TWI478246B - 藉由形成硬遮罩層堆疊及採用基於電漿的遮罩圖案化製程以形成通道半導體合金 - Google Patents

藉由形成硬遮罩層堆疊及採用基於電漿的遮罩圖案化製程以形成通道半導體合金 Download PDF

Info

Publication number
TWI478246B
TWI478246B TW100147324A TW100147324A TWI478246B TW I478246 B TWI478246 B TW I478246B TW 100147324 A TW100147324 A TW 100147324A TW 100147324 A TW100147324 A TW 100147324A TW I478246 B TWI478246 B TW I478246B
Authority
TW
Taiwan
Prior art keywords
hard mask
active region
mask layer
forming
layer
Prior art date
Application number
TW100147324A
Other languages
English (en)
Other versions
TW201230208A (en
Inventor
Stephan Kronholz
Gunda Beernink
Carsten Reichel
Original Assignee
Globalfoundries Us Inc
Globalfoundries Dresden Mod 1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globalfoundries Us Inc, Globalfoundries Dresden Mod 1 filed Critical Globalfoundries Us Inc
Publication of TW201230208A publication Critical patent/TW201230208A/zh
Application granted granted Critical
Publication of TWI478246B publication Critical patent/TWI478246B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66651Lateral single gate silicon transistors with a single crystalline channel formed on the silicon substrate after insulating device isolation

