源118輸送前驅物材料。一或多個第二源118可包括前驅物,諸如鎵與鋁。可理解雖然提及兩個前驅物,但可如上述般輸送更多或更少的前驅物。一實施例中,前驅物包括鎵,其以液體形式存在於前驅物源118中。另一實施例中,前驅物包括鋁,其以固體形式存在於前驅物源118中。一實施例中,鋁前驅物可為固體、粉末形式。可藉由流動反應性氣體越過與/或穿過前驅物源118中之前驅物來輸送前驅物至腔室102。一實施例中,反應性氣體可包括含氯氣體,例如雙原子氯。含氯氣體可與前驅物源(諸如,鎵或鋁)反應以形成氯化物。一實施例中,一或多個第二源118可包括共熔合金材料與其合金。另一實施例中,HVPE設備100可經配置以處理摻雜源及至少一本質源以控制摻雜濃度。
為了提高含氯氣體與前驅物反應之有效性,含氯氣體可曲折通過腔室132中之舟區並以電阻式加熱器120加熱之。藉由提高含氯氣體曲折通過腔室132之停留時間,可控制含氯氣體之溫度。藉由提高含氯氣體之溫度,氯可更快地與前驅物反應。換句話說,溫度係氯與前驅物間之反應的催化劑。
為了提高前驅物的反應性,可藉由第二腔室132中之電阻式加熱器120在舟中加熱前驅物。舉例而言,一實施例中,可將鎵前驅物加熱至約750℃至約850℃間之溫度。氯化物反應產物可接著輸送至腔室102。反應性氯化物產物首先進入管122,其中產物均勻地分散於管122中。管122係連接至另一管124。氯化物反應產物在已經均勻地分散於第一管122中後,進入第二管124。氯化物反應產物接著進入腔室102,其中產物與含氮氣體反應以在配置於基座114上之基板116上形成氮化物層。一實施例中,基座114可包括碳化矽。氮化物層可包括諸如氮化鎵或氮化鋁。可透過排氣裝置126排出其他反應產物(諸如,氮與氯)。
腔室102可具有能導致浮力效應之熱梯度。舉例而言,在約450℃與約550℃之間的溫度下透過氣體分配噴頭106導入氮基氣體。腔室壁108可具有約600℃至約700℃的溫度。基座114可具有約1050至約1150℃的溫度。因此,腔室102中之溫度差異可讓氣體在受熱時於腔室102中上升而在冷卻時下降。氣體的上升與下降可造成氮氣與氯化物氣體的混合。此外,浮力效應因為混合可減少氮化鎵或氮化鋁沉積於壁108上之數量。
以配置於基座114下方之燈模組128加熱基座114來達成處理腔室102的加熱。沉積過程中,燈模組128係處理腔室102熱量的主要來源。雖然顯示且描述成燈模組128,但可理解能應用其他加熱源。可藉由利用嵌於腔室102之壁108中之加熱器130來達成處理腔室102的額外加熱。嵌於壁108中之加熱器130可在沉積處理過程中提供少量(若有的話)的熱量。熱電偶可用來測量處理腔室內之溫度。熱電偶之輸出可反饋至控制器,其基於來自熱電偶之數值控制加熱器130之加熱。舉例而言,若腔室太冷時,將打開加熱器130。若腔室太熱時,將關掉加熱器130。此外,來自加熱器130之加熱量可經控制以致由加熱器130提供少量的熱量。
沉積處理後,通常將基板116自處理腔室102取出。關掉燈模組128。在來自燈模組128之熱不存在下,腔室102可快速冷卻。已經沉積於壁108上之氮化物前驅物的熱膨脹係數不同於壁108本身的熱膨脹係數。因此,氮化物前驅物會因為熱膨脹而成片剝離。為了避免不欲之成片剝離,可打開嵌於腔室壁108中之加熱器130以控制熱膨脹並維持腔室102於所欲腔室溫度下。可再度基於熱電偶之即時反饋來控制加熱器130。一旦關掉燈模組128後,可打開或調高加熱器130以維持腔室102溫度在所欲溫度下,以致氮化物前驅物不會成片剝離而污染基板或基座114上之空地而造成不均勻的基座114表面。藉由維持腔室壁108在高溫下,清潔氣體(例如,氯)可更有效地自腔室壁108清潔沉積物。
一般而言,沉積處理如下進行。首先可將基板116插入處理腔室102並配置於基座114上。一實施例中,基板116可包括藍寶石。可打開燈模組128以加熱基板116且對應地加熱腔室102。可自第一源110將含氮反應性氣體導入處理腔室。含氮氣體可通過能量源112(例如,氣體加熱器)以導致含氮氣體進入更具反應性狀態。含氮氣體接著通過腔室蓋104與氣體分配噴頭106。一實施例中,腔室蓋104可為水冷式。
亦可將前驅物輸送至腔室102。含氯氣體可通過與/或越過前驅物源118中之前驅物。含氯氣體接著與前驅物反應以形成氯化物。氯化物已經以電阻式加熱器120於腔室132中加熱並接著輸送至上游管122,其中氯化物均勻地分散於管122中。氯化物氣體接著在導入腔室102內容積之前流向其他管124。可理解雖然討論為含氯氣體,但本發明並不限於含氯氣體。反之,可在HVPE處理中應用其他化合物。腔室壁108可具有嵌入壁108中之加熱器130產生之極少量的熱量。腔室120中熱量大部分係由基座114下方之燈模組128所產生。
由於腔室102中之熱梯度,氯化物氣體與含氮氣體在處理腔室102中上升與下降並因此混合以形成沉積於基板116上之氮化物。除了沉積於基板116上以外,氮化物層亦可沉積於腔室102之其他暴露區。氯化物與含氮氣體之氣態反應產物可包括氯與氮,其可透過排氣裝置126排出腔室。
一旦沉積處理完成後,可關掉燈模組128並提高加熱器130輸出。可移除基板116。加熱器130輸出可減少或排除熱膨脹,並因此可將任何沉積氮化物材料維持於原位直到所欲清潔時間結束且不會自壁108成片剝離而落於進入/離開基板116之基座114上。一旦沉積處理完成後,可藉由導入蝕刻劑以自壁108蝕刻氮化物而移除任何已經沉積於壁108上之氮化物。清潔過程中,可觀掉燈模組128而熱量大部分可來自嵌入壁108中之加熱器130。一旦將新的基板116置入腔室102中,可重複處理。
雖然討論為將含氮氣體透過氣體分配噴頭106導入且將前驅物輸送至對應腔室102中間之區域,但可理解氣體導入位置可為相反的。然而,若透過噴頭106導入前驅物,可加熱噴頭106以提高氯化物反應產物之反應性。
由於在不同溫度下輸送氯化物反應產物與氨,透過相同進料器輸送氨與氯化物反應產物將出現問題。舉例而言,若石英噴頭係用來供給氨與氯化物反應產物兩者,石英噴頭會因為氨與氯化物反應產物之不同溫度而破裂。
此外,沉積處理可包括沉積薄氮化鋁層作為晶種層於藍寶石基板,接著沉積氮化鎵層。氮化鎵與氮化鋁兩者可在相同處理腔室中沉積。之後,可將藍寶石基板移除並置於沉積另一層之MOCVD處理腔室中。某些實施例中,可排除氮化鋁層。當氮化鋁層與氮化鎵層兩者沉積於相同腔室中時,可利用雙原子氮逆流來避免任何其他前驅物與氯反應而形成氯化物反應產物。可將雙原子氮流入前驅物不反應之腔室而將氯流入以接觸其他前驅物。因此,一時間內僅有一前驅物反應。
第2圖係根據另一實施例之設備200的示意等角圖。設備200包括耦接至腔室204之前驅物源202或舟。腔室204係由蓋212、底部210與封圍件208所封圍且由夾鉗206固持於原位。透過通道214將含氯氣體導入前驅物源202。含氯氣體在與前驅物接觸前曲折通過通道214,以致可提高含氯氣體之溫度至最適合與前驅物反應之預設溫度。
第3A圖係根據另一實施例之處理腔室300的示意等角圖。處理腔室300包括第一前驅物源302、第二前驅物源304、讓氯氣通過之通道306、上環308、下環310與側壁312。第3B圖係第3A圖之示意橫剖面圖。在透過連接器318(分散於管314、316之間)流至第二管316之前,氯化物反應產物可透過第一上游管314進入腔室並接著均勻地分散於其中。一實施例中,可呈現複數個實質相同的連接器318。另一實施例中,可呈現複數個連接器318,其中至少一連接器318不同於至少一另一連接器318。另一實施例中,可呈現複數個連接器318,其實質均勻地分散於管314、316之間。另一實施例中,可呈現複數個連接器318,其非均勻地分散於管314、316之間。一實施例中,上環與下環308、310包括不透明石英。一實施例中,壁312可包括透明石英。另一實施例中,管314、316可包括透明石英。下襯裡320可包括不透明石英。環308、310可具有自壁312延伸向外之唇部322。O形環可配置於唇部322邊緣外以確保O形環盡可能遠離加熱之腔室壁312與燈模組。O形環通常直到約250℃之前係可用的。因此,將O形環遠離腔室主體係有好處的。
