TWI465314B - 建立具有環境效應變異之參考光譜 - Google Patents

建立具有環境效應變異之參考光譜 Download PDF

Info

Publication number
TWI465314B
TWI465314B TW101113988A TW101113988A TWI465314B TW I465314 B TWI465314 B TW I465314B TW 101113988 A TW101113988 A TW 101113988A TW 101113988 A TW101113988 A TW 101113988A TW I465314 B TWI465314 B TW I465314B
Authority
TW
Taiwan
Prior art keywords
spectrum
substrate
spectra
transmission curves
different
Prior art date
Application number
TW101113988A
Other languages
English (en)
Other versions
TW201249599A (en
Inventor
Jeffery Drue David
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201249599A publication Critical patent/TW201249599A/zh
Application granted granted Critical
Publication of TWI465314B publication Critical patent/TWI465314B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0683Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8438Mutilayers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

建立具有環境效應變異之參考光譜
本揭示案係關於(例如)在基板之化學機械研磨期間之光監控。
通常藉由將導電層、半導電層或絕緣層連續沈積在矽晶圓上而將積體電路形成於基板上。一個製造步驟包括沈積填料層於非平坦表面上方且平坦化填料層。對於某些應用,將填料層平坦化直至曝露圖案化層之頂端表面為止。例如,可將導電填料層沈積於圖案化絕緣層上以填充絕緣層中之溝槽或孔。在平坦化之後,餘留在絕緣層之凸起圖案之間的導電層部分形成通孔、插座及線,該等通孔、插座及線在基板上之薄膜電路之間提供導電路徑。對於其他應用,諸如氧化物研磨,將填料層平坦化直至在非平坦表面上方留下預定厚度為止。此外,基板表面之平坦化通常為光刻法所需。
化學機械研磨(Chemical mechanical polishing;CMP)為平坦化的一個公認方法。此平坦化方法通常要求基板安裝於承載頭上。通常,將基板之曝露表面與旋轉研磨墊相抵而置放。承載頭對基板提供可控制負載以推動該基板與研磨墊相抵。通常將諸如具有磨粒之漿料的研磨液供應至研磨墊之表面。
CMP中的一個問題在於判定研磨製程是否完成,亦即,是否已將基板層平坦化至所要平坦度或厚度,或何時已移除所要量之材料。在基板層之初始厚度、漿料組成、研磨墊情況、研磨墊與基板之間的相對速度及基板上之負載中之變異可引起材料移除速率之變異。該等變異引起到達研磨終點所需要之時間之變異。因此,不可能僅根據研磨時間而決定研磨終點。
在一些系統中,基板(例如)經由研磨墊中之窗口在研磨期間得以原位光監控。然而,現存的光監控技術可能無法滿足半導體裝置製造商之日益增加之需求。
在一些光監控製程中,將(例如)在研磨製程期間原位量測之光譜與參考光譜庫相比以找出最佳匹配參考光譜。一個潛在問題為在基板表面之前的光學路徑中之一或更多個元件之光學性質。舉例而言,研磨墊中窗口之透射可隨著研磨墊老化而變化,且光學性質可因研磨墊不同而不同。由於光監控系統接收通過窗口之光,故此變化產生光譜失真(例如,與光監控系統將對「新近」窗口量測之結果相比)。此失真可降低終點偵測系統之準確度。此外,在自光譜庫選擇最佳匹配參考光譜之情況下,失真增加將不正確參考光譜選擇作為最佳匹配參考光譜之可能性(例如,在將為「新近」窗口選擇正確參考光譜之假設下)。作為另一實例,光源中之燈泡之光譜 強度可隨燈泡老化而變化,或可因燈泡不同而不同。解決此問題之一個技術為構造一或更多個參考光譜庫,該一或更多個參考光譜庫併入藉由在基板表面之前的光學路徑中之元件變異所引起之失真。舉例而言,該庫可包括具有不同參考光譜之多個參考光譜,該不同參考光譜併入不同量之失真。
在一個態樣中,一種產生參考光譜庫的方法包括以下步驟:儲存至少一個參考光譜;儲存複數個不同透射曲線;且對於來自複數個不同透射曲線之至少兩個透射曲線,根據參考光譜及透射曲線計算修正之參考光譜以產生複數個修正之參考光譜。透射曲線表示藉由在基板表面之前的光學路徑中之元件變異所引入之光譜失真。
實施可包括以下特徵中之一或更多者。不同透射曲線可表示一或更多個窗口之透射變異,諸如在研磨墊窗口之不同時期之光譜失真,或在不同窗口之間的透射變異。不同透射曲線可表示在來自光源之燈泡之不同時期之光譜失真。可自複數個不同透射曲線接收識別至少兩個透射曲線之使用者輸入。可產生複數個不同透射曲線。產生複數個不同透射曲線之步驟可包括以下步驟:使用原位光監控系統量測來自測試基板之基礎光譜及在不同時間使用原位光監控系統量測來自相同測試基板或相同材料之另一測試基板之一或更多個額外光譜,及根據基礎光譜及一或更多個額外光譜計算透射曲線。不同時間可為在測試基板與原位光監控系統之光源或偵測器 之間的光學路徑中的研磨墊之窗口之不同時期。不同時間可為原位光監控系統之光源之燈泡的不同時期。計算透射曲線可包括除法運算,在該除法運算中額外光譜在分子中且基礎光譜在分母中。可在與量測基礎光譜相同的窗口之時期量測第一暗光譜,及在與量測額外光譜相同的窗口之時期量測第二暗光譜量測。計算透射曲線之步驟可包括以下步驟:計算T=(A-DA )/(B-DB ),其中A為額外光譜,DA 為第二暗光譜,B為基礎光譜且DB 為第一暗光譜。測試基板可為裸矽晶圓。產生複數個不同透射曲線之步驟可包括以下步驟:根據光學模型計算透射曲線。計算修正之參考光譜之步驟可包括以下步驟:將參考光譜乘以透射曲線。可將透射曲線作為波長之函數儲存為在0與1之間的比值。可產生至少一個參考光譜,例如藉由使用光監控系統在研磨操作期間量測測試基板,或藉由根據光學模型計算參考光譜。
在另一態樣中,一種控制研磨之方法包括以下步驟:根據先前方法產生參考光譜庫;研磨基板;在研磨期間量測來自基板之光之一系列光譜;對於該系列光譜之每一量測光譜,找出最佳匹配參考光譜以產生一系列最佳匹配參考光譜;及基於該系列最佳匹配參考光譜決定研磨終點或研磨速率之調整中之至少一者。
在另一態樣中,在機器可讀取儲存裝置中有形地實施之電腦程式產品包括執行方法之指令。
實施可視情況地包括以下優點中之一或更多者。可根據光學模型或根據憑經驗收集之光譜計算參考光譜庫,該參考光譜庫跨越窗口對光之可能影響範圍。所得參考光譜庫使匹配演算法能夠於存在窗口之透射變異時保持可靠。因此,可改良終點系統對偵測所要研磨終點之可靠性,且可降低晶圓內厚度非均勻性及晶圓間厚度非均勻性(WIWNU及WTWNU)。
在下文隨附圖式及描述中闡述一或更多個實施例之細節。其他特徵結構、態樣及優點將自描述、圖式及申請專利範圍中變得顯而易見。
一種光監控技術為量測在研磨期間自基板反射之光的光譜。該等量測光譜可用以產生一系列值,該系列值可用來決定研磨終點或研磨速率之調整。在一些實施中,為每一量測光譜選擇來自庫之匹配參考光譜,且由與每一參考光譜相關聯之值產生該系列值。
如上所述,研磨墊中窗口之透射可隨墊老化而變化,且透射可因研磨墊不同而不同。透射之變化作為波長之函數為不恆定的。通常,隨著研磨墊老化,光之透射朝著短波長方向減少,例如,隨著窗口老化、磨損或變形,窗口變得對藍光透射較少。不局限於任何特定理論,透射之變化可藉由研磨墊窗口對紫外線(ultraviolet;UV)光之曝露、藉由高溫、藉由基板或研磨碎片之擦傷或藉 由窗口之機械變形而引起,該等情況增加在窗口與基板之間集中之研磨液之量。
此外,光監控系統中光源(例如氙燈泡)之老化可引起藉由光監控系統量測之光譜之變化。舉例而言,隨著燈泡老化,燈泡可發射更少藍光。
可建立且儲存參考光譜之一或更多個庫,該參考光譜之一或更多個庫併入藉由在基板表面之前的光學路徑中之元件變異而引起之失真。「在基板表面之前」的光學路徑包括光監控系統之光源、偵測器及在基板表面與光源及/或偵測器之間的元件,例如研磨墊之窗口,但不一定包括基板表面本身。
第1圖為依據作為波長之函數在一些使用週期之後的量測強度對「新近」窗口(例如,未使用或使用不到一分鐘之窗口)之強度的比值,示意地圖示量測光譜之失真的圖50。曲線52a圖示在使用墊5分鐘之後的比值,曲線52b圖示在使用墊4小時之後的比值,曲線52c圖示在使用墊8小時之後的比值,曲線52d圖示在使用墊12小時之後的比值,且曲線52e圖示在使用墊16小時之後的比值。
