TWI478289B - 製造電容器、動態隨機存取記憶體陣列及電子系統之方法 - Google Patents

製造電容器、動態隨機存取記憶體陣列及電子系統之方法 Download PDF

Info

Publication number
TWI478289B
TWI478289B TW098125398A TW98125398A TWI478289B TW I478289 B TWI478289 B TW I478289B TW 098125398 A TW098125398 A TW 098125398A TW 98125398 A TW98125398 A TW 98125398A TW I478289 B TWI478289 B TW I478289B
Authority
TW
Taiwan
Prior art keywords
support material
capacitor
forming
carbon
titanium
Prior art date
Application number
TW098125398A
Other languages
English (en)
Other versions
TW201017829A (en
Inventor
Mark Keihlbauch
Kevin R Shea
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of TW201017829A publication Critical patent/TW201017829A/zh
Application granted granted Critical
Publication of TWI478289B publication Critical patent/TWI478289B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

製造電容器、動態隨機存取記憶體陣列及電子系統之方法
本發明係關於製造電容器、動態隨機存取記憶體陣列及電子系統之方法。
支撐材料可形成於半導體材料上且用於積體電路組件之製造。
典型支撐材料為二氧化矽。該二氧化矽可為無摻雜的,或可摻雜有磷、硼及氟中之一或多者(舉例而言,該二氧化矽可呈硼磷矽玻璃之形式)。
一種利用支撐材料之方法係形成用於動態隨機存取記憶體(DRAM)之電容器。可在該支撐材料中形成開口,且接著可藉由在該等開口內沈積材料來製造一或多個結構。舉例而言,可藉由沈積一氮化鈦層以部分地填充支撐材料中之開口,來形成容器型電容器(container-shaped capacitor)之儲存電節點。隨後,可移除該支撐材料,且接著電容器介電質及電容器極板材料可沈積於該等儲存電節點內及該等儲存電節點周圍以形成電容器構造。
作為支撐材料,二氧化矽可能具有若干缺點。舉例而言,二氧化矽之圖案化可能會因二氧化矽之乾式蝕刻具有較大物理分量而變複雜(亦即,與類似於化學蝕刻相比,其更類似於物理濺鍍)。因為該蝕刻可能呈現會導致錐形輪廓之橫向分量,所以濺鍍性質可能難以獲得一筆直輪廓。
需要開發出利用支撐材料來製造微電子結構之新方法。
隨著整合程度在積體電路中不斷增大,形成尺寸日益減小之電子組件。積體電路中所利用之一種類型之組件為電容器。電容器可適用於眾多任務,其中一常見任務為用作DRAM之電荷儲存裝置。
在嘗試減少個別電容器之佔據面積的過程中,電容器變得愈來愈高且薄,且藉此節省半導體之面積。當前電容器之尺寸愈來愈接近由習知方法可達到之極限,且需要開發新方法以致可將電容器成比例調至愈來愈薄之尺寸。
在一些實施例中,本文中所描述之本發明係關於用於形成電容器之新方法,其中螺栓型電容器係在一含碳支撐材料內圖案化。該含碳支撐材料可提供優於含二氧化矽之支撐材料的優點。舉例而言,將在含碳支撐材料內適當排列之開口圖案化比將含二氧化矽之材料中之該等開口圖案化更為實用。在一些實施例中,藉由利用含碳支撐材料可緩和或甚至防止一些先前技術之問題。可得到緩和或防止之先前技術問題為此項技術中稱作扭轉(twisting)的問題,及與獲得沿一蝕刻開口之側壁的筆直輪廓相關之問題。
含碳支撐材料已在有關用於製造容器型電容器之美國專利申請案第11/971,138號中得以描述。在利用含碳支撐材料時可運用的容器型電容器與螺栓型電容器之製造之間存在一些明顯差異,且本文中所描述之一些實施例係關於該等優點之利用。舉例而言,螺栓型電容器之儲存電節點材 料可自含碳支撐材料中之開口內暴露的電節點生長,而非沈積於該支撐材料上。因此,不需要自支撐材料上移除儲存電節點材料,此可允許省略蝕刻及/或平坦化步驟。蝕刻及/或平坦化之避免使加工步驟消除,這可改良製造過程之產量,減少該製程中錯誤的機會,且最終減少與該製程相關之成本。
參考圖1至圖6描述在製造螺栓型電容器期間利用含碳支撐材料之例示實施例方法。
圖1展示一部分半導體構造10。該半導體構造包括一支撐複數個電節點14、16及18之基板12。基板12可包含例如經本底p型摻雜劑輕摻雜之單晶矽;基本上由例如經本底p型摻雜劑輕摻雜之單晶矽組成;或由例如經本底p型摻雜劑輕摻雜之單晶矽組成。術語「半導電基板」及「半導體基板」意謂包含半導電材料之任何構造,該半導電材料包括(但不限於)諸如半導電晶圓之塊體半導電材料(單獨該等材料或為其上包含其他材料之組合)及半導電材料層(單獨該等材料層或包含其他材料之組合)。術語「基板」係指包括(但不限於)以上所描述之半導電基板的任何支撐結構。該基板可為均質的,或可包含與積體電路製造相關之各種層及材料。