第4圖係根據另一實施例之處理腔室400的示意等角圖。處理腔室400包括支撐軸420支撐之基座418。處理腔室400亦包括腔室壁402,具有第一管404與其耦接。第一管404係氯化物反應產物最初流入在釋放至腔室前之管。管404係透過一或多個連接器408耦接至第二管406。一實施例中,一或多個連接器408可經配置以實質平衡氯化物反應產物的流動。一實施例中,可呈現複數個實質相同的連接器408。另一實施例中,可呈現複數個連接器408,其中至少一連接器408不同於至少一另一連接器408。另一實施例中,可呈現複數個連接器408,其實質上均勻地分散於管404、406之間。另一實施例中,可呈現複數個連接器408,其非均勻地分散於管404、406之間。管406具有複數個開口410,經由開口410可讓氯化物反應產物進入處理空間。一實施例中,開口410可沿著第二管406均勻地分散。另一實施例中,開口410可沿著第二管406非均勻地分散。一實施例中,開口410可具有實質相似尺寸。另一實施例中,開口410可具有不同尺寸。一實施例中,開口410可朝向遠離基板之方向。另一實施例中,開口410可朝向大致面對基板之方向。另一實施例中,開口410可朝向實質平行於基板沉積表面之方向。另一實施例中,開口410可朝向多個方向。首先藉由將含氯氣體導入前驅物源或舟來形成氯化物氣體並流動於通道416中。含氯氣體曲折環繞管414中之通道。通道416係由上述之電阻式加熱器所加熱。因此,在接觸前驅物之前提高含氯氣體溫度。一旦氯與前驅物接觸後,產生反應以形成氯化物反應產物,反應產物係流過耦接至管414之氣體進料器412中之通道。接著,氯化物反應產物係均勻地分散且配置於處理腔室400中。
第5圖係根據一實施例之前驅物源500的示意剖面圖。本文所述之實施例中,前驅物為鎵,然而,可理解敘述能適用於任何液體前驅物。前驅物源500包括前驅物本身與其上之漂浮件504。漂浮件504為讓氯氣體流過以與前驅物接觸之物件。當氯與前驅物接觸時,將會使用掉某些前驅物。因此,液體水平將隨著時間下降。本身而言,漂浮件504將向下移動並漂浮於前驅物上,以致氯氣體暴露於前驅物在前驅物水平下降時係實質相同。漂浮件504上方之區506可隨著前驅物502減少而增加。漂浮件504的材料可包括PbN以排除石英接觸鎵。漂浮件504坐落於前驅物上,前驅物係位於坐落於支撐襯裡502上之襯裡530中。
第6圖係根據另一實施例之前驅物源600的示意剖面圖。雖然描述提及固體(粉末鋁前驅物),但可理解前驅物可為任何固體前驅物。前驅物係在噴頭604下方,氯氣通過噴頭604流入以接觸前驅物。噴頭604提高氯氣暴露於前驅物之停留時間以致可輸送最理想數量的前驅物至處理腔室。由於噴頭604非為漂浮件,並不預期噴頭604上方之區606會隨著時間增加。噴頭604坐落於支撐襯裡602中。
第7圖係根據一實施例之處理腔室中浮力之示意圖。如線所示,腔室中之氣流係循環的,以致氣體自腔室底部上升、混合並接著當溫度冷卻時朝向腔室底部下沉。第8圖係根據一實施例之處理腔室中熱分配之示意圖式。如第8圖所示,溫度分配實質上圍繞一軸而對稱,但腔室底部至腔室頂部具有溫度梯度。
本文所述之實施例係關於熱壁HVPE CVD反應器設計,其最小化壁沉積作用同時使任何附著於腔室壁之沉積膜足以良好地附著以管理產物基板上的缺陷。腔室係經建構以致可在所欲預熱溫度下分別地導入兩個反應性氣體。氣體注入係經設計以致兩個氣體主要在遠離壁之地方混合,但可提供足夠的擴散距離、體積與浮力以確保完美的預先混合並產生高品質薄膜。
腔室設計包括熱壁HVPE反應器,其具有多個加熱區以管理壁溫度與梯度;底部燈,以進行快速晶圓溫度上升與下降;HVPE舟結構,直接與具有選擇性稀釋能力之腔室內容積接合;及腔室結構,促進浮力流。腔室設計允許注射反應性氣體進入流動的主要流之方法。腔室設計亦包括氣體注入方法以讓主要的氣體混合發生在遠離壁的氣體空間中;基板加熱器,以進行快速溫度上升與下降;頂部加熱器,以進行溫度梯度控制;及個別的氣體注入,以致達成混合與浮力效應。設備亦包括獨立加熱器與控制器所加熱之多個金屬源、包括噴頭特徵之石英或陶瓷壁。可應用氦(而非氮)作為稀釋氣體以保持氣體於高溫下。可利用氣體加熱器或具有多個盤之加熱迷宮設計加熱頂部氨/氮氣或氨/氦氣以使氨更具反應性。可藉由能量源(例如,氣體加熱器)活化頂部氮源與稀釋劑。反應性氣體可流過以能量源預熱或活化之金屬源舟。可旋轉基座以進行更佳的氣體分配。平板可用來引導氣體混合物至基板邊緣。此外,可將排氣裝置配置在基板周圍或可排出加熱氣體之腔室上部。
雖然上述係針對本發明之實施例,但可在不悖離本發明之基本範圍下設計出本發明之其他與更多實施例,而本發明之範圍係由下方之申請專利範圍所界定。
100...HVPE設備
102、132、204...腔室
104...腔室蓋
106、604...噴頭
108...壁
110...氣體源
112...能量源
114、418...基座
116...基板
118、202、500、600...前驅物源
120、130...加熱器
122、404、440...第一管
124、406...第二管
126...排氣裝置
128...燈模組
200...設備
206...夾鉗
208...封圍件
210...底部
212...蓋
214、306、416...通道
300、400...處理腔室
302...第一前驅物源
304...第二前驅物源
308...上環
310...下環
312...側壁
314、316、414...管
318、408...連接器
320...下襯裡
322...唇部
402...腔室壁
410...開口
412...氣體進料器
420...支撐軸
502、602...支撐襯裡
504...漂浮件
506、606...區
530...襯裡
為了更詳細地了解本發明之上述特徵,可參照實施例(某些描繪於附圖中)來理解本發明簡短概述於上之特定描述。然而,需注意附圖僅描繪本發明之典型實施例而因此不被視為其之範圍的限制因素,因為本發明可允許其他等效實施例。
第1圖係根據一實施例之HVPE設備100之示意圖。
第2圖係根據另一實施例之設備200之示意等角圖。
第3A圖係根據另一實施例之處理腔室300之示意等角圖。
第3B圖係第3A圖之示意剖面圖。
第4圖係根據另一實施例之處理腔室400之示意剖面圖。
第5圖係根據一實施例之前驅物源500之示意剖面圖。
第6圖係根據另一實施例之前驅物源600之示意剖面圖。
第7圖係根據一實施例之處理腔室中浮力之示意圖。
第8圖係根據一實施例之處理腔室中熱分配之示意圖。
為了促進理解,盡可能應用相同的元件符號來標示圖示中相同的元件。預期一實施例揭露之元件可有利地用於其他實施例而不需特別詳述。
100...HVPE設備
102、132...腔室
104...腔室蓋
106...噴頭
108...壁
110...氣體源
112...能量源
114...基座
116...基板
118...前驅物源
120、130...加熱器
122...第一管
124...第二管