作為波長之函數的強度變化增加將不正確參考光譜選擇作為最佳匹配參考光譜之可能性。解決此問題之一個技術為構造參考光譜庫,該參考光譜庫併入隨研磨墊老化而累積之失真。舉例而言,庫可包括具有不同參考光 譜之多個參考光譜,該不同參考光譜併入不同量之失真,或多個不同庫可包括併入不同量之失真的參考光譜。
基板可與安置在半導體層上之單個介電層一樣簡單,或基板可具有明顯更複雜之層堆疊。舉例而言,基板可包括第一層及安置於第一層之上的第二層。第一層可為介電質,例如,諸如二氧化矽之氧化物,或諸如摻雜碳二氧化矽之低k材料,例如,Black DiamondTM (來自Applied Materials,Inc.)或CoralTM (來自Novellus Systems,Inc.)。第二層可為具有與第一層之組成不同之組成的阻障層。舉例而言,阻障層可為金屬或金屬氮化物,例如氮化鉭或氮化鈦。視需要,在第一層與第二層之間安置一或更多個額外層,例如,低k覆蓋材料,例如,由正矽酸乙酯(tetraethyl orthosilicate;TEOS)形成之材料。第一層及第二層兩者皆為至少半透明的。第一層及一或更多個額外層(若存在)一起於第二層下方提供層堆疊。
化學機械研磨可用來平坦化基板直至曝露第二層為止。舉例而言,若存在不透明導電材料,則可研磨該不透明導電材料直至曝露第二層(例如,阻障層)為止。隨後,移除餘留於第一層之上的第二層之部分,且研磨基板直至曝露第一層(例如,介電層)為止。此外,有時需要研磨第一層(例如,介電層)直至餘留目標厚度或已將目標量之材料移除。
第2圖圖示研磨設備100之實例。研磨設備100包括可旋轉圓盤狀平臺120,研磨墊110位於該可旋轉圓盤狀平臺120上。平臺可操作以圍繞軸125而旋轉。舉例而言,馬達121可轉動驅動軸124以旋轉平臺120。研磨墊110可為具有外研磨層112及較軟的背托層114之雙層研磨墊。
研磨設備100可包括埠130以分配諸如漿料之研磨液132至墊之研磨墊110上。研磨設備亦可包括研磨墊調節器以磨損研磨墊110來維持研磨墊110處於一致磨損狀態。
研磨設備100包括一或更多個承載頭140。每一承載頭140可操作以與研磨墊110相抵而固持基板10。每一承載頭140可具有對與每一各別基板相關聯之例如壓力之研磨參數的獨立控制。
詳言之,每一承載頭140可包括固定環142以固定基板10在可撓性膜144下方。每一承載頭140亦包括藉由膜界定之複數個獨立可控制的可加壓腔室,例如,三個腔室146a-146c,該等腔室可施加獨立可控制加壓至可撓性膜144上的相關聯區域148a-148c及因此施加該加壓在基板10上(見第3圖)。參閱第2圖,中心區域148a可為實質上圓形的,且餘留區域148b-148e可為中心區域148a周圍之同心環形區域。雖然,為便於說明,在第2圖及第3圖中僅圖示三個腔室,但可存在一個腔室或兩個腔室,或四個或四個以上腔室,例如五個腔室。
返回第2圖,每一承載頭140懸吊於支撐結構150(例如旋轉料架),且每一承載頭140藉由驅動軸152連接至承載頭旋轉馬達154以便承載頭可圍繞軸155而旋轉。視需要,每一承載頭140可(例如)在旋轉料架150之滑動件上橫向振動,或藉由旋轉料架本身之旋轉而振動。在操作中,平臺圍繞平臺之中心軸125旋轉,且每一承載頭圍繞每一承載頭之中心軸155旋轉且每一承載頭橫跨研磨墊之頂端表面橫向平移。
儘管僅圖示一個承載頭140,但可提供更多承載頭以固持額外基板以便可以有效使用研磨墊110之表面區域。因此,經調適成固持用於同時研磨製程之基板的承載頭總成之數目可至少部分地基於研磨墊110之表面區域。
研磨設備亦包括原位光監控系統160,例如,光譜監控系統,該原位光監控系統160可用來決定是否調整研磨速率或決定對於研磨速率之調整,如下文所論述。藉由包括孔徑(亦即,貫穿墊之孔)或實體窗口118提供經由研磨墊之光學存取。雖然在一些實施中可將實體窗口支撐於平臺120上且投入研磨墊之孔徑內,但可將實體窗口118緊固至研磨墊110,例如,作為填充研磨墊之孔徑的插座,例如,將該實體窗口118模製或黏附緊固至研磨墊。
光監控系統160可包括光源162、光偵測器164及電路系統166,該電路系統166用於在遠端控制器190(例 如電腦)與光源162及光偵測器164之間發送訊號及接收訊號。一或更多個光纖可用以將來自光源162之光傳輸至研磨墊之光學存取,且可用以將自基板10反射之光傳輸至偵測器164。舉例而言,分叉光纖170可用來將來自光源162之光傳輸至基板10且返回至偵測器164。分叉光纖包括接近於光學存取而定位之中繼線172,及分別連接至光源162及偵測器164之兩個支線174及176。
在一些實施中,平臺之頂端表面可包括凹槽128,將光學頭168配適至該凹槽128內,該光學頭168固持分叉光纖之中繼線172之一端。光學頭168可包括用以調整在中繼線172之頂端與實體窗口118之間的垂直距離之機制。
對於光監控系統,電路系統166之輸出可為數位電子訊號,該數位電子訊號通過驅動軸124中之旋轉耦合器129(例如滑環)至控制器190。類似地,回應於數位電子訊號之控制指令可開啟或關閉光源,該等數位電子訊號自控制器190通過旋轉耦合器129至光監控系統160。或者,電路系統166可藉由無線訊號與控制器190通訊。
光源162可經操作以發射白光。在一個實施中,發射之白光包括具有200奈米至800奈米之波長的光。合適的光源為氙燈或氙汞燈。
光偵測器164可為分光計。分光計為量測在一部分電磁光譜上的光強度之光學儀器。合適的分光計為光柵分光計。分光計之典型輸出為作為波長(或頻率)之函數的光強度。
如上所述,可將光源162及光偵測器164連接至計算裝置,例如控制器190,該計算裝置可操作以控制該光源162及該光偵測器164之操作且接收該光源162及該光偵測器164之訊號。計算裝置可包括位於研磨設備附近之微處理器,例如可程式化電腦。相對於控制而言,計算裝置可(例如)將光源之啟動與平臺120之旋轉同步。
在一些實施中,將原位監控系統160之光源162及偵測器164安裝在平臺120中且隨平臺120而旋轉。在此情況下,平臺之運動將引起感測器跨過每一基板掃描。詳言之,隨著平臺120旋轉,控制器190可引起光源162剛好在光學存取通過基板10下方之前開始及之後結束發射一系列閃光。或者,計算裝置可引起光源162剛好在每一基板10通過光學存取上方之前開始及之後結束連續發射光。在任一情況下,可將來自偵測器之訊號經取樣週期整合以在取樣頻率下產生光譜量測。
在操作中,例如,控制器190可為光源之特定閃光或偵測器之時間訊框接收攜帶資訊之訊號,該資訊描述藉由光偵測器接收之光的光譜。因此,此光譜為在研磨期間原位量測之光譜。
如第4圖中所圖示,若偵測器安裝在平臺上,則歸因於平臺之旋轉(藉由箭頭204圖示),當窗口108在承載頭下方行進時,在取樣頻率下進行光譜量測之光監控系統將引起光譜量測在橫貫基板10之弧中之位置201處進行。舉例而言,點201a-201k中之每一者表示藉由監控系統光譜量測之位置(點之數目為說明性的;取決於取樣頻率,可進行比圖示之量測更多或更少之量測)。可選擇取樣頻率以便窗口108之每拂掠收集五個光譜與二十個光譜之間的光譜。舉例而言,取樣週期可介於3毫秒與100毫秒之間。
如圖示,在平臺之一個旋轉後,自基板10上之不同半徑獲得光譜。亦即,一些光譜自更接近基板10之中心的位置獲得,而一些光譜自更接近於基板10之邊緣的位置獲得。因此,對於橫跨基板之光監控系統之任何給定掃描,基於定時、馬達編碼器資訊及基板及/或固定環之邊緣之光偵測,控制器190可根據掃描而對每一量測光譜計算半徑位置(相對於正被掃描之基板之中心)。研磨系統亦可包括旋轉位置感測器(例如,附接於平臺之邊緣的凸緣,該凸緣將穿過固定光學斷續器),以提供用於決定量測哪個基板及量測光譜在基板上之位置之額外資料。控制器可因此將各種量測光譜與基板10a及基板10b上之可控制區域148b-148e(見第2圖)相關聯。在一些實施中,光譜量測之時間可用作半徑位置之準確計算之替代物。
在平臺之多個旋轉後,對於每一區域,隨著時間的推移可獲得一系列光譜。不局限於任何特定理論,歸因於最外層之厚度變化,自基板10反射的光之光譜隨研磨進行(例如,在平臺之多個旋轉后,而非橫跨基板之單個拂掠期間)而發展,因此產生一系列時變光譜。此外,特定光譜係藉由特定厚度之層堆疊顯示。
在一些實施中,可將控制器(例如計算裝置)程式化以將量測光譜與多個參考光譜比較且決定哪個參考光譜提供最佳匹配。詳言之,可將控制器程式化以將來自每一區域之一系列量測光譜之每一光譜與多個參考光譜相比較來產生每一區域之一系列最佳匹配參考光譜。
如本文所使用,參考光譜為在研磨基板之前產生之預定義光譜。假設實際研磨速率遵循期望之研磨速率,參考光譜可與表示研磨製程之時間的值具有預定義之相關性,亦即,在研磨操作之前界定之相關性,期望於該時同出現光譜。或者或另外,參考光譜可與諸如最外層之厚度的基板性質之值具有預定義之相關性。
參考光譜可(例如)藉由量測來自測試基板之光譜憑經驗產生,例如,該測試基板具有已知初始層厚度。舉例而言,為產生複數個參考光譜,使用將在裝置晶圓之研磨期間使用之相同的研磨參數研磨裝配基板,同時收集一系列光譜。對於每一光譜,記錄表示在研磨製程中收集光譜之時間的值。舉例而言,該值可為經過之時間或平臺旋轉之次數。可過度研磨基板,亦即,研磨超過 所要厚度,以便可獲得在達成目標厚度時自基板反射的光之光譜。