電節點14、16及18可包含任何適當材料。舉例而言,該等電節點可對應於一單晶基板之導電性摻雜區。在該等實施例中,該等導電性摻雜區可主要為n型或p型摻雜的。在 其他實施例中,電節點14、16及18中之一或多者可包含金屬,且可對應於由基板12支撐之含金屬之台座。該金屬可呈任何適當形式;且可例如包含單質金屬(elemental metal)(例如鈦、鎢、鉑等)、金屬氮化物(例如氮化鈦)及金屬矽化物(例如矽化鈦)中之一或多者。在一些實施例中,電節點14、16及18可對應於其他半導體裝置之間的多晶矽接點(未圖示)。舉例而言,電節點14、16及18可為多晶矽柱之頂部,且該等多晶矽柱中至少有一些可由數位線彼此隔開(未圖示)。
支撐材料20係在基板12上,且在電節點14、16及18上。該支撐材料可為含碳材料。支撐材料20可包含單一均質層(如所示)、具有單一均質材料之多個層,或具有不同組成及/或物理特性之多個層。支撐材料20可包含一或多種電絕緣材料及/或導電材料;基本上由一或多種電絕緣材料及/或導電材料組成;或由一或多種電絕緣材料及/或導電材料組成。詳言之,支撐材料20可含有至少百分之二十之原子百分比(at%)之碳。雖然20 at%之碳可適於絕緣材料或導電材料,但視具體材料而定,較高碳含量可有助於導電性之增大。因此,在導電材料之情況下,支撐材料20可含有至少25 at%之碳。特定言之,在導電材料之情況下,支撐材料20可含有至少50 at%之碳。
碳可主要呈導電碳主鏈聚合物或含烴之矽酸鹽主鏈聚合物之形式。儘管該矽酸鹽主鏈聚合物可為導電或電絕緣的,但通常該等聚合物為電絕緣的。已知矽酸鹽主鏈聚合物含有多達36at%之碳,但其為絕緣的。
在支撐材料20導電之情況下,可減少特徵充電(feature charging)。因此,可減少垂直電位梯度及/或橫向電位梯度,解決了縱橫比依賴性蝕刻及扭轉之問題。由此,特徵充電之減少對於高縱橫比特徵變得尤其重要。在支撐材料20為電絕緣之情況下,即使不必減少特徵充電,該等支撐材料亦可提供本文中所描述之其他益處。
支撐材料20可進一步包括鈦及/或矽。矽可主要呈含烴之矽酸鹽主鏈聚合物之形式。或者,矽可呈另一形式。鈦及/或矽可呈絕緣之氧化物的形式,或呈絕緣或導電之其他形式。可提供鈦及/或矽以使支撐材料20之剛度增大且超過在無鈦及矽之情況下另外所呈現之剛度。較硬之支撐材料20可改良後續處理期間之穩定性。可選擇鈦及/或矽之量以產生所要效果。
在支撐材料20不包括鈦之情況下,矽可不超過26at%。在支撐材料20不包括矽之情況下,鈦可不超過12at%。在支撐材料20包括鈦及矽之情況下,鈦可不超過7.7at%且矽可不超過12.5at%。
支撐材料20可為非晶材料。舉例而言,支撐材料20可由無定形碳、中碳、透明碳或其組合組成。在本發明之上下文中,「無定形」碳係指不為結晶之碳。亦即,無定形碳包括「透明」碳,其因sp3雜化鍵結(每個碳具有四個單鍵)之普遍性增加而具有某種結構規則性。然而,透明碳不展現熟知為結晶形碳(例如,金剛石、石墨等)之特性之高結構規則度。相比而言,完全無定形碳因sp2雜化鍵結(每個碳具有一個雙鍵及兩個單鍵)之普遍性增加而不具有結構規則性,且完全「缺乏確定之形式」,亦即,其為無定形的。完全無定形碳因此包括較多芳族烴及/或不飽和烴。可理解,關於無定形碳之結構規則性,其亦包括位於完全無定形碳與結晶形碳之間的「中」碳。透明碳因此在中碳之範圍內,且為中碳之一種類型。
透明碳之一實例含有約55at%之碳及約40at%之氫,其中剩餘部分為氮及/或氧。完全無定形碳之一實例包括約70at%之碳及約25at%之氫,其中剩餘部分為氮及/或氧。因此,支撐材料20可由約55at%至約70at%之碳;約5at%或低於5at%之氮、氧、硫、金屬及半金屬(可缺少其中任一者);及剩餘部分氫組成。「半金屬」通常至少指硼、矽、砷、硒及碲。
形成支撐材料20可包括將液體混合物塗覆至基板12上,且接著使該液體混合物固化成為固體。該液體混合物之塗覆可藉由已知旋塗技術實現。形成支撐材料20可使用諸如化學氣相沈積(CVD)等其他技術實現。用於沈積透明碳之已知CVD技術包括電漿增強CVD及熱蒸鍍CVD。透明碳之電漿增強CVD經常係在約375℃下發生。
該液體混合物可為聚合物固體與載體以及視情況選用之交聯劑及/或觸媒之混合物。可能適當之液體混合物包括抗反射塗層(ARC)材料混合物及/或硬式遮罩(HM)材料混合物。可主要根據製造商之說明書(包括一系列熱烘焙及/或固化階段)處理已知用於形成抗反射塗層及/或硬式遮罩之液體混合物。該處理可使載體及其他組份蒸發,同時使聚合物固體交聯及/或催化聚合物固體反應(例如,聚合),留下符合本文中之實施例之支撐材料。
對已知液體混合物及/或製造商所建議之處理之變更可用於最有效地獲得所要支撐材料。除該液體混合物之組成外,亦可考慮固化溫度及固化時間之選擇,因為其會潛在地影響所得支撐材料之組成。舉例而言,固化條件可影響支撐材料中鍵結及/或交聯之類型。又,對於旋塗式塗覆而言,可考慮黏度、旋塗速率(每分鐘之轉數)及分配量之選擇,因為其會影響所得支撐材料之厚度。