126...排氣裝置
128...燈模組

Claims (19)

  1. 一種設備,包括:一第一腔室主體與第二腔室主體,該第一與第二腔室主體具有數個腔室壁;一反應性產物舟,耦接至該第二腔室主體;一第一反應性產物源,配置於該反應性產物舟中;一第二反應性源,配置於該反應性產物舟中;一第一加熱元件,耦接至該反應性產物舟;一第三反應性源,耦接至該第一腔室主體且配置於該反應性產物舟外;一第二加熱元件,嵌於該第一腔室主體之該些腔室壁中;一氣體分配元件,配置於該第一腔室主體中且與該第三反應性源耦接;一基座,配置於該第一腔室主體中且與該氣體分配元件相對;及一或多個第三加熱元件,配置於該基座下方;一第一氣體環,在該基座外沿著該些腔室壁周圍配置於該第一腔室主體中,且該第一氣體環耦接至該第一反應性產物與該第二反應性產物兩者;及一第二氣體環,耦接至該第一氣體環,該第二氣體環具有複數個開口穿過其中,以允許氣體進入該第一腔室主體。
  2. 如申請專利範圍第1項所述之設備,其中該第一腔室主體包括一或多個環,該一或多個環包括不透明石英。
  3. 如申請專利範圍第2項所述之設備,其中該第一腔室主體具有一或多個壁,該一或多個壁包括透明石英。
  4. 如申請專利範圍第1項所述之設備,更包括一腔室蓋,該腔室蓋與該第一腔室主體之該些腔室壁耦接且位於該氣體分配元件上方,其中該氣體分配元件包括一氣體分配噴頭。
  5. 如申請專利範圍第4項所述之設備,其中該腔室蓋包括石英。
  6. 如申請專利範圍第5項所述之設備,其中該基座包括碳化矽。
  7. 如申請專利範圍第6項所述之設備,更包括一第四反應性源,該第四反應性源與該第一反應性源及該第二反應性源兩者耦接。
  8. 如申請專利範圍第7項所述之設備,更包括一惰性氣體源,該惰性氣體源與該第一反應性氣體源及該第二反應性氣體源兩者耦接。
  9. 如申請專利範圍第8項所述之設備,更包括一真空泵,該真空泵在該基座下方之一位置處與該第一腔室主體耦接。
  10. 如申請專利範圍第9項所述之設備,更包括:一第一氣體環,在該基座外沿著該些腔室壁周圍配置於該第一腔室主體中,且該第一氣體環耦接至該第一反應性產物與該第二反應性產物兩者;及一第二氣體環,耦接至該第一氣體環,該第二氣體環具有複數個開口穿過其中,以允許氣體進入該第一腔室主體,其中該第一氣體管與該第二氣體管各自包括透明石英。
  11. 如申請專利範圍第10項所述之設備,其中該設備係一氫化物氣相磊晶設備。
  12. 一種氫化物氣相磊晶方法,包括:將一基板插入一處理腔室中,該處理腔室具有一配置於一基座上方之一氣體分配噴頭,該基板係配置於該基座上,該處理腔室亦具有一配置於該處理腔室中且在該氣體分配噴頭與該基座之間的氣體入口;在該處理腔室遠端加熱一第一反應性氣體;透過該氣體入口引導該第一反應性氣體進入該處理 腔室;透過該氣體分配噴頭引導一第二反應性氣體至該處理腔室;加熱該處理腔室之數個壁;旋轉該基板;及沉積一層於該基板上,該層係該第一反應性氣體與該第二反應性氣體之一反應性產物。
  13. 如申請專利範圍第12項所述之方法,更包括:在該處理腔室遠端加熱一第三反應性氣體;透過該氣體入口引導該第三反應性氣體進入該處理腔室。
  14. 如申請專利範圍第13項所述之方法,其中該第一反應性氣體包括氯化鎵。
  15. 如申請專利範圍第14項所述之方法,其中該第二反應性氣體包括氨。
  16. 如申請專利範圍第15項所述之方法,其中該第三反應性氣體包括氯化鋁。
  17. 如申請專利範圍第16項所述之方法,其中該基板包括藍寶石。
  18. 如申請專利範圍第17項所述之方法,更包括加熱一含氯氣體並流動該加熱之含氯氣體越過一前驅物。
  19. 如申請專利範圍第18項所述之方法,其中該前驅物係選自液態鎵與固態粉末鋁所構成之群組。
TW099111313A 2009-04-10 2010-04-12 Hvpe腔室硬體與hvpe方法 TWI503437B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16839909P 2009-04-10 2009-04-10
US17263009P 2009-04-24 2009-04-24
US23087709P 2009-08-03 2009-08-03
US12/637,019 US8568529B2 (en) 2009-04-10 2009-12-14 HVPE chamber hardware

Publications (2)

Publication Number Publication Date
TW201100575A TW201100575A (en) 2011-01-01
TWI503437B true TWI503437B (zh) 2015-10-11

Family

ID=42933312

Family Applications (2)

Application Number Title Priority Date Filing Date
TW099111313A TWI503437B (zh) 2009-04-10 2010-04-12 Hvpe腔室硬體與hvpe方法
TW099111314A TWI480432B (zh) 2009-04-10 2010-04-12 Hvpe前驅物源硬體

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW099111314A TWI480432B (zh) 2009-04-10 2010-04-12 Hvpe前驅物源硬體

Country Status (5)

Country Link
US (2) US8491720B2 (zh)
KR (2) KR101665304B1 (zh)
CN (3) CN104485277B (zh)
TW (2) TWI503437B (zh)
WO (2) WO2010118295A2 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8491720B2 (en) * 2009-04-10 2013-07-23 Applied Materials, Inc. HVPE precursor source hardware
CN102766902B (zh) * 2011-05-05 2015-12-02 北京北方微电子基地设备工艺研究中心有限责任公司 工艺腔室装置和具有该工艺腔室装置的基片处理设备
US9303318B2 (en) 2011-10-20 2016-04-05 Applied Materials, Inc. Multiple complementary gas distribution assemblies
CN103014846A (zh) * 2013-01-14 2013-04-03 东莞市中镓半导体科技有限公司 一种材料气相外延用同心圆环喷头结构
US9327252B2 (en) 2013-03-15 2016-05-03 Applied Materials, Inc. Compact device for enhancing the mixing of gaseous species
US9373529B2 (en) * 2013-10-23 2016-06-21 Taiwan Semiconductor Manufacturing Company, Ltd. Process tool having third heating source and method of using the same