Description

藉由形成硬遮罩層堆疊及採用基於電漿的遮罩圖案化製程以形成通道半導體合金
一般而言,本發明是關於包含複雜的電晶體元件的積體電路,該電晶體元件包含進階的閘極結構,該閘極結構包含含金屬電極及高介電係數閘極介電質,具有增加的介電係數。
製作進階的積體電路(例如,中央處理器(CPU)、儲存裝置、ASIC(特定應用積體電路)、及類似者)需要為數甚多的電路元件,依據特定的電路佈局而形成在給定的晶片區域上,其中,場效電晶體代表可實質性決定該積體電路的效能的一種重要類型的電路元件。一般而言,目前採用複數種製程技術,其中,對包含場效電晶體的許多類型的複雜電路系統而言,金屬氧化物半導體(MOS)技術由於其在操作速度及/或電能消耗及/或成本效率方面有較優的特性,因此,為一種前景最為看好的選項。在使用例如MOS技術來製作複雜積體電路期間,數以百萬計的電晶體(例如,n通道電晶體及/或p通道電晶體)是形成在包含結晶半導體層的基板上。不論是考量n通道電晶體抑或是p通道電晶體,場效電晶體通常包含所謂的pn-接面,該pn-接面由高度摻雜區域(稱為漏極及源極區域)與鄰接於該高度摻雜區域的輕度摻雜或未摻雜區域(例如,通道區域)的介面所形成。在場效電晶體中,該通道區域的導電性(也就是,該導電通道的驅動電流能力)受控於閘極電極,該閘極電極鄰接於該通道區域、並被薄絕緣層而與該通道區域隔離。在因為施加適當的控制電壓至該閘極電極而形成導電通道時,該通道區域的導電性相關於該摻質濃度、該電荷載子的移動率、及該源極與該漏極區域之間的距離(在該通道區域朝該電晶體寬度方向的給定延伸),該距離也稱為通道長度。因此,結合於施加該控制電壓至該閘極電極時在該絕緣層以下快速產生導電通道的能力,該通道區域的導電性實質地影響MOS電晶體的效能。因此,由於創造該通道的速度(其相關於該閘極電極的導電性及該通道電阻性)實質決定該電晶體特性,故該通道長度的縮小(及其所相關的減少通道電阻性及減少閘極電阻性)為達成增加該積體電路的操作速度的主要設計標準。
目前,大多數的積體電路是在矽的基礎上加以製作,這是因為矽實質上不虞匱乏,矽及相關材料和製程的特性已廣為瞭解,再加上過去50年來所累積的經驗。因此,矽很可能仍然是針對量產產品所設計的未來電路世代的首選材料。矽在製作半導體裝置扮演舉足輕重角色的一個原因為矽/矽氧化物介面的較優特性,該特性可使不同的區域彼此電性絕緣。矽/二氧化矽介面在高溫下仍然穩定,並因此可允許接下來的高溫製程(例如,活化摻質並固化結晶損壞的退火迴圈所需要的)的效能,而不需犧牲該介面的電性特性。
由於以上所指出的理由,二氧化矽較佳是使用為場效電晶體中將該閘極電極隔離於該矽通道區域的閘極絕緣層的基礎材料,其通常包含多晶矽或含金屬材料。在穩定地改良場效電晶體的裝置效能中,已持續地減少該通道區域的長度,以改良切換速度及驅動電流能力。由於可藉由供應至該閘極電極、以將該通道區域的表面反轉至足夠高的電荷密度並提供給定供應電壓所希望的驅動電流,來控制該電晶體效能,因此,必需維持由該閘極電極、該通道區域及設置於該閘極電極和該通道區域之間的矽氧化物所形成的電容器所提供的電容性耦合。其結果就是,減少該通道長度需要增加電容性耦合,以避免在電晶體操作期間所發生的所謂的短通道行為。該短通道行為可導致增加漏電流,並導致該臨界電壓會與該通道長度明顯地相關。具有相當低供應電壓及因此減小的臨界電壓的極度縮小的電晶體裝置,會因該閘極電極至該通道區域需要增加的電容性耦合,而面臨該漏電流呈指數性增加的問題。
因此,已考量取代作為閘極絕緣材料層的材料的二氧化矽(或至少一部分的二氧化矽)。可能的替代介電質包含能展現非常高介電係數的材料,以致於具有較大實體厚度的對應地形成的閘極絕緣層可提供電容性耦合,該電容性耦合可藉由非常薄的二氧化矽層來加以獲得。已經建議二氧化矽由高介電係數材料來替代,例如,具有介電係數為大約25的鉭氧化物(Ta2 O5 )、具有介電係數為大約150的鍶鉭氧化物(SrTiO3 )、鉿氧化物(HfO2 )、HfSiO、鍶氧化物(ZrO2 )、及類似者。
當依據高介電係數介電質而額外地進階至複雜的閘極架構時,可通過提供該閘極電極適當的導電材料以替代該經常使用的多晶矽材料,來增加電晶體效能,這是由於多晶矽在該閘極介電質的介面附近會有電荷載子空乏的問題,從而減少該通道區域與該閘極電極之間的有效電容性。因此,已建議閘極堆疊,在該閘極堆疊中,高介電係數介電材料提供加強的電容性,即使在與二氧化矽層相比下較不關鍵的厚度處亦然,但卻能將漏電流額外地維持在可接受的程度。另一方面,可形成含金屬的非多晶矽材料(例如,鈦氮化物及類似者),以直接連接至該高介電係數介電材料,從而實質避免空乏區域的出現。因此,該電晶體的臨界電壓會顯著地受到該閘極材料的工作函數的影響,其中,該閘極材料與該閘極介電材料接觸,並且能確保針對該電晶體的導電類型而適當地調整該有效的工作函數。
舉例來說,適當的含金屬閘極電極材料(例如,鈦氮化物及類似者)通常與適當的金屬物種(鑭、鋁及類似者)一起使用,以調整該工作函數,使該工作函數能適合各種類型的電晶體,例如,n通道電晶體及p通道電晶體,p通道電晶體可能需要額外的帶隙偏移。為了這個理由,已提出通過在電晶體裝置的該閘極介電材料與該通道區域之間的介面處提供特別設計的半導體材料,來適當地調整該電晶體裝置的臨界電壓,以適當地“選擇”該特別設計的半導體材料的帶隙至該含金屬閘極電極材料,從而獲得該電晶體的希望臨界電壓。通常,可通過早期製造階段中的磊晶生長技術,來提供對應特別設計的半導體材料,例如,矽/鍺及及類似者,該磊晶生長技術可代表額外的複雜製程步驟,然而,其可避免在進階的階段中用來調整該工作函數、並因此在非常進階的製程階段中用來調整該臨界電壓的複雜製程。
然而,其結果就是,形成該臨界調整半導體合金的製造順序可能對電晶體特性有顯著的影響,將參考第1a-1f圖而有詳細的描述。
第1a圖示意地例示包含基板101的半導體裝置100的截面視圖,在該基板101上是形成有矽基半導體材料102,該矽基半導體材料102具有適當的厚度,以在其中或之上形成電晶體元件。再者,隔離結構102C是形成在該半導體層102中,從而側向地描繪並因此定義主動區域102A、102B。在此,主動區域將瞭解為半導體材料,在該半導體材料中,形成或將創造適當的摻質分佈,以形成一個或多個電晶體元件的pn接面。在第1a圖所顯示的該範例中,該主動區域102A對應於p通道電晶體,而該主動區域102B代表n通道電晶體。也就是,該主動區域102A、102B包含適當的基本摻質濃度,以分別決定p通道電晶體及n通道電晶體的導電性。應理解到,該主動區域102A、102B可包含或可接收其他元件,例如,鍺、碳及及類似者,以適當地調整該整體電性特性。類似地,在該主動區域102A中,適當的共價鍵偏移相對於複雜的閘極電極結構而作調整,該閘極電極結構將通過形成適當的半導體合金而形成,將於稍後加以描述。
如第1a圖所例示的該半導體裝置100可依據下列的傳統製程策略來加以形成。該隔離結構102C是通過已良好建立的微影、蝕刻、沈積、平坦化及退火技術來加以形成,其中,適當的硬遮罩層(例如,墊氧化物及氮化矽材料)是形成在該半導體層102上,接著在該半導體層102中圖案化溝槽。之後,該溝槽由適當的絕緣材料(例如,二氧化矽及類似者)所填充。應理解到,用來形成該隔離結構102C的製程順序可在該主動區域102A、102B中導致或多或少的明顯應力等級。在移除任何多餘的材料及平坦化該表面地貌後,通過使用適當的遮罩方案以實施複數個布植製程,來繼續進一步的處理,以將產生該基本摻質濃度所需的摻質物種引進至該主動區域102A、102B內,也就是將被形成在該主動區域102A、102B中或之上的電晶體的所需的。在活性化該摻質物種,並且再結晶化布植引發損害後,通過移除任何材料剩餘(例如,氧化物材料)以及將該裝置100暴露至氧化大氣110中,而繼續進一步的處理,其中,該氧化大氣110通常是建立在升高溫度的基礎上,例如,在700℃至1200℃的範圍內。因此,在該乾氧化製程110中,遮罩層104是以良好控制的方式,而在該製程110期間形成。舉例來說,該遮罩層104的最大厚度是調整至不大於10奈米。