硬式遮罩材料混合物之實例包括可購自Brewer Science,Inc.(Rolla,Missouri)的專有組合物BSI.M05068B及BSI.S07051。前者產生含有約36at%碳之有機矽酸鹽硬式遮罩材料,而後者產生含有約22at%碳之有機鈦酸鹽-矽酸鹽硬式遮罩材料,且兩者均為絕緣的。ARC材料混合物之實例包括亦可購自Brewer Science,Inc.的專有組合物BSI.M06089A。該混合物產生含有約44at%碳之有機(無鈦或矽)ARC材料,且該塗料導電。已知之導電聚合物類別之實例包括聚(乙炔)類、聚(吡咯)類、聚(噻吩)類、聚(苯胺)類、聚(茀)類、聚(3-烷基噻吩)類、聚四硫富瓦烯類、聚萘類、聚(對苯硫醚)類及聚(對伸苯基-伸乙烯基)類。
支撐材料20可在基板12上具有例如大於約1微米(μm)之厚度。在一些實施例中,該厚度可能小於約3μm,或為約1.5μm至約2μm。
經圖案化之遮罩材料22係在支撐材料20上。該經圖案化之遮罩材料可包含任何適當組合物或組合物之組合。該經圖案化之遮罩材料可例如包含硬式遮罩(例如,多晶矽、二氧化矽及氮化矽中之一或多者);基本上由該硬式遮罩組成;或由該硬式遮罩組成。該經圖案化之遮罩材料具有複數個延伸穿過其之開口24、26及28。可藉由以下步驟將該遮罩材料22圖案化:在材料22上形成一光刻抗光蝕遮罩(未圖示);藉由適當蝕刻將一圖案自該抗光蝕遮罩轉印至材料22;且接著移除該抗光蝕遮罩以存留呈圖1中所展示之圖案的遮罩材料22。
參看圖2,開口24、26及28係藉由適當蝕刻而延伸穿過支撐材料20。該等開口可具有高縱橫比,且在一些實施例中可具有至少約20:1、至少約30:1或至少約40:1之縱橫比。該等開口可具有約1μm至約3μm之高度,及約60奈米(nm)或小於60奈米之寬度。該等開口可具有任何適當之外周形狀,且在一些實施例中可具有圓形或橢圓形外周形狀。如以下更詳細地論述,該等開口最終用於形成螺栓型電容器結構之螺栓形儲存電節點。
該等開口可形成於基板12之記憶體陣列區上,且可用以形成DRAM陣列之電容器,如以下更詳細地論述。
支撐材料20中開口之蝕刻可包含多種技術中之任一種,包括各向異性地蝕刻支撐材料20。該蝕刻可使用由氣體組合物產生之電漿,該氣體組合物含有O2 連同SO2 、SiCl4 、N2 或N2 /Cx Hy Fz ,其中x、y及z為整數,。Cx Hy Fz 之實例包括CH2 F2 、C4 F8 、C4 F6 、C6 F6 (芳族)、C5 F8 等。一組可能的各向異性蝕刻條件包括以約50標準立方公分/分鐘(sccm)至約300sccm之總流動速率及約1:2至約2:1之O2 比SO2 之流動速率比,將O2 及SO2 供應至一感應耦合電漿反應器。另一組可能的各向異性蝕刻條件包括以約500sccm至約300sccm之總流動速率及約5:1之O2 比SiCl4 之流動速率比,將O2 及SiCl4 供應至一感應耦合電漿反應器。在任一組中,反應器溫度均可為約20℃至約100℃,且在一些實施例中,其可為約50℃至約70℃。反應器壓力可為約5毫托(milliTorr)至約100毫托,且在一些實施例中,其可為約20毫托至約40毫托。供應至頂板之功率可為約500瓦特(W)至約1200瓦特,且在一些實施例中其可為近似850瓦特。反應器偏壓可為約20伏特(volt)至約200伏特,且在一些實施例中其可為近似110伏特。感應耦合電漿反應器之一實例包括可購自Lam Research Corporation(Fremont,California)之Lam 2300 Kiyo系統。
另一組可能的各向異性蝕刻條件包括以約100sccm至約500sccm之總流動速率及約1:2至約2:1之O2 比N2 之流動速率比,將O2 及N2 供應至一電容耦合電漿反應器。又一組可能的各向異性蝕刻條件包括將CHx Fy (其中x及y為0至4之整數且x與y之和等於4)添加至O2 /N2 氣體混合物中以提供10%至50%之總流量。在任一組中,反應器溫度可為約20℃至約100℃,且在一些實施例中,其可為約50℃至約70℃。反應器壓力可為約5毫托至約100毫托,且在一些實施例中,其可為約20毫托至約40毫托。該反應器可在雙頻功率下操作,該雙頻功率具有一在約27兆赫(MHz)至約160兆赫下供應之約200W至約1000W的高頻功率,及一在約2MHz至約13.6MHz下供應之約20W至約1000W的低頻功率。電容耦合電漿反應器之一實例包括可購自Lam Research Corporation(Fremont,California)之Lam 2300 Exelan系統。
以上所論述之支撐材料20(特定言之,其中碳主要呈導電碳主鏈聚合物之形式)的特性可使得形成縱橫比比在二氧化矽中可達成之縱橫比高得多的良好品質之開口。與濺鍍組份相對,在支撐材料20之各向異性蝕刻中的化學組份比二氧化矽之化學組份大。對於碳主鏈聚合物而言,該差異甚至更明顯。因此,可比二氧化矽支撐材料之習知蝕刻更有效地各向異性蝕刻支撐材料20,以形成具高縱橫比之開口。
開口24、26及28延伸穿過支撐材料20達至電節點14、16及18之上表面。若該等電節點對應於導電性摻雜之擴散區,則該等上表面將包含半導體材料(例如,矽及/或鍺)。若該等電節點對應於含金屬之材料,則該等電節點之上表面將包含金屬。
參看圖3,在所說明之例示實施例中,遮罩材料22(圖2)係展示為移除的。該移除可藉由相對於下伏支撐材料20對遮罩材料具選擇性之蝕刻來實現。在其他實施例中,該遮 罩材料可留在支撐材料20上,且可接著在一後續處理階段中移除。