USD767112S1 (en) * 2015-04-15 2016-09-20 K&N Engineering, Inc. Vent breather
JP6565502B2 (ja) * 2015-09-03 2019-08-28 株式会社島津製作所 成膜装置及び成膜方法
CN108070848A (zh) * 2016-11-11 2018-05-25 优材科技有限公司 加热器模块、薄膜沉积装置及方法
KR102165760B1 (ko) * 2018-02-12 2020-10-14 전주대학교 산학협력단 Hvpe반응기
CN109468680A (zh) * 2018-12-19 2019-03-15 东莞市中镓半导体科技有限公司 一种应用于氢化物气相外延设备的气体预热装置
CN114807886B (zh) * 2022-04-13 2024-05-17 北京北方华创微电子装备有限公司 工艺腔室及工艺方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305314B1 (en) * 1999-03-11 2001-10-23 Genvs, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US6969426B1 (en) * 2002-02-26 2005-11-29 Bliss David F Forming improved metal nitrides
US7438761B2 (en) * 2000-09-01 2008-10-21 Ngk Insulators, Ltd. Apparatus for fabricating a III-V nitride film and a method for fabricating the same
US20090050913A2 (en) * 2001-07-06 2009-02-26 Freiberger Compound Materials Gmbh Method for achieving low defect density algan single crystal boules

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3063867A (en) 1958-12-16 1962-11-13 Western Electric Co Deposition and measurement of layer thickness
US4286436A (en) * 1980-06-16 1981-09-01 Chicago Bridge & Iron Company Falling film freeze exchanger
US4851295A (en) 1984-03-16 1989-07-25 Genus, Inc. Low resistivity tungsten silicon composite film
US4750975A (en) * 1986-03-17 1988-06-14 Uni-Frac, Inc. Vapor/liquid contact column structure
US5037624A (en) * 1987-03-24 1991-08-06 Advanced Technology Materials Inc. Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements
US5348911A (en) 1987-06-30 1994-09-20 Aixtron Gmbh Material-saving process for fabricating mixed crystals
USD329839S (en) 1990-01-31 1992-09-29 Hohner Automation Societe Anonyme Incremental coder
WO1992022084A1 (en) 1991-05-21 1992-12-10 Advantage Production Technology, Inc. Organic preclean for improving vapor phase wafer etch uniformity
US5273588A (en) 1992-06-15 1993-12-28 Materials Research Corporation Semiconductor wafer processing CVD reactor apparatus comprising contoured electrode gas directing means
US5647911A (en) 1993-12-14 1997-07-15 Sony Corporation Gas diffuser plate assembly and RF electrode
US5359788A (en) 1993-12-22 1994-11-01 Gell Jr Harold A Coffee roaster
US5679152A (en) 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
WO1995027570A1 (en) 1994-04-08 1995-10-19 Ray Mark A Selective plasma deposition
GB9411911D0 (en) 1994-06-14 1994-08-03 Swan Thomas & Co Ltd Improvements in or relating to chemical vapour deposition
US5715361A (en) 1995-04-13 1998-02-03 Cvc Products, Inc. Rapid thermal processing high-performance multizone illuminator for wafer backside heating
US5636320A (en) 1995-05-26 1997-06-03 International Business Machines Corporation Sealed chamber with heating lamps provided within transparent tubes
JPH0945670A (ja) 1995-07-29 1997-02-14 Hewlett Packard Co <Hp> Iii族−n系結晶の気相エッチング方法および再成長方法
US5827427A (en) * 1996-03-11 1998-10-27 Kinetico Incorporated Tank assembly
US5667592A (en) 1996-04-16 1997-09-16 Gasonics International Process chamber sleeve with ring seals for isolating individual process modules in a common cluster
US6533874B1 (en) 1996-12-03 2003-03-18 Advanced Technology Materials, Inc. GaN-based devices using thick (Ga, Al, In)N base layers