為使每一光譜與基板性質(例如最外層之厚度)之值相關聯,具有與產品基板相同圖案之「裝配」基板之初始光譜及性質可在量測站於研磨前量測。亦可以相同量測站或不同量測站於研磨後量測最終光譜及性質。可藉由內插決定在初始光譜與最終光譜之間的光譜之性質,例如,基於經過之時間之線性內插,在該經過之時間量測測試基板之光譜。
除憑經驗決定外,可(例如)使用基板層之光學模型根據理論計算參考光譜之一些或所有參考光譜。舉例而言,且光學模型可用來計算給定外層厚度D之參考光譜。例如,藉由假設以均勻研磨速率移除外層,可計算表示在研磨製程中將收集參考光譜之時間的值。舉例而言,藉由假設起始厚度D0及均勻研磨速率R,可簡單地計算特定參考光譜之時間Ts,(Ts=(D0-D)/R)。作為另一實例,基於用於光學模型之厚度D,可執行在研磨前厚度D1與研磨後厚度D2(或在量測站量測之其他厚度)之量測時間T1與量測時間T2之間的線性內插,(Ts=T2-T1*(D1-D)/(D1-D2))。
在一些實施中,軟體可用來自動計算多個參考光譜。由於在引入基板之下層之厚度中存在變異,故製造商可對下層(例如對多個下層)中之至少一者輸入厚度範圍 及厚度增量。軟體將對下層厚度之每一組合計算參考光譜。可對覆蓋層之每一厚度計算多個參考光譜。
為計算參考光譜,可使用以下光學模型。可將薄膜堆疊之頂層p之反射度RSTACK 計算為 其中Ep + 表示引入光束之電磁場強度且Ep - 表示引出光束之電磁場強度。
可將值Ep + 及值Ep - 計算為Ep + =(Ep +Hpp )/2 Ep - =(Ep -Hpp )/2
可使用傳遞矩陣法自下層之場E及場H計算任意層j之場E及場H。因此,在層0,1,...,p-1,p之堆疊中(其中層0為底層且層p為最外層),對於給定層j>0,可將Ej 及Hj 計算為 其中μj =(nj -ikj ).cos Φj 且gj =2 π(nj -ikj ).tj .cos Φj /λ,其中nj 為層j之折射率,kj 為層j之消光係數,tj 為層j之厚度,Φj 為光至層j之入射角,且λ為波長。對於堆疊之底層,亦即,層j=0,E0 =1且H00 =(n0 -ik0 ).cos Φ0 。可 由科學文獻決定每一層之折射率n及消光係數k,且該折射率n及該消光係數k可為波長之函數。可根據史奈爾定律(Snell’s law)計算入射角Φ。
根據藉由使用者對層輸入之厚度範圍及厚度增量可計算層之厚度t,例如,tj =TMINj +k* TINCj ,k=0,1,...,tj ≦TMAXj ,其中TMINj 及TMAXj 為層j之厚度範圍之下邊界及上邊界,且TINCj 為層j之厚度增量。可為層之厚度值之每一組合迭代該計算。
此技術之潛在優點為大量參考光譜之快速產生,該大量參考光譜可對應於基板之層厚度之不同組合,從而改良找出良好匹配參考光譜之可能性且改良光監控系統之準確度及可靠性。
除層厚度之變異外,光學模型可包括金屬層之光譜貢獻之變異。亦即,取決於正在製造之晶片之圖案,可在具有高金屬(例如,來自溝槽之金屬材料28)濃度之區域中進行一些光譜量測,而可在具有較低金屬濃度之區域中進行其他光譜量測。
可將經添加至庫之光譜RLIBRARY 計算為
其中RBASELINE 為在光堆疊之底部的材料之光譜反射度,例如,裸半導體(例如對於前端製程之基板)或裸金屬(例如對於後端製程之基板)。裸半導體可為自裸矽 之反射度;裸金屬可為銅。X為對金屬(例如銅)之光譜的百分比貢獻,且RMetal 為來自金屬(例如銅)之反射光譜。在一些實施中,例如,若金屬層14及金屬材料28為相同材料,例如,銅,則RBASELINE 及RMetal 為相同光譜(例如銅光譜)之反射。對於X,可經多個值迭代光譜RLIBRARY 之計算。舉例而言,X可以0.2之間隔在0.0與1.0之間變化。此技術之潛在優點為參考光譜之產生,該等參考光譜可對應於基板之量測點中之不同金屬濃度,從而改良找出良好匹配參考光譜之可能性及改良光監控系統之準確度及可靠性。
無論是憑經驗產生或根據理論計算,將至少一個參考光譜儲存在電腦系統中。此電腦系統可為控制器190或不同電腦系統。
對於一些類型之基板,例如,一些層結構及晶片圖案,上述基於光學模型而產生參考光譜庫的技術可為足夠的。然而,對於一些類型之基板,基於此光學模型之參考光譜不對應於憑經驗量測之光譜。不局限於任何特定理論,當將額外層添加至基板之堆疊時,(例如)來自基板上之不同圖案化金屬層之光散射增加。簡而言之,隨著金屬層之數目增加,來自基板之較低層之光將經反射返回以進入光纖且到達偵測器會變得不太可能。
在一些實施中,為模擬藉由增加金屬層之數目引起之散射,可在光學模型中使用修正之消光係數來計算參考光譜。對於層之材料,修正之消光係數大於自然消光係 數。對於更接近於晶圓之層,添加至消光係數之量可更大。
舉例而言,在上述方程式中,可分別藉由μ'j 及g'j 代替術語μj 及gj ,其中將μ'j 及g'j 計算為μ' j =(nj -i(kj +mj ))cos Φj g' j =2 π(nj -i(kj +mj )).tj .cos Φj /λ其中mj 為增加層j之消光係數的量。通常,mj 等於或大於0且可達到1。對於接近堆疊之頂端之層,mj 可為很小,例如0。對於較深的層,mj 可為更大,例如0.2、0.4或0.6。量mj 可隨j減少而單調增加。量mj 可為波長之函數,例如,對於特定層,mj 可在較長波長處更大或可在較短波長處更大。
第5A圖圖示建立複數個參考光譜(例如)以建立一或更多個庫之方法80。
如上所述,研磨墊110中窗口116之透射(見第2圖)可隨研磨墊老化而變化,且藉由光源162發射之光可隨光源中之燈泡老化而變化。產生複數個透射曲線(步驟82)。透射曲線表示藉由在基板表面之前的光學路徑中之元件變異引入之光譜之失真。舉例而言,不同透射曲線可表示藉由研磨系統之元件之老化引入之失真,例如,在研磨墊及/或光源之燈泡之壽命中之不同時間。作為另一實例,不同透射曲線可表示藉由在研磨系統之元件之間的差異(例如,窗口之間的差異及/或燈泡之間的差異) 引入之失真。可將複數個不同透射曲線儲存在電腦系統中。可將透射曲線作為波長之函數儲存為0與1之間的比值。
產生透射曲線之一個方法為憑經驗的方法。詳言之,參閱第5B圖,使用原位光監控系統自測試基板(例如,空白基板,例如,裸矽基板或裸銅基板)獲得基礎光譜(步驟90)。可在研磨墊110及光源162之燈泡的壽命開始處獲得基礎光譜。再次使用原位光監控系統及使用相同材料之測試基板(或相同測試基板),但在研磨墊110及/或燈泡之壽命期間之不同時間處獲得一或更多個額外光譜(步驟92)。舉例而言,藉由在使用墊5分鐘之後、在使用墊4小時之後、在使用墊8小時之後、在使用墊12小時之後及在使用墊16小時之後量測測試基板可獲得光譜。
視需要,在量測基礎光譜及每一額外光譜之墊壽命之相同時間,於暗條件(亦即,在無基板正藉由原位監控系統而量測時)下藉由原位監控系統亦可量測光譜。
隨後可根據基礎光譜及額外光譜計算透射曲線(步驟94)。舉例而言,可對每一額外光譜計算透射曲線。可藉由除法運算計算透射曲線,在該除法運算中額外光譜在分子中且基礎光譜在分母中。詳言之,可將透射曲線T計算為 其中A為額外光譜,DA 為在與額外光譜相同的墊壽命時間於暗條件下藉由原位監控系統接收之光譜,B為基礎光譜,且DB 為在與基礎光譜相同的墊壽命時間處於暗條件下藉由原位監控系統接收之光譜。
儲存至少一些透射曲線。然而,可能不必要儲存經計算之所有透射曲線T。舉例而言,可廢除實質上類似於現存透射曲線的一些透射曲線。
或者,可自模型產生透射曲線,而非儲存憑經驗產生之透射曲線。舉例而言,Cauchy方程或3次多項式可用來模型化透射曲線。可(例如)使用擬合程序選擇多項式係數,以便Cauchy方程或3次多項式遵循憑經驗產生之透射曲線。
如上所述般(例如)憑經驗或根據理論產生至少一個參考光譜(步驟84)。在產生透射曲線之前或在產生透射曲線之後可產生至少一個參考光譜。
隨後,對於來自複數個不同透射曲線之至少兩個透射曲線,在電腦系統中根據參考光譜及透射曲線計算修正之參考光譜以產生複數個修正之參考光譜。在一些實施中,電腦系統可自複數個不同透射曲線接收識別至少兩個透射曲線之使用者輸入。執行計算之電腦不必為與產生至少一個參考光譜相同的電腦或與產生透射曲線相同的電腦;可電子地接收至少一個參考光譜及/或透射曲線。
在一些實施中,對於每一儲存之透射曲線,用至少一個參考光譜乘以儲存之透射曲線以產生複數個修正之參考光譜(步驟86),該複數個修正之參考光譜可經添加至相同庫或不同庫作為原始的至少一個參考光譜。隨後(例如)在控制器190中儲存該等修正之參考光譜,作為待在光監控程序中使用之參考光譜。假設將修正之參考光譜添加至相同庫作為至少一個參考光譜,則此舉將藉由透射曲線之數目之因子增加庫之大小。舉例而言,若原始庫含有100個參考光譜,且透射曲線之數目為3,則現在新庫大小為400個光譜(100個原始光譜加上300個正規化光譜)。
參閱第6A圖及第6B圖,可將量測光譜300(見第6A圖)與來自一或更多個庫310之參考光譜320(見第6B圖)相比較。如本文所使用,參考光譜庫為表示共同共享性質之基板之參考光譜之集合。然而,在單個庫中共同共享之性質可因參考光譜之多個庫而不同。舉例而言,兩個不同庫可包括表示具有兩個不同下層厚度之基板的參考光譜。對於給定參考光譜庫,上層厚度之變異,而非其他因子之變異(諸如在晶圓圖案、下層厚度或層組成中之差異)可為光譜強度之差異之主要原因。在一些實施中,給定參考光譜庫、光譜強度之差異可歸因於上層厚度之變異及用來產生參考光譜之透射曲線之變異。在一些實施中,給定參考光譜庫、光譜強度之差異可主要歸因於用來產生參考光譜之透射曲線之變異。