參看圖4,導電材料30係在開口24、26及28內生長以形成台座32、34及36。材料30可包含任何適當的組合物或組合物之組合。在一些實施例中,材料30包含在電節點14、16及18之含金屬表面上生長之金屬。該生長可包含電解電鍍及/或無電處理。若利用無電處理,則可藉由活化組合物處理電節點14、16及18之上表面(若該等上表面不另外適於無電處理),且/或可藉由適當沈積過程(例如,物理氣相沈積)於電節點14、16及18之上表面上形成晶種材料。該等無電及/或電解電鍍處理可包含習知操作條件且可利用習知材料(例如,在利用無電電鍍及電解電鍍中之一者或兩者形成材料30之應用中,材料30可包含釕、鈦、鉑、鎳、鈷及氮化鈦中之一或多者)。該等無電及/或電解電鍍處理可在相對較低之溫度下進行,諸如低於約200℃之溫度。該等低溫對於一些在較高操作溫度下將分解之含碳材料20可為有利的。
在電節點14、16及18包含含半導體之上表面的實施例中,可用於在開口24、26及28內生長材料30之另一方法為磊晶生長。磊晶生長可用以形成半導體材料(例如,矽及/或鍺),該半導體材料在磊晶生長期間於原位導電性摻雜抑或在磊晶生長之後藉由植入而導電性摻雜。磊晶生長可包含習知操作條件,且可利用習知材料。若選擇在相對較高溫度(例如,介於約200℃與約1000℃之間的溫度)下穩定 的含碳材料,則磊晶生長可在該等溫度下進行。可對相對較高之溫度穩定之含碳材料為含有矽及/或矽酸鹽併入其中的材料。
材料30係展示為僅部分地填充開口24、26及28,且因此在材料30上留下該等開口之未填充區38。有利的是,材料30未過量填充該等開口以致可除去移除將另外沈積於支撐材料20上之過量之材料30的步驟(例如,若過量之材料30形成於支撐材料20上,則乾式蝕刻或化學機械拋光步驟將為可利用之額外移除步驟)。為了確保避免開口之過量填充,可需要使該等開口填充不足。在其他實施例中,可完全填充該等開口。又,儘管可能需要不將材料30形成於支撐材料20上,但亦存在可容易地自材料20上移除材料30且因此開口之過量填充不構成問題之實施例。
在所展示之實施例中,材料30僅在開口24、26及28內生長。換言之,材料30之生長僅於電節點14、16及18上起始,且材料30不自支撐材料20之暴露表面生長。
台座32、34及36具有最上部(亦即,頂部)表面31及側壁表面33。該等側壁表面與材料20相抵。最終,台座32、34及36用作螺栓型電容器之儲存電節點,且因此需要暴露該等側壁表面以用於電容器之製造。
圖5展示在已移除支撐材料20(圖4)暴露出台座32、34及36之側壁表面33之後的構造10。支撐材料20之移除可藉由乾式剝離及包括皮拉納(piranha)蝕刻之其他可能的乾式技術或濕式技術實現。乾式剝離可包括形成電漿及將支撐材料20暴露至由該電漿產生之氧自由基。該電漿之形成可使用含有O2 以及N2 /H2 及NH3 中之一者或兩者的氣體,其中NH3 及/或N2 /H2 有助於減少暴露至該乾式剝離之金屬的氧化。該N2 /H2 可為包含10% H2 且剩餘部分為N2 之「形成氣體(forming gas)」。
存在已知之乾式剝離系統且可稱為「微波剝離器(microwave stripper)」。電漿與經乾式剝離之基板之間的多孔格柵樣結構防止電漿與該基板接觸且損害該基板,但允許氧自由基穿過該格柵以進行各向同性蝕刻。已知之乾式剝離系統可購自Mattson Technology,Inc.(Fremont,California)及Axcelis Technologies(Beverly,Massachusetts)。乾式剝離系統通常係用作移除諸如抗光蝕劑及不良處理殘餘物之含碳聚合物以在後續處理之前清潔基板的簡單而有效之技術。支撐材料20可類似於均含有碳之抗光蝕劑或殘餘物,但其中差異為:支撐材料20在用於形成高縱橫比之結構時可展現大得多的厚度。處理次數或其他參數之適當修改可調適已知乾式剝離過程,從而使其適用於支撐材料20之移除。
雖然將鈦及/或矽用於支撐材料20可增加剛度,但該等添加劑可使支撐材料不太易於乾式剝離。以氧化物形式存在之鈦及/或矽可使支撐材料20甚至更不易於乾式剝離。儘管存在該潛在缺點,但對於給定結構特性及各向異性蝕刻特性之一些應用而言,鈦及/矽之使用仍可為需要的。類似地,與使用碳主鏈聚合物相比較,使用矽酸鹽主鏈聚合物可降低乾式剝離之容易程度。
儘管在所展示之實施例中移除全部支撐材料20(圖4),但在其他實施例中可僅移除一部分支撐材料以使得僅暴露側壁33之部分。
參看圖6,介電材料52及電容器極板材料54係形成於台座32、34及36上及其周圍。可認為台座32、34及36係第一電容器電極,且可認為電容器極板材料34係第二電容器電極,其電容耦合至該第一電容器電極。因此,台座32、34及36係分別併入電容器60、62及64中。所說明之電容器為螺栓型電容器,且其可為同時形成於基板12上之大的螺栓型電容器陣列之一部分。可藉由利用與字線相聯之電晶體閘極70、72及74將該等電容器併入DRAM中,以將該等電容器耦合至位元線76。該等電容器係說明為耦合至一共同位元線,此為在該等電容器全部在記憶體陣列之一共同列中時之情況。或者,若該等電容器全部在記憶體陣列之一共同行中,則該等電容器可耦合至一共同字線。該記憶體陣列將包含眾多用以單一地定址記憶體陣列之個別記憶胞之字線及位元線。該等電晶體閘極及位元線示意性地說明於圖6中,且其可包含利用任何適當方法形成之任何適當結構。因此,該等電晶體閘極及位元線可包含利用習知方法形成之習知結構。