US5855675A (en) 1997-03-03 1999-01-05 Genus, Inc. Multipurpose processing chamber for chemical vapor deposition processes
US6286451B1 (en) 1997-05-29 2001-09-11 Applied Materials, Inc. Dome: shape and temperature controlled surfaces
US6270569B1 (en) 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
US6527865B1 (en) * 1997-09-11 2003-03-04 Applied Materials, Inc. Temperature controlled gas feedthrough
US6254772B1 (en) * 1998-01-15 2001-07-03 Yiu Chau Chau Backwashable filtration system
US6464843B1 (en) 1998-03-31 2002-10-15 Lam Research Corporation Contamination controlling method and apparatus for a plasma processing chamber
US6086673A (en) 1998-04-02 2000-07-11 Massachusetts Institute Of Technology Process for producing high-quality III-V nitride substrates
US6101816A (en) * 1998-04-28 2000-08-15 Advanced Technology Materials, Inc. Fluid storage and dispensing system
US6218280B1 (en) 1998-06-18 2001-04-17 University Of Florida Method and apparatus for producing group-III nitrides
US6190732B1 (en) 1998-09-03 2001-02-20 Cvc Products, Inc. Method and system for dispensing process gas for fabricating a device on a substrate
US6413839B1 (en) 1998-10-23 2002-07-02 Emcore Corporation Semiconductor device separation using a patterned laser projection
US6373114B1 (en) 1998-10-23 2002-04-16 Micron Technology, Inc. Barrier in gate stack for improved gate dielectric integrity
KR100304664B1 (ko) 1999-02-05 2001-09-26 윤종용 GaN막 제조 방법
US6309465B1 (en) 1999-02-18 2001-10-30 Aixtron Ag. CVD reactor
US6200893B1 (en) 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6540838B2 (en) 2000-11-29 2003-04-01 Genus, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US6179913B1 (en) 1999-04-16 2001-01-30 Cbl Technologies, Inc. Compound gas injection system and methods
US6265311B1 (en) * 1999-04-27 2001-07-24 Tokyo Electron Limited PECVD of TaN films from tantalum halide precursors
US6268288B1 (en) * 1999-04-27 2001-07-31 Tokyo Electron Limited Plasma treated thermal CVD of TaN films from tantalum halide precursors
US6413860B1 (en) * 1999-04-27 2002-07-02 Tokyo Electron Limited PECVD of Ta films from tanatalum halide precursors
US6410433B1 (en) * 1999-04-27 2002-06-25 Tokyo Electron Limited Thermal CVD of TaN films from tantalum halide precursors
US6410432B1 (en) * 1999-04-27 2002-06-25 Tokyo Electron Limited CVD of integrated Ta and TaNx films from tantalum halide precursors
JP3384795B2 (ja) 1999-05-26 2003-03-10 忠弘 大見 プラズマプロセス装置
US6206972B1 (en) 1999-07-08 2001-03-27 Genus, Inc. Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
US6444038B1 (en) * 1999-12-27 2002-09-03 Morton International, Inc. Dual fritted bubbler
US6569765B1 (en) 1999-08-26 2003-05-27 Cbl Technologies, Inc Hybrid deposition system and methods
US6489241B1 (en) 1999-09-17 2002-12-03 Applied Materials, Inc. Apparatus and method for surface finishing a silicon film
US6998152B2 (en) * 1999-12-20 2006-02-14 Micron Technology, Inc. Chemical vapor deposition methods utilizing ionic liquids
US6503330B1 (en) 1999-12-22 2003-01-07 Genus, Inc. Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
US6897119B1 (en) 1999-12-22 2005-05-24 Genus, Inc. Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