第1b圖示意地例示更進階製造階段中的該半導體裝置100,在該更進階製造階段中,具有光阻材料的形式的蝕刻遮罩105是形成在該半導體裝置100之上,以致於該主動區域102B及一部分該隔離結構102C(也就是,該遮罩材料104)是被該遮罩105所覆蓋,但該主動區域102A(也就是,形成於主動區域102A上的該遮罩材料104)及該隔離結構102C的剩餘部分均暴露至濕化學蝕刻大氣111,以從該主動區域102A選擇性移除該遮罩材料104。在該蝕刻製程111(其通常是依據稀釋的氫氟酸來加以實施)期間,該光阻材料105必需承受蝕刻攻擊,其中,尤其是該遮罩105位於該隔離結構102C之上的邊緣105E在該蝕刻製程111期間,可能會增加地被侵蝕。舉例來說,可能需要數分鐘的蝕刻時間,以從該主動區域102A可靠地移除該遮罩材料104。因為該邊緣區域105E的增加侵蝕,該隔離區域102C中該遮罩區域及該非-遮罩區域之間的界限可能不會被良好地定義,並因此因為該變化程度的材料侵蝕,而導致特定程定的“粗糙性”,其可能影響該裝置100的進一步處理,尤其是當該主動區域102A、102B代表接近的分離主動區域時,該主動區域因此被包含該侵蝕表面區域的該隔離區域102C側向地予以描繪。
第1c圖示意地例示更進階製造階段中(也就是,在從該主動區域102A之上選擇性移除該遮罩材料104後及移除該蝕刻遮罩105後,例如,第1b圖)的該半導體裝置100。如以上所討論的,因為依據氫氟酸的該先前蝕刻順序,該隔離結構102C中可能發生特定的材料損失,其中,該蝕刻製程期間的該增加遮罩侵蝕可能在該隔離區域102C中導致非良好定義的轉換區域。
第1d圖示意地例示當暴露於進一步反應製程大氣106的該半導體裝置100,該反應製程大氣106可包含清潔製程及類似者,以製備該裝置100,用於選擇性在該第一主動區域102A上沈積矽/鍺合金。該製程106可依據任何適當的化學品來加以建立,以移除污染物及類似者,該污染物及類似者在該先前移除該蝕刻遮罩及類似者的期間已然產生。通常,該清潔製程106可能對該遮罩104造成特定程度的材料侵蝕,從而減少其厚度(如104R所指示的),但沒有暴露該第二主動區域102B的該表面部分。
第1e圖示意地例示選擇性磊晶生長製程107期間的該半導體裝置100,在該選擇性磊晶生長製程107中,適當地選擇製程參數(例如,溫度、壓力、前驅氣體的流速、及類似者),以實質地限制材料沈積至暴露矽表面區域,但該基於二氧化矽的表面區域實質地防止沈積材料。也就是,該沈積製程107可予以調整,以致於可獲得相對於該主動區域102A及任何氧化物表面區域(例如,該沈積遮罩104及該隔離區域102C)中的矽材料的特定程度的沈積選擇性。如先前所解釋的,將要形成在該主動區域102R中或之上的電晶體的最終獲得的臨界電壓與該矽/鍺材料108的特性(例如,該矽/鍺材料108的濃度及該厚度)強烈地相關,以致於在該製程107期間,必需建立精確決定的製程條件。在沈積矽/鍺合金108(其現在為一部分該主動區域102A,該部分具有適當的帶隙,用來在其上形成複雜的閘極電極結構)後,例如通過使用氫氟酸來移除該沈積遮罩104,其接著在該隔離區域102C中導致特定的材料移除,從而在該主動區域102A、102B及該隔離區域102C之間貢獻另外的明顯表面地貌,其可因為該先前實施的蝕刻製程111而額外地具有明顯的表面地貌,如參考第1b圖所描述的。
第1f圖示意地例示更進階製造階段中的該半導體裝置100,在該更進階製造階段中,電晶體150A是形成在該主動區域102A中及之上,該主動區域102A可包含至少一部分該矽/鍺合金108。類似地,電晶體150B是形成在該主動區域102B中及之上。此外,該電晶體150A、150B(例如,分別代表p通道電晶體及n通道電晶體)分別包含閘極電極結構160A、160B。如所顯示的,該閘極電極結構160A是形成在該臨界調整矽/鍺合金108上,並且包含閘極介電材料161,該閘極介電材料161包含高介電係數介電材料,其中,該閘極介電材料161被含金屬電極材料162所覆蓋。此外,“傳統”電極材料(例如,無定形矽、多結晶矽、及類似者)163通常形成在該電極材料162之上。此外,該敏感性材料161及162由適當的間隔件或襯墊材料165(例如,具有氮化矽材料及類似者的形式)側向地限制。再者,依據該製程及裝置要求,來提供側壁間隔件結構164(其可包含一個或多個間隔件元件),可能結合任何蝕刻停止襯墊。該閘極電極結構160B具有類似的組構,然而其中,該閘極介電材料161是直接形成在該主動區域102B上。應理解到,相對於該材料層162的該產生的工作函數而言,該閘極電極結構160A、160B彼此之間進一步不同。也就是,該電晶體150A可能需要不同的工作函數,以結合該矽/鍺材料108,而獲得p通道電晶體的該希望的臨界電壓。為了此目的,任何適當的工作函數金屬物種(例如,鋁)可併入至該層162及/或該閘極介電層161中。類似地,適當的工作函數金屬物種(例如,鑭及類似者)可併入至該電晶體150B的該層162及/或該層161中,以獲得該希望的臨界電壓。
如第1f圖所顯示的該半導體裝置100可依據任何眾所周知的製程技術來加以形成,該製程技術包含沈積該材料161、162及163(可能結合其他材料,例如,介電蓋層、ARC(抗反射塗層)材料及類似者)。如以上所討論的,適當的圖案化方案及材料可使用於該層161及162,以獲得希望的高電容性耦合,並結合較優的導電性,也有希望的工作函數及因此用於該電晶體150A、150B的臨界電壓,其中,該矽/鍺合金108提供該希望的末端間隙偏移。在圖案化該複雜的層堆疊後,至少該敏感性材料161及162必需被可靠地限制,以不致將這些材料不當地暴露至任何反應製程大氣,該反應製程大氣可對這些材料導致顯著的修改,其接著導致該產生的臨界電壓具有顯著的偏移。為了此目的,可採用複雜的沈積技術,以形成該襯墊165,接著實施適當的沈積及蝕刻製程,以形成一部分該側壁間隔件結構164,該部分可接著用來將分別形成漏極及源極區域153的摻質物種引進該主動區域102A、102B。為了此目的,可採用眾所周知的布植策略及遮罩方案。之後,可採用退火製程,從而調整該漏極及源極區域153的最終側向及垂直分佈,從而也調整位於該個別的閘極電極結構160A、160B之下的通道區域152的最終長度。
應理解到,雖然該以上所描述的製程策略可致能以形成複雜的閘極電極結構及因此的電晶體,然而,可在其中觀察到該電晶體特性的顯著變化。舉例來說,該矽/鍺合金108的特性可朝長度方向(也就是,第1f圖中的水平方向)而變化,然而,該變化並不會負面地影響該產生的電晶體的特性。在另一方面,朝該電晶體寬度方向(也就是,垂直於第1f圖的圖式平面的方向)上,可觀察至該材料特性的顯著變化,其中,基本上,可觀察到相同的邊緣效應,該邊緣效應是由例如該隔離區域102C及該主動區域102A之間的明顯表面地貌所造成的,但該先前所使用的沈積遮罩104(例如,第1a及1b圖)可造成其他的負面影響,這是由於其形成及該選擇性移除可能導致該主動區域102的中心,相較於該主動區域102的邊緣,有不同的條件。再者,隔離區域102C的(尤其是在接近的分離電晶體裝置之間的)不規則表面地貌也可能影響形成該保護襯墊或間隔件165的該製程,其接著導致該電晶體150A、150B的一者或兩者中的該敏感性材料161及162的劣化,其因此也可能貢獻顯著的產量損失。
有鑒能於以上所描述的情況,本發明是關於數種技術,在該等技術中,可依據臨界調整半導體合金來形成閘極電極結構,但卻能避免、或至少能減少以上所證實的一個或多個問題。