因為複數個光譜跨越窗口之可能影響範圍,故將更有可能找出正常匹配。因此,所得參考光譜之一或更多個庫使匹配演算法能夠在存在窗口之透射變異時保持可靠。因此,可改良終點系統偵測所要研磨終點之可靠性,且可降低晶圓內厚度非均勻性及晶圓間厚度非均勻性(WIWNU及WTWNU)。
藉由研磨具有不同基板性質(例如,下層厚度或層組成)之多個「裝配」基板及收集如上所述之光譜可產生對不同庫310之參考光譜320;來自一個裝配基板之光譜可提供第一庫,且來自具有不同下層厚度之另一基板之光譜可提供第二庫。或者或另外,可根據理論計算不同庫之參考光譜,例如,可使用下層具有第一厚度之光學模型計算第一庫之光譜,且可使用下層具有不同的一厚度之光學模型計算第二庫之光譜。
在一些實施中,可將每一參考光譜320指定一指數值330。通常,每一庫310可包括許多參考光譜320,例如,經基板之期望研磨時間對每一平臺旋轉之一或更多個(例如,正好一個)參考光譜。此指數330可為表示在研磨製程中期望觀察參考光譜320之時間的值,例如,數目。可索引光譜以便特定庫之每一光譜具有唯一的指數值。可實施索引以便將指數值以量測測試基板之光譜的次序而排序。指數值可經選擇以隨著研磨進行而單調變化,例如,增加或減少。詳言之,可選擇參考光譜之指數值以便該等指數值形成平臺旋轉之時間或次數之線 性函數(假設研磨速率遵循用來產生庫之參考光譜之模型或測試基板的研磨速率)。舉例而言,指數值可與平臺旋轉之數目成比例(例如,等於平臺旋轉之數目),在該指數值處量測測試基板之參考光譜或參考光譜將出現在光學模型中。因此,每一指數值可為整數。指數數目可表示期望之平臺旋轉,在該期望之平臺旋轉中將出現相關聯之光譜。
可將參考光譜及該等參考光譜之相關聯指數值儲存在參考庫中。舉例而言,可將每一參考光譜320及該每一參考光譜320之相關聯指數值330儲存在資料庫350之記錄340中。可在研磨設備之計算裝置之記憶體中實施參考光譜之參考庫之資料庫350。
如上所述,對於每一基板之每一區域,基於彼區域及基板之一系列量測光譜,可將控制器190程式化以產生一系列最佳匹配光譜。可藉由將量測之光譜與來自特定庫之參考光譜相比較而決定最佳匹配參考光譜。
在一些實施中,對每一參考光譜,可藉由計算在量測光譜與參考光譜之間的平方差之和來決定最佳匹配參考光譜。具有最低平方差之和的參考光譜具有最佳擬合。用於找出最佳匹配參考光譜之其他技術亦是可能的,例如,最低的絕對差之和。
在一些實施中,可藉由使用除平方差之和以外的匹配技術來決定最佳匹配參考光譜。在一個實施中,對於每一參考光譜,計算在量測光譜與參考光譜之間的交叉相 關,且將具有最大相關之參考光譜選擇為匹配參考光譜。交叉相關之潛在優點在於該交叉相關幾乎不受光譜之橫向偏移影響,且因此該交叉相關可幾乎不受下層厚度變異影響。為執行交叉相關,可用「零」填充量測光譜之前端及尾端以在使參考光譜相對於量測光譜而偏移時提供資料與參考光譜相比較。或者,可用等於在量測光譜之前緣處之值的值填充量測光譜之前端,且可用等於在量測光譜之尾緣處之值的值填充量測光譜之尾端。快速傳立葉轉換可用來增加用於匹配技術之即時應用之交叉相關的計算速度。
在另一實施中,計算歐式矢量距離之和,例如,D=1/(λa-λb).[Σλ=λa至λb |IM (λ)2 -IR (λ)2 |],其中λa至λb為於歐式矢量距離之上求和之波長,IM (λ)為量測光譜,且IR (λ)為參考光譜。在另一實施中,對於每一參考光譜,導數差異之和,例如,D=1/(λa-λb).[Σλ=λa至λb |dIM (λ)/dλ-dIR (λ)/dλ|],且將具有最低和之參考光譜選擇為匹配參考光譜。
可經應用以減少電腦處理之方法為限制搜尋匹配光譜之庫之部分。庫通常包括比在研磨基板時將獲得之光譜範圍更寬的光譜範圍。在基板研磨期間,庫搜尋局限於光譜庫之預定範圍。在一些實施例中,決定正在研磨之基板之當前旋轉指數N。舉例而言,在初始平臺旋轉中,可藉由搜尋庫之所有參考光譜來決定N。對於在後續旋轉期間獲得之光譜,在N之自由度範圍內搜尋庫。亦即, 若在一個旋轉期間發現指數數目為N,則在X個旋轉之後的後續旋轉期間,在自由度為Y之情況下,將自(N+X)-Y至(N+X)+Y搜尋範圍。
參閱第7圖,第7圖圖示對於單個基板之僅單個區域之結果,可決定序列中之每一最佳匹配光譜之指數值以產生指數值212之時變序列。可將指數值之此序列稱為指數軌跡210。在一些實施中,藉由將每一量測光譜與來自正好一個庫之參考光譜比較而產生指數軌跡。通常,指數軌跡210可包括光監控系統在基板下方之每拂掠之一個(例如,正好一個)指數值。
對於給定指數軌跡210,在存在對光監控系統之單個拂掠中之特定區域量測多個光譜(稱為「當前光譜」)的情況下,可在當前光譜中之每一者與一或更多個(例如,正好一個)庫之參考光譜之間決定最佳匹配。在一些實施中,可將每一選擇之當前光譜與選擇之一或更多個庫之每一參考光譜相比較。例如,給定當前光譜e、f及g,及參考光譜E、F及G,可對當前光譜及參考光譜之以下組合中之每一者計算匹配係數:e及E、e及F、e及G、f及E、f及F、f及G、g及E、g及F,及g及G。無論哪個匹配係數指示最佳匹配(例如)為最小,該匹配係數決定最佳匹配參考光譜,且因此決定指數值。或者,在一些實施中,可組合(例如,平均)當前光譜,且將所得之組合光譜與參考光譜相比較以決定最佳匹配,且因此決定指數值。
在一些實施中,對於一些基板之至少一些區域,可產生複數個指數軌跡。對於給定基板之給定區域,可對感興趣之每一參考庫產生指數軌跡。亦即,對於給定基板之給定區域感興趣之每一參考庫,將一系列量測光譜中之每一量測光譜與來自給定庫之參考光譜相比較,決定一系列最佳匹配參考光譜,且該系列最佳匹配參考光譜之指數值為給定庫提供指數軌跡。
總之,每一指數軌跡210包括一系列指數值212,其中藉由自給定庫選擇參考光譜之指數產生該系列指數值之每一特定指數值212,該給定庫為對量測光譜之最接近擬合。對指數軌跡210之每一指數之時間值可與量測量測光譜之時間相同。
若存在覆蓋第二層,則原位監控技術可用來偵測第二層之清除及下層或層結構之曝露。舉例而言,如下文更詳細論述,可藉由在馬達扭矩或自基板反射的光之總強度中之突然變化或自收集光譜之色散來偵測於時間TC之第一層之曝露。
如第8圖所示,例如,使用強健的線來擬合如已知階之多項式函數之函數(例如,一階函數(例如,線性函數214))與光譜之一系列指數值(例如,在時間TC之後收集之指數值)擬合。當將函數與該系列指數值擬合時,可忽略在時間TC之前收集之光譜之指數值。可使用其他函數(例如,二階多項式函數),但線性函數提供 計算之簡易度。研磨可於終點時間TE停止,線性函數214於該終點時間TE與目標指數IT相交。
第9圖圖示研磨產品基板之方法之流程圖900。當測試基板用來產生庫之參考光譜時,產品基板可具有至少相同的層結構(但不必具有相同層厚度)及相同的圖案。
例如,使用上述原位監控系統在研磨期間收集一系列量測光譜(步驟902)。
分析量測光譜以產生一系列值,且可將函數與該系列值擬合。詳言之,對於在一系列量測光譜中之每一量測光譜,自複數個參考光譜中找出最佳匹配參考光譜(步驟904)。決定與最佳匹配參考光譜相關聯之值(步驟906)。由於存在一系列量測光譜,故存在一系列最佳匹配參考光譜,且因此存在一系列值。將函數(例如,線性函數或二階多項式函數或更高階多項式函數)與該系列值擬合(步驟912)。在一些實施中,在函數之計算中不使用在時間TC(例如,在偵測到第二層之清除之時間)之前收集之值。
一旦值(例如,自與該系列值擬合之函數產生之計算值)達到目標值,就可停止研磨(步驟914)。可將目標值IT在研磨操作之前藉由使用者設定且儲存。或者,可藉由使用者設定移除之目標量,且可根據移除之目標量計算目標值IT。舉例而言,可根據移除之目標量(例如,根據憑經驗決定之移除量對值(例如,研磨速率)之比 值)計算差異ID,且於偵測覆蓋層之清除之時間TC添加差異ID至指數值IC(見第8圖)。
亦有可能使用與指數值擬合之函數來調整研磨參數,例如,調整基板上一或更多個區域之研磨速率以改良研磨均勻性。或者,在一些實施中,無函數與該系列值擬合,且例如藉由與目標值比較,該等值本身用來偵測研磨終點。
參閱第10圖,圖示複數個指數軌跡。如上所述,可對每一區域產生指數軌跡。舉例而言,可對第一區域產生指數值212之第一序列210(藉由空心圓形圖示),可對第二區域產生指數值222之第二序列220(藉由空心方形圖示),且可對第三區域產生指數值232之第三序列230(藉由空心三角形圖示)。雖然圖示三個區域,但可存在兩個區域或四個或四個以上區域。所有區域可處於同一基板上,或一些區域可來自正在同一平臺上同時研磨之不同基板。
如上所述,原位監控技術可用來偵測第二層之清除及下層或層結構之曝露。舉例而言,如下文更詳細論述,可藉由在馬達扭矩或自基板反射的光之總強度中之突然變化或自收集光譜之色散來偵測於時間TC之第一層之曝露。