儘管在圖5中將台座32、34及36展示為獨立的,但在一些實施例中可利用支撐材料之柵格(未圖示)以在傾斜、傾倒或鄰近台座之間的靜摩擦另外構成問題時提供對該等台座之額外支撐。
圖6之DRAM陣列可併入各種電子系統中。以下參考圖7至圖10描述一些實例電子系統。
圖7說明電腦系統400之實施例。電腦系統400包括監視器401或其他通信輸出裝置、鍵盤402或其他通信輸入裝置,及母板404。母板404可承載微處理器406或其他資料處理單元,及至少一記憶體裝置408。記憶體裝置408可包含記憶胞之陣列,且該陣列可與定址電路耦合以存取陣列中之個別記憶胞。另外,可將記憶胞陣列耦合至讀取電路以自該等記憶胞讀取資料。定址電路及讀取電路可用於在記憶體裝置408與處理器406之間傳送資訊。此情形係在圖8中所展示之母板404之方塊圖中說明。在該方塊圖中,以410來說明定址電路且以412來說明讀取電路。
處理器裝置406可對應於處理器模組,且與該模組一起利用之關聯記憶體可包含展示於圖6中之結構。
記憶體裝置408可對應於記憶體模組,且可包含圖6中所展示之結構。
圖9說明電子系統700之高級組織的簡化方塊圖。系統700可對應於例如電腦系統、過程控制系統,或使用處理器及關聯記憶體之任何其他系統。電子系統700具有功能元件,包括處理器702、控制單元704、記憶體裝置單元706及輸入/輸出(I/O)裝置708(應理解,在各種實施例中,該系統可具有複數個處理器、控制單元、記憶體裝置單元及/或I/O裝置)。通常,電子系統700將具有本機指令集,其指定處理器702將對資料執行之操作及處理器702、記憶體裝置單元706與I/O裝置708之間的其他交互作用。控制單元704藉由連續地在自記憶體裝置706提取指令且執行指令之操作集內循環來協調處理器702、記憶體裝置706及I/O裝置708之所有操作。記憶體裝置706可包括圖6中所展示之結構。
圖10為電子系統800之簡化方塊圖。系統800包括記憶體裝置802,該記憶體裝置802具有記憶胞陣列804、位址解碼器806、列存取電路808、行存取電路810、用於控制操作之讀/寫控制電路812,及輸入/輸出電路814。記憶體裝置802進一步包括功率電路816及感測器820(諸如,用於判定記憶胞處於低臨限傳導狀態還是處於高臨限非傳導狀態的電流感測器)。所說明之功率電路816包括電源電路880、用於提供參考電壓之電路882、用於向第一互連線提供脈衝之電路884、用於向第二互連線提供脈衝之電路886,及用於向第三互連線提供脈衝之電路888。系統800亦包括處理器822或用於記憶體存取之記憶體控制器。
記憶體裝置802經由配線或金屬化線自處理器822接收控制信號。記憶體裝置802用以儲存經由I/O線存取之資料。處理器822或記憶體裝置802中至少一者可包括圖6中所展示之結構。
可將各種電子系統製造於單一封裝處理單元中,或甚至製造於單一半導體晶片上,以便減少處理器與記憶體裝置之間的通信時間。
電子系統可用於記憶體模組、裝置驅動器、功率模組、通信數據機、處理器模組及特殊應用模組中,且可包括多層多晶片模組。
電子系統可為寬廣範圍之系統(諸如,時鐘、電視、蜂巢式電話、個人電腦、汽車、工業控制系統、飛機等)中之任一者。
10...一部分半導體構造
12...基板
14...電節點
16...電節點
18...電節點
20...支撐材料
22...經圖案化之遮罩材料
24...開口
26...開口
28...開口
30...導電材料
31...最上部(亦即,頂部)表面
32...台座
33...側壁表面
34...台座
36...台座
38...未填充區
52...介電材料
54...電容器極板材料
60...電容器
62...電容器
64...電容器
70...電晶體閘極
72...電晶體閘極
74...電晶體閘極
76...位元線
400...電腦系統
401...監視器
402...鍵盤
404...母板
406...微處理器/處理器裝置
408...記憶體裝置
410...定址電路
412...讀取電路
700...電子系統
702...處理器
704...控制單元
706...記憶體裝置單元
708...輸入/輸出(I/O)裝置
800...電子系統
802...記憶體裝置
804...記憶胞陣列
806...位址解碼器
808...列存取電路
810...行存取電路
812...讀/寫控制電路
814...輸入/輸出電路
816...功率電路
820...感測器
822...處理器
880...電源電路
882...用於提供參考電壓之電路
884...用於向第一互連線提供脈衝之電路
886...用於向第二互連線提供脈衝之電路
888...用於向第三互連線提供脈衝之電路
圖1-6為在一實施例之各個處理階段中一部分半導體構造的圖解橫截面圖。
圖7為電腦實施例之圖解視圖。
圖8為展示圖7之電腦實施例之母板之特定特徵的方塊圖。
圖9為電子系統實施例之高級方塊圖。
圖10為記憶體裝置實施例之簡化方塊圖。
10...一部分半導體構造
12...基板
14...電節點
16...電節點
18...電節點
30...導電材料
31...最上部(亦即,頂部)表面
32...台座
33...側壁表面
34...台座
36...台座
52...介電材料
54...電容器極板材料
60...電容器
62...電容器
64...電容器
70...電晶體閘極
72...電晶體閘極
74...電晶體閘極
76...位元線