一般而言,本發明是關於用來依據臨界調整半導體合金以形成複雜的閘極電極結構的技術,其中,通過減少任何製程非均勻性,可減少電晶體變化性及加強整體製程均勻性,該製程非均勻性可能於依據氧化製程並結合濕化學蝕刻配方而形成生長遮罩時引進,該濕化學蝕刻配方是用來從該主動區域的一者選擇性移除該生長遮罩。為了此目的,在本文所揭露的一些例示實施例中,可依據沈積製程而提供適當的遮罩材料,該遮罩材料具有氮化矽材料的形式,但可通過使用基於電漿的蝕刻製程而完成該遮罩材料的該圖案化,該基於電漿的蝕刻製程為一種依據反應離子的蝕刻製程,該反應離子是出現在該反應製程大氣中,並且朝該基板的該表面加速。以此方式,於形成該沈積遮罩並之後於選擇性沈積該臨界調整半導體材料時,可達成良好定義的製程條件,選擇性沈積該臨界調整半導體材料可導致該生成的電晶體特性具有較優的均勻性。再者,在該整個製程流程期間,可減少對高度激烈的濕化學蝕刻化學物品(例如,氫氟酸)的暴露,從而也貢獻較優的裝置特性,這是由於可在隔離區域與主動區域之間的表面拓撲中,達成較不明顯的差異。在本文所揭露的例示態樣中,可提供至少二個硬遮罩層,其中一者可依據沈積的基於氫化物的材料來加以形成,從而依據良好建立的非等向性蝕刻技術致能該硬遮罩層的圖案化。在該選擇性磊晶生長製程期間,該圖案化的硬遮罩堆疊或其一部分可有效地作為沈積遮罩,其中,在一些例示實施例中,如傳統良好建立的策略,可建立類似的生長條件,在該策略中,可使用在矽與二氧化矽材料之間提供明顯選擇性的製程參數。
本文所揭露的一個實施例包含在半導體裝置的第一主動區域及第二主動區域上形成第一硬遮罩層。再者,第二硬遮罩層是形成在該第一硬遮罩層上,並且該第一及第二硬遮罩層是通過電漿輔助蝕刻製程,而從該第一主動區域選擇性移除。該方法另包含在該第一主動區域上形成一層半導體合金,並且使用該第二主動區域上的該第一及第二硬遮罩層的至少一者作為生長遮罩。該方法另包含暴露該第二主動區域,並且在該層半導體合金上形成第一電晶體的第一閘極電極結構、以及在該第二主動區域上形成第二電晶體的第二閘極電極結構。該第一及第二閘極電極結構包含含金屬閘極電極材料及閘極絕緣層,該閘極絕緣層包含高介電係數介電材料。
本文所揭露的進一步的例示方法是關於形成半導體裝置。該方法包含在第一主動區域及第二主動區域上形成第一硬遮罩層。再者,第二硬遮罩是形成在該第一硬遮罩層上,並且該第一及第二硬遮罩層是從該第一主動區域選擇性移除。該方法另包含在從該第一主動區域移除該第一及第二硬遮罩層之後,從該第二主動區域之上移除該第二硬遮罩層。此外,該方法包含通過使用該第一硬遮罩層作為生長遮罩,以在該第一主動區域中形成一層半導體合金。此外,第一電晶體的第一閘極電極結構是形成在包含該層半導體合金的該第一主動區域上,而第二電晶體的第二閘極電極結構是形成在該第二主動區域上。
本文所揭露的另外進一步例示實施例包含在半導體裝置的第一主動區域及第二主動區域上形成遮罩層堆疊。該方法另包含通過實施至少一個基於電漿的蝕刻製程,以選擇性從該第一主動區域移除該遮罩層堆疊。再者,一層半導體合金是形成在該第一主動區域上,但使用該第二主動區域上的至少一層該遮罩層堆疊作為生長遮罩。此外,實施蝕刻製程以暴露該第二主動區域,並且第一閘極電極結構是形成在該第一主動區域上,而第二閘極電極結構是形成在該第二主動區域上。此外,在該第一閘極電極結構出現下,張力誘發半導體材料是形成至少在該第一主動區域中。
雖然本發明的描述是參考接下來的詳細描述及圖式中的實施例,但應瞭解到,接下來的詳細描述及圖式並不打算將本文所揭露的實施例限制至所揭露的特別實施例,該描述的例示實施例僅示範本發明的不同態樣,其範圍是由附隨的申請專利範圍來加以定義。
本發明揭露製程技術,其中,臨界調整半導體合金(例如,矽/鍺合金)可以一種的電晶體而選擇性形成,但在該選擇性沈積期間覆蓋一種或多種其他類型的電晶體。為了此目的,基本上,硬遮罩一開始可以沈積材料(例如,氮化矽材料)的形式來加以提供,該氮化矽材料可依據基於電漿的蝕刻製程(例如,反應離子蝕刻)而有效地圖案化,該反應離子蝕刻可在該裝置的後續處理(例如,當形成該臨界調整半導體合金時)期間,導致較優製程條件。在一些例示實施例中,該硬遮罩可提供如包含數層的堆疊,例如,包含二氧化矽材料,該二氧化矽材料可在早期製造階段中形成,並具有高程度的製程均勻性,但後續的材料層(例如,氮化矽材料)則可依據沈積製程來加以形成。
在本文所揭露的一些例示實施例中,提供及圖案化該硬遮罩的修改可限制於該整體製程流程的特定區段,而不需對該先前的製程流程有任何的改變。為了此目的,該氮化矽材料或任何其他適當的硬遮罩材料可直接沈積在該墊氧化物上,該墊氧化物可在形成該隔離溝漕並在該主動區域中定義該基本摻雜時已經形成。因此,該墊氧化物可有利地作為第一硬遮罩材料,該第一硬遮罩材料可致能該進一步硬遮罩材料的該後續沈積,其接著可依據電漿輔助蝕刻製程,而致能該整體硬遮罩的沈積。在一些例示實施例中,該整體製程流程可在實際沈積該進一步硬遮罩材料之前,通過引進用來承受均勻厚度的該墊氧化物的額外控制機制,而達成較優的均勻性。為了此目的,可例如依據眾所周知的光學檢測機制及類似者來決定該墊氧化物的該層厚度,而該測量的層厚度可接著作為輸入變數,用來控制後續用來減少/增加該墊氧化物層的厚度的濕化學製程,以獲得該後續製程順序的類似製程條件,不論是否有非均勻性存在,該非均勻性在該先前製程期間可導致變化的墊氧化物厚度。舉例來說,可有效地使用依據SPM/APM(硫酸過氧化氫混合物/氫氧化銨過氧化氫混合物)的濕化學製程,以在沈積進一步硬遮罩材料之前,調整該初始墊氧化物厚度。在一些案例中,可在該濕化學製程後,採用額外的測量製程,以達成較優的整體製程式控制。
在一些例示實施例中,通過使用該沈積的硬遮罩材料並與基於電漿的蝕刻製程結合的該較優圖案化條件,可與額外的移除製程相結合,該額外的移除製程是用來選擇性相對於該下方墊氧化物材料而移除該沈積的硬遮罩材料,由於其較優的均勻性,因此可有效地作為該實際的沈積遮罩。在其他案例中,該初始硬遮罩層堆疊可作為沈積遮罩,並可依據任何適當的蝕刻技術而予以移除。
由於在形成該臨界調整半導體合金時,必需施加顯著較少數量的激烈性基於氫氟酸的蝕刻化學品,因此可達成相對於該主動區域及該隔離區域之間的拓撲差異的較優條件。此可有利地影響例如在複雜應用中的該進一步處理,在該複雜應用中,埋置的張力誘發半導體合金是提供在該主動區域的一者或兩者中,這是由於特別在隔離區域及主動區域間的表面拓撲中的該減少差異,可在直接連接至對應的隔離區域的該電晶體側面,導致較優的生長條件。因此,也在此案例中,可達成較優的電晶體性能及電晶體均勻性。
參考第2a至2l圖,將更詳細地描述進一步的例示實施例,其中,如果需要的話,也可參考第1a至1f圖。
第2a圖示意地例示半導體裝置200的截面視圖,該半導體裝置200包含基板201及半導體層202,該半導體層202可包含複數個主動區域,其由隔離區域202C側向地描繪。為了方便起見,第一主動區域202A及第二主動區域202B是例示於第2a圖中。此外,第一硬遮罩層(例如,具有所謂的墊氧化物214的形式)可設置在該主動區域202A、202B上,並具有特定厚度214T,其與該裝置200的製程歷史有關。
基本上,如第2a圖所顯示的該半導體裝置200可依據製程技術來加以形成,如先前參考該半導體裝置100所描述的。然而,應理解的是,在形成該隔離區域202C及因此側向描繪該主動區域202A、202B時,可保存該墊氧化物層214,該墊氧化物層214可在實施任何額外製造步驟之前、並因此在形成該隔離區域202C及該主動區域202A、202B之前,而初始地形成。為了此目的,可使用任何眾所周知的製程策略,例如,氧化、沈積及類似者,從而獲得非常均勻的材料層,其厚度例如為大約4至8奈米,例如5奈米。在形成該隔離區域202C後,如以上所描述的,可移除任何過剩的材料(例如,作為硬遮罩材料的氮化矽材料),並可接著採用個別的布植製程並結合遮罩製程,以將任何良好摻質物種,選擇性併入該主動區域202A、202B中。因此,因為所涉及的微影製程,該墊氧化物層214中可發生特定程度的材料侵蝕,該材料侵蝕可導致該厚度214T,該厚度214T可具有特定程度的變化,視任何先前的製程波動而定。依據一些例示實施例,因此可實施測量製程215,以在通過實施製程模組之前,決定該層厚度214T,在該製程模組中,臨界調整半導體材料是形成在該主動區域202A中。為了此目的,可採用眾所周知的檢測技術。