對於每一基板指數軌跡,例如,使用強健的線擬合使已知階之多項式函數(例如,一階函數(例如,線性函數))與相關聯之區域之光譜之一系列指數值(該等指數 值視需要可局限於在時間TC之後收集之值)擬合。舉例而言,第一線性函數214可與第一區域之指數值212擬合,第二線性函數224可與第二區域之指數值222擬合,且第三線性函數234可與第三區域之指數值232擬合。線性函數與指數值之擬合可包括線性函數之斜率S及x軸相交時間T之計算,於該時間T,線性函數與例如0之起始指數值相交。可將函數以I(t)=S.(t-T)之形式表示,其中t為時間。x軸相交時間T可具有負值,該負值指示基板層之起始厚度小於期望厚度。因此,第一線性函數214可具有第一斜率S1及第一X軸相交時間T1,第二線性函數224可具有第二斜率S2及第二X軸相交時間T2,且第三線性函數234可具有第三斜率S3及第三X軸相交時間T3。
在研磨製程期間之一些時間,例如,在時間T0,調整至少一個區域之研磨參數以調整基板之區域之研磨速率,以使得在研磨終點時間,複數個區域比在無該調整之情況下更接近於該複數個區域之目標厚度。在一些實施例中,每一區域在終點時間可具有近似相同的厚度。
參閱第11圖,在一些實施中,將一個區域選擇為參考區域,且決定預計之終點時間TE,在該預計之終點時間TE,參考區域將達到目標指數IT。舉例而言,如第11圖所示,將第一區域選擇作為參考區域,然而可選擇不同區域及/或不同基板。可在研磨操作之前藉由使用者設定且儲存目標厚度IT。或者,可藉由使用者設定移除之 目標量TR,且可根據移除之目標量TR計算目標指數IT。舉例而言,可根據移除之目標量(例如,根據憑經驗決定之移除量對指數(例如,研磨速率)之比值)計算指數差異ID,且於偵測覆蓋層之清除之時間TC添加指數差異ID至指數值IC。
為決定預計之時間,在該預計之時間參考區域將達到目標指數,可計算參考區域之線性函數(例如,線性函數214)與目標指數IT之相交。假設研磨速率不經由剩餘研磨製程偏離期望研磨速率,則該系列指數值將保持實質上線性進程。因此,可將期望終點時間TE計算為線性函數對目標指數IT之簡單線性插值,例如,IT=S.(TE-T)。因此,在第11圖之實例中,其中選擇具有相關聯第一線性函數214之第一區域作為參考區域,IT=S1.(TE-T1),亦即,TE=IT/S1-T1。
可將除參考區域(包括在其他基板上之區域)以外之一或更多個區域(例如,所有區域)界定為可調區域。在可調區域之線性函數滿足期望終點時間TE之情況下界定可調區域之預計終點。每一可調區域之線性函數(例如,第11圖中之線性函數224及線性函數234)可因此用來外插指數(例如,指數EI2及指數EI3),該指數將在相關聯區域之期望終點時間TE達成。舉例而言,第二線性函數224可用來在第二區域之期望終點時間TE外插期望指數EI2,且第三線性函數234可用來在第三區域之期望終點時間TE處外插期望指數EI3。
如第11圖所示,若在時間T0之後不對任何區域之研磨速率進行調整,則若強迫所有區域之終點在相同時間,則每一區域可具有不同厚度(該不同厚度為非所要的,因為如此可導致缺陷及產量之損失)。
若將在不同區域之不同時間達到目標指數(或相當於,可調區域在參考區域之預計終點時間將具有不同的期望指數),則可向上或向下調整研磨速率,以使得區域將達到目標指數(且因此達到目標厚度)比在無該調整之情況下更接近於相同時間,例如,在近似相同時間,或將比在無該調整之情況下更接近於目標時間之相同指數值(且因此更接近於相同厚度),例如,近似相同指數值(且因此近似相同厚度)。
因此,在第11圖之實例中,在時間T0處開始,修正第二區域之至少一個研磨參數以便增加區域之研磨速率(且因而增加指數軌跡220之斜率)。同樣,在此實例中,修正第三區域之至少一個研磨參數以便減少第三區域之研磨速率(且因而減少指數軌跡230之斜率)。因此,區域將在近似相同時間達到目標指數(且因此達到目標厚度)(或若對區域之壓力在相同時間停止,則區域將以近似相同厚度結束)。
在一些實施中,若在期望終點時間TE處之預計指數指示基板之區域在目標厚度之預定義範圍內,則對於彼區域可能無需調整。範圍可為目標指數之2%,例如,在目標指數之1%內。
可調整可調區域之研磨速率以便所有區域在期望終點時間處比在無該調整之情況下更接近於目標指數。舉例而言,可選取參考基板之參考區域且調整所有其他區域之處理參數,以使得所有區域將於參考基板之近似預計時間到達終點。例如,參考區域可為預定區域,例如,中心區域148a或恰好環繞中心區域之區域148b,具有任何基板之任何區域之最早預計終點時間或最晚預計終點時間之區域,或具有所要預計終點之基板之區域。若在相同時間停止研磨,則最早時間等於最薄基板之時間。同樣,若在相同時間處停止研磨,則最晚時間等於最厚基板之時間。例如,參考基板可為預定基板,具有區域之基板,該區域具有基板之最早預計終點時間或最晚預計終點時間。若在相同時間處停止研磨,則最早時間等於最薄區域之時間。同樣,若在相同時間處停止研磨,則最晚時間等於最厚區域之時間。
對於每一可調區域,可計算指數軌跡之所要斜率以使得可調區域在與參考區域相同時間達到目標指數。舉例而言,可根據(IT-I)=SD*(TE-T0)計算所要斜率SD,其中I為在研磨參數變化之時間T0之指數值(根據與一系列指數值擬合之線性函數計算),IT為目標指數,且TE為計算之期望終點時間。在第11圖之實例中,對於第二區域,可根據(IT-I2)=SD2*(TE-T0)計算所要斜率SD2,且對於第三區域,可根據(IT-I3)=SD3*(TE-T0)計算所要斜率SD3。
或者,在一些實施中,不存在參考區域,且期望終點時間可為(例如)在研磨製程之前藉由使用者設定之預定時間,或可根據一或更多個基板之兩個或兩個以上區域(如藉由預計至目標指數之各種區域之線性函數而計算)之期望終點時間之平均或其他組合計算期望終點時間。在此實施中,實質上如上所述般計算所要斜率,然而亦必須計算第一基板之第一區域之所要斜率,例如,可根據(IT-I1)=SD1*(TE'-T0)計算所要斜率SD1。
或者,在一些實施中,針對不同區域存在不同目標指數。此准許在基板上產生故意但可控制的非均勻厚度輪廓。可藉由使用者(例如)使用控制器上之輸入裝置來輸入目標指數。舉例而言,基板之第一區域可具有第一目標指數,基板之第二區域可具有第二目標指數,且基板之第三區域可具有第三目標指數。
對於上述任何方法,調整研磨速率以促使指數軌跡之斜率更接近於所要斜率。例如,可藉由增加或減少承載頭之對應腔室中之壓力來調整研磨速率。可假設研磨速率之變化與壓力之變化成正比,例如,簡單的Prestonian模型。舉例而言,對於每一基板之每一區域,在時間T0之前以壓力Pold研磨區域之情況下,可將在時間T0之後施加的新壓力Pnew計算為Pnew=Pold*(SD/S),其中S為在時間T0之前的線性函數之斜率,且SD為所要斜率。
舉例而言,假設施加壓力Pold1至基板之第一區域,施加壓力Pold2至基板之第二區域,且施加壓力Pold3至基板之第三區域,則可將對於基板之第二區域之新壓力Pnew2計算為Pnew2=Pold2*(SD2/S2),且可將對於基板之第三區域之新壓力Pnew3計算為Pnew3=Pold3*(SD3/S3)。
可將決定基板將達到目標厚度之預計時間及調整研磨速率之方法在研磨製程期間僅執行一次,例如,在指定時間處(例如,通過期望研磨時間之40%至60%),或在研磨製程期間執行多次,例如,每隔三十秒至六十秒。在研磨製程期間之後續時間,適當之情況下,可再次調整速率。在研磨製程期間,研磨速率之變化可僅進行幾次,諸如四次、三次、兩次或僅一次。可在研磨製程之接近開始時、中間時或接近結束時進行調整。
在已調整研磨速率之後(例如,在時間T0之後)繼續研磨,光監控系統繼續收集至少參考區域之光譜且決定參考區域之指數值。在一些實施中,光監控系統繼續收集光譜且決定每一區域之指數值。一旦參考區域之指數軌跡達到目標指數,就調用終點且停止研磨操作。
舉例而言,如第12圖所示,在時間T0之後,光監控系統繼續收集參考區域之光譜且決定參考區域之指數值312。若參考區域上之壓力不變化(例如,如第11圖之實施中),則可使用來自在T0之前(但不在TC之前)及在T0之後兩者之資料點計算線性函數以提供更新之 線性函數314,且線性函數314達到目標指數IT之時間指示研磨終點時間。另一方面,若參考區域上之壓力在時間T0變化,則可根據在時間T0之後的一系列指數值312計算具有斜率S'之新線性函數314,且新線性函數314達到目標指數IT之時間指示研磨終點時間。用於決定終點之參考區域可與如上所述用來計算期望終點時間之參考區域相同,或可為不同區域(或若如參閱第11圖所述般調整所有區域,則可出於終點決定之目的選擇參考區域)。若新線性函數314達到目標指數IT比根據原始線性函數214計算之預計時間稍晚(如第12圖所示)或稍早,則可將一或更多個區域分別地稍作過度研磨或欠研磨。然而,由於期望終點時間與實際研磨時間之間的差異應小於幾秒,故此情況不需嚴重地影響研磨均勻性。
在一些實施中,例如,對於銅研磨,在偵測基板之終點之後,基板立即經受過度研磨製程(例如)以移除銅殘留物。對基板之所有區域,過度研磨製程可在均勻壓力下,例如,1 psi至1.5 psi。過度研磨製程可具有預設持續時間,例如,10秒至15秒。
