TWI428991B - 用以形成量子井電晶體之接點的技術 - Google Patents

用以形成量子井電晶體之接點的技術 Download PDF

Info

Publication number
TWI428991B
TWI428991B TW099141013A TW99141013A TWI428991B TW I428991 B TWI428991 B TW I428991B TW 099141013 A TW099141013 A TW 099141013A TW 99141013 A TW99141013 A TW 99141013A TW I428991 B TWI428991 B TW I428991B
Authority
TW
Taiwan
Prior art keywords
layer
quantum well
gate
well structure
trench
Prior art date
Application number
TW099141013A
Other languages
English (en)
Other versions
TW201137988A (en
Inventor
Ravi Pillarisetty
Benjamin Chu-Kung
Mantu K Hudait
Marko Radosavljevic
Jack T Kavalieros
Willy Rachmady
Niloy Mukherjee
Robert S Chau
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of TW201137988A publication Critical patent/TW201137988A/zh
Application granted granted Critical
Publication of TWI428991B publication Critical patent/TWI428991B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • H01L29/7784Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material with delta or planar doped donor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

用以形成量子井電晶體之接點的技術
本發明係有關用以形成量子井電晶體之接點的技術。
因為低有效質量及連同三角(delta)摻雜所造成之減少的雜質散射,形成在磊晶生長之半導體異質結構中(典型在III-IV族或矽一鍺/鍺(SiGe/Ge)材料系統中)的量子井電晶體裝置在電晶體通道中提供異常高的載子遷移率。另外,這些裝置提供異常高的驅動電流性能。雖然,這類裝置可顯示高通道遷移率,與通道形成具有低存取電阻之源極/汲極接點頗為困難,尤其在SiGe/Ge及III-IV族材料系統中。
【發明內容及實施方式】
揭露一種提供低電阻自對準接點給形成在半導體異質結構中之裝置的技術。該些技術可用來例如形成與製造在III-IV族及SiGe/Ge材料系統中的量子井電晶體之源極及汲極區域之接點。不像在接點與閘極之間導致相對大的開放空間之傳統的接點程序流程,由在此所述之技術所提供而得之源極及汲極接點為自對準,其中每一接點對準閘極電極。
概述
如前述,與量子井電晶體裝置之通道形成具有低存取電阻之源極/汲極接點頗為困難,並涉及眾多非瑣碎的問題。
簡言之,用於半導體業界中之傳統自對準接點方案在III-IV族及SiGe/Ge量子井裝置中表現很差。例如,植入的源極/汲極區域與低載子啟動形成不良接觸,且再生的源極/汲極方案亦遭受到低啟動及接面品質。量子井裝置典型使用摻雜蓋層以幫助改善此接觸電阻。然而,使用此蓋層之傳統的接點流程並非自對準。因此,大幅惡化佈局密度。此外,低遷移率裝置,如p通道金屬氧化物半導體(PMOS)銻化銦(InSb)或Ge量子井裝置,在蓋層中仍有足夠的電阻率而導致源極/汲極電阻(有時稱為外部電阻,或Rext,其一般係指裝置中之所有電阻值的總和減掉通道電阻)明顯的惡化。
在此提供的技術可用來形成與量子井裝置(包括以III-IV族及SiGe/Ge材料系統實行的那些)之低電阻自對準接點。可使用任何數量的傳統或客製程序流程來製造量子井結構本身,且可視給定應用之細節需要加以組態。例如,量子井結構可為傳統的具有n+摻雜的蓋層之砷化銦鎵(InGaAs)N型量子井結構。替代地,量子井結構可為傳統的銻化銦(InSb)P型量子井結構。在閱讀此揭露後各種其他適當的量子結構類型及組態將變得明顯,且主張專利權之本發明非意圖限制於任何特定者或組。
因此,提出希望的量子井結構,可接著根據本發明之一實施例形成閘極及源極/汲極電極。所以,根據一示範實施例,自對準接點形成一般可包括,在形成閘極及源極/汲極電極之前,生長下層量子井(或其之任何部分)。一替代實施例假設預先形成量子井結構。
在任何情況中,一旦提供了預先電極形成量子井結構,此示範實施例包括執行台面隔離,其中遮罩結構的主動區域並蝕刻掉未遮罩材料,藉此有效形成台面。接著沉積諸如二氧化矽(SiO2 )的電介質材料到台面周圍之經蝕刻區域中以提供電性隔離。此示範方法進一步包括在主動電晶體裝置上方沉積並圖案化源極/汲極金屬,以形成擴散層。源極/汲極金屬可例如為鎳(Ni)或其他典型的接點金屬,但在其他情況中,諸如其中較無法容忍接點擴散層中之空隙的那些之其他情況中,源極/汲極金屬可例如為鈦(Ti)或其他耐火金屬。此示範方法進一步包括圖案化及蝕刻以形成閘極電極的溝渠。一般而言,蝕刻可為濕及/或乾蝕刻並可定為止於量子井界面附近。接著沿閘極溝渠(諸)壁(在此一般稱為閘極溝渠側,無論包含多邊形溝渠中之數個不同側或圓形溝渠的一連續側)沉積諸如氧化物或氮化物之間隔體材料,並蝕刻成希望的形狀及厚度。在一示範實施例中,亦可沉積隨意的高k閘極電介質到閘極溝渠之閘極溝渠底部以提供進一步的隔離。一旦形成間隔體及隨意的高k電介質,可沉積閘極電極金屬,如鎳、鋁(Al)、鈦、或鈦鎳(TiN)。根據本發明之一實施例,所得之形成體包括與電晶體閘極電極自對準之低電阻源極及汲極接點,其中僅源極/汲極接點與閘極電極之間的空間由閘極溝渠側上之間隔體材料所佔據。