第2b圖示意地例示當暴露於濕化學製程216的反應大氣的該半導體裝置200。該製程216可依據濕化學方式(例如,使用眾所周知的清潔化學物品(例如,SPM、APM及類似者))來加以實施,其中,至少一個製程參數(例如,該製程時間),可依據第2a圖的該製程215的該測量結果,來加以控制。舉例來說,如果該初始層厚度214T(比較第2a圖)足夠該進一步處理,然而,對較優的製程均勻性而言,進一步的減少也認為是適當的,則該製程216可實施作為有效的清潔或蝕刻製程,該製程可加以控制,以減少該厚度,並獲得希望的目標厚度214A。在其他案例中,當認為第2a圖的該初始厚度214T相對於希望的目標值而言太小時,該化學製程216可以高度控制的方式,導致該主動區域202A、202B的進一步氧化。因此,可依據該層厚度214A,而繼續該進一步處理,該層厚度214A可接近該希望目標厚度,其中,如果希望的話,則可在該製程216後,採用進一步測量製程,以決定該製程結果。在此案例中,任何裝置200(其可能不符合該希望目標厚度)可再次作業,以提供較優的製程均勻性。
第2c圖示意地例示沈積製程218期間的該半導體裝置200,該沈積製程218例如為電漿輔助(化學氣相沈積)製程、熱活化CVD製程及類似者。在該沈積製程218期間,該硬遮罩層214上可形成第二硬遮罩層204,該第二硬遮罩層204可包含任何適當的材料,從而形成硬遮罩層堆疊224。在一些例示實施例中,該層204可形成如含矽及氮材料,其也可稱為氮化矽材料,縱使其他原子物種可併入至特定程度。該層204可提供有大約5至50奈米的厚度,視該裝置200的該進一步處理而定。因此,因為該層214的該厚度的該先前調整及因為用來提供該層204的該均勻沈積條件,就層厚度及材料組成而言,該硬遮罩材料層堆疊224可具有高度均勻特性。
第2d圖示意地例示在製造階段中的該半導體裝置200,在該製造階段中,可形成蝕刻遮罩205(例如,光阻遮罩),以暴露該主動區域202A及一部分該隔離區域202C之上的該層214、204,但該區域202C的剩餘部分及該主動區域202B(也就是,形成於其上的該硬遮罩層204、214)是被覆蓋的。為了此目的,可採用任何眾所周知的微影技術。此外,該裝置200是依據氣體蝕刻大氣而暴露於反應蝕刻製程211,該氣體蝕刻大氣包含反應離子,該反應離子可依據電漿環境而加以產生。應理解的是,一般而言,先前技術中已良好建立了複數種基於電漿的蝕刻技術,其中,與將被蝕刻的基板的物理及化學反應有特定程度的不同。然而,在本發明的說明書中,在氣體環境中的任何類型的離子蝕刻均可視為基於電漿或電漿輔助蝕刻製程,例如,反應離子蝕刻及類似者。在一個例示實施例中,該電漿輔助蝕刻製程211可依據眾所周知的蝕刻配方而加以實施,至少相對於該主動區域202A中的該矽材料,該蝕刻配方可展現適度高的選擇性。在此案例中,該層204及該層214在該蝕刻製程211期間可有效地被移除,但在另一方面,該蝕刻遮罩205在邊緣區域204E處可能不會不當地修改。也就是,相反於傳統上依據例如氫氟酸所採用的濕化學蝕刻技術(如先前所討論的)該蝕刻遮罩205是暴露至該製程211的該反應大氣達顯著減少的時間間隔,從而實質壓抑任何與該製程211的不當作用,其接著可導致該隔離區域202C之上的良好定義的蝕刻結果。也就是,該邊緣區域205E處的任何明顯材料蝕刻,在該製程211期間,可能顯著地較不明顯,這是因為通常的製程時間可能在15至50秒鐘的範圍內,相較於傳統濕化學蝕刻技術的至少大於10分鐘。
第2e圖示意地例示在進一步進階的製造階段中的該半導體裝置200,也就是在基於電漿的蝕刻製程211之後及在移除第2d圖的該蝕刻遮罩205之後。如所顯示的,該主動區域202A中的該矽材料可予以暴露,並且也可相對於該隔離區域202C的該鄰接部分,完成較優的表面拓撲,但於此同時,從該隔離區域202C中鄰接於該主動區域202A的該拓撲至該隔離區域202C的該剩餘部分中的該表面拓撲的良好定義的轉換,可得以完成。為了這個理由,該進一步的處理(也就是,在該暴露的主動區域202A上的臨界調整半導體材料的該選擇性磊晶生長,可實施具有較優的製程均勻性。
第2f圖示意地例示依據進一步例示實施例的該半導體裝置200,在該例示實施例中,第2d圖的該電漿輔助蝕刻製程211的製程參數,可導致特定程度的凹部202R,舉例來說,當該隔離區域202C的該二氧化矽材料的蝕刻率可低於該材料214的蝕刻率。在其他案例中,該層214可通過沈積而加以形成,並因此也可覆蓋該隔離區域202C,以致於在第2d圖的該蝕刻製程211期間,該主動區域202A的該矽材料可實質同時暴露如該隔離區域202C的初始材料。在此案例中,可使用蝕刻化學物品,其中,相較於該隔離區域202C的該二氧化矽材料,可以稍微較高的移除率,來蝕刻矽。因此,通過控制該整體蝕刻時間,可控制凹部202R的程度,如果認為是適合該裝置200的進一步處理。
第2g圖示意地例示依據例示實施例的該半導體裝置200,在該例示實施例中,該硬遮罩層204(比較第2e圖、第2f圖)可在實施選擇性磊晶生長製程之前被移除。為了此目的,可於氮化矽材料被移除時,依據例如高度有效並且眾所周知的化學方案(例如,SPM/APM),在該蝕刻製程217期間,使用適當的蝕刻化學物品。以此方式,該硬遮罩層214可作為有效的蝕刻停止材料,從而避免對該主動區域202B的任何部分的不當暴露。此外,該層214可具有較優的均勻性及良好定義的厚度,可事先決定在該製程217期間的該材料消耗,並可在選擇該層214的適當厚度時,列入考量。在另一方面,可避免該蝕刻製程217與該主動區域202A的暴露矽材料的不當作用。該層204的該移除(比較第2e、2f圖)致能依據高均勻性及良好定義的製程條件(例如,相對於實施後續選擇磊晶生長製程)而繼續該進一步處理。也就是,在一些例示實施例中,該剩餘的硬遮罩層214可以二氧化矽材料(例如,“墊氧化物”)的形式加以提供,從而提供如眾所周知的選擇性磊晶生長技術中的類似製程條件,如先前所描述的,這是由於這種眾所周知的沈積配方,可在沈積矽/鍺材料或任何其他矽基半導體合金的期間,提供高程度的選擇性。此外,由於可避免後期製造階段中的該層204的該移除(比較第2e、2f圖),因此,可避免在移除該硬遮罩期間,通過採用熱APM的鍺物種的不當氧化,如果矽/鍺材料將形成在該主動區域202A上的話。
第2h圖示意地例示在進一步進階製造階段中的該半導體裝置200,在該製造階段中,可採用選擇性磊晶生長製程207,以在該主動區域202A的該暴露表面區域上,形成臨界調整半導體合金208(例如,矽/鍺合金)。應理解的是,可採用任何先前的清潔配方,也如先前所討論的,其可導致該層214的該厚度的特定減少,其中,然而,如以上所討論的,當選擇該層214的適當厚度時,可將任何這種清潔配方期間的該較優的均勻性及該材料消耗的可預測性,列入考量。因此,特別是當形成矽/鍺合金時,可採用眾所周知的沈積配方,該沈積配方可在二氧化矽材料及矽材料之間,提供高程度的選擇性。因此,在該選擇性磊晶生長製程207後,該材料208可為該主動區域202A的一部分,並且將可希望的電性特性帶進該區域202A,如該進一步處理(也就是,形成複雜的高介電係數金屬閘極電極結構)所需要的。
第2i圖示意地例示移除該硬遮罩層214後之該裝置200(比較第2h圖),可依據眾所周知及高度選擇性濕化學蝕刻化學物品(例如,氫氟酸及類似者)來完成該硬遮罩層214的移除。應理解的是,雖然特定程度的材料侵蝕可在該隔離區域202C中發生,然而,相較於依據傳統策略所處理的半導體裝置,該裝置200可展現較優的表面拓撲,這是由於例如對氧化物移除蝕刻大氣(例如,氫氟酸)的明顯暴露,在該裝置200的該製程流程期間,可例如因為第2d圖的該基於電漿的圖案化製程211,而顯著減少。此外,相較於該傳統的高溫氧化製程,該硬遮罩材料及特別是該材料214(比較第2h圖)可具有較優的均勻性,從而避免任何的非均勻性,特別是在該主動區域202A、202B的邊緣區域,其可在選擇性生長該材料208時及移除該對應的沈積遮罩時,導致不當的非均勻性。因此,該材料208本身,可在連接至該隔離結構202C的任何邊緣部分,具有較優的均勻性。應理解的是,此在朝該電晶體寬度方向(也就是,垂直於第2i圖的圖式平面的方向)的邊緣區域也同樣成立。因此,可避免材料特性(例如,層厚度及類似者)沿著該電晶體寬度方向的明顯變化,但與此同時,可在該主動區域202A及該隔離區域202C所形成的任何邊緣處獲得較不明顯並因此更均勻的表面拓撲。此外,也在該隔離區域202C內並因此在該主動區域202A、202B之間的任何轉換區域,可提供良好定義的表面拓撲,從而也於在該主動區域202B之上形成該複雜的高介電係數金屬閘極電極結構時,在該進一步處理期間,貢獻較優的表面條件及因此較優的製程均勻性。