在對特定區域產生多個指數軌跡(例如,對特定區域感興趣之每一庫之一個指數軌跡)之情況下,隨後可選擇一個指數軌跡以在特定區域之終點或壓力控制演算法中使用。舉例而言,對於相同區域產生之每一指數軌跡,控制器190可使線性函數與彼指數軌跡之指數值擬合, 且控制器190可決定彼線性函數與一系列指數值之擬合優度。可選擇產生之指數軌跡作為特定區域及基板之指數軌跡,該產生之指數軌跡具有線性函數,該線性函數與該產生之指數軌跡自身的指數值具有最佳擬合優度。舉例而言,在決定如何調整可調區域之研磨速率時(例如,在時間T0),可在計算中使用具有最佳擬合優度之線性函數。作為另一實例,當對於具有最佳擬合優度之線性函數的計算指數(如根據擬合至一系列指數值之線性函數計算)匹配或超過目標指數時,可調用終點。同樣,可將指數值本身與目標指數相比以決定終點,而非根據線性函數計算指數值。
判定與光譜庫相關聯之指數軌跡是否具有對與該庫相關聯之線性函數之最佳擬合優度可包括:與相關聯強健線性函數及與另一庫相關聯之指數軌跡之差異相比,判定相關聯光譜庫之指數軌跡與相關聯強健線性函數是否具有相對最小量差異(例如,最低標準偏差、最大相關或變異之其他量測)。在一個實施中,藉由計算在指數資料點與線性函數之間的平方差之和來決定擬合優度;具有最低平方差之和的庫具有最佳擬合。
參閱第13圖,圖示簡要流程圖1300。如上所述,在研磨設備中以相同研磨墊同時研磨基板之複數個區域(步驟1302)。在此研磨操作期間,每一區域使該每一區域之研磨速率藉由獨立可變研磨參數(例如藉由在特定區域之上方承載頭中的腔室施加之壓力)而獨立於其 他基板可控。在研磨操作期間,如上所述,(例如)使用自每一區域獲得之一系列量測光譜監控基板(步驟1304)。對於該一系列量測光譜中之每一量測光譜,決定最佳匹配之參考光譜(步驟1306)。決定最佳擬合之每一參考光譜之指數值以產生一系列指數值(步驟1308)。
偵測第二層之清除(步驟1310)。對於每一區域,使線性函數與在偵測到第二層之清除之後收集的光譜之一系列指數值擬合。在一個實施中,例如藉由線性函數之線性插值決定參考區域之線性函數將達到目標指數值之期望終點時間(步驟1314)。在其他實施中,將期望終點時間預定或計算為多個區域之期望終點時間之組合。若有需要,則調整其他區域之研磨參數以調整彼基板之研磨速率,以使得複數個區域在近似相同的時間達到目標厚度或以使得複數個區域於目標時間具有近似相同的厚度(或目標厚度)(步驟1316)。在調整參數之後繼續研磨,且對於每一區域,繼續量測光譜、根據庫決定最佳匹配參考光譜、決定最佳匹配光譜之指數值以在已調整研磨參數之後的時間週期內產生一系列新的指數值,及使線性函數與指數值擬合(步驟1318)。一旦參考區域之指數值(例如,自擬合至一系列新的指數值之線性函數產生之計算指數值)達到目標指數,則可停止研磨(步驟1330)。
在一些實施中,將一系列指數值用來調整基板之一或更多個區域之研磨速率,而將另一原位監控系統或技術用來偵測研磨終點。
雖然上文之論述假設旋轉平臺具有安裝在該平臺中之光終點監控,但系統可適用於在監控系統與基板之間的其他類型之相對運動。舉例而言,在一些實施中,例如,軌道運動,光源橫貫基板上之不同位置,但不跨越基板之邊緣。在該情況下,仍可群組化收集之光譜,例如,可在某一頻率下收集光譜且可將在時間週期內收集之光譜視為群組之部分。時間週期應足夠長,使得每一群組收集五至二十個光譜。
如在即時規範中所使用,術語基板可包括(例如)產品基板(例如,該產品基板包括多個記憶體或處理器晶片)、測試基板、裸基板及閘控基板。基板可處於積體電路製造之各種階段,例如,基板可為裸晶圓,或該基板可包括一或更多個沈積層及/或圖案化層。術語基板可包括圓形盤及矩形片。
可在數位電子電路系統中,或在電腦軟體、韌體或硬體中(包括本說明書中揭示之結構性構件及該結構性構件之結構性等效物或該結構性構件及該結構性構件之結構性等效物之組合)實施本說明書中描述之實施例及所有功能操作。可將實施例實施為一或更多個電腦程式產品,亦即,在機器可讀取儲存媒體中有形地實施之一或更多個電腦程式,以藉由資料處理設備(例如,可程式 化處理器、電腦,或多個處理器或多個電腦)執行或以控制資料處理設備之操作。可以任何形式之程式化語言(包括編譯語言或解釋語言)編寫電腦程式(亦稱為程式、軟體、軟體應用程式或代碼),且可以任何形式配置該電腦程式,包括作為單獨程式或作為模組、元件、次常式或適於在計算環境中使用之其他單元。電腦程式不必對應於檔案。可將程式儲存在保持其他程式或資料之一部分檔案中、在專用於有问题的程式之單個檔案中或在多個坐標檔案中(例如,儲存一或更多個模組、子程式或代碼之部分的檔案)。可配置電腦程式以執行於一個電腦上或執行於多個電腦上,該多個電腦在一個地點或跨過多個地點而分散且藉由通訊網路互連。
可藉由一或更多個可程式化處理器執行本說明書描述之製程及邏輯流程,該一或更多個可程式化處理器在一或更多個電腦系統中執行一或更多個電腦程式以藉由對輸入資料操作及產生輸出而執行功能。亦可藉由如特殊用途邏輯電路系統(例如,現場可程式閘陣列(FPGA)或特定應用積體電路(ASIC))執行製程及邏輯流程,且亦可將設備實施為該特殊用途邏輯電路系統。
上述研磨設備及方法可應用在各種研磨系統中。研磨墊或承載頭中之任一者或該研磨墊及該承載頭兩者皆可移動以提供研磨表面與基板之間的相對運動。舉例而言,平臺可繞軌道運行而非旋轉。研磨墊可為緊固至平臺之圓形(或其他形狀)墊。終點偵測系統之一些態樣 可適用於線性研磨系統,例如,在研磨墊為線性移動之連續帶或捲盤式帶(reel-to-reel belt)之情況下。研磨層可為標準(例如,有填料或無填料之聚氨基甲酸酯)研磨材料、軟材料或固定磨損材料。使用相對定位之術語;應理解,可將研磨表面及基板固持在垂直定向或一些其他定向。
已描述本發明之特定實施例。其他實施例在以下申請專利範圍之範疇內。
10‧‧‧基板
10a‧‧‧基板
50‧‧‧圖
52a‧‧‧曲線
52b‧‧‧曲線
52c‧‧‧曲線
52d‧‧‧曲線
52e‧‧‧曲線
80‧‧‧方法
82‧‧‧步驟
84‧‧‧步驟
86‧‧‧步驟
90‧‧‧步驟
92‧‧‧步驟
94‧‧‧步驟
100‧‧‧研磨設備
108‧‧‧窗口
110‧‧‧研磨墊
112‧‧‧外研磨層
114‧‧‧軟背托層
118‧‧‧實體窗口
120‧‧‧可旋轉圓盤狀平臺
121‧‧‧馬達
124‧‧‧驅動軸
125‧‧‧軸
128‧‧‧凹槽
129‧‧‧旋轉耦合器
130‧‧‧埠
132‧‧‧研磨液
140‧‧‧承載頭
142‧‧‧固定環
144‧‧‧可撓性膜
146a‧‧‧腔室
146b‧‧‧腔室
146c‧‧‧腔室
148a‧‧‧區域/中心區域
148b‧‧‧區域
148c‧‧‧區域
150‧‧‧支撐結構/旋轉料架
152‧‧‧驅動軸
154‧‧‧馬達
155‧‧‧軸
160‧‧‧原位光監控系統
162‧‧‧光源
164‧‧‧光偵測器
166‧‧‧電路系統
168‧‧‧光學頭
170‧‧‧分叉光纖
172‧‧‧中繼線
174‧‧‧直線
176‧‧‧直線
190‧‧‧遠端控制器
201‧‧‧位置
201a‧‧‧點
201b‧‧‧點
201c‧‧‧點
201d‧‧‧點
201e‧‧‧點
201f‧‧‧點
201g‧‧‧點
201h‧‧‧點
201i‧‧‧點
201j‧‧‧點
201k‧‧‧點
204‧‧‧箭頭
210‧‧‧指數軌跡/第一序列
212‧‧‧指數值
214‧‧‧線性函數
220‧‧‧第二序列/指數軌跡
222‧‧‧指數值
224‧‧‧第二線性函數
230‧‧‧第三序列/指數軌跡
232‧‧‧指數值
234‧‧‧第三線性函數
300‧‧‧量測光譜
310‧‧‧庫
312‧‧‧指數值
314‧‧‧線性函數
320‧‧‧參考光譜
330‧‧‧指數值
340‧‧‧記錄
350‧‧‧資料庫
900‧‧‧流程圖
902‧‧‧步驟
904‧‧‧步驟
906‧‧‧步驟
912‧‧‧步驟
914‧‧‧步驟
1300‧‧‧流程圖
1302‧‧‧步驟
1304‧‧‧步驟
1306‧‧‧步驟
1308‧‧‧步驟
1310‧‧‧步驟
1314‧‧‧步驟
1316‧‧‧步驟
1318‧‧‧步驟
1330‧‧‧步驟
EI2‧‧‧指數
EI3‧‧‧指數
IC‧‧‧指數值
ID‧‧‧指數差異
IT‧‧‧目標指數
S'‧‧‧斜率
SD2‧‧‧斜率
SD3‧‧‧斜率
T0‧‧‧時間
TC‧‧‧時間
TE‧‧‧終點時間
第1圖圖示量測光譜隨研磨墊老化之失真。
第2圖圖示研磨設備之實例之示意性橫截面視圖。
第3圖圖示具有多個區域之基板之示意性俯視圖。
第4圖圖示研磨墊之俯視圖且圖示在基板上進行原位量測之位置。
第5A圖為產生參考光譜之方法之流程圖。
第5B圖為產生透射曲線之方法之流程圖。
第6A圖圖示來自原位光監控系統的量測光譜。
第6B圖圖示參考光譜庫。
第7圖圖示指數軌跡。
第8圖圖示具有線性函數的指數軌跡,該線性函數與在偵測覆蓋層之清除之後收集之指數值擬合。
第9圖為用於製造基板及偵測研磨終點之實例製程之流程圖。
第10圖圖示複數個指數軌跡。
第11圖圖示基於參考區域之指數軌跡達到目標指數之時間而對於複數個可調區域之複數個所要斜度之計算。
第12圖圖示基於參考區域之指數軌跡達到目標指數之時間的終點之計算。
第13圖為實例製程之流程圖,該實例製程用於調整在複數個基板中之複數個區域之研磨速率以使得該複數個區域在目標時間具有近似相同的厚度。
各圖式中相同元件符號及標記指示相同元件。
902‧‧‧步驟
904‧‧‧步驟
906‧‧‧步驟
912‧‧‧步驟
914‧‧‧步驟