Claims (21)

  1. 一種製造一電容器之方法,其包含:在一電節點上形成一支撐材料,該支撐材料包含鈦、矽及至少20 at%之碳,該鈦及矽散佈於該碳中,在該支撐材料中之該鈦在一小於或等於7.7 at%之範圍內,且在該支撐材料中之該矽在一小於或等於12.5 at%之範圍內;形成一穿過該支撐材料達至該電節點之開口;自該電節點生長導電材料以至少部分地填充該開口;該導電材料實質上完全在該開口內生長且對應於一第一電容器電極,該第一電容器電極具有沿該支撐材料之側壁;移除該支撐材料之至少一部分以暴露該等第一電容器電極側壁之至少一部分;在移除該支撐材料之該至少一部分之後,在該第一電容器電極上形成電容器介電材料;及在該電容器介電材料上形成一第二電容器電極。
  2. 如請求項1之方法,其中該導電材料僅在該開口內生長。
  3. 如請求項1之方法,其中在不將該支撐材料暴露至一超過200℃之溫度的情況下進行該生長該導電材料。
  4. 如請求項1之方法,其中該電節點為一含金屬區之一表面。
  5. 如請求項4之方法,其中該生長該導電材料包含在該表 面上電鍍及無電沈積中之一者或兩者。
  6. 如請求項1之方法,其中該電節點為一導電性摻雜之半導體區之一表面。
  7. 如請求項6之方法,其中該生長該導電材料包含自該表面磊晶生長。
  8. 如請求項1之方法,其中該支撐材料含有至少50 at%之碳。
  9. 一種形成一電容器之方法,其包含:在一電節點上形成一支撐材料,該支撐材料含有鈦、矽及至少50 at%之碳,該鈦及矽散佈於該碳中,在該支撐材料中之該鈦在一小於或等於7.7 at%之範圍內,且在該支撐材料中之該矽在一小於或等於12.5 at%之範圍內;各向異性地蝕刻一穿過該支撐材料達至該電節點之開口;藉由利用磊晶生長在該電節點上生長第一電容器電極材料,在該開口中形成一第一電容器電極;在形成該第一電容器電極之後,移除全部該支撐材料以暴露該第一電容器電極之側壁表面;在該第一電容器電極上且沿該等經暴露側壁表面形成一介電材料;及在該介電材料上形成一第二電容器電極。
  10. 如請求項9之方法,其中該第一電容器電極材料係在該開口中生長至一僅部分地填充該開口之位準。
  11. 如請求項9之方法,其中該開口具有一至少30:1之縱橫比。
  12. 如請求項9之方法,其中該開口具有一至少40:1之縱橫比。
  13. 一種形成一電容器之方法,其包含:在一基板上形成一支撐材料,該支撐材料含有鈦、矽及至少20 at%之碳,該鈦及矽散佈於該碳中,在該支撐材料中之該鈦在一小於或等於7.7 at%之範圍內,且在該支撐材料中之該矽在一小於或等於12.5 at%之範圍內;形成一穿過該支撐材料達至該基板之開口,該支撐材料具有一厚度且該開口具有一在該支撐材料之該厚度內的20:1或大於20:1之縱橫比;在該開口內生長一螺栓型電容器之一螺栓型電極;移除該支撐材料;在移除該支撐材料之後,在該螺栓型電極上形成一電容器介電材料;及在該電容器介電材料上形成一第二電容器電極。
  14. 如請求項13之方法,其中該支撐材料為電絕緣的。
  15. 如請求項13之方法,其中該碳為一含烴之矽酸鹽主鏈聚合物之一部分。
  16. 如請求項13之方法,其中該支撐材料為非晶的。
  17. 如請求項13之方法,其中該縱橫比為至少30:1。
  18. 如請求項13之方法,其中該縱橫比為至少40:1。
  19. 如請求項13之方法,其中該厚度大於或等於約1μm。
  20. 一種製造一動態隨機存取記憶體陣列之方法,其包含:在複數個電節點上形成一支撐材料,該支撐材料包含鈦、矽及至少20 at%之碳,該鈦及矽散佈於該碳中,在該支撐材料中之該鈦在一小於或等於7.7 at%之範圍內,且在該支撐材料中之該矽在一小於或等於12.5 at%之範圍內;形成複數個穿過該支撐材料達至該等電節點之開口;自該等電節點生長導電材料以至少部分地填充該等開口;該導電材料僅在該等開口內生長且對應於多個電容器電極,該等電容器電極具有沿該支撐材料之側壁;移除該支撐材料之至少一部分以暴露該等電容器電極側壁之至少一部分;在移除該支撐材料之該至少一部分之後,在該等電容器電極上形成電容器介電材料;在該電容器介電材料上形成一電容器極板材料,該電容器極板材料、介電材料及電容器電極一起併入複數個電容器中;及形成電晶體,該等電晶體具有包含字線之閘極,且該等電晶體將該等電容器電耦合至位元線。
  21. 一種製造一電子系統之方法,其包含:形成用於存取一記憶體陣列之字線及位元線的電路;及形成該記憶體陣列,該形成該記憶體陣列包含:在複數個電節點上形成一支撐材料,該支撐材料包含 鈦、矽及至少20 at%之碳,該鈦及矽散佈於該碳中,在該支撐材料中之該鈦在一小於或等於7.7 at%之範圍內,且在該支撐材料中之該矽在一小於或等於12.5 at%之範圍內;形成複數個穿過該支撐材料達至該等電節點之開口;自該等電節點生長導電材料以至少部分地填充該等開口;該導電材料僅在該等開口內生長且對應於多個電容器電極,該等電容器電極具有沿該支撐材料之側壁;移除該支撐材料以暴露該等電容器電極側壁;在移除該支撐材料之後,在該等電容器電極上形成電容器介電材料;在該電容器介電材料上形成一電容器極板材料,該電容器極板材料、介電材料及電容器電極一起併入複數個電容器中;及形成電晶體,該等電晶體具有電耦合至該等字線之閘極,且該等電晶體將該等電容器電耦合至該等位元線。
TW098125398A 2008-08-13 2009-07-28 製造電容器、動態隨機存取記憶體陣列及電子系統之方法 TWI478289B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/190,821 US8268695B2 (en) 2008-08-13 2008-08-13 Methods of making capacitors