US6551399B1 (en) 2000-01-10 2003-04-22 Genus Inc. Fully integrated process for MIM capacitors using atomic layer deposition
AU2001242363A1 (en) 2000-02-04 2001-08-14 Aixtron Ag Device and method for depositing one or more layers onto a substrate
US6743473B1 (en) * 2000-02-16 2004-06-01 Applied Materials, Inc. Chemical vapor deposition of barriers from novel precursors
US6517634B2 (en) 2000-02-28 2003-02-11 Applied Materials, Inc. Chemical vapor deposition chamber lid assembly
US6475902B1 (en) * 2000-03-10 2002-11-05 Applied Materials, Inc. Chemical vapor deposition of niobium barriers for copper metallization
JP4849705B2 (ja) 2000-03-24 2012-01-11 東京エレクトロン株式会社 プラズマ処理装置、プラズマ生成導入部材及び誘電体
JP4813737B2 (ja) 2000-04-17 2011-11-09 マットソン テクノロジー インコーポレイテッド 窒化ケイ素フィルムを形成するための超薄オキシニトリドのuv前処理法
EP1160355B1 (en) * 2000-05-31 2004-10-27 Shipley Company LLC Bubbler
US6837251B1 (en) * 2000-06-21 2005-01-04 Air Products And Chemicals, Inc. Multiple contents container assembly for ultrapure solvent purging
US6440495B1 (en) * 2000-08-03 2002-08-27 Applied Materials, Inc. Chemical vapor deposition of ruthenium films for metal electrode applications
EP1307903A1 (en) * 2000-08-04 2003-05-07 The Regents Of The University Of California Method of controlling stress in gallium nitride films deposited on substrates
US6616870B1 (en) 2000-08-07 2003-09-09 Shipley Company, L.L.C. Method of producing high aspect ratio domes by vapor deposition
DE10043601A1 (de) 2000-09-01 2002-03-14 Aixtron Ag Vorrichtung und Verfahren zum Abscheiden insbesondere kristalliner Schichten auf insbesondere kristallinen Substraten
DE10048759A1 (de) 2000-09-29 2002-04-11 Aixtron Gmbh Verfahren und Vorrichtung zum Abscheiden insbesondere organischer Schichten im Wege der OVPD
DE10056029A1 (de) 2000-11-11 2002-05-16 Aixtron Ag Verfahren und Vorrichtung zur Temperatursteuerung der Oberflächentemperaturen von Substraten in einem CVD-Reaktor
DE10057134A1 (de) 2000-11-17 2002-05-23 Aixtron Ag Verfahren zum Abscheiden von insbesondere kristallinen Schichten sowie Vorrichtung zur Durchführung des Verfahrens
US6905547B1 (en) 2000-12-21 2005-06-14 Genus, Inc. Method and apparatus for flexible atomic layer deposition
US7348042B2 (en) 2001-03-19 2008-03-25 Novellus Systems, Inc. Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
US6573164B2 (en) 2001-03-30 2003-06-03 Technologies And Devices International, Inc. Method of epitaxially growing device structures with sharp layer interfaces utilizing HVPE
DE10118130A1 (de) 2001-04-11 2002-10-17 Aixtron Ag Vorrichtung oder Verfahren zum Abscheiden von insbesondere kristallinen Schichten auf insbesondere kristallinen Substraten aus der Gasphase
DE10124609B4 (de) 2001-05-17 2012-12-27 Aixtron Se Verfahren zum Abscheiden aktiver Schichten auf Substraten
US7501023B2 (en) * 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US6648966B2 (en) 2001-08-01 2003-11-18 Crystal Photonics, Incorporated Wafer produced thereby, and associated methods and devices using the wafer
US6756318B2 (en) * 2001-09-10 2004-06-29 Tegal Corporation Nanolayer thick film processing system and method
MXPA04003407A (es) * 2001-10-12 2005-04-11 Polymer & Steel Technologies H Instalacion de recipiente a presion compuesto y metodo.