第2j圖示意地例示進一步進階的製造階段中的該半導體裝置200。如所例示的,第一電晶體250A(例如,p通道電晶體)可形成在該主動區域202A之上,其可至少部分地包含該先前生長的材料層208。類似地,第二電晶體(例如,n通道電晶體250B)是形成在該主動區域202B中及之上。在所顯示的該製造階段中,該電晶體250A、250B可包含漏極及源極區域253,其視需要可具有任何適當的側向及垂直摻質分佈。此外,該漏極及源極區域253可側向地包圍通道區域252,在該電晶體250A的案例中,其也可包含至少一部分該臨界調整半導體合金208。此外,該電晶體250A可包含閘極電極結構260A,其接著可包含閘極介電材料261,含金屬電極材料262及基於半導體的電極材料263,其中,這些材料可由襯墊或間隔件265及間隔件結構264側向地限制。類似地,該電晶體250B可包含閘極電極結構260B,其可基本上具有相同的組構,並可因此也包含該元件261、262、263、264及265。應理解的是,也如參考該半導體裝置100所討論的,就用來調整該對應的工作函數的特定金屬物種而言,該閘極介電層261及/或該含金屬電極材料262對於該閘極電極結構260A、260B,可有所不同,也如以上所討論的。此外,該閘極介電材料261可包含高介電係數介電材料,也如以上所討論的。
該電晶體250A、250B可依據任何適當的製程策略來加以形成,如例如以上所討論的,其中,一般說來,在該材料208的該選擇性磊晶生長後所獲得的該較優的表面條件,可提供該生成的電路元件較優的均勻性。舉例來說,用以圖案化該材料層261、262及263的該複雜的圖案化製程,可予以完成而具有加強的均勻性。類似地,可例如藉由該襯墊265來完成這些材料的封裝,並相較於傳統策略而具有較優的可靠性,其中,例如,該隔離區域202C中的該高度非可預測的表面“粗糙性”,可顯著地影響該對應的封裝製程。因此,如以上所討論的,包含該臨界調整半導體合金208的該電晶體250A,就臨界電壓而言,可展現減少的電晶體變化性,這是由於材料層208可沿著電晶體寬度方向(也就是沿著與第2j圖的圖式平面垂直的方向)具有實質均勻的特性。在此案例中,電晶體與該電晶體250A基本上具有相同的組構,然而,其具有不同的電晶體寬度,並可展現實質相同的臨界電壓。
在一些例示實施例中,如第2j圖所顯示的,可例如以埋置的張力誘發半導體材料(例如,矽/鍺合金、矽/碳合金及類似者)的形式,而實作額外的效能加強機制。在所顯示的該實施例中,可通過併入矽/鍺合金或一般的鍺物種,而加強該電晶體250A的效能,以在該鄰近通道區域252中,獲得縮壓張力。為了此目的,可於某階段(在該階段中,可尚未提供該間隔件結構264,或其中,可形成特別設計的偏移,以相對於該通道區域252而定義該材料209的該側向偏移)中圖案化該閘極電極結構260A後,在該主動區域202A形成對應的凹口。並且,在此案例中,在該主動區域202A的側面(其直接連接至該隔離區域202C)處的該較優的表面拓撲,可於依據選擇性磊晶生長技術而圖案化該生成的凹口、尤其是在再生長該材料208時,提供較優的條件。在此案例中,該材料209在該隔離區域202C處,可具有相對於該主動區域202A的其他部分的類似高度。因此,可在該電晶體250A中觀察到類似的張力條件,該電晶體250A系位於鄰近該隔離區域202C,如任何其他也形成在該主動區域202A中及之上的額外電晶體一樣。以此方式,也可達成電晶體的該電晶體特性的較優的均勻性,該電晶體需要併入張力誘發半導體材料。應理解的是,這對於也需要張力誘發機制(例如,基於矽/碳材料)的任何電晶體而言,也同樣成立。
第2k圖示意地例示在製造階段中的該半導體裝置200,在該製造階段中,該硬遮罩層堆疊224可覆蓋該主動區域202B,但該主動區域202A是暴露的,以製備其表面,用於選擇性沈積該臨界調整半導體材料。如所顯示的,可提供特定程度的凹部202R,亦如以上所討論的。在此案例中,在該選擇性沈積製程之前,可依據該層204而實施任何清潔製程。
第2l圖示意地例示在該選擇性磊晶沈積製程207期間的該半導體裝置200,以形成該半導體合金208,也如以上所描述的。在此案例中,該硬遮罩層堆疊224整體上可作為有效的沈積遮罩。之後,該層堆疊224可例如依據濕化學蝕刻配方及類似者而加以移除,其中,在形成該材料層208時,可將該層208中由該層204的該額外移除所引起的對應材料侵蝕列入考量。在移除該層堆疊224後,可繼續該進一步處理,如以上所描述的。
因此,本發明提供製造技術,在該製造技術中,於通過提供硬遮罩堆疊而選擇性沈積臨界調整半導體材料期間,可完成較優的均勻性,其中,該硬遮罩堆疊包含至少兩種硬遮罩材料,該硬遮罩材料可依據基於電漿的蝕刻製程來加以圖案化。在一些例示實施例中,可在該選擇性磊晶生長製程之前,移除一層該硬遮罩層堆疊。以此方式,可獲得較優的電晶體特性,例如,臨界電壓及類似者。
本發明進一步的修改及變化,對於本領域的熟習技術者而言,在看到此描述後,將變得明顯。因此,此描述應僅解讀為例示之用,並且其目的是為了教示本領域的熟習技術者實行本文所提供的教示的一般方式。應瞭解到,本文所顯示及描述的標的的形式將視為目前的較佳實施例。
100、200...半導體裝置
101、201...基板
102、202...半導體層
102A、102B...主動區域
102C...隔離結構
104...遮罩層
104R...減少的厚度
105、205...蝕刻遮罩
105E...邊緣
106...反應製程大氣
107、207...磊晶生長製程
108...矽/鍺材料
110...氧化大氣
111...濕化學蝕刻大氣
150A、150B...電晶體
152、252...通道區域
153...漏極及源極區域
160、160A、160B...閘極電極結構
161、261...閘極介電材料
162、262...含金屬電極材料
163、263...電極材料
164、264...側壁間隔件結構
165、265...襯墊材料
202A...第一主動區域
202B...第二主動區域
202C...隔離區域
202R...凹部
204...第二硬遮罩層
205E...邊緣區域
208...臨界調整半導體合金
209...材料
211...反應蝕刻製程
214...墊氧化物層
214A...目標厚度
214T...初始厚度
215...測量製程
216...濕化學製程
217...蝕刻製程
218...沈積製程
224...硬遮罩層堆疊
250A...第一電晶體
250B...第二電晶體
260A、260B...閘極電極結構
本發明的另外實施例是定義在附隨的申請專利範圍中,並且,當參考伴隨的圖式及以上的詳細描述,該另外實施例將變得明顯,其中:
第1a至1f圖示意地例示傳統半導體裝置的截面視圖,其中,該複雜的閘極電極結構是依據用來調整該通道電晶體的臨界電壓的矽/鍺合金,來加以形成,該矽/鍺合金可導致明顯的電晶體變化性;
第2a至2j圖示意地例示半導體裝置在不同製造階段中的截面視圖,在該製造階段中,可通過使用遮罩層堆疊又基於電漿的蝕刻製程,以選擇性在具有較優的均勻性的一種類型的主動區域中,形成臨界調整半導體材料,其中,依據例示實施例,只有一部分該遮罩層堆疊是用作沈積遮罩;以及
第2k及2l圖依據進一步例示實施例示意地例示該半導體裝置的截面視圖,其中,在依據另外進一步例示實施例而形成該臨界調整半導體合金時,可使用二氧化矽材料及氮化矽材料作為生長遮罩。
200...半導體裝置
201...基板
202...半導體層
202A...第一主動區域
202B...第二主動區域
202C...隔離區域
205...蝕刻遮罩
208...臨界調整半導體合金
209...材料
250A...第一電晶體
250B...第二電晶體
252...通道區域
260A、260B...閘極電極結構
261...閘極介電材料
262...含金屬電極材料
263...電極材料
264...間隔件結構
265...襯墊材料