Publications (2)

Publication Number Publication Date
TW201017829A TW201017829A (en) 2010-05-01
TWI478289B true TWI478289B (zh) 2015-03-21

Family

ID=41669550

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098125398A TWI478289B (zh) 2008-08-13 2009-07-28 製造電容器、動態隨機存取記憶體陣列及電子系統之方法

Country Status (6)

Country Link
US (2) US8268695B2 (zh)
EP (1) EP2313925B1 (zh)
KR (1) KR101225861B1 (zh)
CN (1) CN102119441B (zh)
TW (1) TWI478289B (zh)
WO (1) WO2010019343A2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923373B2 (en) 2007-06-04 2011-04-12 Micron Technology, Inc. Pitch multiplication using self-assembling materials
US7682924B2 (en) * 2007-08-13 2010-03-23 Micron Technology, Inc. Methods of forming a plurality of capacitors
US8388851B2 (en) * 2008-01-08 2013-03-05 Micron Technology, Inc. Capacitor forming methods
US8274777B2 (en) * 2008-04-08 2012-09-25 Micron Technology, Inc. High aspect ratio openings
US7759193B2 (en) * 2008-07-09 2010-07-20 Micron Technology, Inc. Methods of forming a plurality of capacitors
KR101087877B1 (ko) * 2008-12-23 2011-11-30 주식회사 하이닉스반도체 고집적 반도체 장치의 제조 방법 및 반도체 장치
US8268730B2 (en) * 2009-06-03 2012-09-18 Micron Technology, Inc. Methods of masking semiconductor device structures
US8518788B2 (en) 2010-08-11 2013-08-27 Micron Technology, Inc. Methods of forming a plurality of capacitors
US8394682B2 (en) 2011-07-26 2013-03-12 Micron Technology, Inc. Methods of forming graphene-containing switches
US9076680B2 (en) 2011-10-18 2015-07-07 Micron Technology, Inc. Integrated circuitry, methods of forming capacitors, and methods of forming integrated circuitry comprising an array of capacitors and circuitry peripheral to the array
US8946043B2 (en) 2011-12-21 2015-02-03 Micron Technology, Inc. Methods of forming capacitors
US8652926B1 (en) 2012-07-26 2014-02-18 Micron Technology, Inc. Methods of forming capacitors
US10090376B2 (en) 2013-10-29 2018-10-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and methods of forming capacitor structures
US10381102B2 (en) * 2014-04-30 2019-08-13 Micron Technology, Inc. Memory devices having a read function of data stored in a plurality of reference cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155657A (en) * 1991-10-31 1992-10-13 International Business Machines Corporation High area capacitor formation using material dependent etching
US20030017669A1 (en) * 2001-07-17 2003-01-23 Masahiro Kiyotoshi Method of manufacturing a semiconductor device and semiconductor device
US6613669B2 (en) * 2000-03-10 2003-09-02 Nec Electronics Corporation Semiconductor device and method for manufacturing the same
US20040011653A1 (en) * 2002-07-18 2004-01-22 Collins Dale W. Methods of electrochemically treating semiconductor substrates, and methods of forming capacitor constructions
US20050287738A1 (en) * 2004-06-24 2005-12-29 Cho Sung-Il Method of manufacturing a semiconductor memory device
US20070134872A1 (en) * 2005-08-02 2007-06-14 Sandhu Gurtej S Methods of forming pluralities of capacitors

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705659A (en) 1985-04-01 1987-11-10 Motorola, Inc. Carbon film oxidation for free-standing film formation
JP4053647B2 (ja) * 1997-02-27 2008-02-27 株式会社東芝 半導体記憶装置及びその製造方法
US6294425B1 (en) 1999-10-14 2001-09-25 Samsung Electronics Co., Ltd. Methods of forming integrated circuit capacitors by electroplating electrodes from seed layers
US6713378B2 (en) 2000-06-16 2004-03-30 Micron Technology, Inc. Interconnect line selectively isolated from an underlying contact plug
KR100414204B1 (ko) * 2001-05-31 2004-01-07 삼성전자주식회사 캐퍼시터 소자를 갖는 반도체 메모리 장치 및 그 형성 방법
US7468323B2 (en) * 2004-02-27 2008-12-23 Micron Technology, Inc. Method of forming high aspect ratio structures
JP2006135261A (ja) * 2004-11-09 2006-05-25 Elpida Memory Inc キャパシタの製造方法
KR20060134344A (ko) 2005-06-22 2006-12-28 주식회사 하이닉스반도체 반도체 장치의 캐패시터 형성방법
US20070001208A1 (en) 2005-06-30 2007-01-04 Andrew Graham DRAM having carbon stack capacitor
KR100656283B1 (ko) 2005-12-14 2006-12-11 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조 방법
US7557013B2 (en) * 2006-04-10 2009-07-07 Micron Technology, Inc. Methods of forming a plurality of capacitors
KR20070110747A (ko) 2006-05-15 2007-11-20 주식회사 하이닉스반도체 반도체소자의 스토리지노드 형성방법
CN101573772B (zh) 2006-10-04 2011-10-05 Nxp股份有限公司 Mim电容器
KR101270200B1 (ko) * 2006-10-30 2013-05-31 삼성디스플레이 주식회사 와이어 그리드 편광 패턴의 제조 방법 및 이에 의해 제조된액정 표시 장치
US7476587B2 (en) * 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US8388851B2 (en) 2008-01-08 2013-03-05 Micron Technology, Inc. Capacitor forming methods
US7618874B1 (en) 2008-05-02 2009-11-17 Micron Technology, Inc. Methods of forming capacitors
US7696056B2 (en) 2008-05-02 2010-04-13 Micron Technology, Inc. Methods of forming capacitors
KR20100004648A (ko) 2008-07-04 2010-01-13 주식회사 하이닉스반도체 반도체 장치의 캐패시터 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155657A (en) * 1991-10-31 1992-10-13 International Business Machines Corporation High area capacitor formation using material dependent etching
US6613669B2 (en) * 2000-03-10 2003-09-02 Nec Electronics Corporation Semiconductor device and method for manufacturing the same
US20030017669A1 (en) * 2001-07-17 2003-01-23 Masahiro Kiyotoshi Method of manufacturing a semiconductor device and semiconductor device
US20040011653A1 (en) * 2002-07-18 2004-01-22 Collins Dale W. Methods of electrochemically treating semiconductor substrates, and methods of forming capacitor constructions
US20050287738A1 (en) * 2004-06-24 2005-12-29 Cho Sung-Il Method of manufacturing a semiconductor memory device
US20070134872A1 (en) * 2005-08-02 2007-06-14 Sandhu Gurtej S Methods of forming pluralities of capacitors

Also Published As

Publication number Publication date
KR101225861B1 (ko) 2013-01-24
US8268695B2 (en) 2012-09-18
US8853050B2 (en) 2014-10-07
CN102119441B (zh) 2013-06-19
US20130005111A1 (en) 2013-01-03
KR20110042212A (ko) 2011-04-25
EP2313925A2 (en) 2011-04-27
EP2313925B1 (en) 2017-10-25
WO2010019343A2 (en) 2010-02-18
CN102119441A (zh) 2011-07-06
TW201017829A (en) 2010-05-01
WO2010019343A3 (en) 2010-05-14
EP2313925A4 (en) 2012-12-05
US20100041204A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
TWI478289B (zh) 製造電容器、動態隨機存取記憶體陣列及電子系統之方法
US9224798B2 (en) Capacitor forming methods
KR101251827B1 (ko) 도전성 재료의 형성 방법, 도전성 재료의 선택적 형성 방법, 백금의 형성 방법, 및 도전성 구조물의 형성 방법
US8652926B1 (en) Methods of forming capacitors
TW200947715A (en) High aspect ratio openings
JP2000058878A (ja) 半導体素子のキャパシタ及びその製造方法
KR19980055746A (ko) 반도체 소자의 전극 형성방법
KR100304852B1 (ko) 반도체소자의커패시터및그제조방법
TWI261351B (en) Method for fabricating capacitor of semiconductor device
KR100307294B1 (ko) 반도체장치의제조방법
KR100567058B1 (ko) 반도체 소자의 캐패시터 형성방법
KR100424715B1 (ko) 반도체 소자의 캐패시터 제조방법
KR100541679B1 (ko) 반도체소자의 캐패시터 형성방법
KR100784037B1 (ko) 반도체 소자의 커패시터 제조 방법
KR100611782B1 (ko) 단결정의 탄탈륨산화막을 구비한 캐패시터 및 그의 제조방법
KR19980076543A (ko) 반도체장치의 커패시터 및 그 제조방법
KR20070111821A (ko) 반도체 소자의 캐패시터 형성방법
KR20070000532A (ko) 반도체메모리소자의 스토리지노드용 티타늄나이트라이드막형성방법
KR20020044364A (ko) 반도체 소자의 커패시터 제조 방법