TW200300701A (en) * 2001-11-30 2003-06-16 Asml Us Inc High flow rate bubbler system and method
DE10163394A1 (de) 2001-12-21 2003-07-03 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden kristalliner Schichten und auf kristallinen Substraten
EP1459362A2 (de) 2001-12-21 2004-09-22 Aixtron AG Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat
US6620225B2 (en) * 2002-01-10 2003-09-16 Advanced Technology Materials, Inc. Adsorbents for low vapor pressure fluid storage and delivery
US20050239675A1 (en) * 2002-04-01 2005-10-27 Munzer Makansi Carrier foam to enhance liquid functional performance
US20030192430A1 (en) * 2002-04-11 2003-10-16 Pearlstein Ronald Martin Helical built-in purifier for gas supply cylinders
KR100568701B1 (ko) 2002-06-19 2006-04-07 니폰덴신뎅와 가부시키가이샤 반도체 발광 소자
US6921062B2 (en) * 2002-07-23 2005-07-26 Advanced Technology Materials, Inc. Vaporizer delivery ampoule
JP4352783B2 (ja) 2002-08-23 2009-10-28 東京エレクトロン株式会社 ガス供給系及び処理システム
US7115896B2 (en) 2002-12-04 2006-10-03 Emcore Corporation Semiconductor structures for gallium nitride-based devices
US6911065B2 (en) * 2002-12-26 2005-06-28 Matheson Tri-Gas, Inc. Method and system for supplying high purity fluid
US7018940B2 (en) 2002-12-30 2006-03-28 Genus, Inc. Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
JP4026529B2 (ja) 2003-04-10 2007-12-26 東京エレクトロン株式会社 シャワーヘッド構造及び処理装置
US7172646B2 (en) * 2003-04-15 2007-02-06 Air Products And Chemicals, Inc. Reactive liquid based gas storage and delivery systems
JP2007525822A (ja) 2003-05-30 2007-09-06 アヴィザ テクノロジー インコーポレイテッド ガス分配システム
US7170095B2 (en) 2003-07-11 2007-01-30 Cree Inc. Semi-insulating GaN and method of making the same
US7156380B2 (en) * 2003-09-29 2007-01-02 Asm International, N.V. Safe liquid source containers
DE102004009130A1 (de) 2004-02-25 2005-09-15 Aixtron Ag Einlasssystem für einen MOCVD-Reaktor
US7329470B2 (en) * 2004-05-26 2008-02-12 Societe Bic Apparatus and method for in situ production of fuel for a fuel cell
US7303607B2 (en) * 2004-06-14 2007-12-04 Air Products And Chemicals, Inc. Liquid media containing Lewis acidic reactive compounds for storage and delivery of Lewis basic gases
GB2415707A (en) * 2004-06-30 2006-01-04 Arima Optoelectronic Vertical hydride vapour phase epitaxy deposition using a homogenising diaphragm
US7396381B2 (en) * 2004-07-08 2008-07-08 Air Products And Chemicals, Inc. Storage and delivery systems for gases held in liquid medium
US7368368B2 (en) 2004-08-18 2008-05-06 Cree, Inc. Multi-chamber MOCVD growth apparatus for high performance/high throughput
JP2006120857A (ja) * 2004-10-21 2006-05-11 Hitachi Cable Ltd 気相成長装置およびこれを用いた半導体基板の製造方法および半導体基板
US20060185597A1 (en) * 2004-11-29 2006-08-24 Kenji Suzuki Film precursor evaporation system and method of using
US7682940B2 (en) 2004-12-01 2010-03-23 Applied Materials, Inc. Use of Cl2 and/or HCl during silicon epitaxial film formation
DE102004058521A1 (de) 2004-12-04 2006-06-14 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden von dicken Gallium-Nitrit-Schichten auf einem Saphirsubstrat und zugehörigen Substrathalter
KR100578089B1 (ko) 2004-12-22 2006-05-10 주식회사 시스넥스 수소화물기상증착 반응기
US7527742B2 (en) 2005-06-27 2009-05-05 Momentive Performance Materials Inc. Etchant, method of etching, laminate formed thereby, and device
JP4696561B2 (ja) * 2005-01-14 2011-06-08 東京エレクトロン株式会社 気化装置及び処理装置
US20060162661A1 (en) 2005-01-22 2006-07-27 Applied Materials, Inc. Mixing energized and non-energized gases for silicon nitride deposition
KR101145755B1 (ko) 2005-03-10 2012-05-16 재팬 사이언스 앤드 테크놀로지 에이젼시 평면의 반극성 갈륨 질화물의 성장을 위한 기술
WO2006099619A2 (en) * 2005-03-17 2006-09-21 Noah Precision, Llc Temperature control unit for bubblers
US7638058B2 (en) * 2005-04-07 2009-12-29 Matheson Tri-Gas Fluid storage and purification method and system
US20060266288A1 (en) * 2005-05-27 2006-11-30 Applied Materials, Inc. High plasma utilization for remote plasma clean
US7195934B2 (en) 2005-07-11 2007-03-27 Applied Materials, Inc. Method and system for deposition tuning in an epitaxial film growth apparatus