注意到方法可包括其他處理,如平面化、清理、及其他這類典型功能,為了簡明而未加以敘述。在閱讀此揭露後,採用金屬毯及閘極溝渠間隔體來促進低電阻汲極和源極接點之自對準的各種程序變異將變得顯而易見。更可認知到,方法可明顯改善外部寄生電阻及佈局密度,還有製程良率。
量子井結構
第1圖繪示根據本發明之一實施例的一示範量子井生長結構,可針對其形成低電阻自對準接點。量子井生長結構可例如為傳統的具有n+摻雜蓋層的InGaAs之n型量子井結構。然而,如前述,注意到可以任何數量的量子井生長結構(諸如n通道金屬氧化物半導體(NMOS)或PMOS裝置)來實行根據本發明之一實施例所形成的低電阻自對準接點,將在閱讀此揭露後變得明顯。主張專利權之本發明不意圖限於任何特定的量子井生長組態。
從第1圖之剖面圖可見到,量子井生長結構包括基板,其上可形成晶核、緩衝、及分級緩衝層。結構進一步包括底部阻障層,其上形成量子井層,其上形成間隔體層,其上設置摻雜層,其上設置上阻障層。在上阻障層上設置止蝕刻層,其上設置接點層。將輪流說明這些示範層的每一層。其他實施例可包括較少層(如較少的緩衝層及/或止蝕刻)或更多層(如在量子井層之下的額外的間隔體及/或摻雜層,及/或在阻障層頂部之蓋層以防止氧化)或不同層(如以不同半導體材料、配方、及/或摻雜物所形成)。使用公認的半導體程序(如金屬有機化學蒸氣沉積、分子束磊晶、光微影、或其他這類適當的程序),可以任何適當的層厚度及其他希望的層參數來實行這些層,並可加以分級(如線性或步階式)以改善否則為晶格多樣的材料之相鄰層間的晶格常數匹配。一般而言,結構之特定層及尺寸將取決於諸如希望之裝置性能、晶圓廠能力、及所用之半導體材料的因素。僅例示性提供特定層材料及特性,且非意圖限制主張專利權之本發明,其可與任何數量的層材料及特性一起使用。
可如典型會進行般實行基板,且可在此使用任何數量的適當基板類型及材料(如p型、n型、中性型、矽、砷化鎵、矽鍺、高或低電阻率、偏切(off-cut)或無偏切、絕緣體上覆矽等等)。在一示範實施例中,基板為高電阻率的n或p型的偏定位(off-oriented)矽基板。基板可具有藉由從鑄錠偏切基板而備置的鄰位表面,其中在介於例如2°及8°之間的角度偏切基板(如4°偏切基板)。這類偏切基板可用來提供裝置隔離並亦可減少反相邊界中之反相域。然而,注意到,在其他實施例中基板無需具有特定特徵結構,且可以各種基板實行量子井生長結構。
晶核及底部緩衝層係形成在基板上,且亦可如典型進行般加以實行。在一特定的示範實施例中,晶核及底部緩衝層以砷化鎵(GaAs)製成並具有約0.5至2.0μm的整體厚度(如約25 nm至50 nm厚的晶核層及約0.3μm至1μm厚的底部緩衝層)。已知晶核及底部緩衝層可用來填充具有例如III-V族材料(如GaAs材料)的原子雙層之最低基板台地。晶核層可用來產生反相無域虛擬極性基板,且底部緩衝層可用來提供錯位過濾緩衝,其可替量子井結構提供壓縮應變及/或控制基板與底部阻障層之間的晶格不匹配。注意到可在無晶核及/或底部緩衝層的情況下實行可從本發明之實施例得益的其他量子井結構。
分級緩衝層係形成在底部緩衝層上,且亦可如傳統進行般加以實行。在一特定的示範實施例中,以砷化銦鋁(Inx Al1-x As)實行分級緩衝層,其中x的範圍係從零到0.52,並具有約0.7至1.1μm的厚度。已知藉由形成分級緩衝層,錯位可沿相對其中之對角平面滑移,以有效地控制基板與底部阻障層之間的晶格不匹配。然而,注意到,可在無分級緩衝層的情況下實行其他實施例,尤其具有以含有類似晶格常數(例如諸如磷化銦的高銦含量基板及InAlAs阻障層)所實行的基板及下阻障層的那些實施例。將會變清楚地,這類分級層可用於量子井結構或堆疊之其他位置中。
在此示範實施例中,底部阻障層係形成在分級緩衝層上,且亦可如傳統進行般加以實行。在一特定的示範實施例中,以砷化銦鋁(如In.52 Al.48 As,或其他適當阻障層配方)實行底部阻障層,並具有在4 nm至120 nm的範圍中之厚度(例如,100nm,+/-20nm)。一般而言,以具有比形成上覆量子井層之材料更高的帶隙之材料形成底部阻障層,且具有充分的厚度以提供位能阻障給電晶體通道中之電荷載子。將會認知到,底部阻障層的實際組成及厚度將取決於諸如基板及量子井層材料的因素。在閱讀本揭露後將可認知到可在此使用各種這類阻障材料及組態。
量子井層亦可如傳統進行般加以實行。在一特定的示範實施例中,以形成在砷化鋁(AlAs)通道上之砷化銦鎵通道(In.7 Ga.3 As)來實行量子井層,該砷化鋁(AlAs)通道係形成在形成於底部阻障層上的n++ -In.53 Ga.47 As通道上,該砷化銦鎵通道、該砷化鋁通道、及該n++ -In.53 Ga.47 As通道具有約13 nm、3 nm、100 nm(如+/-20%)的個別厚度。將可認知到可在此使用各種其他的量子層組態。一般而言,以具有比下阻障層更小帶隙的材料形成量子井,且可加以摻雜或不摻雜,並具有充分厚度以針對給定應用(如記憶體單元或邏輯電路之電晶體)提供足夠的通道電導。另外注意到,取決於希望的性能,可使用任何數量的通道組態。量子井層可被底部阻障層、上阻障層、或兩者應變。