Claims (20)

  1. 一種控制研磨之方法,該方法包含以下步驟:產生一參考光譜庫,包含:儲存至少一個參考光譜;儲存複數個不同透射曲線,該等透射曲線表示藉由在一基板表面之前的一光學路徑中之元件變異所引入之一光譜之失真;對於來自該複數個不同透射曲線之至少兩個透射曲線,根據該參考光譜及該透射曲線計算一修正之參考光譜以產生複數個修正之參考光譜;研磨一基板;在研磨期間量測來自該基板之光之一系列光譜;對於該系列光譜之每一量測光譜,從該複數個修正之參考光譜找出一最佳匹配參考光譜以產生一系列最佳匹配參考光譜;以及基於該一系列最佳匹配參考光譜決定一研磨終點或一研磨速率之一調整中之至少一者。
  2. 如請求項1所述之方法,其中該等不同透射曲線表示一個或更多個窗口之透射變異。
  3. 如請求項2所述之方法,其中該等不同透射曲線表示在一研磨墊之一窗口之不同時期之一光譜之失真。
  4. 如請求項2所述之方法,其中不同透射曲線表示不同窗口。
  5. 如請求項1所述之方法,其中該等不同透射曲線表示在來自一光源之一燈泡之不同時期之一光譜之失真。
  6. 如請求項1所述之方法,該方法進一步包含以下步驟:自該複數個不同透射曲線接收識別該至少兩個透射曲線之使用者輸入。
  7. 如請求項1所述之方法,該方法進一步包含以下步驟:產生該複數個不同透射曲線。
  8. 如請求項7所述之方法,其中產生該複數個不同透射曲線之步驟包含以下步驟:根據一光學模型計算該等透射曲線。
  9. 如請求項1所述之方法,其中計算該修正之參考光譜之步驟包含以下步驟:將該參考光譜乘以該透射曲線。
  10. 如請求項9所述之方法,其中將該透射曲線作為波長之一函數儲存為在0與1之間的一比值。
  11. 如請求項1所述之方法,該方法進一步包含以下步驟:產生該至少一個參考光譜。
  12. 如請求項11所述之方法,其中產生該至少一個參考光譜之步驟包含以下步驟:在一研磨操作期間,使用包含該光學路徑之一光監控系統量測一測試基板。
  13. 如請求項11所述之方法,其中產生該至少一個參考光譜之步驟包含以下步驟:根據一光學模型計算該參考光譜。
  14. 一種產生一參考光譜庫之方法,該方法包含以下步驟:儲存至少一個參考光譜;儲存複數個不同透射曲線,該等透射曲線表示藉由在一基板表面之前的一光學路徑中之元件變異所引入之一光譜之失真;以及對於來自該複數個不同透射曲線之至少兩個透射曲線,根據該參考光譜及該透射曲線計算一修正之參考光譜以產生複數個修正之參考光譜;其中產生該複數個不同透射曲線之步驟包含以下步驟:使用一原位光監控系統量測來自一測試基板之一基礎光譜,及在不同時間使用該原位光監控系統量測來自該相同測試基板或該相同材料之另一測試基板之一個或更多個額外光譜,及根據該基礎光譜及該一個或更多個額外 光譜計算該等透射曲線。
  15. 如請求項14所述之方法,其中該等不同時間處於該測試基板與該原位光監控系統之一光源或偵測器之間的一光學路徑中之研磨墊之一窗口的不同時期。
  16. 如請求項14所述之方法,其中該等不同時間處於該原位光監控系統之一光源之一燈泡的不同時期。
  17. 如請求項14所述之方法,其中計算該等透射曲線之步驟包含一除法運算,在該除法運算中該額外光譜在分子中且該基礎光譜在分母中。
  18. 如請求項14所述之方法,該方法進一步包含以下步驟:在與量測該基礎光譜相同的該窗口之該時期量測一第一暗光譜,及在與量測該額外光譜相同的該窗口之該時期量測一第二暗光譜。
  19. 如請求項18所述之方法,其中計算該等透射曲線之步驟包含以下步驟:計算 其中A為該額外光譜,DA 為該第二暗光譜,B為該基礎光譜且DB 為該第一暗光譜。
  20. 如請求項14所述之方法,其中該測試基板包含一裸矽晶圓。
TW101113988A 2011-04-21 2012-04-19 建立具有環境效應變異之參考光譜 TWI465314B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/091,965 US8547538B2 (en) 2011-04-21 2011-04-21 Construction of reference spectra with variations in environmental effects

