TWI395237B - 平面型溝槽功率電感結構與製造方法 - Google Patents

平面型溝槽功率電感結構與製造方法 Download PDF

Info

Publication number
TWI395237B
TWI395237B TW098118750A TW98118750A TWI395237B TW I395237 B TWI395237 B TW I395237B TW 098118750 A TW098118750 A TW 098118750A TW 98118750 A TW98118750 A TW 98118750A TW I395237 B TWI395237 B TW I395237B
Authority
TW
Taiwan
Prior art keywords
inductor
trenches
ferrite
ferrite core
conductive material
Prior art date
Application number
TW098118750A
Other languages
English (en)
Other versions
TW201001453A (en
Inventor
Francois Hebert
Tao Feng
Jun Lu
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Publication of TW201001453A publication Critical patent/TW201001453A/zh
Application granted granted Critical
Publication of TWI395237B publication Critical patent/TWI395237B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/002Details of via holes for interconnecting the layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

平面型構槽功率電感結構與製造方法
本發明主要涉及一種分立功率電感,特別涉及一種低成本的超小型分立功率電感。
近些年來,電子資訊設備,特別是多種可擕式電子資訊設備已得到顯著的廣泛使用。大部分電子資訊設備採用電池作為功率電源,且包括內置的功率轉換器,例如DC-DC轉換器。一般,功率轉換器組成一個混合模組。該模組中,有源器件(例如開關元件、整流器和控制IC)與無源器件(例如電感、變壓器、電容和電阻)等各個部件,都被設置在陶瓷板上或者塑膠等類似材料的印刷板上。近些年來,電感的小型化已成為功率轉換器小型化的一個課題。
一個電感通常包括圍繞著磁鐵氧體材料的磁芯的線繞。功率電感作為一個儲能器件,當處於電力供應的開關週期的開通時間內儲存能量,而在關斷時間內傳送能量到負載。功率電感有不同種類,包括分立的線繞電感、分立的貼片(SMD)電感、分立的非線繞(例如,螺線管種類)電感和分立的多層電感。線繞電感可以基於圍繞封裝的鐵氧體磁芯的圓導線或者平面導線。線繞電感包括TOKO製作的那些產品。分立SMD電感包括圍繞鐵氧體磁芯的線繞,其最終結構外覆樹脂。Taiyo-Yuden的電感為貼片電感的實例。
“開放的線軸”通常用於實現導線的彎曲以形成電感線圈。但是,繞組線不是形成環形線圈的最有效的方法。典型的環形線圈電感要求導線穿過環狀的鐵氧體磁芯的中心導孔,而這個過程要實現自動化很複雜。
多層電感包括多層鐵氧體,每層有一種類型的導電材料(例如Ag)以形成電感線圈的一部分。鐵氧體層被堆積,相鄰層間的導通孔連接圖案化的導線以形成線圈。
美國專利6,930,584公開了一種微小型功率轉換器,包括其上形成有半導體積體電路的半導體襯底,一薄層磁感單元和一個電容。所述薄層磁感單元包括磁性絕緣襯底(可以是鐵氧體襯底),螺線管線圈導線,其第一組導線形成在所述磁性絕緣襯底的第一主平面上,其第二組導線形成在所述磁性絕緣襯底的第二主平面上,一組導電連接形成在穿過磁性絕緣襯底的通孔內以提供第一組和第二組導線之間的電連接並形成電感線圈,另一組形成在穿過磁性絕緣襯底的通孔內的導電連接,提供電連接地穿過通孔的電極。線圈導線的表面可以覆蓋一絕緣層或者一層散佈了磁性微粒的樹脂。但是,電感線圈導線的厚度受到沉積在磁性絕緣襯底上的導電層的厚度的限制。
美國專利6,630,881公開了一種多層片式電感,包括形成於綠色陶瓷迭層板內的線圈形狀的內部導線。每根線圈形狀的內部導線繞著綠色陶瓷迭層板的迭層方向的軸線螺旋。將一個外部電極粘附到綠色陶瓷迭層板的至少一個迭層方向平面上,外部電極附著連接到線圈形狀的內部導線的一個末端。綠色陶瓷迭層板沿著迭層方向切割成多個片狀的綠色陶瓷迭層板,每個內部含有線圈形狀的內部導線。
美國專利4,543,553公開了一種片式電感,包括多個磁性層的迭層結構,延伸在相應的磁性層之間的線性導電圖形以類似於線圈的樣式成功地連接以生成一個電感元件。磁性層的上表面上形成的導電圖形與磁性層的下表面上形成的導電圖形在磁性層的介面處互相連接,也通過磁性層中形成的通孔互相連接,導電圖形從而以類似於線圈的樣式連續連接。
美國專利7,046,114公開了一種迭層電感,包括層壓在一起的具有一匝螺旋形的線圈導線的陶瓷薄片、具有兩匝螺旋形的線圈導線的陶瓷薄片以及具有引出導線的陶瓷薄片。線圈導線按順序通過導通孔成功地進行串列電連接。導通孔佈置在陶瓷薄片的固定位置。
美國專利5,032,815公開了一種迭層式電感,包括多個鐵氧體薄片,按一個在另一個之上組合然後層壓在一起。最上層和最下層是末端的薄片,含有互相面對的引出導線。多個中間鐵氧體薄片每個在一面上有相當於0.25匝電感線圈的導線,在另一面上有相當於0.5匝電感線圈的導線。每個鐵氧體薄片上有個缺口,通過這個缺口0.25匝和0.5匝的導線電連接以在每個鐵氧體薄片上形成0.75匝電感線圈。相繼的中間薄片上導線互相連接以形成含有0.75倍匝數的電感線圈,多個中間鐵氧體薄片的最上層的上表面上的導線和中間鐵氧體薄片的最下層的下表面上的導線電連接到末端薄片的表面上的導線以形成一個完整的電感線圈。
萬國半導體股份有限公司的美國專利12/011,489公開了一種含有環形磁芯的電感,含有低阻抗的引線框架導線。但是由於引線框架位於磁芯襯底的頂部和底部,因此導線不是平面的。
許多傳統的功率電感不是平面的,由於電感導線的受限厚度(尺寸),其阻抗相對高些,其磁環不是完全閉合的或者不包含以迭層結構和其他元件連接的方式(減小整體面積)。
有必要發展一種功率電感,其每個單元面積的電感係數最大,通過採用低電阻係數的導線和合適的裝配技術,配以最少匝數和最小物理尺寸,使其阻抗達到最小。今後有必要發展一種具有小封裝面積、薄外形、高容量、小生產成本的器件。
針對目前電感小型化的發展趨勢,本發明提供一種平面型溝槽功率電感結構與製造方法,可得到一種具有小封裝面積、薄外形、高容量、小生產成本的器件。
為了達到上述目的,本發明提供一種電感,主要包括:一個平面鐵氧體磁芯;第一組在鐵氧體磁芯的第一側上形成的一個或多個溝槽;第二組在鐵氧體磁芯的第二側上形成的兩個或多個溝槽;所述第一和第二組的溝槽定位為每個第一組的溝槽與第二組的一個或兩個對應的溝槽相重迭;第一組多個導通孔,在鐵氧體磁芯的第一側和第二側之間連通鐵氧體磁芯,每個所述導通孔位於第一組溝槽與第二組溝槽重迭的位置;以及置於第一和第二組溝槽和導通孔中的導電材料,所述置於第一和第二組溝槽和導通孔中的導電材料形成一個電感線圈。
本發明還提供一種生產上述電感的方法,主要包括以下步驟:步驟1,第一組在平面鐵氧體磁芯的第一側上形成的一個或多個溝槽的成形;步驟2,第二組在所述鐵氧體磁芯的第二側上形成的兩個或多個平行溝槽的成形,所述第一和第二組的溝槽定位為每個第一組的溝槽與第二組的一個或兩個對應的溝槽相重迭;步驟3,一個或多個導通孔的成形,在所述鐵氧體磁芯的第一側和第二側之間連通鐵氧體磁芯,每個所述導通孔位於第一組溝槽與第二組溝槽重迭的位置;以及步驟4,第一和第二組溝槽和導通孔中導電材料的放置。與現有技術相比,本發明在減小封裝面積、縮小外形幾何尺寸、提高電感高容量(提高單位面積的電感係數)、降低電感阻抗,以及降低生產成本等諸多方面,均有顯著的提高。
雖然下面的詳細描述包含了許多具體細節以達到說明的目的,本領域的任何普通技術人員應當認識到以下細節的變更和改動都在本發明的範圍之內。
如第1A圖至第1E圖所示,根據本發明的一個實施方式的分立功率電感100可以包括鐵氧體磁芯即鐵氧體單層102,其上表面有一個或多個平行的溝槽103,溝槽103中填充了導電材料104以形成一組上電極。電感100同樣在其下表面上有圖案化的溝槽107,溝槽107中填充了導電材料108以形成第1D圖中所示的下電極。電感100還包括填充了導電材料106的導通孔105,它電氣連接上導電材料104和下導電材料108以形成一個電感線圈。導通孔105中的導電材料106可以由上下導電材料104,108形成。導通孔的位置由虛線標出。在如第1D圖所示的透視俯視圖中,底部溝槽的位置也由虛線標出。每個頂部溝槽103和底部溝槽107可以從一個導通孔開始而在另一個導通孔結束。所述溝槽可以通過例如光刻成像和刻蝕形成。其中,適合高頻段(例如大於1MHz)的功率電感的鐵氧體材料包括NiZn,NiCo,MnZn,MnNiZn。
從第1B圖至第1C圖和第1E圖中描述的橫截面圖以及第1D圖中描述的透視圖可以看出,導通孔105位於上表面溝槽103與下表面溝槽107重迭的位置以便連接兩溝槽。線圈的末端可以形成導通孔以便連接到製作在單個表面(上或者下)上的兩個末端。下表面溝槽107相對於上表面溝槽103有一定角度。當溝槽103,107和導通孔105填充導電材料104,108時,下上表面溝槽103,107的角度加工和導通孔105的定位就產生了電感線圈。
從第1B圖至第1C圖和第1E圖中描述的橫截面圖也可以看出,電感100是平面的。上下表面溝槽103,107中的導電材料104,108不延伸至鐵氧體磁芯的表平面之外。
可以很清楚地看到所述平面電感配置的許多優勢。電感的平面結構使得電感可以很容易地迭放。電感的厚度是溝槽深度的函數。通過形成足夠深度的溝槽和足夠大直徑的導通孔,電感可以達到超低阻抗。連接電感線圈上下兩邊的導通孔也可以在遠離鐵氧體襯底的邊緣處形成,這使鐵氧體材料形成圍繞電感線圈的閉合磁環。閉合磁環極大提高了每個單元面積的互感係數。
第2A圖至第2F圖示意了根據本發明的另一個實施方式的分立功率電感200。與電感100類似,電感200包括鐵氧體磁芯即鐵氧體單層102,其上下表面上有填充了導電材料104,108以形成上下導線的溝槽103,107。所述上下導線被填充了導電材料106的導通孔105電連接以形成一個電感線圈。導通孔105中的導電材料106可以由上下導電材料104,108形成。在本實施方式中,電感200還包括附加的填充了導電材料的導通孔109,其可以用於提供與其他類似配置的晶片(可以是迭層的)的電連接。與導通孔105中的導電材料106類似,附加導通孔109中的導電材料可以由上溝道導電材料104和下溝道導電材料108形成。
舉個例子,一塊IC晶片可以迭放在電感200的上部,附加導通孔109提供從IC晶片到電感200的下表面的電氣佈線。迭放了電感200的IC晶片可以安裝在電路板上,所有必需的電氣佈線可布在電感200的下表面。同樣地,電感的平面結構使迭放易於實現。
第3A圖至第3F圖示意了根據本發明的一個實施方式的分立功率電感300。在本實施方式中,電感300包括鐵氧體磁芯即鐵氧體單層102,其具有填充了導電材料104,108的溝槽103,107。所述導電材料104,108延伸鐵氧體層102的側邊之間的上下表面。所述溝槽可以通過例如沿著鐵氧體層102的上下表面採用淺鋸痕(shallow saw cuts,SSC)形成。在下表面上的下溝槽107相對於第3D圖所示的上溝槽103有一定角度。電感300還包括填充了導電材料106的導通孔105,其連接上下溝槽區域104和108以形成電感線圈。為了形成線圈,如第3D圖所示,選中的導通孔105可以位於上下溝槽103,107重迭的位置。
第4A圖至第4E圖示意了根據本發明的另一個實施方式的分立功率電感400。電感400的結構與上面第1圖中描述的電感100類似,包括鐵氧體單層102,在其上表面有圖案化的溝槽103,溝槽103中填充了導電材料104以形成一組上電極,在其下表面上有圖案化的溝槽107,溝槽107中也填充了導電材料108以形成第4D圖中所示的下電極。電感400還包括填充了導電材料106的導通孔105,其連接上下刻蝕的溝槽區域104和108以形成電感線圈,如上面所述。
在本實施方式中,在圖案化溝槽形成之前,鐵氧體單層102的上下表面預先用介質層402和404鈍化,如第4B圖和第4C圖所示,其示意了第4A圖描述的電感400沿B-B′和C-C′線的橫截面圖。在溝槽和/或導通孔的刻蝕期間,上下介質層402,404可以用作硬膜,以鈍化鐵氧體層102中使用的多孔磁性材料。
第5A圖至第5F圖示意了根據本發明的另一個實施方式的分立功率電感500。在本實施方式中,電感500包括由第一和第二鐵氧體層502,503形成的鐵氧體磁芯,在第一鐵氧體層502的上表面形成圖案化的溝槽103,在第二鐵氧體層503的下表面形成圖案化的溝槽107,如第5B圖至第5C圖所示,其示意了第5A圖描述的電感500分別沿B-B′和C-C′線的橫截面圖。如第5D圖所示,溝槽103和107中填充了導電材料104,108以形成上下電極。電感500還包括填充了導電材料106的導通孔105,其連接上下刻蝕的溝槽區域104和108以形成電感線圈。
如第5E圖中所示,其示意了第5D圖描述的電感500沿D-D′線的橫截面圖,溝槽103,107可以分別在兩個獨立的鐵氧體層502和503中形成並填充導電材料104,108。隨後,鐵氧體層可以背靠背迭放在一起以形成第5F圖所示的電感500。
第6A圖至第6B圖是根據本發明的可選實施方式的電感600的橫截面圖。電感600的結構可以類似於上面第1A圖至第1E圖,第2A圖至第2F圖和第3A圖至第3F圖中分別描述的電感100,200和300的結構,除了溝槽103和107部分填充導電材料104,108以形成電感線圈。用導電材料104,108鍍覆溝槽103,107的側壁和底部。導電材料104,108鍍覆導通孔105的側壁並聚合在一起。電感600的結構相對於磁芯襯底的表面仍是平面的。第6A圖所示的橫截面相當於沿第1A圖中B-B′線的截面圖。第6B圖所示的橫截面相當於沿第1D圖中E-E′線的截面圖。
第6C圖至第6D圖是根據本發明的一個實施方式的電感610的橫截面圖。電感610的結構類似於上面第4A圖至第4E圖中描述的電感400,除了溝槽103和107部分填充導電材料104,108以形成電感線圈。導電材料104,108鍍覆溝槽103,107的側壁和底部。導電材料104,108鍍覆導通孔105的側壁並聚合在一起。電感600的結構相對於磁芯襯底的表面仍是平面的。第6A圖所示的橫截面相當於沿第4A圖中B-B′線的截面圖。第6B圖所示的橫截面相當於沿第4D圖中E-E′線的截面圖。在本實施方式中,在溝槽形成之前,鐵氧體單層102的上下表面預先用介質層402和404鈍化。
第7A圖至第7B圖,第7D圖至第7G圖和第7I圖至第7K圖是說明一種生產第1A圖至第1E圖中描述的帶有完全填充了導電材料的溝槽的功率電感類型的方法的橫截面圖。第7L圖是第1A圖至第1E圖中描述的完整的電感類型的透視俯視圖。如第7A圖中所示,提供了一個鎡芯襯底702。襯底702優化為高頻的鐵氧體則更好,如NiZn及類似的材料。一種抗蝕劑掩膜沉積並圖案化在襯底702的上表面上。通過圖案中的缺口幹法刻蝕或者濺射刻蝕襯底702的上表面的一部分以形成第7B圖中所示的溝槽703。然後抗蝕劑掩膜被除去。第7C圖示意了第7B圖中描述的最終結構的俯視圖。第7A圖至第7B圖和第7D圖至第7F圖中的橫截面是沿第7C圖中的C-C′線在生產工藝的不同階段截取的。
然後,導電材料704,例如鎢、銅、鋁、銀及其它類似金屬,沉積在襯底702的上部,例如,通過像化學氣相沉積(CVD)沉積或者物理氣相沉積(PVD)等氣相沉積工藝。如第7D圖所示,導電材料704完全填充了溝槽703。回刻蝕多餘的導電材料704使表面平坦化並使鐵氧體表面遠離金屬填充的溝槽,例如,採用幹法刻蝕或者化學機械拋光(CMP),如第7E圖中所示。
襯底702的上表面上進行的製造工序可以在下表面上重複。具體地,襯底702可以翻轉過來,抗蝕劑掩膜沉積並圖案化在襯底702的下表面上。通過掩膜圖案中的缺口幹法刻蝕或者濺射刻蝕襯底702的下表面的一部分以形成第7F圖中所示的溝槽705。然後抗蝕劑掩膜被除去。
導通孔706圖案化並刻蝕在襯底702的下表面上的上下溝槽重迭的位置及當填充導電材料704、708後形成的電感線圈的末端。如第7G圖中所示,導通孔可以通過,例如,沿襯底刻蝕至上表面的導電材料704形成。第7G圖中橫截面沿描述了最終器件的第7L圖的G-G′線取得。
導電材料708沉積在襯底702的下表面上,完全填充溝槽705和導通孔706,如第7H圖至第7I圖中所示。第7H圖中橫截面沿第7L圖的G-G′線取得。第7I圖中橫截面沿第7L圖的I-I′線取得。回刻蝕導電材料708使表面平坦化並使鐵氧體表面遠離金屬填充的溝槽,例如,採用幹法刻蝕或者化學機械拋光(CMP),如第7J圖至第7K圖中所示。第7J圖中橫截面沿第7L圖的G-G′線取得。第7K圖中橫截面沿第7L圖的I-I′線取得。
在一些實施方式中,最終器件可以進行一個可選的退火步驟以減少層間的接觸阻抗。例如,最終器件可以在惰性氣體中加熱到300℃至500℃之間的溫度,像氮或者混合氣體,例如氫占氮的4至10%。
第8A圖至第8F圖和第8H圖至第8K圖是說明一種生產第6A圖至第6B圖中描述的帶有部分填充了導電材料的溝槽的功率電感類型的方法的橫截面圖。第8G圖示意了製造中部分完成階段的電感結構的俯視圖。第8L圖是第6A圖至第6B圖中描述的電感類型的最終結構的透視俯視圖。第8A圖至第8D圖和第8F圖中的橫截面沿第8G圖的B-B′線取得。第8E圖中的橫截面沿第8G圖的F-F′線取得。如第8A圖中所示,提供了一個磁芯襯底802,更好優化為高頻的鐵氧體,如NiZn及類似的材料。一種抗蝕劑掩膜沉積並圖案化在襯底802的上表面上。幹法刻蝕或者濺射刻蝕襯底802的上表面的一部分以形成第8B圖中所示的溝槽803。然後抗蝕劑掩膜被除去。
然後,導電材料804,例如鎢、銅、鋁、銀及其它類似金屬,通過第8C圖中所示的部分填充溝槽803的方式沉積在襯底802的上部。採用幹法刻蝕或者化學機械拋光(CMP)回刻蝕導電材料804使表面平坦化(並使鐵氧體材料遠離溝槽),如第8D圖中所示。
襯底翻轉過來,抗蝕劑掩膜沉積並圖案化在襯底802的下表面上。幹法刻蝕或者濺射刻蝕襯底802的下表面的一部分以形成第8E圖中所示的溝槽805。然後抗蝕劑掩膜被除去。
導通孔806圖案化在襯底802的下表面上並通過刻蝕至上表面的導電材料804形成,如第8F圖中所示。第8G圖是第8F圖中描述階段的部分完成結構的透視俯視圖。
後面的製造可以按照第8H圖至第8K圖中描述的進行。第8H圖和第8J圖中橫截面沿第8L圖的H-H′線取得。第8I圖和第8K圖中描述的橫截面沿第8L圖的I-I′線取得。導電材料808以部分填充溝槽805和導通孔806的方式沉積在襯底802的下表面上,如第8H圖至第8I圖中所示。回蝕導電材料808使表面平坦化(並使鐵氧體遠離溝槽和導通孔),例如,採用幹法刻蝕或者化學機械拋光(CMP),如第8J圖至第8K圖中所示。
多個電感可以用第8A圖至第8K圖中說明的工藝在單個鐵氧體材料薄片上製造。電感製成後,採用標準的切割工藝可以將薄片切割成獨立的電感晶片。
第9A圖至第9B圖,第9D圖至第9E圖和第9I圖,第9K圖至第9N圖是說明一種生產第3A圖至第3F圖中描述的功率電感的方法的橫截面圖。所述功率電感帶有沿著鐵氧體襯底的表面從一邊延伸至另一邊並填充了導電材料的溝槽。第9C圖和第9F圖示意了部分完成電感的俯視圖。第9H圖和第9J圖示意了部分完成電感的仰視圖。第9O圖示意了最終電感的俯視圖。如第9A圖中所示,提供了一個磁芯襯底902,更好優化為高頻的鐵氧體,如NiZn及類似的材料。如第9B圖和第9C圖所示,用鋸片切割襯底902的上表面以形成筆直的且平行的上溝槽903。第9B圖中橫截面沿第9C圖的C-C′線取得。
然後,導電材料904,例如鎢、銅、鋁、銀及其它類似金屬,沉積在襯底802的上部,完全填充溝槽903,如第9D圖中所示。回刻蝕導電材料904至磁性襯底902的上表面,如第9E圖和第9F圖中所示。第9D圖至第9E圖中橫截面沿第9F圖的F-F′線取得。
然後襯底902翻轉過來並旋轉至一定角度α(α<90°),所述角度是電感寬度的函數。切割襯底902的表面以形成下溝槽905,如第9G圖所示,所述溝槽與上側的導體填充的上溝槽903成α角度。第9H圖是第9G圖所示結構的仰視圖。第9G圖中橫截面沿第9H圖的G-G′線取得。沿F-F線′上下翻轉第9F圖的襯底902得到第9H圖的仰視圖。
導通孔906圖案化在襯底902的下表面上,並通過自旋保護膜,曝光掩膜並顯影,當曝光上溝槽903中的導電材料904的下部時刻蝕襯底902至一個末端點形成,如第9I圖中所示。第9J圖是第9I圖中描述的結構的仰視圖。第9I圖中橫截面沿第9J圖的J-J′線取得。
導電材料908沉積在襯底902的下表面上並填充至下溝槽905和導通孔906中,如第9K圖至第9L圖中所示。第9K圖中橫截面沿第9J圖的J-J′線取得。第9L圖中橫截面沿第9J圖的L-L′線取得。
採用幹法刻蝕或者化學機械拋光(CMP)回蝕導電材料908使表面平坦化並使鐵氧體遠離溝槽和導通孔,如第9M圖至第9N圖所示。第9O圖是一個最終電感結構的仰視圖。第9M圖中橫截面沿第9O圖的M-M′線取得。第9N圖中橫截面沿第9O圖的N-N′線取得。
第10A圖至第10J圖是說明一種在單個鐵氧體材料的薄片上生產第3A圖至第3F圖中描述的功率電感的方法的俯視圖和仰視圖。
第10A圖至第10D圖是鐵氧體薄片1002的俯視圖。如第10A圖所示,提供了單個鐵氧體材料的薄片1002。襯底1002優化為高頻的鐵氧體則更好,如NiZn及類似的材料。通過切割襯底1002的上表面,例如,淺鋸痕(shal-low saw cuts),以形成上溝槽1003。導電材料1004,例如鎢(W)、銅(Cu)、鋁(Al)、銀(Ag)及其它類似金屬,通過氣相沉積工藝,像化學氣相沉積(CVD)沉積在鐵氧體薄片1002的上部。導電材料1004可以完全填充第10C圖所示的上溝槽1003。採用幹法刻蝕或者化學機械拋光(CMP)回刻蝕多餘的導電材料1004使表面平坦化並使鐵氧體材料遠離溝槽和導通孔區域,如第10D圖中所示。
類似於在鐵氧體薄片1002的上表面上進行的製造工序可以在下表面上重複。例如,第10E圖至第10I圖是說明鐵氧體薄片1002的後續工藝的一系列仰視圖。具體地,鐵氧體薄片1002可以翻轉過來,在下表面上,例如,採用淺鋸痕(shallow saw cuts),切割出下溝槽1005,如第10E圖所示。
導通孔1006圖案化並刻蝕在鐵氧體薄片1002的下表面上的上下溝槽1003、1005重迭的特定位置。如第10F圖中所示,採用圖案化刻蝕工藝,導通孔1006可以通過,例如,沿襯底刻蝕至上表面的導電材料1004形成。上溝槽1003的位置在第10F圖中用虛線標出。
導電材料1008沉積在鐵氧體薄片1002的下表面上,完全填充溝槽1005和導通孔1006,如第10G圖中所示。可以回蝕導電材料1008使表面平坦化並使鐵氧體遠離溝槽和導通孔區域,例如,採用幹法刻蝕或者化學機械拋光(CMP),如第10H圖中所示。
當如第10H圖所示的電感已經製成後,採用標準的切割工藝可以將鐵氧體薄片1002切割成獨立的電感晶片1010。第10I圖是切割後的最終電感1010的仰視圖。第10J圖是切割後的最終電感1010的俯視圖。第10J圖的俯視圖通過左右翻轉鐵氧體薄片1002得到。在將薄片切割成獨立電感1010(每個具有一個電感線圈和一個鐵氧體磁芯)之前,帶有填充溝槽和導通孔的鐵氧體薄片1002可以進行一個按照上面所述的可選的退火步驟。上下溝槽1003,1005的定位和對齊需謹慎地進行以便多個獨立電感1010的溝槽可以在單個鐵氧體襯底上切割出來。從第10I圖可以看到,形成電感1010中的溝槽的淺鋸痕(shallow saw cuts)也許包括附加的漂浮導體1009的溝槽,其不屬於電感線圈的一部分。這些附加的導體不需要電連接到電感的其他任何部分,且不影響電感1010的功用。
多個電感可以用第7A圖至第7K圖中說明的工藝在單個鐵氧體材料薄片上製造。根據本發明的所有實施方式的電感可以作為單個鐵氧體材料薄片上的多個電感製造。電感已經製成後,可以採用標準的切割工藝可以將薄片切割成獨立的電感晶片。
在掩膜和刻蝕溝槽以形成第4A圖至第4E圖中描述的電感種類之前,上面第7A圖至第7L圖和第8A圖至第8L圖、第9A圖至第9O圖和第10A圖至第10J圖中描述的方法可選地包括一個介質沉積步驟。介質層的材料可以是厚度在500至5微米之間的LTO、PECVD氧化物、富Si氧化物、氮氧化矽、氮化矽、氮化鋁、氧化鋁、聚醯亞胺、苯環丁烯(BCB)等等。然後,在刻蝕或者切割磁芯襯底的表面上的磁性材料之前,介質層被刻蝕以形成溝槽。
可選地,在上面第7A圖至第7L圖和第8A圖至第8L圖、第9A圖至第9O圖和第10A圖至第10J圖中描述的方法中,在回刻蝕溝槽中的導電材料以平坦化表面的步驟之後,可以加入一個磁性材料的沉積步驟,從而鈍化磁芯襯底的表面。磁性材料層的材料可以是厚度在500至5微米或之上的帶鐵氧體粉末的環氧樹脂、帶有磁性顆粒的介質等等。在磁性材料的刻蝕之前還可以加入一個介質刻蝕的步驟。
本發明的電感具有平面結構和超低阻抗,高電感係數每單元面積,且在電感的概念上與迭放的功率IC相容。製造本發明的電感的方法是低成本的且可以在單個的磁芯層上實施。
由於電感磁芯的高導磁率和高電阻率,鐵氧體為優選材料,因此也可以採用其他的等效材料。例如低頻的應用可以採用NiFe。如果在導電材料沉積之前鈍化所有表面以形成電感線圈,則可能採用其他低電阻率的材料。在本文中,術語“鐵氧體”理解為包括其他等效材料。
上文是本發明的優選實施方式的完整說明,存在採用替換、變更和等效結構的可能。因此,本發明的範圍不應該由上述說明決定,而應該由附加的申請專利範圍與其等效結構的全部範圍一起決定。任何特徵,不管優選與否,可以與任何其他特徵相結合。在下面的申請專利範圍書中,不定冠詞“A”或者“An”涉及到一個或多個接在冠詞後面的項的量,除非另外清楚地指定的地方。附加的申請專利範圍不被解釋為包括手段附加功能的限制,除非所述限制在給出的申請專利範圍中採用短語“means for”明確說明。
100、200、300、400、500、600、610、1010...電感
102、502、503...鐵氧體層
103、107、703、705、803、805、903、905、1003、1005...溝槽
104、106、108、704、708、804、808、904、908、1004...導電材料
105、109、706、806、906、1006、1008...導通孔
402、404...介質層
702、802、902...襯底
1002...鐵氧體薄片
1009...漂浮導體
本發明的目的和優勢將通過下面詳細的描述並參照下面的附圖而清晰地展現出來。
第1A圖是根據本發明的一種實施方式的分立功率電感的俯視圖;第1B圖是第1A圖所示的功率電感沿B-B′線的橫截面圖;第1C圖是第1A圖所示的功率電感沿C-C′線的橫截面圖;第1D圖是第1A圖所示的功率電感的透視俯視圖;第1E圖是第1A圖所示的功率電感沿第1D圖中的E-E′線的橫截面圖;第2A圖是根據本發明的另一種實施方式的分立功率電感的俯視圖;第2B圖至第2C圖是第2A圖所示的功率電感分別沿B-B′和C-C′線的橫截面圖;第2D圖是第2A圖所示的功率電感的透視俯視圖;第2E圖至第2F圖是第2A圖所示的功率電感分別沿第2D圖中的E-E′和F-F′線的橫截面圖;第3A圖是根據本發明的另一種實施方式的分立功率電感的俯視圖;第3B圖至第3C圖是第3A圖所示的功率電感分別沿B-B′和C-C′線的橫截面圖;第3D圖是第3A圖所示的功率電感的透視俯視圖;第3E圖至第3F圖是第3A圖所示的功率電感分別沿第3D圖中的E-E′和F-F′線的橫截面圖;第4A圖是根據本發明的另一種實施方式的分立功率電感的俯視圖;第4B圖至第4C圖是第4A圖所示的功率電感分別沿B-B′和C-C′線的橫截面圖;第4D圖是第4A圖所示的功率電感的透視俯視圖;第4E圖是第4A圖所示的功率電感沿第4D圖中的E-E′線的橫截面圖;第5A圖是根據本發明的另一種實施方式的分立功率電感的俯視圖;第5B圖至第5C圖是第5A圖所示的功率電感分別沿B-B′和C-C′線的橫截面圖;第5D圖是第5A圖所示的功率電感的透視俯視圖;第5E圖至第5F圖是第5A圖所示的功率電感沿D-D′線的橫截面圖;第6A圖至第6D圖是根據本發明的可選實施方式的功率電感的橫截面圖;第7A圖至第7B圖,第7D圖至第7K圖是說明生產第1A圖描述的功率電感的方法的橫截面圖;第7C圖是第7B圖描述的部分完成結構的俯視圖;第7L圖是完成的功率電感的透視俯視圖;第8A圖至第8F圖,第8H圖至第8K圖是說明生產第6A圖至第6B圖描述的功率電感種類的方法的橫截面圖;第8G圖是第8F圖描述的部分完成結構的俯視圖;第8L圖是完成的功率電感的透視俯視圖;第9A圖至第9B圖,第9D圖至第9E圖,第9G圖,第9I圖和第9K圖至第9N圖是說明生產第3A圖描述的功率電感種類的方法的橫截面圖;第9C圖是第9B圖描述的製造階段的部分完成的電感結構的俯視圖;第9F圖是第9E圖描述的製造階段的部分完成的電感結構的俯視圖;第9H圖是第9G圖描述的製造階段的部分完成的電感結構的仰視圖;第9J圖是第9I圖描述的製造階段的部分完成的電感結構的仰視圖;第9O圖是完成的功率電感的仰視圖;第10A圖至第10D圖和第10E圖至第10I圖分別是說明從一個鐵氧體材料的薄片生產根據本發明的一種實施方式的第3A圖中描述的多功率電感種類的方法的一系列俯視圖和仰視圖。
第10J圖是說明用第10A圖至第10I圖所示的方法從一個鐵氧體材料的薄片分割出的多個電感的俯視圖。
1004...導電材料
1006...導通孔
1010...電感

Claims (28)

  1. 一個電感,包括:一個平面鐵氧體磁芯;第一組在鐵氧體磁芯的第一側上形成的一個或多個溝槽;第二組在鐵氧體磁芯的第二側上形成的兩個或多個溝槽;所述第一和第二組的溝槽定位為每個第一組的溝槽與第二組的一個或兩個對應的溝槽相重迭;第一組多個導通孔,在鐵氧體磁芯的第一側和第二側之間連通鐵氧體磁芯,每個所述導通孔位於第一組溝槽與第二組溝槽重迭的位置;以及置於第一和第二組溝槽和導通孔中的導電材料,所述置於第一和第二組溝槽和導通孔中的導電材料形成一個電感線圈。
  2. 如申請專利範圍第1項所述的電感,其特徵在於:所述電感是平面的。
  3. 如申請專利範圍第1項所述的電感,其特徵在於:鐵氧體磁芯形成圍繞電感線圈的閉合磁環。
  4. 如申請專利範圍第1項所述的電感,其進一步包括一個位於鐵氧體磁芯的第一和第二側中一側上的電感線圈的一個末端的導通孔,其特徵在於:所述導通孔在電感線圈的末端和鐵氧體磁芯的第一和第二側的另一側之間連通。
  5. 如申請專利範圍第1項所述的電感,其特徵在於:所述電感線圈厚度是所述溝槽深度的函數。
  6. 如申請專利範圍第1項所述的電感,其特徵在於:所述第一組一個或多個溝槽包括兩個或多個平行溝槽。
  7. 如申請專利範圍第1項所述的電感,其特徵在於:所述第二組兩個或多個溝槽包括兩個或多個平行溝槽。
  8. 如申請專利範圍第1項所述的電感,其特徵在於:每個所述的第一組多個導通孔在第一組一個或多個溝槽中的一個溝槽與第二組兩個或多個溝槽中的一個溝槽之間連通。
  9. 如申請專利範圍第1項所述的電感,其進一步包括一個或多個附加導通孔,屬於在鐵氧體磁芯的第一側和第二側之間連通的第二組多個導通孔。
  10. 如申請專利範圍第1項所述的電感,其特徵在於:導電材料填充溝槽和導通孔。
  11. 如申請專利範圍第1項所述的電感,其特徵在於:導電材料部分地填充溝槽和導通孔。
  12. 如申請專利範圍第11項所述的電感,其特徵在於:所述導電材料鍍覆溝槽的底部和側壁以及導通孔的側壁。
  13. 如申請專利範圍第1項所述的電感,其特徵在於:第一或第二組中的溝槽延伸穿過鐵氧體磁芯的所有路徑。
  14. 如申請專利範圍第1項所述的電感,其特徵在於:第一組多個導通孔位於遠離鐵氧體磁芯的邊緣的位置。
  15. 如申請專利範圍第1項所述的電感,其特徵在於:鐵氧體磁芯包括第一個包括第一側的鐵氧體層和第二個包括第二側的鐵氧體層,所述第一和第二個鐵氧體層背對背互相連接,以致第一和第二側置於鐵氧體磁芯的外表面上。
  16. 如申請專利範圍第1項所述的電感,其進一步包括一個鈍化鐵氧體磁芯的第一或第二側的介質層。
  17. 如申請專利範圍第1項所述的電感,其特徵在於:導電材料不延伸出鐵氧體磁芯表面的平面。
  18. 一種生產所述電感的方法,包括:步驟1,第一組在平面鐵氧體磁芯的第一側上形成的一個或多個溝槽的成形;步驟2,第二組在所述鐵氧體磁芯的第二側上形成的兩個或多個平行溝槽的成形,所述第一和第二組的溝槽定位為每個第一組的溝槽與第二組的一個或兩個對應的溝槽相重迭;步驟3,一個或多個導通孔的成形,在所述鐵氧體磁芯的第一側和第二側之間連通鐵氧體磁芯,每個所述導通孔位於第一組溝槽與第二組溝槽重迭的位置;以及步驟4,第一和第二組溝槽和導通孔中導電材料的放置。
  19. 如申請專利範圍第18項所述的方法,其特徵在於:步驟1包括鐵氧體磁芯的第一側的刻蝕。
  20. 如申請專利範圍第18項所述的方法,其特徵在於:步驟2包括鐵氧體磁芯的第二側的刻蝕。
  21. 如申請專利範圍第18項所述的方法,其進一步包括在鐵氧體磁芯的第一側和第二側之間連通的一個或多個附加導通孔的成形。
  22. 如申請專利範圍第18項所述的方法,其特徵在於:步驟4包括所述溝槽和導通孔的導電材料的填充。
  23. 如申請專利範圍第18項所述的方法,其特徵在於:步驟4包括所述溝槽的底部和側壁以及導通孔的側壁的導電材料的鍍覆。
  24. 如申請專利範圍第18項所述的方法,其特徵在於:步驟1或步驟2包括沿鐵氧體磁芯表面的溝槽的切割。
  25. 如申請專利範圍第24項所述的方法,其特徵在於:所述沿鐵氧體磁芯表面的溝槽的切割包括用鋸片切割溝槽。
  26. 如申請專利範圍第18項所述的方法,其特徵在於:步驟1包括第一鐵氧體層的表面中第一組溝槽的成形,步驟2包括第二鐵氧體層的表面中第二組溝槽的成形,所述方法進一步包括第一和第二個鐵氧體層背對背的互相連接,以致第一和第二側置於鐵氧體磁芯的外表面上。
  27. 如申請專利範圍第18項所述的方法,其進一步包括一個介質層對鐵氧體磁芯的第一或第二側的鈍化。
  28. 如申請專利範圍第18項所述的方法,其特徵在於:步驟1至步驟4在一個鐵氧體薄片上的多個晶片上進行,所述方法進一步包括在步驟4之後將鐵氧體薄片切割成獨立的電感晶片。
TW098118750A 2008-06-30 2009-06-05 平面型溝槽功率電感結構與製造方法 TWI395237B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/165,423 US7948346B2 (en) 2008-06-30 2008-06-30 Planar grooved power inductor structure and method

Publications (2)

Publication Number Publication Date
TW201001453A TW201001453A (en) 2010-01-01
TWI395237B true TWI395237B (zh) 2013-05-01

Family

ID=41446677

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098118750A TWI395237B (zh) 2008-06-30 2009-06-05 平面型溝槽功率電感結構與製造方法

Country Status (3)

Country Link
US (2) US7948346B2 (zh)
CN (1) CN101620919B (zh)
TW (1) TWI395237B (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884696B2 (en) * 2007-11-23 2011-02-08 Alpha And Omega Semiconductor Incorporated Lead frame-based discrete power inductor
TWI384739B (zh) * 2008-01-03 2013-02-01 Delta Electronics Inc 組合式電路及電子元件
US7948346B2 (en) * 2008-06-30 2011-05-24 Alpha & Omega Semiconductor, Ltd Planar grooved power inductor structure and method
US8222078B2 (en) 2009-07-22 2012-07-17 Alpha And Omega Semiconductor Incorporated Chip scale surface mounted semiconductor device package and process of manufacture
US8921976B2 (en) * 2011-01-25 2014-12-30 Stmicroelectronics, Inc. Using backside passive elements for multilevel 3D wafers alignment applications
CN102738128B (zh) * 2011-03-30 2015-08-26 香港科技大学 大电感值集成磁性感应器件及其制造方法
CN102323190B (zh) * 2011-05-27 2014-06-18 张洪朋 一种平面电感式磨粒监测装置及其测量单元
JP6215518B2 (ja) * 2011-08-26 2017-10-18 ローム株式会社 磁性金属基板およびインダクタンス素子
WO2013101131A1 (en) 2011-12-29 2013-07-04 Intel Corporation Integrated inductor for integrated circuit devices
US9229466B2 (en) * 2011-12-31 2016-01-05 Intel Corporation Fully integrated voltage regulators for multi-stack integrated circuit architectures
JP6062691B2 (ja) * 2012-04-25 2017-01-18 Necトーキン株式会社 シート状インダクタ、積層基板内蔵型インダクタ及びそれらの製造方法
KR101408617B1 (ko) * 2012-11-20 2014-06-17 삼성전기주식회사 적층형 코일 부품
KR101476044B1 (ko) * 2012-12-06 2014-12-23 쓰리엠 이노베이티브 프로퍼티즈 캄파니 페라이트 그린 시트, 소결 페라이트 시트, 이를 포함하는 페라이트 복합시트 및 도전 루프 안테나 모듈
US9406438B2 (en) * 2013-03-18 2016-08-02 Murata Manufacturing Co., Ltd. Stack-type inductor element and method of manufacturing the same
CN103714963B (zh) * 2013-12-27 2016-06-15 陕西烽火电子股份有限公司 用印制板设计电感器的方法
US20150340338A1 (en) * 2014-05-23 2015-11-26 Texas Instruments Incorporated Conductor design for integrated magnetic devices
KR20160000329A (ko) * 2014-06-24 2016-01-04 삼성전기주식회사 적층 인덕터, 적층 인덕터의 제조방법 및 적층 인덕터의 실장 기판
DE202014005370U1 (de) * 2014-06-27 2014-07-14 Würth Elektronik eiSos Gmbh & Co. KG Induktives Bauteil
CN104465329A (zh) * 2014-12-18 2015-03-25 江苏长电科技股份有限公司 一种基板内置环形磁芯电感的工艺方法
WO2016178693A1 (en) 2015-05-07 2016-11-10 Halliburton Energy Services, Inc. Bit incorporating ductile inserts
CN106205948A (zh) * 2015-05-10 2016-12-07 张彩玲 集成微电感器及其制造方法
US9576718B2 (en) 2015-06-22 2017-02-21 Qualcomm Incorporated Inductor structure in a semiconductor device
FR3045940B1 (fr) * 2015-12-16 2018-02-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif d'inductance et son procede de fabrication
DE202016007184U1 (de) * 2016-11-22 2016-12-02 Stadlbauer Marketing + Vertrieb Gmbh Spulenanordnung und Modellauto mit einer derartigen Spulenandordnung
US10553354B2 (en) * 2017-03-10 2020-02-04 International Business Machines Corporation Method of manufacturing inductor with ferromagnetic cores
KR101973439B1 (ko) * 2017-09-05 2019-04-29 삼성전기주식회사 코일 부품
US11387182B2 (en) * 2018-01-29 2022-07-12 Anhui Anuki Technologies Co., Ltd. Module structure and method for manufacturing the module structure
TWI728320B (zh) * 2018-08-14 2021-05-21 弘鄴科技有限公司 電感元件於絕緣膠座中成型結構
US20210358688A1 (en) * 2018-10-30 2021-11-18 Beihang University Mems solenoid transformer and manufacturing method thereof
WO2020087972A1 (zh) * 2018-10-30 2020-05-07 北京航空航天大学 一种mems螺线管电感器及其制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200504771A (en) * 2003-07-16 2005-02-01 Marvell World Trade Ltd Power inductor with reduced DC current saturation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189212U (ja) * 1983-05-18 1984-12-15 株式会社村田製作所 チツプ型インダクタ
GB2173956B (en) 1985-03-29 1989-01-05 Plessey Co Plc Improvements relating to electric transformers
JPH02172207A (ja) * 1988-12-23 1990-07-03 Murata Mfg Co Ltd 積層型インダクター
US5111169A (en) * 1989-03-23 1992-05-05 Takeshi Ikeda Lc noise filter
GB2290913B (en) 1994-06-30 1998-03-11 Plessey Semiconductors Ltd Multi-chip module inductor structure
TW265450B (en) 1994-06-30 1995-12-11 At & T Corp Devices using metallized magnetic substrates
JP3097569B2 (ja) * 1996-09-17 2000-10-10 株式会社村田製作所 積層チップインダクタの製造方法
US5909050A (en) 1997-09-15 1999-06-01 Microchip Technology Incorporated Combination inductive coil and integrated circuit semiconductor chip in a single lead frame package and method therefor
FR2771843B1 (fr) 1997-11-28 2000-02-11 Sgs Thomson Microelectronics Transformateur en circuit integre
US6441715B1 (en) 1999-02-17 2002-08-27 Texas Instruments Incorporated Method of fabricating a miniaturized integrated circuit inductor and transformer fabrication
US6856228B2 (en) 1999-11-23 2005-02-15 Intel Corporation Integrated inductor
US6380834B1 (en) * 2000-03-01 2002-04-30 Space Systems/Loral, Inc. Planar magnetic assembly
FR2814585B1 (fr) * 2000-09-26 2002-12-20 Ge Med Sys Global Tech Co Llc Enroulement pour tansformateur haute tension
JP2002233140A (ja) 2001-01-30 2002-08-16 Fuji Electric Co Ltd 超小型電力変換装置
US6534843B2 (en) 2001-02-10 2003-03-18 International Business Machines Corporation High Q inductor with faraday shield and dielectric well buried in substrate
JP2002246231A (ja) * 2001-02-14 2002-08-30 Murata Mfg Co Ltd 積層型インダクタ
US7361844B2 (en) 2002-11-25 2008-04-22 Vlt, Inc. Power converter package and thermal management
JP2004274004A (ja) * 2003-01-16 2004-09-30 Fuji Electric Device Technology Co Ltd 超小型電力変換装置
US7154174B2 (en) 2003-02-27 2006-12-26 Power-One, Inc. Power supply packaging system
JP3983199B2 (ja) 2003-05-26 2007-09-26 沖電気工業株式会社 半導体装置及びその製造方法
KR100541655B1 (ko) 2004-01-07 2006-01-11 삼성전자주식회사 패키지 회로기판 및 이를 이용한 패키지
US7068138B2 (en) 2004-01-29 2006-06-27 International Business Machines Corporation High Q factor integrated circuit inductor
JP4391263B2 (ja) 2004-02-20 2009-12-24 Okiセミコンダクタ株式会社 半導体素子、その製造方法及びその半導体素子を用いた高周波集積回路
US7190026B2 (en) 2004-08-23 2007-03-13 Enpirion, Inc. Integrated circuit employable with a power converter
US7355282B2 (en) 2004-09-09 2008-04-08 Megica Corporation Post passivation interconnection process and structures
JP4609152B2 (ja) * 2005-03-30 2011-01-12 富士電機システムズ株式会社 超小型電力変換装置
JP2008153456A (ja) * 2006-12-18 2008-07-03 Fuji Electric Device Technology Co Ltd インダクタおよびその製造方法
US8058960B2 (en) 2007-03-27 2011-11-15 Alpha And Omega Semiconductor Incorporated Chip scale power converter package having an inductor substrate
US7884696B2 (en) 2007-11-23 2011-02-08 Alpha And Omega Semiconductor Incorporated Lead frame-based discrete power inductor
US7948346B2 (en) 2008-06-30 2011-05-24 Alpha & Omega Semiconductor, Ltd Planar grooved power inductor structure and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200504771A (en) * 2003-07-16 2005-02-01 Marvell World Trade Ltd Power inductor with reduced DC current saturation

Also Published As

Publication number Publication date
CN101620919A (zh) 2010-01-06
US20110107589A1 (en) 2011-05-12
TW201001453A (en) 2010-01-01
US7971340B2 (en) 2011-07-05
CN101620919B (zh) 2013-02-06
US20090322461A1 (en) 2009-12-31
US7948346B2 (en) 2011-05-24

Similar Documents

Publication Publication Date Title
TWI395237B (zh) 平面型溝槽功率電感結構與製造方法
US8907447B2 (en) Power inductors in silicon
TWI394186B (zh) 一種線圈電感之形成方法
KR101762039B1 (ko) 코일 부품
CN102148089B (zh) 用于集成电感器的系统和方法
TWI303957B (en) Embedded inductor devices and fabrication methods thereof
US9978501B2 (en) Coil electronic component and method of manufacturing same
US20030070282A1 (en) Ultra-miniature magnetic device
US20080252407A1 (en) Multi-Layer Inductive Element for Integrated Circuit
US20030005569A1 (en) Ultra-miniature magnetic device
JP2012104673A (ja) コイル部品及びその製造方法
TWI680552B (zh) 具有貫穿基板通路核心的三維互連多晶粒電感器
TW201106386A (en) Common mode filter and method of manufacturing the same
US9735102B2 (en) High voltage device
CN109524388A (zh) 具有集成电感器的半导体结构
US11942255B2 (en) Inductor component
KR20170073554A (ko) 코일 부품
JP2003347124A (ja) 磁性素子およびこれを用いた電源モジュール
US20230047996A1 (en) Inductor component
US20230071379A1 (en) Coil component and manufacturing method therefor
JP2006041357A (ja) 半導体装置およびその製造方法
JP2003133136A (ja) 磁性部品およびその製造方法
JP7501490B2 (ja) インダクタ部品
US20220293329A1 (en) Inductor component and electronic component
US20230187123A1 (en) Inductor component and method of manufacturing inductor component