間隔體層係形成在量子井層上,且亦可如傳統進行般加以實行。在一特定的示範實施例中,以InAlAs(如In.52 Al.48 As)實行間隔體層,並具有在0.2 nm至10 nm的範圍中(如5 nm)之厚度。一般而言,間隔體層可組態成提供壓縮應變給量子井層,因其作為半導體型通道。注意到可在無間隔體層的情況下實行可從本發明之實施例得益的其他量子井結構。
摻雜層係形成在此示範量子井生長結構中之間隔體層上,且亦可如傳統進行般加以實行。一般而言,可摻雜(藉由對應摻雜層)下阻障及/或上阻障層以供應載子給量子井層。在第1圖之示範實施例中,上阻障層包括或否則與一已摻雜層關聯,並在量子井未摻雜的情況中供應載子。摻雜層可例如為三角(delta)摻雜(或調變摻雜)。針對利用InAlAs上阻障的n型裝置,可使用例如矽及/或碲雜質來實行摻雜,並針對p型裝置,可使用例如鈹及/或碳來電行摻雜。摻雜層的厚度將取決於諸如摻雜類型及所用之材料的因素。例如,在一示範實施例中,摻雜層為三角摻雜的矽並具有在約3至5之間的厚度。在另一實施例中,摻雜層為調變摻雜並具有在約5至50之間的厚度。可例如依據片載子濃度(其在量子井層之通道中有用)選擇摻雜。當在量子井120之通道內的摻雜為3.5×1012 cm-2 時,針對矽摻雜層的示範濃度為6×1012 cm-2 。在閱讀此揭露後將可認知到,可以具有任何類型的(諸)摻雜層的量子井結構來實行本發明之一實施例。
上阻障層係形成在此示範量子井生長結構中的摻雜層上,且亦可如傳統進行般加以實行。在一特定的示範實施例中,以InAlAs(如In.52 Al.48 As)來實行上阻障層,並具有在4 nm及12 nm之間(如8 nm)的厚度。取決於將製造之裝置的類型,上阻障層可為低電壓閘極控制之肖特基阻障層。一般而言,上阻障層材料具有比量子井層更大的帶隙,藉此將大部分的電荷載子侷限在量子井層內以減少裝置漏電。注意到可以和下阻障層相同或類似的材料形成上阻障層。在一些實施例中,可將上阻障層實行成複合結構,其包括間隔體、摻雜、及上阻障層。另外,雖此示範實施例將上阻障與摻雜層關聯,其他實施例亦可(或替代地)將摻雜層與下阻障層關聯以供應載子至量子井層。在這種情況中,可以和與上阻障層關聯的摻雜層類似的方式實行與下阻障層關聯的摻雜層,並亦可實行成包括間隔體、摻雜、及下阻障層之複合結構。
在形成裝置堆疊後,其一般包括如上述之基板到上阻障層,可在上阻障層上方形成止蝕刻層。在一特定的示範實施例中,以磷化銦(InP)實行止蝕刻層,並具有在2至10 nm的範圍中(如6 nm)之厚度。將可認知到,可使用其他止蝕刻材料,其可與給定特定應用規則整合在一起。
藉由在止蝕刻層上形成接點層來進一步處理裝置堆疊。接點層一般允許源極及汲極接點結構,並可組態成n+或n++摻雜的(針對NMOS裝置)或p+或p++摻雜的(針對PMOS裝置)。在一特定的示範實施例中,將接點層實行成n++ -In0.53 Ga0.47 As,並具有在10 nm及30 nm的範圍中(如20 nm)之厚度。在一些情況中,可藉由分級來摻雜接點層,例如從以In0.53 Ga0.47 As摻雜的矽開始,並從Inx Ga1-x As(從x=0.53至1.0)進行,使得分級在InAs終止。再次,提供之特定接點層組態將取決於多個因素,如所採用之半導體材料系統,還有裝置類型及希望的裝置功能。
自對準接點結構
第2至8圖以剖面圖繪示根據本發明之一實施例的自對準接點結構的形成。將可認知到,接點(如源極、汲極、及閘極)可形成在第1圖中所示之裝置堆疊上,或任何數量的其他量子井生長結構上。注意到如平面化(如化學機械研磨,如CMP)的中級處理及後續清理程序可包括在整個形成程序中,即使並未明確說明這類處理。
第2圖繪示根據本發明之一實施例的第1圖之堆疊上的硬遮罩的沉積及圖案化。這可使用標準光微影來進行,包括沉積硬遮罩材料(如二氧化矽、氮化矽、及/或其他適合的硬遮罩材料)、圖案化將暫時保留以在接點形成期間保護裝置的主動區域之硬遮罩的一部分上的阻劑、蝕刻以移除硬遮罩之未遮罩(無阻劑)部分(如使用乾蝕刻或其他適當的硬遮罩移除程序)、並接著剝除經圖案化的阻劑。在第2圖中所示的示範實施例中,所得的硬遮罩係在裝置堆疊中央並形成在一個位置中,但在其他實施例中,取決於特定主動裝置,硬遮罩可偏移至堆疊之一側及/或位在堆疊上的多處中。
第3圖繪示根據本發明之一實施例的第2圖之量子井生長結構中的隔離台面之形成。這可使用標準光微影來進行,包括蝕刻以移除未被硬遮罩保護的堆疊之部分(如乾蝕刻),以及沉積電介質材料(如SiO2 或其他適合的電介質材料,如碳摻雜氧化物、氮化矽、如全氟環丁烷或聚四氟乙烯之有機聚合物、氟矽玻璃、諸如倍半矽氧烷、矽氧烷、或二氧化矽玻璃之二氧化矽)。蝕刻的深度可有變化,但在一些示範實施例中係在堆疊之頂表面下方及通道下方之在1000至5000的範圍中(藉此亦有效設定沉積之電介質材料的厚度)。一般而言,蝕刻應為充分的深度以允許量子井通道電性隔離(如與相鄰元件部分的或其他潛在干擾來源)。在形成隔離的台面並沉積電介質材料之後,可移除硬遮罩(如乾或濕蝕刻),並且可研磨/平面化台面表面及沉積的電介質材料(如使用CMP)。注意到若適用且有需要,此台面隔離可結合常用於傳統矽程序中之淺溝渠隔離(STI)氧化物形成步驟。另外注意到若使用僅台面蝕刻流程,亦可在流程中的後來或甚至在流程結束進行台面蝕刻步驟。
第4圖繪示根據本發明之一實施例的第3圖之量子井生長結構的台面上之源極/汲極金屬的沉積。這可使用標準金屬沉積處理來進行,諸如電子束蒸鍍或反應性濺鍍。源極/汲極金屬可例如為鎳、金、鉑、鋁、鈦、鈀、鈦鎳、或其他適合的接點金屬或合金。沉積可為遮罩、蝕刻、研磨等等以提供可從其製造裝置源極/汲極接點之希望的金屬化層。