Publications (2)

Publication Number Publication Date
TW201249599A TW201249599A (en) 2012-12-16
TWI465314B true TWI465314B (zh) 2014-12-21

Family

ID=47021106

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101113988A TWI465314B (zh) 2011-04-21 2012-04-19 建立具有環境效應變異之參考光譜

Country Status (5)

Country Link
US (1) US8547538B2 (zh)
JP (1) JP6017538B2 (zh)
KR (1) KR101930111B1 (zh)
TW (1) TWI465314B (zh)
WO (1) WO2012145418A2 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747189B2 (en) * 2011-04-26 2014-06-10 Applied Materials, Inc. Method of controlling polishing
TWI825537B (zh) * 2011-08-01 2023-12-11 以色列商諾威股份有限公司 光學測量系統
WO2013150290A1 (en) * 2012-04-05 2013-10-10 Renishaw Diagnostics Limited A method for calibrating spectroscopy apparatus and equipment for use in the method
US9248544B2 (en) * 2012-07-18 2016-02-02 Applied Materials, Inc. Endpoint detection during polishing using integrated differential intensity
US9056383B2 (en) 2013-02-26 2015-06-16 Applied Materials, Inc. Path for probe of spectrographic metrology system
US20140242881A1 (en) * 2013-02-27 2014-08-28 Applied Materials, Inc. Feed forward parameter values for use in theoretically generating spectra
TWI487888B (zh) * 2013-09-30 2015-06-11 Ind Tech Res Inst 掃描式光柵光譜儀
KR102497215B1 (ko) 2016-05-16 2023-02-07 삼성전자 주식회사 계측 설비의 스펙트럼 보정방법, 및 그 스펙트럼 보정방법을 기반으로 하는 소자의 계측방법과 제조방법
TWI733915B (zh) * 2016-10-10 2021-07-21 美商應用材料股份有限公司 控制基板的處理的方法,及其研磨系統和電腦程式產品
KR102580487B1 (ko) * 2018-06-18 2023-09-21 주식회사 케이씨텍 패드 모니터링 장치 및 이를 포함하는 패드 모니터링 시스템, 패드 모니터링 방법
CN111587478A (zh) 2018-06-28 2020-08-25 应用材料公司 用于光谱监测的机器学习系统的训练光谱产生
US10886155B2 (en) * 2019-01-16 2021-01-05 Applied Materials, Inc. Optical stack deposition and on-board metrology
JP7469032B2 (ja) * 2019-12-10 2024-04-16 株式会社荏原製作所 研磨方法および研磨装置
US11544838B2 (en) * 2020-03-21 2023-01-03 Kla Corporation Systems and methods of high-resolution review for semiconductor inspection in backend and wafer level packaging
WO2022059708A1 (ja) * 2020-09-15 2022-03-24 国立大学法人長岡技術科学大学 研磨状態解析予測プログラム、記憶装置、カソードルミネセンス装置、および研磨状態解析予測方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW534854B (en) * 2000-08-31 2003-06-01 Motorola Inc Method and apparatus for measuring a polishing condition
TW541233B (en) * 1999-03-18 2003-07-11 Speedfam Ipec Corp Method and apparatus for endpoint detection for chemical mechanical polishing
TW555622B (en) * 1999-04-30 2003-10-01 Ibm Chemical mechanical polishing in-situ end point system
TW590850B (en) * 2001-12-28 2004-06-11 Macronix Int Co Ltd Method of determining the endpoint of a chemical mechanical polishing process
TW200502541A (en) * 2003-07-11 2005-01-16 L Air Liquide Sa A Directoireet Conseil De Surveillance Pour L Etude Et L Expl Method and apparatus for monitoring of slurry consistency
TW200849416A (en) * 2007-02-23 2008-12-16 Applied Materials Inc Using spectra to determine polishing endpoints
TW200919571A (en) * 2007-08-29 2009-05-01 Applied Materials Inc High throughput low topography copper CMP process
TW201022870A (en) * 2008-10-27 2010-06-16 Applied Materials Inc Goodness of fit in spectrographic monitoring of a substrate during processing

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206236A (ja) * 1988-02-15 1989-08-18 Hitachi Ltd 石英材質判別装置
TW493205B (en) 1999-03-22 2002-07-01 Sensys Instr Corp Method and apparatus for wafer metrology
US6707540B1 (en) 1999-12-23 2004-03-16 Kla-Tencor Corporation In-situ metalization monitoring using eddy current and optical measurements
JP3804064B2 (ja) * 2001-12-04 2006-08-02 株式会社東京精密 ウェーハ研磨装置の研磨終点検出方法及び装置
JP2004055995A (ja) * 2002-07-23 2004-02-19 Seiko Epson Corp Cmp装置、cmp研磨方法、半導体装置及びその製造方法
JP4542324B2 (ja) 2002-10-17 2010-09-15 株式会社荏原製作所 研磨状態監視装置及びポリッシング装置
KR100644390B1 (ko) 2005-07-20 2006-11-10 삼성전자주식회사 박막 두께 측정방법 및 이를 수행하기 위한 장치
KR101324644B1 (ko) * 2005-08-22 2013-11-01 어플라이드 머티어리얼스, 인코포레이티드 화학적 기계적 폴리싱의 스펙트럼 기반 모니터링을 위한 장치 및 방법
US8392012B2 (en) 2008-10-27 2013-03-05 Applied Materials, Inc. Multiple libraries for spectrographic monitoring of zones of a substrate during processing
US7409260B2 (en) 2005-08-22 2008-08-05 Applied Materials, Inc. Substrate thickness measuring during polishing
EP1969353A1 (en) * 2005-12-12 2008-09-17 Platform Development&Investment Ltd. Assessment of diamond color
US7494929B2 (en) 2006-04-27 2009-02-24 Applied Materials, Inc. Automatic gain control
TWI422798B (zh) * 2006-10-06 2014-01-11 Ebara Corp 加工終點檢測方法、研磨方法及研磨裝置
JP5367246B2 (ja) * 2007-09-28 2013-12-11 Sumco Techxiv株式会社 半導体ウェーハの研磨装置及び研磨方法
US20090275265A1 (en) * 2008-05-02 2009-11-05 Applied Materials, Inc. Endpoint detection in chemical mechanical polishing using multiple spectra
JP2010014642A (ja) * 2008-07-07 2010-01-21 Sony Corp 光強度測定方法及び光強度測定装置
US20100103422A1 (en) 2008-10-27 2010-04-29 Applied Materials, Inc. Goodness of fit in spectrographic monitoring of a substrate during processing
US20100114532A1 (en) 2008-11-03 2010-05-06 Applied Materials, Inc. Weighted spectrographic monitoring of a substrate during processing
JP5583137B2 (ja) * 2008-11-26 2014-09-03 アプライド マテリアルズ インコーポレイテッド フィードバックおよびフィードフォワードプロセス制御のために光計測学を使用すること

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW541233B (en) * 1999-03-18 2003-07-11 Speedfam Ipec Corp Method and apparatus for endpoint detection for chemical mechanical polishing
TW555622B (en) * 1999-04-30 2003-10-01 Ibm Chemical mechanical polishing in-situ end point system
TW534854B (en) * 2000-08-31 2003-06-01 Motorola Inc Method and apparatus for measuring a polishing condition
TW590850B (en) * 2001-12-28 2004-06-11 Macronix Int Co Ltd Method of determining the endpoint of a chemical mechanical polishing process
TW200502541A (en) * 2003-07-11 2005-01-16 L Air Liquide Sa A Directoireet Conseil De Surveillance Pour L Etude Et L Expl Method and apparatus for monitoring of slurry consistency
TW200849416A (en) * 2007-02-23 2008-12-16 Applied Materials Inc Using spectra to determine polishing endpoints
TW200919571A (en) * 2007-08-29 2009-05-01 Applied Materials Inc High throughput low topography copper CMP process
TW201022870A (en) * 2008-10-27 2010-06-16 Applied Materials Inc Goodness of fit in spectrographic monitoring of a substrate during processing

Also Published As

Publication number Publication date
WO2012145418A3 (en) 2013-01-24
US8547538B2 (en) 2013-10-01
US20120268738A1 (en) 2012-10-25
JP6017538B2 (ja) 2016-11-02
WO2012145418A2 (en) 2012-10-26
KR20140025487A (ko) 2014-03-04
KR101930111B1 (ko) 2018-12-17
JP2014512693A (ja) 2014-05-22
TW201249599A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
TWI465314B (zh) 建立具有環境效應變異之參考光譜
US10589397B2 (en) Endpoint control of multiple substrate zones of varying thickness in chemical mechanical polishing
US10651098B2 (en) Polishing with measurement prior to deposition of outer layer
US9649743B2 (en) Dynamically tracking spectrum features for endpoint detection
KR101892914B1 (ko) 측정된 스펙트럼에 대한 광학 모델의 피팅
US8892568B2 (en) Building a library of spectra for optical monitoring
US8814631B2 (en) Tracking spectrum features in two dimensions for endpoint detection
US9372116B2 (en) Automatic initiation of reference spectra library generation for optical monitoring
US9579767B2 (en) Automatic generation of reference spectra for optical monitoring of substrates
US20120278028A1 (en) Generating model based spectra library for polishing
US8942842B2 (en) Varying optical coefficients to generate spectra for polishing control
US20110282477A1 (en) Endpoint control of multiple substrates with multiple zones on the same platen in chemical mechanical polishing
US20120100781A1 (en) Multiple matching reference spectra for in-situ optical monitoring
US8202738B2 (en) Endpoint method using peak location of modified spectra
CN106471606B (zh) 利用沉积前测量的研磨
TWI496661B (zh) 用於光學監測之參考光譜的自動產生
US9811077B2 (en) Polishing with pre deposition spectrum