US7413649B2 (en) * 2005-07-29 2008-08-19 Gene Bittner Treatment apparatus with modular chemical containing units having one-way valve assemblies
JP4594820B2 (ja) 2005-08-03 2010-12-08 古河機械金属株式会社 ハイドライド気相成長装置、iii族窒化物半導体基板の製造方法
JP4803578B2 (ja) 2005-12-08 2011-10-26 東京エレクトロン株式会社 成膜方法
US7967911B2 (en) * 2006-04-11 2011-06-28 Applied Materials, Inc. Apparatus and methods for chemical vapor deposition
US7364991B2 (en) 2006-04-27 2008-04-29 Applied Materials, Inc. Buffer-layer treatment of MOCVD-grown nitride structures
US7585769B2 (en) 2006-05-05 2009-09-08 Applied Materials, Inc. Parasitic particle suppression in growth of III-V nitride films using MOCVD and HVPE
US20080050889A1 (en) 2006-08-24 2008-02-28 Applied Materials, Inc. Hotwall reactor and method for reducing particle formation in GaN MOCVD
JP2008066490A (ja) 2006-09-06 2008-03-21 Nippon Emc Ltd 気相成長装置
US7955569B2 (en) * 2007-03-14 2011-06-07 Hubert Patrovsky Metal halide reactor for CVD and method
US20080276860A1 (en) * 2007-05-10 2008-11-13 Burrows Brian H Cross flow apparatus and method for hydride vapor phase deposition
US20080289575A1 (en) * 2007-05-24 2008-11-27 Burrows Brian H Methods and apparatus for depositing a group iii-v film using a hydride vapor phase epitaxy process
US7901576B2 (en) * 2007-08-06 2011-03-08 Enpress, L.L.C. Composite water treatment vessel including liquid distributor plates
US20090149008A1 (en) 2007-10-05 2009-06-11 Applied Materials, Inc. Method for depositing group iii/v compounds
US20090194026A1 (en) 2008-01-31 2009-08-06 Burrows Brian H Processing system for fabricating compound nitride semiconductor devices
US7803337B1 (en) * 2008-02-06 2010-09-28 Vapor Point, LLC Method for treating a fluid to be scrubbed
US8491720B2 (en) * 2009-04-10 2013-07-23 Applied Materials, Inc. HVPE precursor source hardware
KR101103992B1 (ko) * 2009-07-09 2012-01-06 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 라이너 베이스의 저장 시스템, 라이너 및 반도체 공정에 고순도 재료를 공급하는 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305314B1 (en) * 1999-03-11 2001-10-23 Genvs, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US7438761B2 (en) * 2000-09-01 2008-10-21 Ngk Insulators, Ltd. Apparatus for fabricating a III-V nitride film and a method for fabricating the same
US20090050913A2 (en) * 2001-07-06 2009-02-26 Freiberger Compound Materials Gmbh Method for achieving low defect density algan single crystal boules
US6969426B1 (en) * 2002-02-26 2005-11-29 Bliss David F Forming improved metal nitrides

Also Published As

Publication number Publication date
CN104485277A (zh) 2015-04-01
WO2010118293A3 (en) 2011-01-20
CN102414792A (zh) 2012-04-11
KR20120003483A (ko) 2012-01-10
TW201114957A (en) 2011-05-01
CN102414792B (zh) 2014-11-05
US8568529B2 (en) 2013-10-29
TW201100575A (en) 2011-01-01
US8491720B2 (en) 2013-07-23
WO2010118293A2 (en) 2010-10-14
CN104485277B (zh) 2017-06-30
KR101665304B1 (ko) 2016-10-12
TWI480432B (zh) 2015-04-11
KR101690056B1 (ko) 2016-12-27
WO2010118295A2 (en) 2010-10-14
WO2010118295A3 (en) 2011-01-20
CN102414790A (zh) 2012-04-11
KR20120006542A (ko) 2012-01-18
US20100258049A1 (en) 2010-10-14
US20100258052A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
TWI503437B (zh) Hvpe腔室硬體與hvpe方法
US20180171479A1 (en) Materials and coatings for a showerhead in a processing system
JP6117169B2 (ja) 三塩化ガリウムの噴射方式
JP5575483B2 (ja) Iii−v族半導体材料の大量製造装置
JP5575482B2 (ja) 単結晶iii−v族半導体材料のエピタキシャル堆積法、及び堆積システム
JP5923553B2 (ja) 三塩化ガリウムを製造するための大容量送達方法
US9449859B2 (en) Multi-gas centrally cooled showerhead design
TW200924854A (en) Multi-gas spiral channel showerhead
TW200901286A (en) HVPE showerhead design
TW200927296A (en) Multi-gas straight channel showerhead
JP2010510687A (ja) 化学気相成長チャンバ用の温度制御されたパージゲート弁
TW200927295A (en) Multi-gas concentric injection showerhead
US20130068320A1 (en) Protective material for gas delivery in a processing system
TW200927984A (en) Showerhead design with precursor pre-mixing