在一特定的示範實施例中,假設接點層包含鍺(Ge)。在一這類情況中,源極/汲極金屬可為薄沉積的鎳(如在15至100的範圍中,如約25)。這類NiGe接點適合大型裝置,其中擴散空隙不會阻礙裝置的運作。然而,針對較小裝置,這類NiGe接點容易受到與擴散中之空隙關聯的問題之影響,這是因為合金化程序期間Ge外擴散的緣故。在這種情況中,並根據本發明之一實施例,所沉積的源極/汲極金屬可為鈦(Ti),藉此提供形成在Ge擴散上之TiGe接點合金。簡言之,使用Ti及/或其他耐火金屬作為在Ge擴散上之源極/汲極金屬有利於排除或否則減少Ge擴散中的空隙及電晶體擴散區域外之不想要的鍺形成。
第5圖繪示根據本發明之一實施例的第4圖之量子井生長結構的源極/汲極金屬上的硬遮罩之沉積及圖案化。此硬遮罩一般用來在當蝕刻閘極溝渠時保護金屬接點。硬遮罩之沉積及圖案化可使用標準光微影來進行,包括硬遮罩材料(諸如二氧化矽、氮化矽、及/或其他適當的硬遮罩材料)的沉積、圖案化將暫時保留以在閘極蝕刻期間保護裝置的接點之硬遮罩的一部分上的阻劑、蝕刻以移除硬遮罩之未遮罩(無阻劑)部分(如使用乾蝕刻或其他適當的硬遮罩移除程序)、並接著剝除經圖案化的阻劑。在第5圖中所示的示範實施例中,閘極溝渠位置係在裝置堆疊中央並形成在一個位置中,但在其他實施例中,硬遮罩可偏移至堆疊之一側及/或位在堆疊上的多處中(例如,針對雙裝置組態)。
第6圖繪示根據本發明之一實施例的第5圖之量子井生長結構中之閘極溝渠的形成。此溝渠的形成可例如使用蝕刻閘極區域中之金屬的第一乾蝕刻及蝕刻到量子井結構中之第二乾蝕刻來進行。第二乾蝕刻的深度可定為例如止於量子井界面附近,並可因此止於例如阻障層、摻雜層、或間隔體層中。閘極溝渠的深度可例如在堆疊之頂表面下的(在通道上方某處)在50至500的範圍中。一般而言,第二蝕刻應至充分的深度以允許希望的裝置傳導。一旦蝕刻了閘極溝渠,可接著剝除硬遮罩。替代地,若有需要,可將硬遮罩留在原處直到已沉積了閘極金屬。
第7圖繪示根據本發明之一實施例的第6圖之量子井生長結構之閘極溝渠中的間隔體的形成。可使用標準沉積及蝕刻程序來沉積並蝕刻間隔體層,其可為氧化物或氮化物或其他適當的間隔體材料,並可具有在例如20至200的範圍中(如100)之厚度。一般而言,間隔體層之厚度應足以將閘極電極自相鄰的源極及汲極接點電隔離。注意到在源極/汲極接點與閘極電極之間沒有開放空間;更確切地,有自源極及汲極接點分開閘極電極之間隔體層,藉此允許在相鄰元件之中自對準。在一特定實施例中,若有需要,亦可在閘極溝渠的底部沉積隨意高k閘極電介質,以進一步電絕緣閘極。高k閘極電介質可例如為具有在20至200的範圍中(如100)之厚度的膜,並可例如以氧化鉿、礬土、五氧化鉭、氧化鋯、鋁鑭、釓鈧、氧化鉿矽、氧化鑭、氧化鑭鋁、氧化鋯矽、氧化鉭、氧化鈦、氧化鋇鍶鈦、氧化鋇鈦、氧化鍶鈦、氧化釔、氧化鋁、氧化鉛鈧鉭、鈮酸鉛鋅、或具有介質常數大於例如二氧化矽的其他這類材料。此隨意高k閘極電介質的一實例顯示在第7及8圖中。
第8圖繪示根據本發明之一實施例的第7圖之量子井生長結構之閘極溝渠中的閘極金屬的沉積。如所見,所得之閘極電極及源極/汲極接點為自對準,且其之間沒有露天空間。更確切地,毗連的間隔體層提供源極/汲極接點與閘極電極之間的電隔離,但亦在閘極形成及自對準期間提供結構支撐。閘極金屬可例如為鈦、鉑、金、鋁、鈦鎳、鈀、或其他適當的閘極金屬或這類金屬的結合。在一特定的示範實施例中,閘極電極具有從50至500(如100)之厚度。
如所示之所得的積體電路裝置可用為電晶體,其可安裝在任何多種微電子裝置中,諸如中央處理單元、記憶體陣列、晶片上快取、或邏輯閘極。同樣地,各種系統等級應用可採用在此所述之積體電路。
方法
第9圖繪示根據本發明之一實施例的形成量子井結構的低電阻自對準接點之方法。可如所需般組態量子井結構,並一般包括一堆疊,其可包括基板、在上及下阻障層之間的量子井層、及接點層。
該方法包括形成901具有量子井結構之台面。該形成可包括,例如,圖案化接點層上之硬遮罩以保護結構的主動區域、蝕刻掉未遮罩區域、並接著沉積電介質材料,藉此隔離台面。該方法可進一步包括研磨及清理程序,以備置結構供後續處理,如典型在處理區段之間所進行。
該方法進至到在台面上沉積903用於形成汲極及源極接點之源極/汲極金屬毯(如鎳、鈦、鎳鈦、或任何適當的接點金屬、或耐火金屬)。可以毯覆方式進行沉積,其中金屬層為單一連續片,相對於針對每一接點之離散且分別的金屬層。該方法可進一步包括圖案化敷金屬並蝕刻以進一步界定金屬化層。
該方法進至到圖案化905源極/汲極金屬上之硬遮罩以在源極及汲極接點之間形成閘極溝渠。圖案化可包括,例如,沉積硬遮罩材料、圖案化將暫時保留以在閘極蝕刻期間保護裝置的源極及汲極接點之硬遮罩的一部分上的阻劑、蝕刻以移除硬遮罩之未遮罩(無阻劑)部分(如使用乾蝕刻或其他適當的硬遮罩移除程序)、並接著剝除經圖案化的阻劑。注意到透過毯金屬層蝕刻閘極溝渠有效地在閘極溝渠的個別側上直接界定源極及汲極接點,因此在源極/汲極接點與閘極溝渠之間沒有開放空間。
該方法進至到在源極及汲極接點之間蝕刻907閘極溝渠到台面之中。在一示範情況中,如上述,可使用蝕刻閘極區域中之金屬的第一乾蝕刻及蝕刻到量子井結構中之第二乾蝕刻來進行溝渠的形成。可選擇第二乾蝕刻的深度以允許希望的裝置傳導。在蝕刻閘極溝渠後,該方法可進一步包括從源極/汲極金屬剝除909硬遮罩,若有需要其可在程序的後來進行。
該方法進至到在閘極溝渠的側上沉積911間隔體層,並隨意地蝕刻成形(如至在10至500的範圍中之厚度)。間隔體材料可為隔離相鄰的閘極電極與源極/汲極接點(其將相較於彼此為自對準)的任何適當電介質。注意到閘極溝渠本質上可為圓形或多角形,且對閘極溝渠「側」之參照意指任何這類組態,且不應解釋成暗示具有特定幾何形狀的結構。例如,「側」可指圓形溝渠上之不同位置或多角形溝渠的離散側或甚至在多角形溝渠的一離散側上之不同的位置。進一步回想該方法可隨意包括亦設置高k閘極電介質層在閘極溝渠的底部,以進一步電絕緣閘極,其可在閘極溝渠側上形成間隔體之前或之後形成。該方法進至到沉積913閘極金屬到閘極溝渠中。閘極金屬可例如為鎳、鈦、鈦鎳、鈀、金、鋁、或其他適當的閘極金屬或合金。
因此,可以各種半導體異質結構(如III-V族或SiGe/Ge系統)形成在此所述之接點。程序流程允許形成與電晶體的閘極電極自對準之低電阻源極及汲極接點,並顯著改善外部寄生電阻及佈局密度。程序流程可採用毯金屬化連同後續的微影及蝕刻來將金屬圖案化成隔離的源極及汲極區域,還有在接近程序流程尾聲進行的溝渠圖案化閘極程序。所得之閘極電極與源極/汲極接點自對準並經由間隔體層隔離。相比之下,傳統接點並非自對準,因為在源極/汲極接點與閘極電極之間有大量空間,這亦造成佈局密度的懲罰。此外,當源極/汲極金屬至閘極的間距增加時,Rext會增加。
在閱讀此揭露後各種實施例及組態將變得清楚。例如,本發明之一示範實施例提供一種形成量子井結構之自對準接點的方法。該方法包括在該量子井結構上沉積一金屬層,並蝕刻一閘極溝渠穿過該金屬層,藉此在該閘極溝渠的個別側直接界定源極及汲極接點。該方法進至在該閘極溝渠的側上沉積一間隔體層,並沉積閘極金屬到該閘極溝渠之中以形成一閘極電極。該方法可包括與該量子井結構形成一台面。在一這類情況中,與該量子井結構形成一台面包括圖案化在該量子井結構的一接點層上的一硬遮罩以保護一主動區域、蝕刻掉該量子井結構之未被遮蓋的區域、並沉積一電介質材料到經蝕刻的區域中。在另一這類情況中,在該量子井結構上沉積一金屬層之前執行與該量子井結構形成一台面。在另一這類情況中,在形成該閘極電極、源極接點、及汲極接點之後執行與該量子井結構形成一台面。在該量子井結構上沉積一金屬層可包括沉積一耐火金屬。在該量子井結構上沉積一金屬層可包括沉積例如鈦。蝕刻一閘極溝渠穿過該金屬層可包括,例如,蝕刻該金屬層之一第一乾蝕刻,以及以蝕刻到該量子井結構之中的一第二乾蝕刻。該方法可包括在該閘極溝渠的底部沉積一高k閘極電介質。
本發明之另一示範實施例提供一種積體電路裝置。該裝置包括具有一接點層的一量子井結構,以及沉積在該接點層上之一金屬層。該裝置進一步包括穿過該金屬層之一閘極溝渠,藉此在該閘極溝渠的個別側直接界定源極及汲極接點。該裝置進一步包括在該閘極溝渠的側上之一間隔體層,以及在該閘極溝渠中針對一閘極電極之閘極金屬。在一特定的情況中,該源極接點、汲極接點、及閘極電極的至少一者包含一耐火金屬。在另一特定的情況中,該源極接點、汲極接點、及閘極電極的至少一者包含鈦。在另一特定的情況中,該量子井結構進一步包括一底部阻障層、一量子井層、一間隔體層、一摻雜層、及一上阻障層。在一這類情況中,該閘極溝渠止於該上阻障層、該摻雜層、或該間隔體層之一中。在另一這類情況中,在該閘極電極與該量子井結構之間設置一高k閘極電介質層。在一這類情況中,該高k閘極電介質層直接設置在該閘極電極與該上阻障層、該摻雜層、或該間隔體層之一之間。
本發明之另一示範實施例提供一種積體電路裝置。在此實例中,該裝置包括具有一底部阻障層、一量子井層、一間隔體層、一摻雜層、一上阻障層、及一接點層的一量子井結構。該裝置進一步包括沉積在該接點層上之一金屬層,以及穿過該金屬層之一閘極溝渠,藉此在該閘極溝渠的個別側直接界定源極及汲極接點,其中該閘極溝渠止於該上阻障層、該摻雜層、或該間隔體層之一中。該裝置進一步包括在該閘極溝渠的側上之一間隔體層、在該閘極溝渠中針對一閘極電極之閘極金屬、以及在該閘極電極與該量子井結構之間的一高k閘極電介質層。在一這類情況中,該源極接點、汲極接點、及閘極電極的至少一者包含一耐火金屬。在另一這類情況中,該源極接點、汲極接點、及閘極電極的至少一者包含鈦。在另一這類情況中,該高k閘極電介質層直接設置在該閘極電極與該上阻障層、該摻雜層、或該間隔體層之一之間。
本發明之另一示範實施例提供一種積體電路裝置。在此實例中,該裝置包括具有一接點層的一量子井結構。該裝置進一步包括沉積在該接點層上之一源極金屬層及一汲極金屬層,以及嵌入在該源極金屬層與該汲極金屬層之間的該量子井結構內的一閘極電極。該裝置進一步包括形成在該閘極電極與該源極金屬層之間的一第一間隔體層,其中該閘極電極與該第一間隔體層實體接觸且該第一間隔體層與該源極金屬層實體接觸。該裝置進一步包括形成在該閘極電極與該汲極金屬層之間的一第二間隔體層,其中該閘極電極與該第二間隔體層實體接觸且該第二間隔體層與該汲極金屬層實體接觸。注意到第一及第二間隔體層可為圍繞閘極電極的一連續間隔體層。在一這類情況中,該量子井結構進一步包括一底部阻障層、一量子井層、一間隔體層、一摻雜層、及一上阻障層,且該閘極溝渠止於該上阻障層、該摻雜層、或該間隔體層之一中。在另一這類情況中,在該閘極電極與該量子井結構之間設置一高k閘極電介質層,其中該高k閘極電介質層直接設置在該閘極電極與該上阻障層、該摻雜層、或該間隔體層之一之間。
為了圖解及說明的目的而提出本發明之示範實施例的上述說明。此並非意圖為窮舉性或限制本發明至所揭露的精確形式。在閱讀此揭露後可做出許多修改及變異。本發明之範疇不應受限於此詳細說明,而是受限於所附之申請專利範圍。
第1圖繪示根據本發明之一實施例的一示範量子井生長結構,可針對其形成低電阻自對準接點。
第2圖繪示根據本發明之一實施例的第1圖之量子井生長結構上的硬遮罩的沉積及圖案化。
第3圖繪示根據本發明之一實施例的第2圖之量子井生長結構中的隔離台面之形成。
第4圖繪示根據本發明之一實施例的第3圖之量子井生長結構的台面上之源極/汲極金屬的沉積。
第5圖繪示根據本發明之一實施例的第4圖之量子井生長結構的源極/汲極金屬上的硬遮罩之沉積及圖案化。
第6圖繪示根據本發明之一實施例的第5圖之量子井生長結構中之閘極溝渠的形成。
第7圖繪示根據本發明之一實施例的第6圖之量子井生長結構之閘極溝渠中的間隔體的形成。
第8圖繪示根據本發明之一實施例的第7圖之量子井生長結構之閘極溝渠中的閘極金屬的沉積。
第9圖繪示根據本發明之一實施例的形成量子井結構的低電阻自對準接點之方法。

Claims (30)

  1. 一種形成一量子井結構之自對準接點的方法,包含:在該量子井結構上沉積一金屬層;蝕刻該金屬層以形成一閘極溝渠並在該閘極溝渠的個別側直接界定來自該金屬層之源極及汲極接點;在該閘極溝渠的側上沉積一間隔體層;以及沉積閘極金屬到該閘極溝渠之中以形成一閘極電極。
  2. 如申請專利範圍第1項所述之方法,進一步包含:與該量子井結構形成一台面。
  3. 如申請專利範圍第2項所述之方法,其中與該量子井結構形成一台面包含:圖案化在該量子井結構的一接點層上的一硬遮罩以保護一主動區域;蝕刻掉該量子井結構之未被遮蓋的區域;以及沉積一電介質材料到經蝕刻的區域中。
  4. 如申請專利範圍第2項所述之方法,其中在該量子井結構上沉積一金屬層之前執行與該量子井結構形成一台面。
  5. 如申請專利範圍第2項所述之方法,其中在形成該閘極電極、源極接點、及汲極接點之後執行與該量子井結構形成一台面。
  6. 如申請專利範圍第1項所述之方法,其中在該量子井結構上沉積一金屬層包含沉積一耐火金屬。
  7. 如申請專利範圍第1項所述之方法,其中在該量子井結構上沉積一金屬層包含沉積鈦。
  8. 如申請專利範圍第1項所述之方法,其中蝕刻一閘極溝渠穿過該金屬層包括一第一乾蝕刻以蝕刻該金屬層,以及一第二乾蝕刻以蝕刻到該量子井結構之中。
  9. 如申請專利範圍第1項所述之方法,進一步包含:在該閘極溝渠的底部沉積一高k閘極電介質。
  10. 一種積體電路裝置,包含:具有一接點層的一量子井結構;沉積在該接點層上之一金屬層;穿過該金屬層之一閘極溝渠,在該閘極溝渠的個別側直接界定源極及汲極接點,該閘極溝渠具有底部及側;在該閘極溝渠的該些側上並延伸至該閘極溝渠的該底部之一電介質間隔體層材料;在該閘極溝渠的該底部上之閘極電介質層,其中該閘極電介質層是與該電介質間隔體層材料不同的材料;及在該閘極溝渠中之該閘極電介質層上針對一閘極電極之閘極金屬。
  11. 如申請專利範圍第10項所述之裝置,其中該源極接點、汲極接點、及閘極電極的至少一者包含一耐火金屬。
  12. 如申請專利範圍第10項所述之裝置,其中該源極接點、汲極接點、及閘極電極的至少一者包含鈦。
  13. 如申請專利範圍第10項所述之裝置,其中該量子 井結構進一步包括一底部阻障層、一量子井層、一間隔體層、一摻雜層、及一上阻障層。
  14. 如申請專利範圍第13項所述之裝置,其中該閘極溝渠止於該上阻障層、該摻雜層、或該間隔體層之一中。
  15. 如申請專利範圍第13項所述之裝置,其中該閘極電介質層為在該閘極電極與該量子井結構之間的一高k閘極電介質層。
  16. 如申請專利範圍第15項所述之裝置,其中該高k閘極電介質層直接設置在該閘極電極與該上阻障層、該摻雜層、或該間隔體層之一之間。
  17. 一種積體電路裝置,包含:具有一底部阻障層、一量子井層、一間隔體層、一摻雜層、一上阻障層、及一接點層的一量子井結構;沉積在該接點層上之一金屬層;穿過該金屬層之一閘極溝渠,在該閘極溝渠的個別側直接界定源極及汲極接點,其中該閘極溝渠止於該摻雜層、或該間隔體層之一中,其中該間隔體層係形成自半導體;在該閘極溝渠的側上之一間隔體材料;在該閘極溝渠中針對一閘極電極之閘極金屬;以及在該閘極電極與該量子井結構之間的一高k閘極電介質層。
  18. 如申請專利範圍第17項所述之裝置,其中該源極接點、汲極接點、及閘極電極的至少一者包含一耐火金 屬。
  19. 如申請專利範圍第17項所述之裝置,其中該源極接點、汲極接點、及閘極電極的至少一者包含鈦。
  20. 如申請專利範圍第17項所述之裝置,其中該高k閘極電介質層直接設置在該閘極電極與該上阻障層、該摻雜層、或該間隔體層之一之間。
  21. 一種積體電路裝置,包含:具有一接點層的一量子井結構;沉積在該接點層上之一源極金屬層及一汲極金屬層;嵌入在該源極金屬層與該汲極金屬層之間的該量子井結構內的一閘極電極;形成在該閘極電極與該源極金屬層之間的一第一電介質間隔體層,其中該閘極電極與該第一電介質間隔體層實體接觸且該第一電介質間隔體層與該源極金屬層實體接觸;形成在該閘極電極與該汲極金屬層之間的一第二電介質間隔體層,其中該閘極電極與該第二電介質間隔體層實體接觸且該第二電介質間隔體層與該汲極金屬層實體接觸;及其中該量子井結構進一步包括一底部阻障層、一量子井層、一間隔體層、一摻雜層、及一上阻障層,且該閘極電極止於該摻雜層、或該間隔體層之一中,其中該間隔體 層係形成自半導體。
  22. 如申請專利範圍第21項所述之裝置,進一步包含:在該閘極電極與該量子井結構之間的一高k閘極電介質層,其中該高k閘極電介質層直接設置在該閘極電極與該摻雜層、或該間隔體層之一之間。
  23. 一種積體電路裝置,包含:配置於一基板上的一量子井結構,該量子井結構具有一量子井;配置於該量子井結構中之溝渠,且該溝渠具有側壁及底部於該量子井之上;配置於該量子井結構及該溝渠之任一側上的源極/汲極金屬區;配置於該溝渠中之閘極電極;及在該溝渠的該些側壁上並延伸至該閘極溝渠的該底部之一電介質材料,其中該電介質材料係介於該閘極電極與該源極/汲極金屬區之間。
  24. 如申請專利範圍第23項所述之半導體裝置,其中該量子井結構包含一底部阻障層、配置於該底部阻障層之上的一量子井層、於該量子井層之上的一半導體間隔體層、於該量子井層之上的一摻雜層、於該量子井層之上的一上阻障層及於該上阻障層之上的一接點層,其中該源極/汲極金屬區係配置於該接點層上。
  25. 如申請專利範圍第24項所述之半導體裝置,其中 該溝渠之該底部係於該摻雜層中。
  26. 如申請專利範圍第24項所述之半導體裝置,其中該溝渠之該底部係於該半導體間隔體中。
  27. 如申請專利範圍第23項所述之半導體裝置,其中該電介質材料係介於該源極/汲極金屬區與該閘極電極之間。
  28. 如申請專利範圍第23項所述之半導體裝置,其中一閘極電介質層係於該溝渠之該底部上並介於該閘極電極與該量子井結構之間。
  29. 如申請專利範圍第24項所述之半導體裝置,進一步包含一止蝕刻層。
  30. 如申請專利範圍第29項所述之半導體裝置,其中該止蝕刻層為InP。
TW099141013A 2009-12-23 2010-11-26 用以形成量子井電晶體之接點的技術 TWI428991B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/646,621 US8368052B2 (en) 2009-12-23 2009-12-23 Techniques for forming contacts to quantum well transistors

Publications (2)

Publication Number Publication Date
TW201137988A TW201137988A (en) 2011-11-01
TWI428991B true TWI428991B (zh) 2014-03-01

Family

ID=44149787

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099141013A TWI428991B (zh) 2009-12-23 2010-11-26 用以形成量子井電晶體之接點的技術

Country Status (8)

Country Link
US (5) US8368052B2 (zh)
EP (2) EP2517251A4 (zh)
JP (3) JP2013513972A (zh)
KR (1) KR101436818B1 (zh)
CN (2) CN105762146B (zh)
HK (1) HK1175887A1 (zh)
TW (1) TWI428991B (zh)
WO (1) WO2011087606A2 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791047B2 (en) 2003-12-12 2010-09-07 Semequip, Inc. Method and apparatus for extracting ions from an ion source for use in ion implantation
SG177480A1 (en) * 2009-07-31 2012-02-28 Agency Science Tech & Res A transistor arrangement and a method of forming a transistor arrangement
JP2011077516A (ja) * 2009-09-07 2011-04-14 Sumitomo Chemical Co Ltd 電界効果トランジスタ、半導体基板及び電界効果トランジスタの製造方法
US20130105817A1 (en) * 2011-10-26 2013-05-02 Triquint Semiconductor, Inc. High electron mobility transistor structure and method
KR101560112B1 (ko) * 2011-12-20 2015-10-13 인텔 코포레이션 콘택 저항의 감소를 위한 자가-정렬된 콘택 금속화
CN104011867B (zh) * 2011-12-23 2016-12-07 英特尔公司 用于栅极凹进晶体管的iii-n材料结构
US8866195B2 (en) * 2012-07-06 2014-10-21 Taiwan Semiconductor Manufacturing Co., Ltd. III-V compound semiconductor device having metal contacts and method of making the same
US8847281B2 (en) 2012-07-27 2014-09-30 Intel Corporation High mobility strained channels for fin-based transistors
US8748940B1 (en) * 2012-12-17 2014-06-10 Intel Corporation Semiconductor devices with germanium-rich active layers and doped transition layers
GB2544190B (en) * 2012-12-17 2017-10-18 Intel Corp Semicoductor devices with germanium-rich active layers & doped transition layers
US8884265B2 (en) * 2013-03-13 2014-11-11 The United States Of America, As Represented By The Secretary Of The Navy Strained InGaAs quantum wells for complementary transistors
US9236444B2 (en) * 2013-05-03 2016-01-12 Samsung Electronics Co., Ltd. Methods of fabricating quantum well field effect transistors having multiple delta doped layers
US9041061B2 (en) * 2013-07-25 2015-05-26 International Business Machines Corporation III-V device with overlapped extension regions using replacement gate
US9041060B2 (en) * 2013-07-25 2015-05-26 International Business Machines Corporation III-V FET device with overlapped extension regions using gate last
EP3050109B1 (en) * 2013-09-27 2020-11-25 Intel Corporation Semiconductor device having group iii-v material active region and graded gate dielectric
US9373706B2 (en) 2014-01-24 2016-06-21 Samsung Electronics Co., Ltd. Methods of forming semiconductor devices, including forming a semiconductor material on a fin, and related semiconductor devices
US9159822B2 (en) * 2014-02-24 2015-10-13 International Business Machines Corporation III-V semiconductor device having self-aligned contacts
US9640656B2 (en) * 2014-04-04 2017-05-02 Micron Technology, Inc. Transistors having strained channel under gate in a recess
US9236389B1 (en) 2014-08-12 2016-01-12 International Business Machines Corporation Embedded flash memory fabricated in standard CMOS process with self-aligned contact
US9812323B2 (en) 2014-09-08 2017-11-07 Internaitonal Business Machines Corporation Low external resistance channels in III-V semiconductor devices
US9508550B2 (en) * 2015-04-28 2016-11-29 International Business Machines Corporation Preparation of low defect density of III-V on Si for device fabrication
US9472664B1 (en) * 2015-07-19 2016-10-18 Inotera Memories, Inc. Semiconductor device and manufacturing method thereof
US9690627B2 (en) 2015-09-01 2017-06-27 International Business Machines Corporation Redeployable resource forecasting
US9685456B2 (en) * 2015-09-04 2017-06-20 Stmicroelectronics, Inc. Method for manufacturing a transistor having a sharp junction by forming raised source-drain regions before forming gate regions and corresponding transistor produced by said method
CN106971979B (zh) * 2016-01-13 2019-12-24 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
US11177375B2 (en) * 2016-06-09 2021-11-16 Intel Corporation Quantum dot devices with top gates
US9786760B1 (en) 2016-09-29 2017-10-10 International Business Machines Corporation Air gap and air spacer pinch off
WO2018080513A1 (en) 2016-10-28 2018-05-03 Intel Corporation Local interconnect for group iv source/drain regions
US11063040B2 (en) * 2016-11-03 2021-07-13 Intel Corporation Quantum dot devices
KR102240021B1 (ko) 2017-03-03 2021-04-14 삼성전자주식회사 저항을 포함하는 반도체 소자
US10134881B1 (en) * 2017-05-18 2018-11-20 Qualcomm Incorporated Quantum well thermal sensing for power amplifier
US10622458B2 (en) 2017-05-19 2020-04-14 International Business Machines Corporation Self-aligned contact for vertical field effect transistor
US11251270B2 (en) * 2017-08-02 2022-02-15 Faquir Chand Jain Quantum dot channel (QDC) quantum dot gate transistors, memories and other devices
CN108010844B (zh) * 2017-11-16 2020-05-26 西安电子科技大学 Hemt器件及其制备方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107906B2 (ja) * 1987-10-30 1995-11-15 株式会社東芝 半導体装置の製造方法
JPH03292744A (ja) 1990-01-24 1991-12-24 Toshiba Corp 化合物半導体装置およびその製造方法
JPH05102195A (ja) * 1991-10-03 1993-04-23 Fujitsu Ltd 半導体装置
JP2735718B2 (ja) * 1991-10-29 1998-04-02 三菱電機株式会社 化合物半導体装置及びその製造方法
JPH05198598A (ja) * 1992-01-22 1993-08-06 Mitsubishi Electric Corp 化合物半導体装置及びその製造方法
JPH09306927A (ja) * 1996-05-10 1997-11-28 Hitachi Ltd 半導体装置およびその製造方法
TW415103B (en) 1998-03-02 2000-12-11 Ibm Si/SiGe optoelectronic integrated circuits
JP2002324813A (ja) * 2001-02-21 2002-11-08 Nippon Telegr & Teleph Corp <Ntt> ヘテロ構造電界効果トランジスタ
US6501117B1 (en) * 2001-11-05 2002-12-31 International Business Machines Corporation Static self-refreshing DRAM structure and operating mode
JP3709437B2 (ja) * 2002-03-07 2005-10-26 独立行政法人産業技術総合研究所 GaN系ヘテロ接合電界効果トランジスタ及びその特性を制御する方法
US6977954B2 (en) 2003-07-25 2005-12-20 University Of Connecticut Semiconductor laser array device employing modulation doped quantum well structures
US20050095763A1 (en) 2003-10-29 2005-05-05 Samavedam Srikanth B. Method of forming an NMOS transistor and structure thereof
US20060148182A1 (en) * 2005-01-03 2006-07-06 Suman Datta Quantum well transistor using high dielectric constant dielectric layer
WO2006080109A1 (ja) 2005-01-25 2006-08-03 Fujitsu Limited Mis構造を有する半導体装置及びその製造方法
US7569443B2 (en) 2005-06-21 2009-08-04 Intel Corporation Complementary metal oxide semiconductor integrated circuit using raised source drain and replacement metal gate
US8183556B2 (en) * 2005-12-15 2012-05-22 Intel Corporation Extreme high mobility CMOS logic
US7741230B2 (en) * 2006-08-08 2010-06-22 Intel Corporation Highly-selective metal etchants
US7494862B2 (en) 2006-09-29 2009-02-24 Intel Corporation Methods for uniform doping of non-planar transistor structures
US7429747B2 (en) 2006-11-16 2008-09-30 Intel Corporation Sb-based CMOS devices
JP5217157B2 (ja) * 2006-12-04 2013-06-19 日本電気株式会社 電界効果トランジスタおよびその製造方法
US20080142786A1 (en) 2006-12-13 2008-06-19 Suman Datta Insulated gate for group iii-v devices
US7718999B2 (en) 2006-12-14 2010-05-18 Xerox Corporation Polythiophene electronic devices
US8017463B2 (en) 2006-12-29 2011-09-13 Intel Corporation Expitaxial fabrication of fins for FinFET devices
US7601980B2 (en) 2006-12-29 2009-10-13 Intel Corporation Dopant confinement in the delta doped layer using a dopant segregation barrier in quantum well structures
US9006707B2 (en) 2007-02-28 2015-04-14 Intel Corporation Forming arsenide-based complementary logic on a single substrate
JP2008218711A (ja) 2007-03-05 2008-09-18 Renesas Technology Corp 半導体装置およびその製造方法、ならびに電源装置
US7928426B2 (en) 2007-03-27 2011-04-19 Intel Corporation Forming a non-planar transistor having a quantum well channel
US7435987B1 (en) 2007-03-27 2008-10-14 Intel Corporation Forming a type I heterostructure in a group IV semiconductor
US7713803B2 (en) 2007-03-29 2010-05-11 Intel Corporation Mechanism for forming a remote delta doping layer of a quantum well structure
US7569869B2 (en) 2007-03-29 2009-08-04 Intel Corporation Transistor having tensile strained channel and system including same
US7791063B2 (en) 2007-08-30 2010-09-07 Intel Corporation High hole mobility p-channel Ge transistor structure on Si substrate
US20090272982A1 (en) 2008-03-03 2009-11-05 Fuji Electric Device Technology Co., Ltd. Trench gate type semiconductor device and method of producing the same
US8278687B2 (en) 2008-03-28 2012-10-02 Intel Corporation Semiconductor heterostructures to reduce short channel effects
US8129749B2 (en) 2008-03-28 2012-03-06 Intel Corporation Double quantum well structures for transistors
EP2120266B1 (en) 2008-05-13 2015-10-28 Imec Scalable quantum well device and method for manufacturing the same
US7868318B2 (en) * 2008-11-07 2011-01-11 Intel Corporation Quantum well field-effect transistors with composite spacer structures, apparatus made therewith, and methods of using same
US8093584B2 (en) * 2008-12-23 2012-01-10 Intel Corporation Self-aligned replacement metal gate process for QWFET devices
US7759142B1 (en) 2008-12-31 2010-07-20 Intel Corporation Quantum well MOSFET channels having uni-axial strain caused by metal source/drains, and conformal regrowth source/drains
US8115235B2 (en) * 2009-02-20 2012-02-14 Intel Corporation Modulation-doped halo in quantum well field-effect transistors, apparatus made therewith, and methods of using same
US8384128B2 (en) * 2009-05-15 2013-02-26 Intel Corporation Carrier mobility in surface-channel transistors, apparatus made therewith, and systems containing same
US8258543B2 (en) * 2009-12-07 2012-09-04 Intel Corporation Quantum-well-based semiconductor devices
US7892902B1 (en) * 2009-12-22 2011-02-22 Intel Corporation Group III-V devices with multiple spacer layers
WO2012051605A2 (en) 2010-10-15 2012-04-19 Jammit Inc. Dynamic point referencing of an audiovisual performance for an accurate and precise selection and controlled cycling of portions of the performance

Also Published As

Publication number Publication date
CN102668089A (zh) 2012-09-12
JP2015181188A (ja) 2015-10-15
HK1175887A1 (zh) 2013-07-12
US9704981B2 (en) 2017-07-11
CN102668089B (zh) 2016-04-20
WO2011087606A3 (en) 2011-10-20
JP6214595B2 (ja) 2017-10-18
US10177249B2 (en) 2019-01-08
US20160268407A1 (en) 2016-09-15
US9356099B2 (en) 2016-05-31
JP2017183748A (ja) 2017-10-05
CN105762146A (zh) 2016-07-13
KR101436818B1 (ko) 2014-09-03
JP6382396B2 (ja) 2018-08-29
CN105762146B (zh) 2019-07-05
EP2517251A4 (en) 2015-04-01
TW201137988A (en) 2011-11-01
US20170309735A1 (en) 2017-10-26
EP3012868A1 (en) 2016-04-27
KR20120089354A (ko) 2012-08-09
US20110147713A1 (en) 2011-06-23
US8368052B2 (en) 2013-02-05
US8809836B2 (en) 2014-08-19
EP2517251A2 (en) 2012-10-31
WO2011087606A2 (en) 2011-07-21
US20130146845A1 (en) 2013-06-13
US20140326953A1 (en) 2014-11-06
JP2013513972A (ja) 2013-04-22
EP3012868B1 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
TWI428991B (zh) 用以形成量子井電晶體之接點的技術
CN110718588B (zh) 高性能mosfet
US10692976B2 (en) GaN-on-Si switch devices
US9570550B1 (en) Stacked nanowire semiconductor device
US8907381B2 (en) Reduced short channel effect of III-V field effect transistor via oxidizing aluminum-rich underlayer
US10276685B2 (en) Heterojunction tunnel field effect transistor fabrication using limited lithography steps
US9704958B1 (en) III-V field effect transistor on a dielectric layer
US9059253B2 (en) Self-aligned contacts for replacement metal gate transistors
KR101775236B1 (ko) FinFET 디바이스의 구조물 및 형성 방법
CN110797387A (zh) 穿隧式场效晶体管
JP5719381B2 (ja) 低寄生容量ボディ・コンタクト・トランジスタ
TW201230327A (en) Non-planar germanium quantum well devices