Claims (19)

  1. 一種形成半導體裝置的方法,包含:在半導體裝置的第一主動區域及第二主動區域上形成第一硬遮罩層,其中,該第一及第二主動區域被隔離區域隔開;在該第一硬遮罩層及該隔離區域上形成第二硬遮罩層;該第二主動區域和該隔離區域至少一部分之上形成蝕刻遮罩;該蝕刻遮罩在適當位置,實施一個或多個電漿輔助蝕刻製程,以從該第一主動區域移除該第一硬遮罩層及該第二硬遮罩層;在該第一主動區域形成一層半導體合金,並使用該第二主動區域上的該第一硬遮罩層及該第二硬遮罩層的至少一者作為生長遮罩;暴露該第二主動區域;以及在該層半導體合金上形成第一電晶體的第一閘極電極結構,並在該第二主動區域上形成第二電晶體的第二閘極電極結構,該第一及第二閘極電極結構包含含金屬閘極電極材料及閘極絕緣層,該閘極絕緣層包含高介電係數介電材料。
  2. 如申請專利範圍第1項所述的方法,另包含在形成該層半導體合金之前,從該第二主動區域之上移除該第二硬遮罩層。
  3. 如申請專利範圍第2項所述的方法,其中,形成該層半導體合金包含使用該第一硬遮罩層作為該生長遮罩。
  4. 如申請專利範圍第1項所述的方法,其中,該第一硬遮罩層是形成以包含二氧化矽材料。
  5. 如申請專利範圍第4項所述的方法,其中,該第二硬遮罩層是形成以包含氮化矽材料。
  6. 如申請專利範圍第1項所述的方法,另包含在該第一及第二主動區域之前,形成該第一硬遮罩層。
  7. 如申請專利範圍第6項所述的方法,另包含在該第二硬遮罩層之前,通過實施濕化學製程,以調整該第一硬遮罩層的厚度。
  8. 如申請專利範圍第7項所述的方法,其中,調整該第一硬遮罩層的厚度包含決定該第一硬遮罩層的厚度及通過使用該決定的厚度來控制該濕化學製程。
  9. 如申請專利範圍第1項所述的方法,另包含在該層半導體合金之後,在該主動區域中,形成張力誘發半導體材料。
  10. 一種形成半導體裝置的方法,該方法包含:在第一主動區域及第二主動區域上形成第一硬遮罩層,其中,該第一及第二主動區域被隔離區域隔開;在該第一硬遮罩層及該隔離區域上形成第二硬遮罩層;該第二主動區域和該隔離區域至少一部分之上形成蝕刻遮罩; 該蝕刻遮罩在適當位置,實施一個或多個電漿輔助蝕刻製程,以從該第一主動區域移除該第一硬遮罩層及該第二硬遮罩層;從該第一主動區域移除該第一硬遮罩層及該第二硬遮罩層之後,從該第二主動區域之上移除該第二硬遮罩層;通過使用該第一硬遮罩層,以在該第一主動區域中形成作為生長遮罩的一層半導體合金;以及在包含該層半導體合金的該第一主動區域上形成第一電晶體的第一閘極電極結構,並在該第二主動區域上形成第二電晶體的第二閘極電極結構。
  11. 如申請專利範圍第10項所述的方法,另包含在將井摻質物種併入至該第一及第二主動區域之前,形成該第一硬遮罩層。
  12. 如申請專利範圍第11項所述的方法,另包含在通過實施濕化學製程以形成該第二硬遮罩層之前,調整該第一硬遮罩層的厚度。
  13. 如申請專利範圍第12項所述的方法,其中,調整該第一硬遮罩層的厚度另包含決定該第一硬遮罩層的厚度,並通過使用該決定的厚度及預先定義的目標厚度,以控制該濕化學製程。
  14. 如申請專利範圍第10項所述的方法,其中,該第一硬遮罩層包含二氧化矽材料,而該第二硬遮罩層則包含氮化矽材料。
  15. 如申請專利範圍第10項所述的方法,其中,形成該第一及第二閘極電極結構包含在該臨界調整半導體材料及該第二主動區域之上形成高介電係數介電材料,並在該高介電係數介電材料之上形成含金屬電極材料。
  16. 如申請專利範圍第10項所述的方法,另包含在該第一主動區域中形成張力誘發半導體材料。
  17. 如申請專利範圍第10項所述的方法,其中,選擇性從該第一主動區域移除該第一及第二硬遮罩層包含實施電漿輔助蝕刻製程。
  18. 一種形成半導體裝置的方法,包含:在半導體裝置的第一主動區域及第二主動區域上形成遮罩層堆疊,其中,該第一及第二主動區域被隔離區域隔開以及該遮罩層堆疊至少一部分形成在該隔離區域上;該第二主動區域和該隔離區域至少一部分之上形成蝕刻遮罩;該蝕刻遮罩在適當位置,實施一個或多個電漿輔助蝕刻製程,以通過實施至少一個基於電漿的蝕刻製程,以選擇性從該第一主動區域移除該遮罩層堆疊;在該第一主動區域上形成一層半導體合金,並使用該第二主動區域上的至少一層該遮罩層堆疊作為生長遮罩;實施蝕刻製程,以暴露該第二主動區域;在該第一主動區域上形成第一閘極電極結構,以及 在該第二主動區域上形成第二閘極電極結構;以及在該第一閘極電極結構出現下,至少在該第一主動區域中形成張力誘發半導體材料。
  19. 如申請專利範圍第18項所述的方法,其中,至少一層該層堆疊是在形成該第一及第二主動區域之前形成。
TW100147324A 2010-12-28 2011-12-20 藉由形成硬遮罩層堆疊及採用基於電漿的遮罩圖案化製程以形成通道半導體合金 TWI478246B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010064281.9A DE102010064281B4 (de) 2010-12-28 2010-12-28 Herstellung einer Kanalhalbleiterlegierung durch Erzeugen eines Hartmaskenschichtstapels und Anwenden eines plasmaunterstützten Maskenstrukturierungsprozesses

Publications (2)

Publication Number Publication Date
TW201230208A TW201230208A (en) 2012-07-16
TWI478246B true TWI478246B (zh) 2015-03-21

Family

ID=46317702

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100147324A TWI478246B (zh) 2010-12-28 2011-12-20 藉由形成硬遮罩層堆疊及採用基於電漿的遮罩圖案化製程以形成通道半導體合金

Country Status (4)

Country Link
US (1) US8614122B2 (zh)
CN (1) CN102543707B (zh)
DE (1) DE102010064281B4 (zh)
TW (1) TWI478246B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663521B (zh) * 2017-08-29 2019-06-21 台灣積體電路製造股份有限公司 提供積體電路佈局的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063296B4 (de) * 2010-12-16 2012-08-16 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Herstellungsverfahren mit reduzierter STI-Topograpie für Halbleiterbauelemente mit einer Kanalhalbleiterlegierung
US8754477B2 (en) * 2011-10-20 2014-06-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with multiple stress structures and method of forming the same
US8703368B2 (en) * 2012-07-16 2014-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography process
US9012956B2 (en) * 2013-03-04 2015-04-21 Globalfoundries Inc. Channel SiGe removal from PFET source/drain region for improved silicide formation in HKMG technologies without embedded SiGe
US9136303B2 (en) * 2013-08-20 2015-09-15 International Business Machines Corporation CMOS protection during germanium photodetector processing
US9064961B2 (en) 2013-09-18 2015-06-23 Global Foundries Inc. Integrated circuits including epitaxially grown strain-inducing fills doped with boron for improved robustness from delimination and methods for fabricating the same
KR102277398B1 (ko) * 2014-09-17 2021-07-16 삼성전자주식회사 반도체 소자 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201019381A (en) * 2008-11-03 2010-05-16 Taiwan Semiconductor Mfg Semiconductor devices and methods for making semiconductor devices having metal gate stacks
US20100213548A1 (en) * 2009-02-24 2010-08-26 Cheng-Hung Chang Semiconductor Devices with Low Junction Capacitances and Methods of Fabrication Thereof
US20100289090A1 (en) * 2009-05-15 2010-11-18 Stephan Kronholz Enhancing uniformity of a channel semiconductor alloy by forming sti structures after the growth process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060175659A1 (en) * 2005-02-07 2006-08-10 International Business Machines Corporation A cmos structure for body ties in ultra-thin soi (utsoi) substrates
US7282402B2 (en) * 2005-03-30 2007-10-16 Freescale Semiconductor, Inc. Method of making a dual strained channel semiconductor device
US7547641B2 (en) * 2007-06-05 2009-06-16 International Business Machines Corporation Super hybrid SOI CMOS devices
US8003454B2 (en) * 2008-05-22 2011-08-23 Freescale Semiconductor, Inc. CMOS process with optimized PMOS and NMOS transistor devices
DE102008054075B4 (de) * 2008-10-31 2010-09-23 Advanced Micro Devices, Inc., Sunnyvale Halbleiterbauelement mit Abgesenktem Drain- und Sourcebereich in Verbindung mit einem Verfahren zur komplexen Silizidherstellung in Transistoren
US8048791B2 (en) * 2009-02-23 2011-11-01 Globalfoundries Inc. Method of forming a semiconductor device
DE102009021486B4 (de) * 2009-05-15 2013-07-04 Globalfoundries Dresden Module One Llc & Co. Kg Verfahren zur Feldeffekttransistor-Herstellung
DE102010063296B4 (de) 2010-12-16 2012-08-16 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Herstellungsverfahren mit reduzierter STI-Topograpie für Halbleiterbauelemente mit einer Kanalhalbleiterlegierung
DE102010063774B4 (de) * 2010-12-21 2012-07-12 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG Herstellung einer Kanalhalbleiterlegierung mittels einer Nitridhartmaskenschicht und einer Oxidmaske

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201019381A (en) * 2008-11-03 2010-05-16 Taiwan Semiconductor Mfg Semiconductor devices and methods for making semiconductor devices having metal gate stacks
US20100213548A1 (en) * 2009-02-24 2010-08-26 Cheng-Hung Chang Semiconductor Devices with Low Junction Capacitances and Methods of Fabrication Thereof
US20100289090A1 (en) * 2009-05-15 2010-11-18 Stephan Kronholz Enhancing uniformity of a channel semiconductor alloy by forming sti structures after the growth process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
U *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663521B (zh) * 2017-08-29 2019-06-21 台灣積體電路製造股份有限公司 提供積體電路佈局的方法

Also Published As

Publication number Publication date
DE102010064281A1 (de) 2012-06-28
TW201230208A (en) 2012-07-16
CN102543707A (zh) 2012-07-04
DE102010064281B4 (de) 2017-03-23
CN102543707B (zh) 2015-04-08
US20120164805A1 (en) 2012-06-28
US8614122B2 (en) 2013-12-24

Similar Documents

Publication Publication Date Title
TWI478246B (zh) 藉由形成硬遮罩層堆疊及採用基於電漿的遮罩圖案化製程以形成通道半導體合金
JP4398467B2 (ja) 半導体装置の製造方法
US8361850B2 (en) Metal oxide semiconductor having epitaxial source drain regions and a method of manufacturing same using dummy gate process
US8324119B2 (en) Enhancing deposition uniformity of a channel semiconductor alloy by an in situ etch process
TWI488225B (zh) 用濕式化學方法形成受控底切而有優異完整性的高介電係數閘極堆疊
JP2007208260A (ja) 二重仕事関数金属ゲートスタックを備えるcmos半導体装置
US7579282B2 (en) Method for removing metal foot during high-k dielectric/metal gate etching
JP2008193060A (ja) 半導体装置および半導体装置の製造方法
TWI469228B (zh) 藉由氮化物硬遮罩層及氧化物遮罩形成通道半導體合金
US20080050870A1 (en) Method for fabricating semiconductor device
US8236654B2 (en) Reduction of threshold voltage variation in transistors comprising a channel semiconductor alloy by reducing deposition non-uniformities
US8664057B2 (en) High-K metal gate electrode structures formed by early cap layer adaptation
TWI502632B (zh) 使用氧電漿鈍化之高介電係數閘極堆疊之完整性之維持方法
JP2007036116A (ja) 半導体装置の製造方法
US8722486B2 (en) Enhancing deposition uniformity of a channel semiconductor alloy by forming a recess prior to the well implantation
US8664066B2 (en) Formation of a channel semiconductor alloy by forming a nitride based hard mask layer
US8283225B2 (en) Enhancing selectivity during formation of a channel semiconductor alloy by a wet oxidation process
US8143132B2 (en) Transistor including a high-K metal gate electrode structure formed on the basis of a simplified spacer regime
US8338314B2 (en) Technique for reducing topography-related irregularities during the patterning of a dielectric material in a contact level of closely spaced transistors
US20150093889A1 (en) Methods for removing a native oxide layer from germanium susbtrates in the fabrication of integrated circuits
KR100854217B1 (ko) 반도체 장치의 제조 방법
US8772843B2 (en) Oxide deposition by using a double liner approach for reducing pattern density dependence in sophisticated semiconductor devices
US20150093887A1 (en) Methods for removing a native oxide layer from germanium susbtrates in the fabrication of integrated circuitsi
JP2010251508A (ja) 半導体装置の製造方法
KR20060002127A (ko) 반도체 소자의 제조방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees