TWI464840B - 在後段製程形成懸吊式傳輸線結構之方法 - Google Patents

在後段製程形成懸吊式傳輸線結構之方法 Download PDF

Info

Publication number
TWI464840B
TWI464840B TW094111141A TW94111141A TWI464840B TW I464840 B TWI464840 B TW I464840B TW 094111141 A TW094111141 A TW 094111141A TW 94111141 A TW94111141 A TW 94111141A TW I464840 B TWI464840 B TW I464840B
Authority
TW
Taiwan
Prior art keywords
transmission line
signal transmission
ground plane
layer
air gap
Prior art date
Application number
TW094111141A
Other languages
English (en)
Other versions
TW200603368A (en
Inventor
Anil K Chinthakindi
Robert A Groves
Youri V Tretiakov
Kunal Vaed
Richard P Volant
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Publication of TW200603368A publication Critical patent/TW200603368A/zh
Application granted granted Critical
Publication of TWI464840B publication Critical patent/TWI464840B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/003Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5225Shielding layers formed together with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6616Vertical connections, e.g. vias
    • H01L2223/6622Coaxial feed-throughs in active or passive substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6627Waveguides, e.g. microstrip line, strip line, coplanar line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1903Structure including wave guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Description

在後段製程形成懸吊式傳輸線結構之方法
本發明係關於半導體製造過程,特別是,關於在半導體裝置的後段製程形成懸吊式傳輸線結構的一種方法。
典型的半導體積體電路是由金屬氧化半導體或雙極電晶體所形成,而該雙極電晶體是被結合於一矽晶片之一頂端平的主要表面。在不同的電晶體之間,以及在某些電晶體和位於沿著晶片周圍的存取腳端之間電性的互連結,已經典型地取得兩(或更多)”層”的互相連結之形式,換言之,以金屬化帶形式電性地傳導線沿著兩(或更多)個實質上平的表面運行,而該平面為互相平行,並且用合適的絕緣層將各平面之間以及各平面與晶片頂端平的表面絕緣。依照需要之電路的互連結,該絕緣層中隨需要而提供互連結之介層洞(窗口)。
尤其,微帶結構起初用於射頻(RF)CMOS/SiGe晶片,其佈線並不密集。一般來說,微帶結構提供相當好的訊號絕緣而隔離底下的耗損性(lossy)基底材料。如圖1(a)所示,一典型的微帶傳輸線結構10包含一訊號傳輸線12,一安置在下面的接地面14用來屏蔽,以及一安置在中間的層間介電材料(ILD)16。由於該屏蔽14及該訊號傳輸線12被製造成標準的互連結元件,因此他們被囊封於該介電材料16。如其他例,這類介電材料,舉例來說為二氧化矽(SiO2 ),SiCOH,SiLK,FSG,USG。這類材料的介電常數範圍通常在大約2.5到4.1之間。
另一方面,共面波導普遍地使用在佈線密度較高處,像是在CMOS晶片裡,舉例來說,在該處建立一外顯的回程路線是困難的。可靠地回傳訊號唯一的方法,就是與訊號線使用相同的發送路線金屬層。因此,如圖1(b)所示,一典型的共面波導傳輸線結構20包含一訊號傳輸線22及兩相鄰屏蔽線24,該兩相鄰屏蔽線24被安置於與傳輸線22相同的佈線層。該共面波導結構20係位於離矽基底26固定距離處。一第三結構,被稱為具有側屏蔽的一微帶傳輸線(即擁有微帶和共面結構特徵),而該第三結構也已被使用在現存的傳輸線結構。
如圖1(c)所示,有側屏蔽的一典型的微帶傳輸線結構30,包含一訊號傳輸線32,用來屏蔽的一接地面34,以及一放在兩者之間的介電材料36。另外,然而,該屏蔽也包含屏蔽線38,該屏蔽線38與訊號傳輸線32安置於同一佈線層。該屏蔽線38經由傳導性充填之介層洞40,與接地面34電性地相鄰。如同微帶結構10,該習知的共面元件也被ILD材料包圍。
在各個例子中,如之前描述該ILD材料的作用會產生介電質損失,以及在後段製程互連結中降低該傳輸線的Q-factor。因此,令人期待的是建立一個像這樣屏蔽的傳輸線結構,配合一較低的介電材料,以便改善該傳輸線的效能。
上述所討論有關先前技術的缺點和不足之處,可由形成一半導體裝置之一傳輸線結構的方法所克服或緩和。在一例示的實施例中,該方法包含在一第一金屬化層上形成一層間介電層,移除該層間介電層的一部分,並在一或多個孔洞內形成一犧牲性材料,該一或多個孔洞是由於移除部分該層間介電層所產生。形成一訊號傳輸線於該層間介電層之一第二金屬化層中,該訊號傳輸線是安置於該犧牲性材料上。移除該第二金屬化層內的介電質的一部份以暴露出該犧牲性材料,其中該犧牲性材料的一部分經由複數個存取孔暴露出,而該存取孔係穿透該訊號傳輸線而形成。移除該犧牲性材料以在該訊號傳輸線之下產生一空氣隙。
另一實施例中,一種半導體裝置之一後段製程傳輸線結構包含一層間介電層,形成於一第一金屬化層上,以及一或多個孔洞形成於該層間介電層中。一訊號傳輸線形成於一第二金屬化層中,該訊號傳輸線是安置於該一或多個孔洞上。該訊號傳輸線更包含複數個存取孔,該存取孔係穿透該訊號傳輸線而形成,供用於定義該一或多個孔洞的犧牲性材料進行移除存取,其中該一或多個孔洞在該訊號傳輸線之下定義一空氣隙。
又在另一實施例中,一種後段製程微帶傳輸線結構包含一訊號傳輸線,形成於一金屬化層上,以及一接地面形成於另一金屬化層上。一空氣隙安置於該訊號傳輸線與該接地面之間,而該空氣隙形成於一層間介電層內。該訊號傳輸線及該接地面其中之一更包含複數個存取孔,該存取孔係穿透該訊號傳輸線或該接地面而形成,供用於定義該空氣隙的犧牲性材料進行移除存取。
又在另一實施例中,一種後段製程共面波導傳輸線結構包含一訊號傳輸線,形成於一第一金屬化層上,以及一對共面屏蔽線在該第一金屬化層中相鄰於該訊號傳輸線。一空氣隙安置在該訊號傳輸線之下,該空氣隙形成於一層間介電層內。該訊號傳輸線更包含複數個存取孔,而該存取孔係穿透該訊號傳輸線而形成,供用於定義該空氣隙的犧牲性材料進行移除存取。
本發明揭露在半導體的後段製程(BEOL)形成懸吊式傳輸線結構的一種方法,其中該整合方案導致有較低介電質損失之銅BEOL傳輸線結構。然而,應了解的是,在此描述的該方法實施例並不侷限於銅的後段製程,而可擴展到用不同的材料製造的其他互連(interconnects),例如鋁、鎢、金,但不只限於這幾種。在一實施例中,該整合方法造成一訊號線和一接地面之間的一空氣隙型態,以至於降低該互連介電常數以及電容串音(cross-talk)的數量,該數量在微波頻率時會特別高。此外,在之後用到的專有名詞”空氣隙”並不必侷限於一訊號線與接地面之間的空氣存在,也可意圖描述或提到任何氣相材料或一真空的存在。
現在大致上提到圖2(a)到2(i),顯示一系列的製程流程圖,依照本發明的一實施例,說明在BEOL過程形成一懸吊式傳輸線結構之一方法。圖2(a)的一開始,一接地面102經由單層金屬鑲嵌過程技術而形成。特別是,一襯層材料104(例如氮化鉭/鉭)沉積在一開口(opening)之中,該開口形成於一絕緣層106內,之後該後段製程金屬層108(例如銅)經由(例如)電鍍、濺鍍等方式被沉積在該襯層材料之上,而之後將其平坦化。如圖2(b)所示,該接地面102在之後經由凹陷蝕刻(recess etching)一部分該後段製程金屬層108而被完全囊封,再沉積額外的襯層材料並平坦化以形成一頂端的襯層部分110。如此囊封後,對於該金屬層108原子的擴散以及在下文描述隨後的過程步驟所引發的氧化作用,該接地面102會產生抵抗性。
在一例示的實施例中,使該線路108頂端的表面相對於介電層106的頂層而被凹陷。將該金屬弄凹陷的一種方法是利用定時的濕蝕刻,以達到想要的深度。例如,一種溶液包含水、乙酸以及過氧化氫(一例示的濃度分別包含3公升、15毫升以及9毫升),被施用大約2.5分鐘,以達到大約600埃()至大約800的深度。之後該阻障材料層110被沉積,並用來囊封銅,且在隨後的過程中保護銅。一特定的實施例是包含一層厚度100的鉭(Ta),隨後是厚度400的氮化鉭(TaN)。可選用地,該阻障材料110也可由一介電質或任何數量的其他適合金屬阻障所製造。
另一個囊封該金屬層的方法,是用同樣的遮蔽物去圖案化(pattern)該整體的阻障110以定義該導體,與該相反極性光阻材料一起,並之後從最上層的表面蝕刻該障礙層。其他方法中,其他可能用來囊封該互連的材料,包含磷化鈷鎢(CoWP)以及Ni-Au合金,可能經由電鍍或無電極電鍍而被沉積。
圖2(c)說明,依據一共面傳輸線實施例,在一層間(ILD)層114中介層洞112的結構。該ILD層114也許包含,例如一矽氮化物(Si3 N4 )層116,隨後是一較厚的SiO2 層118,之後為介層洞的定義該層118被微影地圖案化(lithographically patterned)。之後,該襯層以及金屬材料在該開口中形成,並如我們所知的先前技術將其平坦化以形成該被充填的介層洞112。
根據圖2(d),平行的溝渠(trenches)120在該ILD層114中形成,並位於介層洞112之間。可選用地,該原本的氮化物層116會被留在溝渠120的底部以密封並保護上述的接地面102。安置該溝渠以便在其之間產生一絕緣的支持構件122。在這個步驟中,微影的圖案結構被設計成該支持構件122是沿著該接地面102長度的一連續欄,或是選用地,被設計成該支持構件是沿著該接地面102長度而安置的複數個個別的柱子。換言之,若一柱子組態被期待為支持構件122,則該溝渠120會沿著該接地面102的長度(看入圖中方向)在各個不同的位置與彼此”連接”。而更應察知的是,該支持構件122也可能由兩個或更多平行的欄構成,或是由系列的個別柱子所構成。接著在圖2(e)中,一犧牲性材料124在該溝渠中形成且被平坦化。該犧牲性材料124可被選擇成例如一有機的low-k介電質聚合物,以便在隨後有關於該ILD層以及該BEOL金屬材料時是可選擇性地移除的。
一些例示的材料如SiLK、像鑽石的碳(DLC)、以及三丁基碳酸鹽(polynorbornene, PNB)可被用來當犧牲性材料。SiLK是由Dow Chemical Corp.製造的一半導體介電質,於該產品不同的組成下為可用的,例如多孔的SiLK(Porous SiLK)。這一特定的介電質是一聚合物樹脂包含伽碼丁醯內酯(gamma-butyrolactone)、專屬的B階聚合物(B-staged polymer)以及三甲苯(mesitylene)。另一個使用於這個用途的材料是DLC,DLC是一有包含披覆的非結晶碳,其中一部分的碳原子以一相似於鑽石的形式鍵結。只要沒有可氧化的材料被暴露出,這些材料可能會以氧氣電漿暴露(oxygen plasma exposure)的方式被移除。若在移除該有機材料的期間有一可氧化的材料被暴露,一H2 /CO2 /CO/N2 型電漿移除過程則可被使用。對從事反應性離子蝕刻(reactive ion etching)者來說,這些混合氣體將是可辨別的。三丁基碳酸鹽是一犧牲性聚合物,而會在熱度約攝氏400至425度時分解。因此,簡單的熱度處理可被用來移除犧牲性材料。
圖2(f)說明該訊號層金屬結構之形成。如圖所示,另一介電層126形成於ILD層114之上,之後為了訊號傳輸線128以及共面屏蔽線130的形成,開口在其中被定義。然而,可以看出的是針對該訊號傳輸線的該圖案化以一方式被執行,以至於留下該介電層126的複數個栓塞132。因此,當為了共面屏蔽線130以及訊號傳輸線128而增加襯層和金屬材料時,該導致的訊號傳輸線金屬沿著該長度係不完全地連續。
如同接地面102之情況,用來作該訊號傳輸線128以及共面屏蔽線130之一部分後段製程金屬層被凹陷蝕刻,為了一頂端襯層134的形成作準備,以囊封該訊號層金屬結構。此顯示於圖2(g)。在圖2(h)中,另一圖案化被執行,係為了移除鄰接訊號線128各邊的一部份介電層126,以產生孔洞136,其暴露該犧牲性材料124的外邊緣。另外,在該訊號傳輸線128的圖案化之後,該遺留下的介電栓塞132也被移除,以形成存取孔138。孔洞136與存取孔138在沿著該訊號傳輸線128不同點的組合,可允許該犧牲性材料124的釋放(例如被一O2 電漿蝕刻),如圖2(i)所顯示。
當該被選擇的犧牲性材料是SiLK或DLC,由於暴露於氧氣或氫電漿(hydrogen plasma)而被釋放,氧氣或氫電漿會分解該材料。關於這過程的其他細節可於A. Joshi以及R. Nimmagadda之出版物中找到,名為”Erosion of diamond films and graphite in oxygen plasma”,Journal of Material Research,Vol. 6,No. 7,p. 1484,1996,由Materials Research Society所出版,該內容的全體在此作為參考資料。對三丁基碳酸鹽,一攝氏425度熱度的處理以釋放該訊號線。這釋放過程的其他細節可於Dhananjay Bhusari et al.的論文中找到,名為”Fabrication of Air-Channel Structures for Microfluidic,Microelectromechanical,and Microelectronic Applications”,Journal of Microelectromechanical Systems,Vol. 10,No. 3,p. 400,2001,該內容的全體在此作為參考資料。該導致的傳輸線結構因此包含一低介電常數(空氣)隙140,均在ILD層114中位於該訊號傳輸線128之下,並在該訊號層中鄰接於該訊號傳輸線128(由孔洞136)。
圖2(j)說明該設計之一從上向下(面)視圖以及該懸吊式傳輸線結構之佈局圖。在存取孔138的設計中,為了允許可靠的訊號傳播,而對於該存取孔的安排給予特別的考量。在圖2(j)的實施例中,安排成互垂直的存取孔,平行於導體邊緣,這樣的安排是為了使電流的干擾最小化。另外,該存取孔138的尺寸應該要夠大以允許該犧牲性材料橫向的蝕刻,並還要夠小以使得增加的訊號線電阻為最小。
釋放該犧牲性材料後,用來囊封該懸吊式傳輸線結構的一可能的方法是去沉積一薄片的聚醯亞胺(polyimide)或聚亞胺薄膜(kapton)(無顯示),以完全地覆蓋該裝置。之後該聚醯亞胺/聚亞胺薄膜層被圖案化以跟該測試墊接觸,這為了更進一步的BEOL過程所需要。
圖7(a)到7(g)說明可被執行的一替代過程實施例(從前面圖2(g)的該結構開始),這些對於描述該懸吊式傳輸線結構如何被囊封也將是有幫助的。圖7(b)中,介電層142(最好是Si3 N4 )以及ILD層144(最好是SiO2 )在該訊號線結構上被沉積。如圖7(c)所示,利用微影圖案化以及蝕刻步驟,一洞穴146在該訊號線128之上形成。在此洞穴的蝕刻期間,該介電材料從該訊號線128附近的洞穴區被移除,並穿過含於該訊號線128裡的釋放洞。
隨後,在圖7(d)中,該蝕刻的區域充滿了更多如前描述的釋放材料148(例如SiLK或DLC),而之後被平坦化。原先被置於下方的該相同的犧牲性材料現在被重新使用,而這樣,該釋放過程則移除所有釋放材料層。圖7(e)說明該另外附加的介電層152在介電層150(層142與層144的合層)的頂上,在其中介層洞154被圖案化以及蝕刻。這些介層洞154提供該釋放材料148的存取,而在該結構整合的最後步驟期間被移除,如圖7(f)所示。最後,圖7(g)說明最後的囊封步驟,包含另外的介電層158的沉積並夾封介層洞154,因此而氣密地密封住該懸吊式傳輸線結構。
現在根據圖8(a)到8(d),顯示出仍然有其他替代的方法以用來囊封該懸吊式傳輸線結構,從圖2(i)開始,其中一載體基底(carrier substrate)被利用在囊封過程中。該載體基底可包含Al2 O3 、玻璃、矽等等,但不限於此。一中間層介電材料160(例如SiO2 ),被沉積於一載體基底162之上,如圖8(b)所示。該載體基底162之後被結合到該懸吊式傳輸線結構,如圖8(c)所示,是使用任何一種眾所週知的標準過程,像是低溫結合,共熔結合等等。
該載體基底162在之後會經由使用任意一些過程而被移除,例如濕蝕刻,電漿蝕刻,平坦化,磨平等等。無論如何,該載體移除過程應在該ILD層160上被終止,如圖8(d)所示。在此囊封過程後,標準的BEOL過程即繼續。
除了有一接地面的一共面傳輸線結構有空氣介電質之外,應了解的是上述的過程也可能適合去形成其他類型的傳輸線結構。例如,圖3說明一微帶傳輸線實施例300,包含被囊封的訊號傳輸線302,被囊封的接地面304,以及支持構件306。用與上述相似的方法,一空氣隙介電質更由於在該ILD層以及該訊號線層形成孔洞而被產生。再者,該訊號傳輸線302包含複數個存取孔310以協助犧牲性材料的釋放,供在ILD層形成該孔洞。圖4說明一倒置的微帶傳輸線實施例400,其中該訊號傳輸線402在低於接地面404的一金屬層形成。因此,為了該空氣隙介電質去形成孔洞408,首先在接地面404內產生該存取孔,而非該訊號傳輸線402。
根據圖5,有顯示另一共面傳輸線實施例500,其中沒有接地面直接形成於該訊號傳輸線504之下。反之,該共面屏蔽線506被電性地與彼此隔離,但各自經由介層洞510連接到分別的較低層線508。圖6顯示一共面波導結構600,其中該接地面只包含與該懸吊式訊號線604同層的該兩屏蔽線606,而其與在下面的金屬層沒有連接。
該懸吊式訊號線拓樸的另一實施例是一帶狀傳輸線,如圖9(a)到圖9(c)的製程流程圖所說明。而在圖8(a)到圖8(d)中定義的囊封過程最後所產生的結構,進一步的後段製程過程在該結構上被完成。圖9(b)中,介層洞接觸164是由使用單鑲嵌整合(single damascene integration)而製造,以與兩屏蔽線130造成電性的接觸。接著在圖9(c)中,一接地面166是由使用單鑲嵌整合而製造,即使如此,該介層洞接觸164以及接地面166也可由使用雙鑲嵌整合製程來製造。
傳輸線實施例中包含一接地面,應知道的是這樣的一接地面不必要位於緊接在該訊號傳輸線層之下(或之上)的金屬層。換言之,該接地面可被安置在低於該訊號傳輸線數層的地方,例如,為了提供不同的線阻抗值。若該結構是一共面傳輸線,且特徵是也有一接地面,則該共面屏蔽線可以經由多層的互連線(介層洞)之層被電性地連接到該接地面。
最後,圖10(a)到10(d)反應不同的模擬結果,該結果比較一微帶空氣隙傳輸線結構(如圖3所說明)與一習知的有SiO2 介電質的微帶結構。如圖10(a)與圖10(b)所示,與該SiO2 介電質結構相比較,一懸吊式的互連在寬範圍的微波頻率中有較低的損耗。特別是,當圖10(b)標繪出衰減係數相對於頻率時,圖10(a)的圖表標繪出嵌入損耗(insertion loss)(散射參數S2 1 )之大小相對於頻率。再如圖10(c)所示,該懸吊式互連結構也有一較低的寄生電容以及一較高的阻抗,如圖10(d)所示。
如將被了解的,由於在該訊號線與該回程之間所產生的空氣隙,上述的傳輸線結構實施例提供了較低的衰減和降低的介電損耗(在RF/微波頻率時通常較高)。此外,由於有效的互連介電常數的減小,而有一降低的電容串音電壓,並依次降低該訊號傳遞的延遲。另一優點是該增加的訊號寬頻寬度是由一擴展的有用的特性阻抗範圍來提供。有不同頻率成分的訊號以不同的速度,在一有損耗的互連中傳導,而當使用一空氣介電質時,該散失(dispersion)也被減弱。更有一優點是由電磁傳遞中較簡單的訊號模型所造成,而該電磁傳遞大部分被集中於空氣中。從一構造上的觀點來看,空氣隙結構的傳輸特性顯然地較少被半導體表面條件和巨基底特性所影響。
當有關於較佳具體實施例的該發明已被描述,熟知此技藝者將了解,此發明中不同的改變會產生以及均等物會被其中的成分取代,且不違反該發明的範圍。另外,許多的修改會被產生以使一特別的情況或材料適應該發明的教授,且不違反其基本的範圍。因此,該發明被預期不會受限於該特定的實施例,該實施例被揭露為計議實行該發明最好的形式,但該發明將包含落入附上的申請專利範圍中所有的實施例。
10...典型的微帶傳輸線結構
12...訊號傳輸線
14...接地面
16...介電材料
20...典型的共面波導傳輸線結構
22...訊號傳輸線
24...屏蔽線
26...矽基底
30...典型的微帶傳輸線結構
32...訊號傳輸線
34...接地面
36...介電材料
38...屏蔽線
40...介層洞
102...接地面
104...襯層材料
106...絕緣層
108...金屬層
110...襯層材料
112...介層洞
114...層間介電(ILD)層
116...Si3 N4
118...SiO2
120...溝渠
122...支持構件
124...犧牲性材料
126...介電層
128...訊號傳輸線
130...共面屏蔽線
132...介電栓塞
134...頂端襯層
136...孔洞
138...存取孔
140...低介電常數(空氣)隙 142...介電層
144...ILD層
146...洞穴
148...釋放材料
150...介電層
152...介電層
154...介層洞
156...洞穴
158...介電層
160...ILD層
162...載體基底
164...介層洞接觸
166...接地面
300...微帶傳輸線實施例
302...被囊封的訊號傳輸線
304...被囊封的接地面
306...支持構件
308...孔洞
310...存取孔
400...倒置的微帶傳輸線實施例
402...訊號傳輸線
404...接地面
408...孔洞
410...存取孔
500...共面傳輸線實施例
504...訊號傳輸線
506...共面屏蔽線
508...較低層線
510...介層洞
600...共面波導結構
604...懸吊式訊號線
606...屏蔽線
根據該例示的圖示,其中相像的元件在數個圖中被編號相似:圖1(a)是一習知的微帶傳輸線結構之一橫截面圖示;圖1(b)是一習知的共面波導傳輸線結構之一橫截面圖示;圖1(c)是有側屏蔽的一習知的微帶傳輸線結構之一橫截面圖示;圖2(a)到2(i)為一系列的製程流程圖,說明在後段製程(BEOL)過程形成一懸吊式傳輸線結構的方法,與該發明之一實施例一致;圖2(j)是該設計之一面(從上而下)視圖以及圖2(a)到圖2(i)所形成的懸吊式傳輸線結構之佈局圖;圖3是具有一空氣隙介電質的一微帶傳輸線實施例之一橫截面圖示;圖4是具有一空氣隙介電質的一倒置的微帶傳輸線實施例之一橫截面圖示;圖5是具有一空氣隙介電質的一共面傳輸線實施例之一橫截面圖示,而其不具有直接在該訊號線之下的接地面;圖6是具有一空氣隙介電質的一共面波導傳輸線實施例之一橫截面圖示,而其不具有直接任何在該訊號線之下的接地面;圖7(a)到7(g)為一系列的製程流程圖,說明囊縮一懸吊式傳輸線結構之一可能的方法,該懸吊式傳輸線結構如同圖2(a)到2(g)所形成,而該方法與該發明之一實施例一致;圖8(a)到8(d)為一系列的製程流程圖,說明囊縮一懸吊式傳輸線結構之一供選擇的方法,該懸吊式傳輸線結構如同圖2(a)到2(g)所形成,而該方法與該發明之一實施例一致;圖9(a)到9(c)為一系列的製程流程圖,說明一帶狀傳輸線實施例的組成,其具有一空氣隙位於傳輸線下方,並有接地面位於其上方及下方;以及圖10(a)到10(d)為標繪出不同模擬結果之圖表,該圖表為比較一微帶空氣隙傳輸線結構(如圖3所說明)與有SiO2 介電質之一習知的微帶結構。
102...接地面
112...介層洞
120...溝渠
122...支持構件
128...訊號傳輸線
136...孔洞
138...存取孔

Claims (9)

  1. 一種後段製程微帶(microstrip)傳輸線結構,包含:一訊號傳輸線,形成於一金屬化層上;一接地面,形成於另一金屬化層上;一空氣隙,安置於該訊號傳輸線與該接地面之間,該空氣隙形成於一層間介電層內;該訊號傳輸線及該接地面其中之一更包含複數個存取孔,該存取孔係穿透該訊號傳輸線或該接地面而形成,對用於定義該空氣隙的犧牲性材料進行移除存取,且該複數個存取孔係沿著與該訊號傳輸線及該接地面其中之一之導體邊緣平行的方向而配置;以及一支持構件,位於該訊號傳輸線與該接地面這兩者其中含有複數個存取孔者之正下方,該支持構件包含有完全來自該層間介電層的材料,且其中該支持構件之底部表面與該訊號傳輸線及該接地面之另一底部表面接觸。
  2. 如請求項1所述之後段製程微帶傳輸線結構,其中該支持構件更包含一連續欄。
  3. 如請求項2所述之後段製程微帶傳輸線結構,其中該支持構件更包含複數個個別的柱子。
  4. 如請求項3所述之後段製程微帶傳輸線結構,其中該訊號傳輸線與該接地面更包含完全囊封在一襯層材料內的一後段製程金屬材料。
  5. 一種後段製程共面波導(coplanar waveguide)傳輸線結構,包含:一訊號傳輸線,形成於一第一金屬化層上;一對共面屏蔽線,在該第一金屬化層中相鄰於該訊號傳輸線;一空氣隙,安置在訊號傳輸線之下,該空氣隙形成於一第一層間介電層內;該訊號傳輸線更包含複數個存取孔,而該存取孔係穿透該訊號傳輸線而形成,對用於定義該空氣隙的犧牲性材料進行移除存取,且該複數個存取孔係沿著與該訊號傳輸線之導體邊緣平行的方向而配置;以及一支持構件,位於該訊號傳輸線之正下方,該支持構件包含有完全來自該第一層間介電層的材料,且其中該支持構件之底部表面與該第一層間介電層下方之一層間介電層接觸。
  6. 如請求項5所述之後段製程共面波導傳輸線結構,更包含一第一接地面形成於一第二金屬化層。
  7. 如請求項6所述之後段製程共面波導傳輸線結構,更包含:一第二接地面,形成於一第三金屬化層上;該第一金屬化層安置於該第二金屬化層與該第三金屬化層之間;以及該第一及該第二接地面都電性地連接該對共面屏蔽線。
  8. 如請求項5所述之後段製程共面波導傳輸線結構,其中該支持構件更包含一連續欄。
  9. 如請求項5所述之後段製程共面波導傳輸線結構,其中該支持構件更包含複數個個別的柱子。
TW094111141A 2004-04-29 2005-04-08 在後段製程形成懸吊式傳輸線結構之方法 TWI464840B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/709,357 US7005371B2 (en) 2004-04-29 2004-04-29 Method of forming suspended transmission line structures in back end of line processing

Publications (2)

Publication Number Publication Date
TW200603368A TW200603368A (en) 2006-01-16
TWI464840B true TWI464840B (zh) 2014-12-11

Family

ID=35187662

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094111141A TWI464840B (zh) 2004-04-29 2005-04-08 在後段製程形成懸吊式傳輸線結構之方法

Country Status (7)

Country Link
US (2) US7005371B2 (zh)
EP (1) EP1756862A4 (zh)
JP (1) JP4776618B2 (zh)
KR (1) KR101006286B1 (zh)
CN (1) CN100423216C (zh)
TW (1) TWI464840B (zh)
WO (1) WO2005112105A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3563030B2 (ja) * 2000-12-06 2004-09-08 シャープ株式会社 半導体装置の製造方法
JP2005236107A (ja) * 2004-02-20 2005-09-02 Toshiba Corp 上層メタル電源スタンダードセル、面積圧縮装置および回路最適化装置
US7678682B2 (en) * 2004-11-12 2010-03-16 Axcelis Technologies, Inc. Ultraviolet assisted pore sealing of porous low k dielectric films
FR2885735B1 (fr) * 2005-05-10 2007-08-03 St Microelectronics Sa Circuit integre guide d'ondes
EP1949432B1 (en) * 2005-11-08 2017-10-18 Invensas Corporation Producing a covered through substrate via using a temporary cap layer
DE102006001253B4 (de) * 2005-12-30 2013-02-07 Advanced Micro Devices, Inc. Verfahren zur Herstellung einer Metallschicht über einem strukturierten Dielektrikum mittels einer nasschemischen Abscheidung mit einer stromlosen und einer leistungsgesteuerten Phase
KR101593686B1 (ko) 2007-03-20 2016-02-12 누보트로닉스, 엘.엘.씨 일체화된 전자 요소들 및 이들의 형성 방법
US7898356B2 (en) 2007-03-20 2011-03-01 Nuvotronics, Llc Coaxial transmission line microstructures and methods of formation thereof
US8028406B2 (en) * 2008-04-03 2011-10-04 International Business Machines Corporation Methods of fabricating coplanar waveguide structures
WO2009127914A1 (en) * 2008-04-17 2009-10-22 Freescale Semiconductor, Inc. Method of sealing an air gap in a layer of a semiconductor structure and semiconductor structure
US7919388B2 (en) * 2008-05-30 2011-04-05 Freescale Semiconductor, Inc. Methods for fabricating semiconductor devices having reduced gate-drain capacitance
US7838389B2 (en) * 2008-05-30 2010-11-23 Freescale Semiconductor, Inc. Enclosed void cavity for low dielectric constant insulator
US8384224B2 (en) 2008-08-08 2013-02-26 International Business Machines Corporation Through wafer vias and method of making same
US8035198B2 (en) * 2008-08-08 2011-10-11 International Business Machines Corporation Through wafer via and method of making same
US8138036B2 (en) 2008-08-08 2012-03-20 International Business Machines Corporation Through silicon via and method of fabricating same
US8299566B2 (en) 2008-08-08 2012-10-30 International Business Machines Corporation Through wafer vias and method of making same
TW201043658A (en) * 2009-06-15 2010-12-16 Sumitomo Bakelite Co Temporarily fixing agent for semiconductor wafer and method for producing semiconductor device using the same
US8164397B2 (en) * 2009-08-17 2012-04-24 International Business Machines Corporation Method, structure, and design structure for an impedance-optimized microstrip transmission line for multi-band and ultra-wide band applications
JP2011100989A (ja) * 2009-10-09 2011-05-19 Renesas Electronics Corp 半導体装置
US20110123783A1 (en) 2009-11-23 2011-05-26 David Sherrer Multilayer build processses and devices thereof
US8232618B2 (en) 2010-08-11 2012-07-31 International Business Machines Corporation Semiconductor structure having a contact-level air gap within the interlayer dielectrics above a semiconductor device and a method of forming the semiconductor structure using a self-assembly approach
US8530347B2 (en) 2010-10-05 2013-09-10 Freescale Semiconductor, Inc. Electronic device including interconnects with a cavity therebetween and a process of forming the same
US8754338B2 (en) * 2011-05-28 2014-06-17 Banpil Photonics, Inc. On-chip interconnects with reduced capacitance and method of afbrication
US8643187B1 (en) * 2011-06-01 2014-02-04 Banpil Photonics, Inc. On-chip interconnects VIAS and method of fabrication
US8866300B1 (en) 2011-06-05 2014-10-21 Nuvotronics, Llc Devices and methods for solder flow control in three-dimensional microstructures
US9993982B2 (en) 2011-07-13 2018-06-12 Nuvotronics, Inc. Methods of fabricating electronic and mechanical structures
US9570420B2 (en) 2011-09-29 2017-02-14 Broadcom Corporation Wireless communicating among vertically arranged integrated circuits (ICs) in a semiconductor package
US9075105B2 (en) 2011-09-29 2015-07-07 Broadcom Corporation Passive probing of various locations in a wireless enabled integrated circuit (IC)
US8508029B2 (en) * 2011-09-29 2013-08-13 Broadcom Corporation Semiconductor package including an integrated waveguide
US8670638B2 (en) 2011-09-29 2014-03-11 Broadcom Corporation Signal distribution and radiation in a wireless enabled integrated circuit (IC) using a leaky waveguide
US9318785B2 (en) 2011-09-29 2016-04-19 Broadcom Corporation Apparatus for reconfiguring an integrated waveguide
US9142497B2 (en) * 2011-10-05 2015-09-22 Harris Corporation Method for making electrical structure with air dielectric and related electrical structures
US8664743B1 (en) * 2012-10-31 2014-03-04 Taiwan Semiconductor Manufacturing Company, Ltd. Air-gap formation in interconnect structures
US9306255B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Microstructure including microstructural waveguide elements and/or IC chips that are mechanically interconnected to each other
US9306254B1 (en) 2013-03-15 2016-04-05 Nuvotronics, Inc. Substrate-free mechanical interconnection of electronic sub-systems using a spring configuration
US9564355B2 (en) * 2013-12-09 2017-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure for semiconductor devices
US10310009B2 (en) 2014-01-17 2019-06-04 Nuvotronics, Inc Wafer scale test interface unit and contactors
US9385068B2 (en) * 2014-03-05 2016-07-05 Northrop Grumman Systems Corporation Stacked interconnect structure and method of making the same
KR102190654B1 (ko) * 2014-04-07 2020-12-15 삼성전자주식회사 반도체 장치 및 이의 제조 방법
US9123738B1 (en) * 2014-05-16 2015-09-01 Xilinx, Inc. Transmission line via structure
US10847469B2 (en) 2016-04-26 2020-11-24 Cubic Corporation CTE compensation for wafer-level and chip-scale packages and assemblies
EP3224899A4 (en) 2014-12-03 2018-08-22 Nuvotronics, Inc. Systems and methods for manufacturing stacked circuits and transmission lines
DE102014117977A1 (de) * 2014-12-05 2016-06-09 GAT Gesellschaft für Antriebstechnik mbH Streifenleiter für berührungslose Datenübertragung mit hohen Datenraten
CN108369923B (zh) * 2015-09-23 2023-03-14 英特尔公司 防止过孔穿通的无掩模气隙
US9449871B1 (en) 2015-11-18 2016-09-20 International Business Machines Corporation Hybrid airgap structure with oxide liner
US10622309B2 (en) * 2017-10-30 2020-04-14 Qorvo Us, Inc. Transmission line structure with high Q factor and low insertion loss for millimeter wave applications
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US10534888B2 (en) 2018-01-03 2020-01-14 International Business Machines Corporation Hybrid back end of line metallization to balance performance and reliability
CN117558707A (zh) * 2023-11-01 2024-02-13 广芯微电子(广州)股份有限公司 一种防串扰的三维金属隔离布线结构及布线方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635506B2 (en) * 2001-11-07 2003-10-21 International Business Machines Corporation Method of fabricating micro-electromechanical switches on CMOS compatible substrates

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619061A (en) * 1993-07-27 1997-04-08 Texas Instruments Incorporated Micromechanical microwave switching
EP0915513A1 (en) 1997-10-23 1999-05-12 STMicroelectronics S.r.l. High quality factor, integrated inductor and production method thereof
JPH11204637A (ja) * 1998-01-07 1999-07-30 Toshiba Corp 半導体装置およびその製造方法
US6175727B1 (en) 1998-01-09 2001-01-16 Texas Instruments Israel Ltd. Suspended printed inductor and LC-type filter constructed therefrom
EP0940652B1 (en) * 1998-03-05 2004-12-22 Nippon Telegraph and Telephone Corporation Surface shape recognition sensor and method of fabricating the same
JP3318865B2 (ja) * 1998-03-05 2002-08-26 日本電信電話株式会社 表面形状認識用センサおよびその製造方法
US6025261A (en) 1998-04-29 2000-02-15 Micron Technology, Inc. Method for making high-Q inductive elements
TW379432B (en) * 1998-09-14 2000-01-11 Worldwide Semiconductor Mfg Method of manufacturing self-aligned shield wires
KR100308871B1 (ko) * 1998-12-28 2001-11-03 윤덕용 동축 구조의 신호선 및 그의 제조 방법
SE516743C2 (sv) 1999-06-29 2002-02-26 Ericsson Telefon Ab L M Microbandledarkrets för förlustreducering
US6556962B1 (en) * 1999-07-02 2003-04-29 Intel Corporation Method for reducing network costs and its application to domino circuits
US6258688B1 (en) 2000-03-15 2001-07-10 Taiwan Semiconductor Manufacturing Company Method to form a high Q inductor
US6368953B1 (en) 2000-05-09 2002-04-09 International Business Machines Corporation Encapsulated metal structures for semiconductor devices and MIM capacitors including the same
SG98398A1 (en) 2000-05-25 2003-09-19 Inst Of Microelectronics Integrated circuit inductor
JP3877132B2 (ja) * 2000-11-20 2007-02-07 富士通株式会社 多層配線基板及び半導体装置
US6534843B2 (en) 2001-02-10 2003-03-18 International Business Machines Corporation High Q inductor with faraday shield and dielectric well buried in substrate
US6635306B2 (en) 2001-06-22 2003-10-21 University Of Cincinnati Light emissive display with a black or color dielectric layer
US6555467B2 (en) * 2001-09-28 2003-04-29 Sharp Laboratories Of America, Inc. Method of making air gaps copper interconnect
WO2003049514A2 (en) * 2001-12-03 2003-06-12 Memgen Corporation Miniature rf and microwave components and methods for fabricating such components
US6943447B2 (en) * 2002-01-10 2005-09-13 Fujitsu Limited Thin film multi-layer wiring substrate having a coaxial wiring structure in at least one layer
JP3903249B2 (ja) * 2002-02-20 2007-04-11 富士通株式会社 半導体集積回路装置
US6747340B2 (en) * 2002-03-15 2004-06-08 Memx, Inc. Multi-level shielded multi-conductor interconnect bus for MEMS
US6903001B2 (en) 2002-07-18 2005-06-07 Micron Technology Inc. Techniques to create low K ILD for BEOL
KR100525343B1 (ko) 2002-08-12 2005-11-02 학교법인 한국정보통신학원 3차원 초고주파 다층회로를 위한 공기 공동 제작방법
JP2004128179A (ja) 2002-10-02 2004-04-22 Hitachi Cable Ltd 配線板及び電子装置、ならびに配線板の製造方法
US7012489B2 (en) * 2003-03-04 2006-03-14 Rohm And Haas Electronic Materials Llc Coaxial waveguide microstructures and methods of formation thereof
US6913946B2 (en) * 2003-06-13 2005-07-05 Aptos Corporation Method of making an ultimate low dielectric device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635506B2 (en) * 2001-11-07 2003-10-21 International Business Machines Corporation Method of fabricating micro-electromechanical switches on CMOS compatible substrates

Also Published As

Publication number Publication date
WO2005112105A1 (en) 2005-11-24
KR101006286B1 (ko) 2011-01-06
JP4776618B2 (ja) 2011-09-21
KR20070018899A (ko) 2007-02-14
EP1756862A4 (en) 2011-03-02
US7608909B2 (en) 2009-10-27
EP1756862A1 (en) 2007-02-28
US20060197119A1 (en) 2006-09-07
US20050245063A1 (en) 2005-11-03
US7005371B2 (en) 2006-02-28
JP2007535825A (ja) 2007-12-06
CN100423216C (zh) 2008-10-01
TW200603368A (en) 2006-01-16
CN1947234A (zh) 2007-04-11

Similar Documents

Publication Publication Date Title
TWI464840B (zh) 在後段製程形成懸吊式傳輸線結構之方法
US6057226A (en) Air gap based low dielectric constant interconnect structure and method of making same
JP4283106B2 (ja) 犠牲材料を用いた半導体構造およびその製造方法並びに実施方法
US8748308B2 (en) Through wafer vias and method of making same
KR100497580B1 (ko) 응력 조정 캡층을 포함한 상호 접속 구조
US20040232552A1 (en) Air gap dual damascene process and structure
KR102277190B1 (ko) 2중 패터닝 및 채움 기술들을 통해 상이한 금속 재료들의 평행 배선들을 형성하는 방법들
CN101038905A (zh) 具有阻挡层冗余特征的互连结构
US20060180930A1 (en) Reliability and functionality improvements on copper interconnects with wide metal line below the via
US7052990B2 (en) Sealed pores in low-k material damascene conductive structures
US6777320B1 (en) In-plane on-chip decoupling capacitors and method for making same
US7452804B2 (en) Single damascene with disposable stencil and method therefore
US5880030A (en) Unlanded via structure and method for making same
US20070072334A1 (en) Semiconductor fabrication process employing spacer defined vias
US6638849B2 (en) Method for manufacturing semiconductor devices having copper interconnect and low-K dielectric layer
KR100482179B1 (ko) 반도체 소자 제조방법
US6410425B1 (en) Integrated circuit with stop layer and method of manufacturing the same
KR100399909B1 (ko) 반도체 소자의 층간 절연막 형성 방법
US6563221B1 (en) Connection structures for integrated circuits and processes for their formation
KR20010009036A (ko) 반도체장치의 배선 및 그 연결부 형성방법
US20230170253A1 (en) Dual-damascene fav interconnects with dielectric plug
US6750544B1 (en) Metallization system for use in a semiconductor component
KR20010056822A (ko) 반도체장치의 배선 및 배선연결부와 그 제조방법
KR20020032698A (ko) 반도체 소자의 구리 배선 형성 방법
KR20020052489A (ko) 반도체소자의 금속배선 형성방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees