WO2020087972A1 - 一种mems螺线管电感器及其制造方法 - Google Patents

一种mems螺线管电感器及其制造方法 Download PDF

Info

Publication number
WO2020087972A1
WO2020087972A1 PCT/CN2019/095062 CN2019095062W WO2020087972A1 WO 2020087972 A1 WO2020087972 A1 WO 2020087972A1 CN 2019095062 W CN2019095062 W CN 2019095062W WO 2020087972 A1 WO2020087972 A1 WO 2020087972A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon substrate
core
iron
solenoid
silicon
Prior art date
Application number
PCT/CN2019/095062
Other languages
English (en)
French (fr)
Inventor
徐天彤
陶智
李海旺
孙加冕
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811277260.8A external-priority patent/CN109326421B/zh
Priority claimed from CN201811509400.XA external-priority patent/CN109741903B/zh
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to JP2021523593A priority Critical patent/JP7267641B2/ja
Priority to US17/290,553 priority patent/US20220013275A1/en
Publication of WO2020087972A1 publication Critical patent/WO2020087972A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2895Windings disposed upon ring cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material

Definitions

  • Embodiments of the present application relate to the technical field of microelectromechanical systems (MEMS), and more specifically, to a MEMS solenoid inductor and a method of manufacturing the same.
  • MEMS microelectromechanical systems
  • Micro-Electro-Mechanical (MEMS) micro-inductors are composed of magnetic cores and windings. Compared with conventional inductors, the size of the magnetic core is greatly reduced and the winding form has also changed. Miniature inductors are widely used in miniature electronic equipment and information equipment, and can play the role of voltage transformation, current transformation, impedance transformation, isolation, voltage regulation and so on.
  • planar spiral type there are two main types of micro-inductors based on MEMS technology, planar spiral type and solenoid type.
  • planar spiral type increases with the number of winding turns, and the diameter of the coil becomes larger.
  • the total magnetic flux along the iron core does not increase linearly but decreases gradually. Therefore, the number of turns of this structure is generally limited, resulting in There is a bottleneck in the total power increase of such inductors.
  • Solenoid inductors overcome the limitation of winding turns. Solenoid windings make full use of the vertical space inside the substrate. Therefore, when the inductor is integrated in the circuit, when the same inductance performance is obtained, the chip surface space is smaller Conducive to the further development of chip miniaturization.
  • the micro-inductors based on the MEMS process use a thin-film manufacturing process.
  • the thin-film manufacturing process is an additive manufacturing method, so most of the structure of the obtained micro-inductor is above the substrate surface, resulting in the inductor
  • the strength is difficult to guarantee.
  • the area of the inductor wire made by the thin film process is small, and it cannot flow a large current, limiting the current flowing capacity and limiting its application in high current and power devices.
  • the winding cross-sectional area of the inductor is small, and the magnetic flux is small, resulting in a low inductance value of the inductor.
  • Embodiments of the present application provide a MEMS solenoid inductor that overcomes the above problems or at least partially solves the above problems and a manufacturing method thereof.
  • an embodiment of the present application provides a MEMS toroidal solenoid inductor, including: a silicon substrate, a toroidal soft magnet core and a solenoid; wherein,
  • the ring-shaped soft magnet core is wrapped inside the silicon substrate, the silicon substrate is provided with a spiral hole, and the ring-shaped soft magnet core passes through the center of the spiral hole, and the solenoid is disposed at the Said in the spiral hole.
  • the silicon substrate is divided into an upper silicon substrate and a lower silicon substrate
  • the ring-shaped soft magnetic core is divided into an upper iron core and a lower iron core
  • the upper iron core and the lower iron core have the same shape
  • the lower surface of the upper silicon substrate is provided with an iron core groove corresponding to the shape of the upper core
  • the upper surface of the lower silicon substrate is provided with an iron core groove corresponding to the shape of the lower core
  • the upper core and the lower core are respectively disposed in corresponding core slots, and the lower surface of the upper silicon substrate and the upper surface of the lower silicon substrate are bonded to each other, so that the upper iron The lower surface of the core and the upper surface of the lower core are aligned with each other.
  • the spiral channel includes a plurality of first horizontal grooves, a plurality of second horizontal grooves, and a plurality of vertical through holes;
  • the first horizontal trench is provided on the upper surface of the silicon substrate, the second horizontal trench is provided on the lower surface of the silicon substrate, and the vertical through hole penetrates the silicon substrate Surface and lower surface;
  • the head and tail of any one of the first horizontal grooves in the spiral channel communicate with two vertical through holes, respectively, and the two vertical through holes communicate with two adjacent second horizontal grooves, respectively.
  • it also includes two pins and two pin slots
  • the two pin grooves are provided on the upper surface of the silicon substrate, the two pin grooves are respectively connected to the head and tail of the spiral channel, and the two pins are respectively provided on the two pins In the slot.
  • the ring-shaped soft magnet core is made of iron-nickel alloy material or iron-cobalt alloy material.
  • the solenoid is made of metallic copper.
  • the embodiments of the present application provide a method for manufacturing a MEMS toroidal solenoid inductor, including:
  • Step 1 separately fabricate an upper silicon substrate and a lower silicon substrate;
  • Fabricating the upper silicon substrate includes:
  • a plurality of first horizontal trenches and a plurality of vertical through holes are deeply etched from the silicon on the upper surface, the inner surface and the lower surface of the first silicon wafer after the first oxidation Part and core slot;
  • Making the lower silicon substrate includes:
  • the core groove, the lower half of the plurality of vertical through holes and the plurality of silicon cores are deeply etched by the silicon on the upper surface, the inner surface and the lower surface of the second silicon wafer after the first oxidation Second horizontal groove;
  • Step 2 Form an upper core and a lower core by electroplating in the core grooves of the upper silicon substrate and the lower silicon substrate respectively;
  • Step 3 align the upper surface of the upper silicon substrate and the lower surface of the lower silicon substrate with each other, and align the lower surface of the upper core and the upper surface of the lower core with each other , Bonding the upper silicon substrate and the lower silicon substrate at a low temperature, and forming the spiral holes in the upper silicon substrate and the lower silicon substrate after bonding;
  • Step 4 Electroplating is formed in the spiral hole to form a solenoid, that is, a MEMS ring solenoid inductor is obtained.
  • the forming of the upper iron core in the iron core groove of the upper silicon substrate specifically includes:
  • the metal mask plate After registering the metal mask plate with the iron core groove pattern and the iron core groove on the lower surface of the upper silicon substrate, the metal mask plate is closely attached to the lower surface of the upper silicon substrate ;
  • a third preset thickness of iron nickel is electroplated in the iron core groove of the upper silicon substrate Alloy or iron-cobalt alloy to get the upper core; accordingly,
  • the forming of the lower iron core by plating in the iron core groove of the lower silicon substrate specifically includes:
  • the metal mask plate After registering the metal mask plate with the iron core groove pattern and the iron core groove on the upper surface of the lower silicon substrate, the metal mask plate is closely attached to the upper surface of the lower silicon substrate ;
  • the forming of the solenoid in the spiral channel specifically includes:
  • the metal copper is electroplated until the spiral holes are completely filled with the metal copper, thereby obtaining the solenoid.
  • the manufacturing of the upper silicon substrate further includes:
  • two pin grooves are deeply etched on the upper surface of the first silicon wafer after the first oxidation; accordingly,
  • Step S4 also includes:
  • the two leads are formed by electroplating in the two lead grooves.
  • an embodiment of the present application provides a MEMS linear solenoid inductor, including: a silicon substrate, a linear soft magnet core, and a solenoid; wherein,
  • the linear soft magnetic core is wrapped inside the silicon substrate, a spiral hole is provided on the silicon substrate, and the linear soft magnetic core passes through the center of the spiral hole, and the solenoid is provided In the spiral channel.
  • the silicon substrate is divided into an upper silicon substrate and a lower silicon substrate
  • the linear soft magnetic core is divided into an upper iron core and a lower iron core, and the shapes of the upper iron core and the lower iron core the same;
  • the lower surface of the upper silicon substrate is provided with an iron core groove corresponding to the shape of the upper core
  • the upper surface of the lower silicon substrate is provided with an iron core groove corresponding to the shape of the lower core
  • the upper core and the lower core are respectively disposed in corresponding core slots, and the lower surface of the upper silicon substrate and the upper surface of the lower silicon substrate are bonded to each other, so that the upper iron The lower surface of the core and the upper surface of the lower core are aligned with each other.
  • the spiral channel includes a plurality of first horizontal grooves, a plurality of second horizontal grooves, and a plurality of vertical through holes;
  • the first horizontal trench is provided on the upper surface of the silicon substrate, the second horizontal trench is provided on the lower surface of the silicon substrate, and the vertical through hole penetrates the silicon substrate Surface and lower surface;
  • the head and tail of any one of the first horizontal grooves in the spiral channel communicate with two vertical through holes, respectively, and the two vertical through holes communicate with two adjacent second horizontal grooves, respectively.
  • it also includes two pins and two pin slots
  • the two pin grooves are provided on the upper surface of the silicon substrate, the two pin grooves are respectively connected to the head and tail of the spiral channel, and the two pins are respectively provided on the two pins In the slot.
  • the linear soft magnetic core is made of iron-nickel alloy material or iron-cobalt alloy material.
  • the solenoid is made of metallic copper.
  • an embodiment of the present application provides a method for manufacturing a MEMS linear solenoid inductor, including:
  • Step 1 separately fabricate an upper silicon substrate and a lower silicon substrate;
  • Fabricating the upper silicon substrate includes:
  • a plurality of parallel first horizontal trenches and a plurality of vertical through holes are deeply etched on the upper surface, inner and lower surfaces of the first silicon wafer after the first oxidation The upper part and the core slot;
  • Making the lower silicon substrate includes:
  • the core groove, the lower half of the plurality of vertical through holes and the plurality of silicon cores are deeply etched by the silicon on the upper surface, the inner surface and the lower surface of the second silicon wafer after the first oxidation Parallel second horizontal groove;
  • Step 2 forming an upper core and a lower core by electroplating in the core grooves of the upper silicon substrate and the lower silicon substrate respectively;
  • Step 3 align the upper surface of the upper silicon substrate and the lower surface of the lower silicon substrate with each other, and bond the upper silicon substrate and the lower silicon substrate at a low temperature, Forming the spiral holes in the upper silicon substrate and the lower silicon substrate;
  • Step 4 Electroplating is formed in the spiral channel to form a solenoid, that is, a MEMS linear solenoid inductor is obtained.
  • the forming of the upper iron core in the iron core groove of the upper silicon substrate specifically includes:
  • the metal mask plate After registering the metal mask plate with the iron core groove pattern and the iron core groove on the lower surface of the upper silicon substrate, the metal mask plate is closely attached to the lower surface of the upper silicon substrate ;
  • a third preset thickness of iron nickel is electroplated in the iron core groove of the upper silicon substrate Alloy or iron-cobalt alloy to get the upper core; accordingly,
  • the forming of the lower iron core by plating in the iron core groove of the lower silicon substrate specifically includes:
  • the metal mask plate After registering the metal mask plate with the iron core groove pattern and the iron core groove on the upper surface of the lower silicon substrate, the metal mask plate is closely attached to the upper surface of the lower silicon substrate ;
  • the forming of the solenoid in the spiral channel specifically includes:
  • the metal copper is electroplated until the spiral holes are completely filled with the metal copper, thereby obtaining the solenoid.
  • the manufacturing of the upper silicon substrate further includes:
  • two pin grooves are deeply etched on the upper surface of the first silicon wafer after the first oxidation; accordingly,
  • Step S4 also includes:
  • the two leads are formed by electroplating in the two lead grooves.
  • An embodiment of the present application provides a MEMS toroidal solenoid inductor and a method for manufacturing the same.
  • the thickness of the silicon substrate is fully utilized ,
  • the resulting inductor has a larger winding cross-sectional area, which improves the magnetic flux and increases the inductance of the inductor; at the same time, the silicon substrate can protect the ring-shaped soft magnetic core and the solenoid and improve the inductor The strength and impact resistance are good.
  • An embodiment of the present application provides a MEMS linear solenoid inductor and a method of manufacturing the same.
  • the silicon substrate is fully utilized
  • the thickness of the obtained inductor is larger, the cross-sectional area of the winding of the inductor is larger, the magnetic flux is increased, and the inductance value of the inductor is increased; at the same time, the silicon substrate can protect the linear soft magnetic core and the solenoid and improve In addition to the strength of the inductor, the impact resistance is good.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a MEMS ring solenoid inductor provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a three-dimensional structure of an upper silicon substrate in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a lower silicon substrate in an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional view of steps (1) to (6) of a manufacturing process of a MEMS toroidal solenoid inductor in an example provided by an embodiment of the present application;
  • FIG. 5 is a schematic cross-sectional view of steps (7) to (12) of a manufacturing process of a MEMS ring solenoid inductor in an example provided by an embodiment of the present application;
  • FIG. 6 is a schematic cross-sectional view of steps (13) to (17) of a manufacturing process of a MEMS ring solenoid inductor in an example provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a three-dimensional structure of a MEMS linear solenoid inductor provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a three-dimensional structure of an upper silicon substrate in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a three-dimensional structure of a lower silicon substrate in an embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional view of steps (1) to (6) of a manufacturing process of a MEMS linear solenoid inductor in an example provided by an embodiment of the present application;
  • FIG. 11 is a schematic cross-sectional view of steps (7) to (12) of a manufacturing process of a MEMS linear solenoid inductor in an example provided by an embodiment of the present application;
  • FIG. 12 is a schematic cross-sectional view of steps (13) to (17) of a manufacturing process of a MEMS linear solenoid inductor in an example provided by an embodiment of the present application;
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a MEMS ring solenoid inductor provided by an embodiment of the present application. As shown in FIG. 1, it includes: a silicon substrate 1, a ring-shaped soft magnet core 2, a solenoid 3 and; wherein,
  • the ring-shaped soft magnetic core 2 is wrapped inside the silicon substrate 1, as shown in FIGS. 2 and 3, the silicon substrate 1 is provided with spiral holes, and the two of the ring-shaped soft magnetic core 2 are opposite to each other. The edges of each pass through the center of the spiral tunnel, and the solenoid 3 is disposed in the spiral tunnel.
  • the spiral channel is provided on the silicon substrate 1
  • the solenoid 3 provided in the spiral channel is also provided inside the silicon substrate 1, that is, the annular soft magnetic core 2 of the inductor and the solenoid 3 are both It is provided inside the silicon substrate 1.
  • the solenoid 3 and the spiral channel have the same shape, and the solenoid 3 is disposed in the spiral channel. Since the ring-shaped soft magnet core 2 passes through the center of the spiral channel, the ring-shaped soft magnet core 2 also passes through the solenoid 3 center of.
  • the solenoid 3 is the winding of the inductor, and the first and last ends of the solenoid 3 form the input end and the output end of the inductor, respectively. Understandably, the number of turns of the solenoid 3 determines the inductance value of the inductor.
  • An embodiment of the present application provides a MEMS toroidal solenoid inductor.
  • the thickness of the silicon substrate is fully utilized to obtain the inductance
  • the cross-sectional area of the winding is larger, which improves the magnetic flux and increases the inductance of the inductor.
  • the silicon substrate can protect the ring-shaped soft magnetic core and the solenoid, which improves the strength and resistance of the inductor. Good impact performance.
  • the silicon substrate 1 is divided into an upper silicon substrate 11 and a lower silicon substrate 12, and the ring-shaped soft magnet core 2 is divided into an upper iron core 21 and a lower iron A core 22, and the upper core 21 and the lower core 22 have the same shape;
  • the lower surface of the upper silicon substrate 11 is provided with a core groove corresponding to the shape of the upper core 21, and the upper surface of the lower silicon substrate 12 is provided with a shape corresponding to the shape of the lower core 22 Iron core groove, the upper iron core 21 and the lower iron core 22 are respectively disposed in corresponding iron core grooves, and the lower surface of the upper silicon substrate 11 and the upper surface of the lower silicon substrate 12 are mutually Bonding so that the lower surface of the upper core 21 and the upper surface of the lower core 22 are aligned with each other.
  • the upper iron core 21 and the lower iron core 22 are two iron cores of the same shape, which are formed by the ring-shaped soft magnet core 2 being divided into two in the vertical direction. Half.
  • the upper silicon substrate 11 and the lower silicon substrate 12 are formed by dividing the silicon substrate 1 in the vertical direction, and the two are arranged symmetrically.
  • the ring-shaped soft magnet core is divided into an upper core and a lower core to reduce the eddy current in the core Losses further improve the efficiency of the inductor.
  • the first horizontal trench 31 ' is provided on the upper surface of the silicon substrate 1
  • the second horizontal trench 32' is provided on the lower surface of the silicon substrate 1
  • the vertical through hole 33 ' Through the upper and lower surfaces of the silicon substrate;
  • each vertical through hole 33 ' is also divided into two located on the upper silicon substrate 11 and the lower silicon substrate 12, respectively. Sections.
  • the plurality of first horizontal grooves 31 'and the plurality of second horizontal grooves 32' communicate through the plurality of vertical through holes 33 '.
  • the vertical through hole 33 ' may be ring-shaped or arc-shaped, and the first horizontal groove 31' and the second horizontal groove 32 'may also be ring-shaped or arc-shaped.
  • the inductor further includes two pins 4 and two pin slots 4 ';
  • the two pin grooves 4 ' are provided on the upper surface of the silicon substrate 1, the two pin grooves 4' are respectively connected to the head and tail of the spiral channel, and the two pin 4 are respectively provided on The two pin slots 4 '.
  • the two pin grooves 4 are connected to the head and tail of the spiral channel, the two pins 4 are connected to the head and tail of the solenoid 3, respectively.
  • the two pins 4 form the input and output ends of the inductor, respectively.
  • the annular soft magnetic core 2 is made of iron-nickel alloy material or iron-cobalt alloy material.
  • the solenoid 3 and the copper are made of metal.
  • Step 1 Fabricating an upper silicon substrate and a lower silicon substrate separately; wherein, fabricating the upper silicon substrate includes: performing a first thermal oxidation on the first silicon wafer with a first preset thickness; according to the structure of the spiral channel, Multiple first horizontal trenches, upper half portions of multiple vertical through holes, and core grooves are deeply etched on the upper surface, inner surface, and lower surface silicon of the first silicon wafer after the first oxidation, respectively; Performing a second thermal oxidation on the first silicon wafer obtained by deep etching of silicon to obtain the upper silicon substrate; making the lower silicon substrate includes: performing a second step on the second silicon wafer of a first preset thickness One thermal oxidation; according to the structure of the spiral channel, the core groove and the plurality of vertical through holes are deeply etched by the silicon on the upper surface, the inner surface and the lower surface of the second silicon wafer after the first oxidation A half part and a plurality of second horizontal trenches; performing a second thermal oxidation on the second silicon wafer to obtain the lower
  • Step 2 forming an upper core and a lower core by electroplating in the core grooves of the upper silicon substrate and the lower silicon substrate respectively;
  • Step 3 align the upper surface of the upper silicon substrate and the lower surface of the lower silicon substrate with each other, and align the lower surface of the upper core and the upper surface of the upper core with each other , Bonding the upper silicon substrate and the lower silicon substrate at a low temperature, and forming the spiral holes in the upper silicon substrate and the lower silicon substrate after bonding;
  • Step 4 Electroplating is formed in the spiral channel to form a solenoid, that is, a MEMS ring solenoid inductor is obtained.
  • step S1 the structural difference between the upper silicon substrate 11 and the lower silicon substrate 12 is essentially only that the upper surface of the upper silicon substrate 11 is provided with a first horizontal trench 31 ', and the lower silicon liner A second horizontal trench 32 'is provided on the lower surface of the bottom 12, and the rest of the structure is the same, and the silicon substrate 11 and the lower silicon substrate 12 are symmetrically arranged, and the processing process before bonding the two is basically the same.
  • step S2 the upper iron core 21 and the lower iron core 22 are plated on the upper silicon substrate 11 and the lower silicon substrate 12, respectively, because the iron core needs to be completely wrapped in the silicon substrate, so the iron core is electroplated
  • step S2 the upper iron core 21 and the lower iron core 22 are plated on the upper silicon substrate 11 and the lower silicon substrate 12, respectively, because the iron core needs to be completely wrapped in the silicon substrate, so the iron core is electroplated
  • One step is completed before bonding the upper silicon substrate 11 and the lower silicon substrate 12.
  • step S3 when bonding the upper silicon substrate 11 and the lower silicon substrate 12, it is necessary to ensure and make the lower surface of the upper core 21 and the upper surface of the lower core 22 to ensure that the magnetic fields of the two are coordinated with each other.
  • the horizontal trenches and vertical through holes previously provided in the upper silicon substrate 11 and the lower silicon substrate 12 are combined to form a spiral channel and the above.
  • step S4 after the spiral channel is formed, only the relevant metal needs to be electroplated therein to form the solenoid 3.
  • the first silicon wafer and the second silicon wafer may be double-throw silicon wafers with a thickness of 1000 ⁇ m and silicon wafers with high resistivity to improve the insulation of the entire inductor and reduce eddy current losses at high frequencies.
  • the first silicon wafer and the second silicon wafer are generally thermally oxidized to form a 2 ⁇ m thick thermal oxide layer.
  • the first silicon wafer and the second silicon wafer are deeply etched to obtain the upper silicon substrate 11 and the lower silicon substrate 12 and then subjected to thermal oxidation treatment,
  • the silicon substrate 11 and the lower silicon substrate 12 are used as bases to make other structures of inductors.
  • the upper core 21 and the lower core 22 are formed by electroplating at corresponding positions of the upper silicon substrate 11 and the lower silicon substrate 12.
  • the upper core 21 and the lower core 22 are wrapped inside the silicon substrate 1 by bonding, and a complete spiral channel is formed.
  • the solenoid 3 is formed by electroplating in the spiral channel, which completes the production of the MEMS ring solenoid inductor.
  • a method for manufacturing a MEMS toroidal solenoid inductor provided by an embodiment of the present application divides a silicon substrate into two symmetrical parts to be separately manufactured, and finishes iron core plating before bonding, and forms a spiral after plating after bonding Wire tube, the entire manufacturing process does not need to use deep etching of multiple layers of silicon, which improves the processing error tolerance, has good repeatability, and the obtained inductor structure has high accuracy, and is compatible with IC semiconductor processes, suitable for large-scale produce.
  • the upper core 21 is formed by electroplating in the core groove of the upper silicon substrate 11, specifically including:
  • the metal mask plate After registering the metal mask plate with the iron core groove pattern and the iron core groove on the lower surface of the upper silicon substrate 11, the metal mask plate is closely attached to the upper silicon substrate 11 lower surface;
  • the forming of the lower iron core 22 by plating in the iron core groove of the lower silicon substrate 12 specifically includes:
  • the metal mask plate After registering the metal mask plate with the iron core groove pattern with the iron core groove on the upper surface of the lower silicon substrate 12, the metal mask plate is closely attached to the lower silicon substrate 12 Upper surface
  • a third preset thickness is electroplated in the core groove of the lower silicon substrate 12
  • the iron-nickel alloy or iron-cobalt alloy obtains the lower core 22.
  • the corresponding seed layer when the iron core uses iron-nickel alloy, the corresponding seed layer uses metallic nickel; when the iron core uses iron-cobalt alloy, the corresponding seed layer uses metallic cobalt.
  • the thickness of the seed layer which is the second preset thickness, can be determined according to actual process requirements.
  • the thicknesses of the upper core 21 and the lower core 22, that is, the third preset thickness, are determined according to the depth of the core groove.
  • the manufacturing process of the upper iron core 21 and the lower iron core 22 is exactly the same, except that the positions where the two are formed are different, and the two can be processed separately at the same time.
  • the formation of the solenoid 3 by electroplating in the spiral channel specifically includes:
  • the metal copper is electroplated until the spiral holes are completely filled with the metal copper, thereby obtaining the solenoid.
  • the manufacturing of the upper silicon substrate further includes:
  • two pin grooves are deeply etched on the upper surface of the first silicon wafer after the first oxidation; accordingly,
  • Step S4 also includes:
  • the two leads are formed by electroplating in the two lead grooves.
  • 4-6 are schematic cross-sectional views of steps (1) to (17) of a manufacturing process of a MEMS toroidal solenoid inductor in examples provided by embodiments of the present application, specifically:
  • the upper and lower surfaces of the upper silicon substrate and the lower silicon substrate are exposed with vertical through hole patterns.
  • the upper surface is etched using the oxide layer as a masking layer, and vertical through holes and horizontal grooves on the upper surface are etched.
  • the lower surface is etched using the oxide layer as a masking layer to etch the iron core pattern.
  • the lower surface is magnetron sputtered with 100 nm metallic nickel as a seed layer.
  • FIG. 7 is a schematic diagram of a three-dimensional structure of a MEMS linear solenoid inductor provided by an embodiment of the present application. As shown in FIG. 7, it includes: a silicon substrate 1, a linear soft magnet core 2 ', a solenoid 3 and ;among them,
  • the linear soft magnetic core 2 ' is wrapped inside the silicon substrate 1, as shown in FIGS. 8 and 9, the silicon substrate 1 is provided with spiral holes, and the linear soft magnetic core 2' The two opposite sides of each pass through the center of the spiral tunnel, and the solenoid 3 is disposed in the spiral tunnel.
  • the spiral channel is provided on the silicon substrate 1
  • the solenoid 3 provided in the spiral channel is also provided inside the silicon substrate 1, that is, the linear soft magnetic core 2 'of the inductor and the solenoid 3 are provided inside the silicon substrate 1.
  • the shape of the solenoid 3 and the spiral channel are the same, and the solenoid 3 is disposed in the spiral channel. Since the linear soft magnetic core 2 'passes through the center of the spiral channel, the linear soft magnetic core 2' also passes through The center of the solenoid 3.
  • the solenoid 3 is the winding of the inductor, and the first and last ends of the solenoid 3 form the input end and the output end of the inductor, respectively. Understandably, the number of turns of the solenoid 3 and determines the transformation ratio of the inductor.
  • a MEMS linear solenoid inductor provided by an embodiment of the present application is obtained by fully using the thickness of the silicon substrate by arranging the linear soft magnetic core and the solenoid of the inductor all inside the silicon substrate The larger the cross-sectional area of the winding of the inductor, the higher the inductance of the inductor and the larger the magnetic flux. At the same time, the silicon substrate can protect the linear soft magnetic core and the solenoid, improving the strength of the inductor. Good impact resistance.
  • the silicon substrate 1 is divided into an upper silicon substrate 11 and a lower silicon substrate 12, and the linear soft magnetic core 2 'is divided into an upper iron core 21 and A lower core 22, and the upper core 21 and the lower core 22 have the same shape;
  • the lower surface of the upper silicon substrate 11 is provided with a core groove corresponding to the shape of the upper core 21, and the upper surface of the lower silicon substrate 12 is provided with a shape corresponding to the shape of the lower core 22 Iron core groove, the upper iron core 21 and the lower iron core 22 are respectively disposed in corresponding iron core grooves, and the lower surface of the upper silicon substrate 11 and the upper surface of the lower silicon substrate 12 are mutually Bonding so that the lower surface of the upper core 21 and the upper surface of the lower core 22 are aligned with each other.
  • the upper iron core 21 and the lower iron core 22 are two iron cores of the same shape, which are formed by dividing the linear soft magnetic core 2 'in the vertical direction, the shape of the two is also linear, and the thickness is linear Half of soft magnetic core 2 '.
  • the upper silicon substrate 11 and the lower silicon substrate 12 are formed by dividing the silicon substrate 1 in the vertical direction, and the two are arranged symmetrically.
  • the inductor is easy to process, and the linear soft magnetic core is divided into an upper core and a lower core to reduce the core.
  • the eddy current loss further improves the efficiency of the inductor.
  • the first horizontal trench 31 ' is provided on the upper surface of the silicon substrate 1
  • the second horizontal trench 32' is provided on the lower surface of the silicon substrate 1
  • the vertical through hole 33 ' Through the upper and lower surfaces of the silicon substrate;
  • each vertical through hole 33 ' is also divided into two located on the upper silicon substrate 11 and the lower silicon substrate 12, respectively. Sections.
  • a plurality of first horizontal grooves 31 ' are arranged in parallel with each other, and a plurality of second horizontal grooves 32' are also arranged in parallel with each other, and communicate through a plurality of vertical through holes 33 '.
  • the vertical through hole 33 ' may be linear or arc-shaped, and the first horizontal groove 31' and the second horizontal groove 32 'may also be linear or arc-shaped.
  • the inductor further includes two pins 4 and two pin slots 4 ';
  • the two pin grooves 4 ' are provided on the upper surface of the silicon substrate 1, the two pin grooves 4' are respectively connected to the head and tail of the spiral channel, and the two pin 4 are respectively provided on The two pin slots 4 '.
  • the two pin grooves 4 are connected to the head and tail of the spiral channel, the two pins 4 are connected to the head and tail of the solenoid 3, respectively.
  • the two pins 4 form the input and output ends of the inductor, respectively.
  • the linear soft magnetic core 2 ' is made of iron-nickel alloy material or iron-cobalt alloy material.
  • the solenoid 3 and the copper are made of metal.
  • Step 1 Fabricating an upper silicon substrate and a lower silicon substrate separately; wherein, fabricating the upper silicon substrate includes: performing a first thermal oxidation on the first silicon wafer with a first preset thickness; according to the structure of the spiral channel, A plurality of parallel first horizontal trenches, an upper half of a plurality of vertical through holes and an iron core are deeply etched from the silicon on the upper surface, the inner surface and the lower surface of the first silicon wafer after the first oxidation Groove; performing a second thermal oxidation on the first silicon wafer obtained by deep etching of silicon to obtain the upper silicon substrate; making the lower silicon substrate includes: forming a second silicon wafer of a first preset thickness Perform the first thermal oxidation; according to the structure of the spiral channel, the core groove and a plurality of vertical through holes are deeply etched from the silicon on the upper surface, the inner surface and the lower surface of the second silicon wafer after the first oxidation The lower half of the substrate and multiple parallel second horizontal trenches; performing a second thermal oxidation
  • Step 2 Form an upper core and a lower core by electroplating in the core grooves of the upper silicon substrate and the lower silicon substrate respectively;
  • Step 3 After the upper surface of the upper silicon substrate and the lower surface of the lower silicon substrate are oppositely arranged, and the lower surface of the upper core and the upper surface of the upper core are aligned with each other, Bonding the upper silicon substrate and the lower silicon substrate at a low temperature, and forming the spiral holes in the upper silicon substrate and the lower silicon substrate after bonding;
  • Step 4 Electroplating is formed in the spiral hole to form a solenoid, that is, a MEMS linear solenoid inductor is obtained.
  • step S1 the structural difference between the upper silicon substrate 11 and the lower silicon substrate 12 is essentially only that the upper surface of the upper silicon substrate 11 is provided with a first horizontal trench 31 ', and the lower silicon liner A second horizontal trench 32 'is provided on the lower surface of the bottom 12, and the rest of the structure is the same, and the silicon substrate 11 and the lower silicon substrate 12 are symmetrically arranged, and the processing process before bonding the two is basically the same.
  • step S2 the upper iron core 21 and the lower iron core 22 are plated on the upper silicon substrate 11 and the lower silicon substrate 12, respectively, because the iron core needs to be completely wrapped in the silicon substrate, so the iron core is electroplated
  • step S2 the upper iron core 21 and the lower iron core 22 are plated on the upper silicon substrate 11 and the lower silicon substrate 12, respectively, because the iron core needs to be completely wrapped in the silicon substrate, so the iron core is electroplated
  • One step is completed before bonding the upper silicon substrate 11 and the lower silicon substrate 12.
  • step S3 when bonding the upper silicon substrate 11 and the lower silicon substrate 12, it is necessary to ensure that the lower surface of the upper core 21 and the upper surface of the lower core 22 are aligned with each other to ensure that the magnetic fields of the two are mutually coordination.
  • the horizontal trenches and vertical through holes previously provided in the upper silicon substrate 11 and the lower silicon substrate 12 are combined to form a spiral channel and the above.
  • step S4 after the spiral channel is formed, only the relevant metal needs to be electroplated therein to form the solenoid 3.
  • the first silicon wafer and the second silicon wafer may be double-throw silicon wafers with a thickness of 1000 ⁇ m and silicon wafers with high resistivity to improve the insulation of the entire inductor and reduce eddy current losses at high frequencies.
  • the first silicon wafer and the second silicon wafer are generally thermally oxidized to form a 2 ⁇ m thick thermal oxide layer.
  • the first silicon wafer and the second silicon wafer are deeply etched to obtain the upper silicon substrate 11 and the lower silicon substrate 12 and then subjected to thermal oxidation treatment,
  • the upper silicon substrate 11 and the lower silicon substrate 12 are used as bases for other structures for manufacturing inductors.
  • the upper core 21 and the lower core 22 are formed by electroplating at corresponding positions of the upper silicon substrate 11 and the lower silicon substrate 12.
  • the upper core 21 and the lower core 22 are wrapped inside the silicon substrate 1 by bonding, and a complete spiral channel is formed.
  • the solenoid 3 is formed by electroplating in the spiral channel, and the manufacture of the MEMS linear solenoid inductor is completed.
  • a method for manufacturing a MEMS linear solenoid inductor provided by an embodiment of the present application divides a silicon substrate into two symmetrical parts to be separately manufactured, and finishes iron core plating before bonding, and forms the plating after bonding Solenoid, the entire manufacturing process does not need to use deep etching of multi-layer silicon, improves the processing error tolerance, has good repeatability, the obtained inductor structure has high accuracy, and is compatible with IC semiconductor process, suitable for large Scale production.
  • the upper core 21 is formed by electroplating in the core groove of the upper silicon substrate 11, specifically including:
  • the metal mask plate After registering the metal mask plate with the iron core groove pattern and the iron core groove on the lower surface of the upper silicon substrate 11, the metal mask plate is closely attached to the upper silicon substrate 11 lower surface;
  • the forming of the lower iron core 22 by plating in the iron core groove of the lower silicon substrate 12 specifically includes:
  • the metal mask plate After registering the metal mask plate with the iron core groove pattern with the iron core groove on the upper surface of the lower silicon substrate 12, the metal mask plate is closely attached to the lower silicon substrate 12 Upper surface
  • a third preset thickness is electroplated in the core groove of the lower silicon substrate 12
  • the iron-nickel alloy or iron-cobalt alloy obtains the lower core 22.
  • the corresponding seed layer when the iron core uses iron-nickel alloy, the corresponding seed layer uses metallic nickel; when the iron core uses iron-cobalt alloy, the corresponding seed layer uses metallic cobalt.
  • the thickness of the seed layer which is the second preset thickness, can be determined according to actual process requirements.
  • the thicknesses of the upper core 21 and the lower core 22, that is, the third preset thickness, are determined according to the depth of the core groove.
  • the manufacturing process of the upper iron core 21 and the lower iron core 22 is exactly the same, except that the positions where the two are formed are different, and the two can be processed separately at the same time.
  • the formation of the solenoid 3 by electroplating in the spiral channel specifically includes:
  • the metal copper is electroplated until the spiral holes are completely filled with the metal copper, thereby obtaining the solenoid.
  • the manufacturing of the upper silicon substrate further includes:
  • two pin grooves are deeply etched on the upper surface of the first silicon wafer after the first oxidation; accordingly,
  • Step S4 also includes:
  • the two leads are formed by electroplating in the two lead grooves.
  • FIGS. 10-12 are schematic cross-sectional views of steps (1) to (17) of a manufacturing process of a MEMS linear solenoid inductor in an example provided by an embodiment of the present application, specifically:
  • the upper and lower surfaces of the upper silicon substrate and the lower silicon substrate are exposed with vertical through hole patterns.
  • the upper surface is etched using the oxide layer as a masking layer, and vertical through holes and horizontal grooves on the upper surface are etched.
  • the lower surface is etched using the oxide layer as a masking layer to etch the iron core pattern.
  • the lower surface is magnetron sputtered with 100 nm metallic nickel as a seed layer.
  • the lower surface is magnetron sputtered with 100 nm metallic titanium as an intermediate layer, and then sputtered with 500 nm metallic copper as a seed layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本申请实施例提供了一种MEMS螺线管电感器,包括:硅衬底、软磁铁芯和螺线管;其中,所述软磁铁芯包裹在所述硅衬底内部,所述硅衬底上设置有螺旋孔道,且所述软磁铁芯穿过所述螺旋孔道的中心,所述螺线管设置在所述螺旋孔道中。通过将电感器的软磁铁芯及螺线管全部设置在硅衬底的内部,充分利用了硅衬底的厚度,得到的电感器的绕组横截面积更大,提高了磁通量,使得电感器的电感值增大;同时,硅衬底能够对软磁铁芯及螺线管起到保护作用,提高了电感器的强度,抗冲击性能好。

Description

一种MEMS螺线管电感器及其制造方法
相关申请的交叉引用
本申请要求于2018年10月30日提交的申请号为201811277260.8,发明名称为“一种MEMS环形螺线管电感器及其制造方法”以及于2018年12月11日提交的申请号为201811509400.X,发明名称为“一种MEMS直线形螺线管电感器及其制造方法”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请实施例涉及微机电系统(MEMS)技术领域,更具体地,涉及一种MEMS螺线管电感器及其制造方法。
背景技术
微机电系统(Micro-Electro-Mechanical System,MEMS)微型电感器由磁芯和绕组构成,与常规电感器相比,磁芯尺寸大幅度缩小,绕组形式也有所改变。微型电感器在微型电子设备、信息设备上有广泛应用,可以起到电压变换、电流变换、阻抗变换、隔离、稳压等作用。
目前基于MEMS工艺的微型电感器主要分为两种,平面螺旋式与螺线管式。其中,平面螺旋式电感器的结构随着绕组匝数增多,线圈直径变大,沿铁芯的总磁通量并不能线性增加而是增加量逐渐减小,因此此种结构的匝数一般有限,导致此种电感器的总功率提升有瓶颈。螺线管式电感器克服了绕组匝数的限制,螺线管绕组充分利用了衬底内部垂直空间,因此电感集成在电路中时,获得同样电感性能时,占用的芯片表面空间更小,有利于芯片微型化的进一步发展。
但是,目前基于MEMS工艺的微型电感器大都是采用薄膜制造工艺,薄膜制造工艺是一种增材制造方法,故得到的微型电感器的绝大部分结构都是在衬底表面上方,导致电感器强度难以保证,薄膜工艺制作的电感导线面积较小,不能流过大电流,限制电流流动能力,限制其在大电流以及功率器件中的应用;同时采用薄膜制造工艺能够得到的垂直高度有限,使 得电感器的绕组横截面积小,磁通量小,导致电感器的电感值低。
发明内容
本申请实施例提供了一种克服上述问题或者至少部分地解决上述问题的MEMS螺线管电感器及其制造方法。
一方面,本申请实施例提供了一种MEMS环形螺线管电感器,包括:硅衬底、环形软磁铁芯和螺线管;其中,
所述环形软磁铁芯包裹在所述硅衬底内部,所述硅衬底上设置有螺旋孔道,且所述环形软磁铁芯穿过所述螺旋孔道的中心,所述螺线管设置在所述螺旋孔道中。
进一步地,所述硅衬底分为上硅衬底和下硅衬底,所述环形软磁铁芯分为上铁芯和下铁芯,且所述上铁芯和所述下铁芯形状相同;
所述上硅衬底的下表面设置有与所述上铁芯形状相对应的铁芯槽,所述下硅衬底的上表面设置有与所述下铁芯形状相对应的铁芯槽,所述上铁芯和所述下铁芯分别设置在对应的铁芯槽中,且所述上硅衬底的下表面和所述下硅衬底的上表面相互键合,使得所述上铁芯的下表面和所述下铁芯的上表面相互对准。
进一步地,所述螺旋孔道包括多条第一水平沟槽、多条第二水平沟槽以及多个竖直通孔;
所述第一水平沟槽设置在所述硅衬底的上表面,所述第二水平沟槽设置在所述硅衬底的下表面,所述竖直通孔贯通所述硅衬底的上表面和下表面;
所述螺旋孔道中的任一所述第一水平沟槽的首尾分别与两个竖直通孔连通,且所述两个竖直通孔分别与两个相邻的第二水平沟槽连通。
进一步地,还包括两个引脚和两个引脚槽;
所述两个引脚槽设置在所述硅衬底的上表面,所述两个引脚槽分别与所述螺旋孔道的首尾连通,所述两个引脚分别设置在所述两个引脚槽中。
进一步地,所述环形软磁铁芯由铁镍合金材料或铁钴合金材料制作而成。
进一步地,所述螺线管由金属铜制作而成。
另一方面,本申请实施例提供了一种MEMS环形螺线管电感器的制 造方法,包括:
步骤1,分别制作上硅衬底和下硅衬底;其中,
制作所述上硅衬底包括:
对第一预设厚度的第一硅片进行第一次热氧化;
根据螺旋孔道的结构,分别在经第一次氧化后的所述第一硅片的上表面、内部和下表面硅深刻蚀出多条第一水平沟槽、多个竖直通孔的上半部分以及铁芯槽;
对经硅深刻蚀得到的所述第一硅片进行第二次热氧化,得到所述上硅衬底;
制作所述下硅衬底包括:
对第一预设厚度的第二硅片进行第一次热氧化;
根据螺旋孔道的结构,分别在经第一次氧化后的所述第二硅片的上表面、内部和下表面硅深刻蚀出铁芯槽、多个竖直通孔的下半部分及多条第二水平沟槽;
对所述第二硅片进行第二次热氧化,得到所述下硅衬底;
步骤2,分别在所述上硅衬底和所述下硅衬底的铁芯槽内电镀形成上铁芯和下铁芯;
步骤3,将所述上硅衬底的上表面和所述下硅衬底的下表面相互对准,且使所述上铁芯的下表面和所述下铁芯的上表面相互对准后,将所述上硅衬底和所述下硅衬底低温键合,键合后的所述上硅衬底和所述下硅衬底中形成所述螺旋孔道;
步骤4,在所述螺旋孔道中电镀形成螺线管,即得到MEMS环形螺线管电感器。
进一步地,所述在所述上硅衬底的铁芯槽内电镀形成上铁芯,具体包括:
将带有铁芯槽图案的金属掩膜版与所述上硅衬底的下表面上的铁芯槽配准后,将所述金属掩膜版紧贴在所述上硅衬底的下表面;
在所述上硅衬底的下表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述上硅衬底的铁芯槽内电镀第三预设厚度的铁镍合金或铁钴合金即得到上铁芯;相应地,
所述在所述下硅衬底的铁芯槽内电镀形成下铁芯,具体包括:
将带有铁芯槽图案的金属掩膜版与所述下硅衬底的上表面上的铁芯槽配准后,将所述金属掩膜版紧贴在所述下硅衬底的上表面;
在所述下硅衬底的上表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述下硅衬底的铁芯槽内电镀第三预设厚度的铁镍合金或铁钴合金即得到下铁芯。
进一步地,所述在所述螺旋孔道中电镀形成螺线管,具体包括:
在所述下硅衬底的下表面磁控溅射第四预设厚度的金属钛作为中间层,并在所述中间层上磁控溅射第五预设厚度的金属铜作为种子层,再在所述旋孔道的第二沟槽和竖直通孔内电镀金属铜直至金属铜填充至第一沟槽的下平面的位置;
在所述上硅衬底的上表面磁控溅射金属铜作为种子层后,电镀金属铜直至所述螺旋孔道完全被金属铜填满,即得到所述螺线管。
进一步地,所述制作所述上硅衬底还包括:
根据两个引脚的结构和位置,在经第一次氧化后的所述第一硅片的上表面硅深刻蚀出两个引脚槽;相应地,
在步骤S4中还包括:
在所述两个引脚槽中电镀形成所述两个引脚。
再一方面,本申请实施例提供了一种MEMS直线形螺线管电感器,包括:硅衬底、直线形软磁铁芯和螺线管;其中,
所述直线形软磁铁芯包裹在所述硅衬底内部,所述硅衬底上设置有螺旋孔道,且所述直线形软磁铁芯穿过所述螺旋孔道的中心,所述螺线管设置在所述螺旋孔道中。
进一步地,所述硅衬底分为上硅衬底和下硅衬底,所述直线形软磁铁芯分为上铁芯和下铁芯,且所述上铁芯和所述下铁芯形状相同;
所述上硅衬底的下表面设置有与所述上铁芯形状相对应的铁芯槽,所述下硅衬底的上表面设置有与所述下铁芯形状相对应的铁芯槽,所述上铁芯和所述下铁芯分别设置在对应的铁芯槽中,且所述上硅衬底的下表面和所述下硅衬底的上表面相互键合,使得所述上铁芯的下表面和所述下铁芯的上表面相互对准。
进一步地,所述螺旋孔道包括多条第一水平沟槽、多条第二水平沟槽以及多个竖直通孔;
所述第一水平沟槽设置在所述硅衬底的上表面,所述第二水平沟槽设置在所述硅衬底的下表面,所述竖直通孔贯通所述硅衬底的上表面和下表面;
所述螺旋孔道中的任一所述第一水平沟槽的首尾分别与两个竖直通孔连通,且所述两个竖直通孔分别与两个相邻的第二水平沟槽连通。
进一步地,还包括两个引脚和两个引脚槽;
所述两个引脚槽设置在所述硅衬底的上表面,所述两个引脚槽分别与所述螺旋孔道的首尾连通,所述两个引脚分别设置在所述两个引脚槽中。
进一步地,所述直线形软磁铁芯由铁镍合金材料或铁钴合金材料制作而成。
进一步地,所述螺线管由金属铜制作而成。
又一方面,本申请实施例提供了一种MEMS直线形螺线管电感器的制造方法,包括:
步骤1,分别制作上硅衬底和下硅衬底;其中,
制作所述上硅衬底包括:
对第一预设厚度的第一硅片进行第一次热氧化;
根据螺旋孔道的结构,分别在经第一次氧化后的所述第一硅片的上表面、内部和下表面硅深刻蚀出多条平行的第一水平沟槽、多个竖直通孔的上半部分以及铁芯槽;
对经硅深刻蚀得到的所述第一硅片进行第二次热氧化,得到所述上硅衬底;
制作所述下硅衬底包括:
对第一预设厚度的第二硅片进行第一次热氧化;
根据螺旋孔道的结构,分别在经第一次氧化后的所述第二硅片的上表面、内部和下表面硅深刻蚀出铁芯槽、多个竖直通孔的下半部分及多条平行的第二水平沟槽;
对所述第二硅片进行第二次热氧化,得到所述下硅衬底;
步骤2,分别在所述上硅衬底和所述下硅衬底的铁芯槽内电镀形成上 铁芯和下铁芯;
步骤3,将所述上硅衬底的上表面和所述下硅衬底的下表面相互对准,将所述上硅衬底和所述下硅衬底低温键合,键合后的所述上硅衬底和所述下硅衬底中形成所述螺旋孔道;
步骤4,在所述螺旋孔道中电镀形成螺线管,即得到MEMS直线形螺线管电感器。
进一步地,所述在所述上硅衬底的铁芯槽内电镀形成上铁芯,具体包括:
将带有铁芯槽图案的金属掩膜版与所述上硅衬底的下表面上的铁芯槽配准后,将所述金属掩膜版紧贴在所述上硅衬底的下表面;
在所述上硅衬底的下表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述上硅衬底的铁芯槽内电镀第三预设厚度的铁镍合金或铁钴合金即得到上铁芯;相应地,
所述在所述下硅衬底的铁芯槽内电镀形成下铁芯,具体包括:
将带有铁芯槽图案的金属掩膜版与所述下硅衬底的上表面上的铁芯槽配准后,将所述金属掩膜版紧贴在所述下硅衬底的上表面;
在所述下硅衬底的上表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述下硅衬底的铁芯槽内电镀第三预设厚度的铁镍合金或铁钴合金即得到下铁芯。
进一步地,所述在所述螺旋孔道中电镀形成螺线管,具体包括:
在所述下硅衬底的下表面磁控溅射第四预设厚度的金属钛作为中间层,并在所述中间层上磁控溅射第五预设厚度的金属铜作为种子层,再在所述旋孔道的第二沟槽和竖直通孔内电镀金属铜直至金属铜填充至第一沟槽的下平面的位置;
在所述上硅衬底的上表面磁控溅射金属铜作为种子层后,电镀金属铜直至所述螺旋孔道完全被金属铜填满,即得到所述螺线管。
进一步地,所述制作所述上硅衬底包括还包括:
根据两个引脚的结构和位置,在经第一次氧化后的所述第一硅片的上表面硅深刻蚀出两个引脚槽;相应地,
在步骤S4中还包括:
在所述两个引脚槽中电镀形成所述两个引脚。
本申请实施例提供的一种MEMS环形螺线管电感器及其制造方法,通过将电感器的环形软磁铁芯及螺线管全部设置在硅衬底的内部,充分利用了硅衬底的厚度,得到的电感器的绕组横截面积更大,提高了磁通量,使得电感器的电感值增大;同时,硅衬底能够对环形软磁铁芯及螺线管起到保护作用,提高了电感器的强度,抗冲击性能好。
本申请实施例提供的一种MEMS直线形螺线管电感器及其制造方法,通过将电感器的直线形软磁铁芯及螺线管全部设置在硅衬底的内部,充分利用了硅衬底的厚度,得到的电感器的绕组横截面积更大,提高了磁通量,使得电感器的电感值增大;同时,硅衬底能够对直线形软磁铁芯及螺线管起到保护作用,提高了电感器的强度,抗冲击性能好。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种MEMS环形螺线管电感器的立体结构示意图;
图2为本申请实施例中上硅衬底的立体结构示意图;
图3为本申请实施例中下硅衬底的立体结构示意图;
图4为本申请实施例提供的实例中一种MEMS环形螺线管电感器的制造过程的步骤(1)至(6)的截面示意图;
图5为本申请实施例提供的实例中一种MEMS环形螺线管电感器的制造过程的步骤(7)至(12)的截面示意图;
图6为本申请实施例提供的实例中一种MEMS环形螺线管电感器的制造过程的步骤(13)至(17)的截面示意图;
图7为本申请实施例提供的一种MEMS直线形螺线管电感器的立体结构示意图;
图8为本申请实施例中上硅衬底的立体结构示意图;
图9为本申请实施例中下硅衬底的立体结构示意图;
图10为本申请实施例提供的实例中一种MEMS直线形螺线管电感器的制造过程的步骤(1)至(6)的截面示意图;
图11为本申请实施例提供的实例中一种MEMS直线形螺线管电感器的制造过程的步骤(7)至(12)的截面示意图;
图12为本申请实施例提供的实例中一种MEMS直线形螺线管电感器的制造过程的步骤(13)至(17)的截面示意图;
附图标记:
1-硅衬底;                            2-环形软磁铁芯;
2’-直线形软磁铁芯;                  3-螺线管;
4-引脚;                              4’-引脚槽;
11-上硅衬底;                         12-下硅衬底;
21-上铁芯;                           22-下铁芯;
31’-第一水平沟槽;                   32’-第二水平沟槽;
33’-竖直通孔。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请实施例提供的一种MEMS环形螺线管电感器的立体结构示意图,如图1所示,包括:硅衬底1、环形软磁铁芯2、螺线管3及;其中,
所述环形软磁铁芯2包裹在所述硅衬底1内部,如图2和图3所示,所述硅衬底1上设置有螺旋孔道,且所述环形软磁铁芯2的两个相对的边分别穿过所述螺旋孔道的中心,所述螺线管3设置在所述螺旋孔道中。
其中,由于螺线孔道设置在硅衬底1上,所以设置在螺旋孔道中的螺线管3也是设置在硅衬底1的内部,即电感器的环形软磁铁芯2和螺线管3都设置在硅衬底1的内部。
具体地,螺线管3和螺旋孔道形状相同,且螺线管3设置在螺旋孔道 中,由于环形软磁铁芯2穿过螺旋孔道的中心和,环形软磁铁芯2也穿过螺线管3的中心。电感器工作时,螺线管3为电感器的绕组,螺线管3的首尾两端分别构成电感器的输入端和输出端。可以理解地,螺线管3的匝数决定电感器的电感值。
本申请实施例提供的一种MEMS环形螺线管电感器,通过将电感器的环形软磁铁芯及螺线管全部设置在硅衬底的内部,充分利用了硅衬底的厚度,得到的电感器的绕组横截面积更大,提高了磁通量,使得电感器的电感值增大;同时,硅衬底能够对环形软磁铁芯及螺线管起到保护作用,提高了电感器的强度,抗冲击性能好。
在上述实施例中,如图1-3所示,所述硅衬底1分为上硅衬底11和下硅衬底12,所述环形软磁铁芯2分为上铁芯21和下铁芯22,且所述上铁芯21和所述下铁芯22形状相同;
所述上硅衬底11的下表面设置有与所述上铁芯21形状相对应的铁芯槽,所述下硅衬底12的上表面设置有与所述下铁芯22形状相对应的铁芯槽,所述上铁芯21和所述下铁芯22分别设置在对应的铁芯槽中,且所述上硅衬底11的下表面和所述下硅衬底12的上表面相互键合,使得所述上铁芯21的下表面和所述下铁芯22的上表面相互对准。
其中,上铁芯21和下铁芯22为形状相同的两块铁芯,是由环形软磁铁芯2在竖直方向平分而成,两者的形状也是环形,而厚度为环形软磁铁芯2的一半。同理,上硅衬底11和下硅衬底12是由硅衬底1在竖直方向平分而成,两者对称设置。
通过将硅衬底和环形软磁铁芯分别平分了两个部分,使得电感器整体便于加工的同时,将环形软磁铁芯分为上铁芯和下铁芯两个部分可以减少铁芯内的涡流损耗,进一步提高电感器的效率。
在上述实施例中,如图2和图3所示,所述螺旋孔道和所述分别包括多条第一水平沟槽31’、多条第二水平沟槽32’以及多个竖直通孔33’;
所述第一水平沟槽31’设置在所述硅衬底1的上表面,所述第二水平沟槽32’设置在所述硅衬底1的下表面,所述竖直通孔33’贯通所述硅衬底的上表面和下表面;
所述螺旋孔道和所述中的任一所述第一水平沟槽31’的首尾分别与两 个竖直通孔33’连通,且所述两个竖直通孔33’分别与两个相邻的第二水平沟槽32’连通。
其中,当硅衬底1被分为上硅衬底11和下硅衬底12时,每个竖直通孔33’也被分为分别位于上硅衬底11和下硅衬底12的两个部分。
具体地,在螺旋孔道中,多个第一水平沟槽31’与多个第二水平沟槽32’通过多个竖直通孔33’连通。可以理解的,竖直通孔33’可以是环形或弧形,第一水平沟槽31’和第二水平沟槽32’也可以是环形或弧形。
在上述实施例中,如图1所示,电感器还包括两个引脚4和两个引脚槽4’;
所述两个引脚槽4’设置在所述硅衬底1的上表面,所述两个引脚槽4’分别与所述螺旋孔道的首尾连通,所述两个引脚4分别设置在所述两个引脚槽4’中。
具体地,由于两个引脚槽4’与螺旋孔道的首尾连通,所以,两个引脚4分别与螺线管3的首尾连接。在电感器工作时,两个引脚4分别构成电感器的输入端和输出端。
在上述实施例中,所述环形软磁铁芯2由铁镍合金材料或铁钴合金材料制作而成。
在上述实施例中,所述螺线管3和所述由金属铜制作而成。
本申请实施例提供的一种MEMS环形螺线管电感器的制造方法,包括:
步骤1,分别制作上硅衬底和下硅衬底;其中,制作所述上硅衬底包括:对第一预设厚度的第一硅片进行第一次热氧化;根据螺旋孔道的结构,分别在经第一次氧化后的所述第一硅片的上表面、内部和下表面硅深刻蚀出多条第一水平沟槽、多个竖直通孔的上半部分以及铁芯槽;对经硅深刻蚀得到的所述第一硅片进行第二次热氧化,得到所述上硅衬底;制作所述下硅衬底包括:对第一预设厚度的第二硅片进行第一次热氧化;根据螺旋孔道的结构,分别在经第一次氧化后的所述第二硅片的上表面、内部和下表面硅深刻蚀出铁芯槽、多个竖直通孔的下半部分及多条第二水平沟槽;对所述第二硅片进行第二次热氧化,得到所述下硅衬底;
步骤2,分别在所述上硅衬底和所述下硅衬底的铁芯槽内电镀形成上 铁芯和下铁芯;
步骤3,将所述上硅衬底的上表面和所述下硅衬底的下表面相互对准,且使所述上铁芯的下表面和所述上铁芯的上表面相互对准后,将所述上硅衬底和所述下硅衬底低温键合,键合后的所述上硅衬底和所述下硅衬底中形成所述螺旋孔道;
步骤4,在螺旋孔道中电镀形成螺线管,即得到MEMS环形螺线管电感器。
其中,在步骤S1中,上硅衬底11和下硅衬底12之间结构上的差异实质上仅仅在于,上硅衬底11上表面设置的是第一水平沟槽31’,下硅衬底12下表面设置的是第二水平沟槽32’,其余部分的结构均相同,且硅衬底11和下硅衬底12对称设置,在两者键合之前的加工过程基本一致。
在步骤S2中,在上硅衬底11和下硅衬底12上分别电镀形成上铁芯21和下铁芯22,因为需要将铁芯完全包裹在硅衬底之内,故铁芯电镀这一步骤在键合上硅衬底11和下硅衬底12之前完成。
在步骤S3中,键合上硅衬底11和下硅衬底12时,需要保证且使上铁芯21的下表面和下铁芯22的上表面,以保证两者的磁场相互协调。同时,上硅衬底11和下硅衬底12键合后,之前分别设置在上硅衬底11和下硅衬底12的水平沟槽和竖直通孔组合形成螺旋孔道和所述。
在步骤S4中,螺旋孔道形成后,只需要在其中电镀相关金属,即可形成螺线管3。
具体地,第一硅片和第二硅片可采用1000μm厚的双抛硅片,并采用高电阻率的硅片,以提高电感器整体的绝缘性,减少高频下的涡流损失。对第一硅片和第二硅片进行热氧化一般形成2μm厚的热氧化层即可。根据环形软磁铁芯2和螺旋孔道的结构,对第一硅片和第二硅片进行硅深刻蚀得到上硅衬底11和下硅衬底12并在此进行热氧化处理,即可将上硅衬底11和下硅衬底12作为基底用于制作电感器的其他结构。接下来,在上硅衬底11和下硅衬底12的相应位置利用电镀形成上铁芯21和下铁芯22。通过键合将上铁芯21和下铁芯22包裹在硅衬底1的内部,并形成完整的螺旋孔道。在螺旋孔道中电镀形成螺线管3,即完成了MEMS环形螺线管电感器的制作。
本申请实施例提供的一种MEMS环形螺线管电感器的制造方法,将硅衬底分为两个对称的部分单独进行制作,并在键合前完成铁芯电镀,键合后电镀形成螺线管,整个制作过程无需采用多层硅深刻蚀,提高了加工的容错率,具有很好的可重复性,得到的电感器结构准确度高,且能够与IC半导体工艺兼容,适用于大规模生产。
在上述实施例中,所述在所述上硅衬底11的铁芯槽内电镀形成上铁芯21,具体包括:
将带有铁芯槽图案的金属掩膜版与所述上硅衬底11的下表面上的铁芯槽配准后,将所述金属掩膜版紧贴在所述上硅衬底11的下表面;
在所述上硅衬底11的下表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述上硅衬底11的铁芯槽内电镀第三预设厚度的铁镍合金或铁钴合金即得到上铁芯21。
相应地,所述在所述下硅衬底12的铁芯槽内电镀形成下铁芯22,具体包括:
将带有铁芯槽图案的金属掩膜版与所述下硅衬底12的上表面上的铁芯槽配准后,将所述金属掩膜版紧贴在所述下硅衬底12的上表面;
在所述下硅衬底12的上表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述下硅衬底12的铁芯槽内电镀第三预设厚度的铁镍合金或铁钴合金即得到下铁芯22。
其中,当铁芯采用铁镍合金时,对应的种子层采用金属镍;当铁芯采用铁钴合金时,对应的种子层采用金属钴。种子层的厚度即第二预设厚度,可以根据实际的工艺需求进行确定。上铁芯21和下铁芯22的厚度即第三预设厚度,根据铁芯槽的深度确定。
具体地,上铁芯21和下铁芯22的制作过程所采用的工艺完全相同,只是两者形成的位置不同,两者可以同时单独加工制作。
在上述实施例中,所述在所述螺旋孔道中电镀形成螺线管3,具体包括:
在所述下硅衬底的下表面磁控溅射第四预设厚度的金属钛作为中间层,并在所述中间层上磁控溅射第五预设厚度的金属铜作为种子层,再在所述螺旋孔道的第二沟槽和竖直通孔内电镀金属铜直至金属铜填充至第 一沟槽的下平面的位置;
在所述上硅衬底的上表面磁控溅射金属铜作为种子层后,电镀金属铜直至所述螺旋孔道完全被金属铜填满,即得到所述螺线管。
在上述实施例中,所述制作所述上硅衬底还包括:
根据两个引脚的结构和位置,在经第一次氧化后的所述第一硅片的上表面硅深刻蚀出两个引脚槽;相应地,
在步骤S4中还包括:
在所述两个引脚槽中电镀形成所述两个引脚。
下面通过一个实例对MEMS环形螺线管电感器的制造方法进一步进行说明,需要说明的是,以下仅仅是本申请实施例的一个实例,本申请实施例并不以此为限。
图4-6为本申请实施例提供的实例中一种MEMS环形螺线管电感器的制造过程的步骤(1)至(17)的截面示意图,具体为:
(1)采用1000μm厚双抛硅片。采用高电阻率硅片以提高整体结构绝缘性,减少高频下涡流损失。硅片热氧化,生成双面2μm厚热氧化层。
(2)涂覆光刻胶,上硅衬底上表面曝光第一水平沟槽(覆盖竖直通孔位置)、触点图案,下硅衬底上表面曝光竖直通孔和第二水平沟槽,上硅衬底和下硅衬底的下表面分别曝光铁芯槽图案,第一水平沟槽、第二水平沟槽及竖直通孔构成螺旋孔道。
(3)使用BOE(Buffered Oxide Etch)溶液去除暴露位置的二氧化硅,使二氧化硅图形化。
(4)第二次涂胶,上硅衬底和下硅衬底的上下表面曝光竖直通孔图案。
(5)硅深刻蚀上下表面,刻蚀硅通孔图案至一定深度。
(6)使用piranha溶液,去除光刻胶。
(7)以氧化层作为掩蔽层进行上表面刻蚀,刻蚀出竖直通孔与上表面导水平沟槽。以氧化层作为掩蔽层进行下表面刻蚀,刻蚀出铁芯图案。
(8)热氧化,形成2μm厚氧化层。
(9)取带有铁芯槽图案的金属掩膜版,将其上铁芯槽图案与一二号硅片下表面的铁芯槽图案对准,紧贴在硅片下表面上。
(10)下表面磁控溅射100nm金属镍作为种子层。
(11)电镀铁镍合金,使铁镍合金从底部填充到距硅片表面100um。
(12)将上硅衬底和下硅衬底的下表面相对,进行低温硅硅键合。
(13)在键合后的双层硅片下表面磁控溅射100nm金属钛为中间层,随后溅射500nm金属铜作为种子层。
(14)电镀金属铜,使电镀铜从底部填充到顶部水平导线下平面位置。
(15)上表面磁控溅射500nm金属铜。
(16)电镀金属铜,使得上表面全部结构被电镀铜完全覆盖。
(17)使用CMP(化学机械抛光机)进行上下表面金属铜减薄,直到金属铜减薄至于硅片热氧化层表面相同高度停止,随后CMP抛光表面,完成MEMS三维螺线管型电感器的制作。
图7为本申请实施例提供的一种MEMS直线形螺线管电感器的立体结构示意图,如图7所示,包括:硅衬底1、直线形软磁铁芯2’、螺线管3及;其中,
所述直线形软磁铁芯2’包裹在所述硅衬底1内部,如图8和图9所示,所述硅衬底1上设置有螺旋孔道,且所述直线形软磁铁芯2’的两个相对的边分别穿过所述螺旋孔道的中心,所述螺线管3设置在所述螺旋孔道中。
其中,由于螺线孔道设置在硅衬底1上,所以设置在螺旋孔道中的螺线管3也是设置在硅衬底1的内部,即电感器的直线形软磁铁芯2’和螺线管3都设置在硅衬底1的内部。
具体地,螺线管3和螺旋孔道形状相同,且螺线管3设置在螺旋孔道中,由于直线形软磁铁芯2’穿过螺旋孔道的中心和,直线形软磁铁芯2’也穿过螺线管3的中心。电感器工作时,螺线管3为电感器的绕组,螺线管3的首尾两端分别构成电感器的输入端和输出端。可以理解地,螺线管3和的匝数决定电感器的变压比。
本申请实施例提供的一种MEMS直线形螺线管电感器,通过将电感器的直线形软磁铁芯及螺线管全部设置在硅衬底的内部,充分利用了硅衬底的厚度,得到的电感器的绕组横截面积更大,使得电感器的电感值高且磁通量大;同时,硅衬底能够对直线形软磁铁芯及螺线管起到保护作用,提高了电感器的强度,抗冲击性能好。
在上述实施例中,如图7-9所示,所述硅衬底1分为上硅衬底11和下硅衬底12,所述直线形软磁铁芯2’分为上铁芯21和下铁芯22,且所述上铁芯21和所述下铁芯22形状相同;
所述上硅衬底11的下表面设置有与所述上铁芯21形状相对应的铁芯槽,所述下硅衬底12的上表面设置有与所述下铁芯22形状相对应的铁芯槽,所述上铁芯21和所述下铁芯22分别设置在对应的铁芯槽中,且所述上硅衬底11的下表面和所述下硅衬底12的上表面相互键合,使得所述上铁芯21的下表面和所述下铁芯22的上表面相互对准。
其中,上铁芯21和下铁芯22为形状相同的两块铁芯,是由直线形软磁铁芯2’在竖直方向平分而成,两者的形状也是直线形,而厚度为直线形软磁铁芯2’的一半。同理,上硅衬底11和下硅衬底12是由硅衬底1在竖直方向平分而成,两者对称设置。
通过将硅衬底和直线形软磁铁芯分别平分了两个部分,使得电感器整体便于加工的同时,将直线形软磁铁芯分为上铁芯和下铁芯两个部分可以减少铁芯内的涡流损耗,进一步提高电感器的效率。
在上述实施例中,如图8和图9所示,所述螺旋孔道和所述分别包括多条第一水平沟槽31’、多条第二水平沟槽32’以及多个竖直通孔33’;
所述第一水平沟槽31’设置在所述硅衬底1的上表面,所述第二水平沟槽32’设置在所述硅衬底1的下表面,所述竖直通孔33’贯通所述硅衬底的上表面和下表面;
所述螺旋孔道和所述中的任一所述第一水平沟槽31’的首尾分别与两个竖直通孔33’连通,且所述两个竖直通孔33’分别与两个相邻的第二水平沟槽32’连通。
其中,当硅衬底1被分为上硅衬底11和下硅衬底12时,每个竖直通孔33’也被分为分别位于上硅衬底11和下硅衬底12的两个部分。
具体地,在螺旋孔道中,多个第一水平沟槽31’相互平行设置,多个第二水平沟槽32’也相互平行设置,且通过多个竖直通孔33’连通。可以理解的,竖直通孔33’可以是直线形或弧形,第一水平沟槽31’和第二水平沟槽32’也可以是直线形或弧形。
在上述实施例中,如图7所示,电感器还包括两个引脚4和两个引脚 槽4’;
所述两个引脚槽4’设置在所述硅衬底1的上表面,所述两个引脚槽4’分别与所述螺旋孔道的首尾连通,所述两个引脚4分别设置在所述两个引脚槽4’中。
具体地,由于两个引脚槽4’与螺旋孔道的首尾连通,所以,两个引脚4分别与螺线管3的首尾连接。在电感器工作时,两个引脚4分别构成电感器的输入端和输出端。
在上述实施例中,所述直线形软磁铁芯2’由铁镍合金材料或铁钴合金材料制作而成。
在上述实施例中,所述螺线管3和所述由金属铜制作而成。
本申请实施例提供的一种MEMS直线形螺线管电感器的制造方法,包括:
步骤1,分别制作上硅衬底和下硅衬底;其中,制作所述上硅衬底包括:对第一预设厚度的第一硅片进行第一次热氧化;根据螺旋孔道的结构,分别在经第一次氧化后的所述第一硅片的上表面、内部和下表面硅深刻蚀出多条平行的第一水平沟槽、多个竖直通孔的上半部分以及铁芯槽;对经硅深刻蚀得到的所述第一硅片进行第二次热氧化,得到所述上硅衬底;制作所述下硅衬底包括:对第一预设厚度的第二硅片进行第一次热氧化;根据螺旋孔道的结构,分别在经第一次氧化后的所述第二硅片的上表面、内部和下表面硅深刻蚀出铁芯槽、多个竖直通孔的下半部分及多条平行的第二水平沟槽;对所述第二硅片进行第二次热氧化,得到所述下硅衬底;
步骤2,分别在所述上硅衬底和所述下硅衬底的铁芯槽内电镀形成上铁芯和下铁芯;
步骤3,将所述上硅衬底的上表面和所述下硅衬底的下表面相对设置,且使所述上铁芯的下表面和所述上铁芯的上表面相互对准后,将所述上硅衬底和所述下硅衬底低温键合,键合后的所述上硅衬底和所述下硅衬底中形成所述螺旋孔道;
步骤4,在螺旋孔道中电镀形成螺线管,即得到MEMS直线形螺线管电感器。
其中,在步骤S1中,上硅衬底11和下硅衬底12之间结构上的差异 实质上仅仅在于,上硅衬底11上表面设置的是第一水平沟槽31’,下硅衬底12下表面设置的是第二水平沟槽32’,其余部分的结构均相同,且硅衬底11和下硅衬底12对称设置,在两者键合之前的加工过程基本一致。
在步骤S2中,在上硅衬底11和下硅衬底12上分别电镀形成上铁芯21和下铁芯22,因为需要将铁芯完全包裹在硅衬底之内,故铁芯电镀这一步骤在键合上硅衬底11和下硅衬底12之前完成。
在步骤S3中,键合上硅衬底11和下硅衬底12时,需要保证且使上铁芯21的下表面和下铁芯22的上表面相互对准,以保证两者的磁场相互协调。同时,上硅衬底11和下硅衬底12键合后,之前分别设置在上硅衬底11和下硅衬底12的水平沟槽和竖直通孔组合形成螺旋孔道和所述。
在步骤S4中,螺旋孔道形成后,只需要在其中电镀相关金属,即可形成螺线管3。
具体地,第一硅片和第二硅片可采用1000μm厚的双抛硅片,并采用高电阻率的硅片,以提高电感器整体的绝缘性,减少高频下的涡流损失。对第一硅片和第二硅片进行热氧化一般形成2μm厚的热氧化层即可。根据直线形软磁铁芯2’和螺旋孔道的结构,对第一硅片和第二硅片进行硅深刻蚀得到上硅衬底11和下硅衬底12并在此进行热氧化处理,即可将上硅衬底11和下硅衬底12作为基底用于制作电感器的其他结构。接下来,在上硅衬底11和下硅衬底12的相应位置利用电镀形成上铁芯21和下铁芯22。通过键合将上铁芯21和下铁芯22包裹在硅衬底1的内部,并形成完整的螺旋孔道。在螺旋孔道中电镀形成螺线管3,即完成了MEMS直线形螺线管电感器的制作。
本申请实施例提供的一种MEMS直线形螺线管电感器的制造方法,将硅衬底分为两个对称的部分单独进行制作,并在键合前完成铁芯电镀,键合后电镀形成螺线管,整个制作过程无需采用多层硅深刻蚀,提高了加工的容错率,具有很好的可重复性,得到的电感器结构准确度高,且能够与IC半导体工艺兼容,适用于大规模生产。
在上述实施例中,所述在所述上硅衬底11的铁芯槽内电镀形成上铁芯21,具体包括:
将带有铁芯槽图案的金属掩膜版与所述上硅衬底11的下表面上的铁 芯槽配准后,将所述金属掩膜版紧贴在所述上硅衬底11的下表面;
在所述上硅衬底11的下表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述上硅衬底11的铁芯槽内电镀第三预设厚度的铁镍合金或铁钴合金即得到上铁芯21。
相应地,所述在所述下硅衬底12的铁芯槽内电镀形成下铁芯22,具体包括:
将带有铁芯槽图案的金属掩膜版与所述下硅衬底12的上表面上的铁芯槽配准后,将所述金属掩膜版紧贴在所述下硅衬底12的上表面;
在所述下硅衬底12的上表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述下硅衬底12的铁芯槽内电镀第三预设厚度的铁镍合金或铁钴合金即得到下铁芯22。
其中,当铁芯采用铁镍合金时,对应的种子层采用金属镍;当铁芯采用铁钴合金时,对应的种子层采用金属钴。种子层的厚度即第二预设厚度,可以根据实际的工艺需求进行确定。上铁芯21和下铁芯22的厚度即第三预设厚度,根据铁芯槽的深度确定。
具体地,上铁芯21和下铁芯22的制作过程所采用的工艺完全相同,只是两者形成的位置不同,两者可以同时单独加工制作。
在上述实施例中,所述在所述螺旋孔道中电镀形成螺线管3,具体包括:
在所述下硅衬底的下表面磁控溅射第四预设厚度的金属钛作为中间层,并在所述中间层上磁控溅射第五预设厚度的金属铜作为种子层,再在所述螺旋孔道的第二沟槽和竖直通孔内电镀金属铜直至金属铜填充至第一沟槽的下平面的位置;
在所述上硅衬底的上表面磁控溅射金属铜作为种子层后,电镀金属铜直至所述螺旋孔道完全被金属铜填满,即得到所述螺线管。
在上述实施例中,所述制作所述上硅衬底还包括:
根据两个引脚的结构和位置,在经第一次氧化后的所述第一硅片的上表面硅深刻蚀出两个引脚槽;相应地,
在步骤S4中还包括:
在所述两个引脚槽中电镀形成所述两个引脚。
下面通过一个实例对MEMS直线形螺线管电感器的制造方法进一步进行说明,需要说明的是,以下仅仅是本申请实施例的一个实例,本申请实施例并不以此为限。
图10-12为本申请实施例提供的实例中一种MEMS直线形螺线管电感器的制造过程的步骤(1)至(17)的截面示意图,具体为:
(1)采用1000μm厚双抛硅片。采用高电阻率硅片以提高整体结构绝缘性,减少高频下涡流损失。硅片热氧化,生成双面2μm厚热氧化层。
(2)涂覆光刻胶,上硅衬底上表面曝光第一水平沟槽(覆盖竖直通孔位置)、触点图案,下硅衬底上表面曝光竖直通孔和第二水平沟槽,上硅衬底和下硅衬底的下表面分别曝光铁芯槽图案,第一水平沟槽、第二水平沟槽及竖直通孔构成螺旋孔道。
(3)使用BOE(Buffered Oxide Etch)溶液去除暴露位置的二氧化硅,图形化。
(4)第二次涂胶,上硅衬底和下硅衬底的上下表面曝光竖直通孔图案。
(5)硅深刻蚀上下表面,刻蚀出硅通孔图案。
(6)使用piranha溶液,去除光刻胶。
(7)以氧化层作为掩蔽层进行上表面刻蚀,刻蚀出竖直通孔与上表面水平沟槽。以氧化层作为掩蔽层进行下表面刻蚀,刻蚀出铁芯图案。
(8)热氧化,形成2μm厚氧化层。
(9)取带有铁芯槽图案的金属掩膜版,将其上铁芯槽图案与一二号硅片下表面的铁芯槽图案对准,紧贴在硅片下表面上。
(10)下表面磁控溅射100nm金属镍作为种子层。
(11)电镀铁镍合金,使铁镍合金从底部填充到距硅片表面100um。
(12)将上硅衬底和下硅衬底的下表面相对,进行低温硅硅键合。
(13)下表面磁控溅射100nm金属钛为中间层,随后溅射500nm金属铜作为种子层。
(14)电镀金属铜,使电镀铜从底部填充到顶部水平导线下平面位置。
(15)上表面磁控溅射500nm金属铜。
(16)电镀金属铜,使得上表面全部结构被电镀铜完全覆盖。
(17)使用CMP(化学机械抛光机)进行上下表面金属铜减薄,直到金属铜减薄至于硅片热氧化层表面相同高度停止,随后CMP抛光表面,完成MEMS三维螺线管型电感器的制作。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种MEMS环形螺线管电感器,其特征在于,包括:硅衬底、环形软磁铁芯和螺线管;其中,
    所述环形软磁铁芯包裹在所述硅衬底内部,所述硅衬底上设置有螺旋孔道,且所述环形软磁铁芯穿过所述螺旋孔道的中心,所述螺线管设置在所述螺旋孔道中。
  2. 根据权利要求1所述的MEMS环形螺线管电感器,其特征在于,所述硅衬底分为上硅衬底和下硅衬底,所述环形软磁铁芯分为上铁芯和下铁芯,且所述上铁芯和所述下铁芯形状相同;
    所述上硅衬底的下表面设置有与所述上铁芯形状相对应的铁芯槽,所述下硅衬底的上表面设置有与所述下铁芯形状相对应的铁芯槽,所述上铁芯和所述下铁芯分别设置在对应的铁芯槽中,且所述上硅衬底的下表面和所述下硅衬底的上表面相互键合,使得所述上铁芯的下表面和所述下铁芯的上表面相互对准。
  3. 根据权利要求1所述的MEMS环形螺线管电感器,其特征在于,所述螺旋孔道包括多条第一水平沟槽、多条第二水平沟槽以及多个竖直通孔;
    所述第一水平沟槽设置在所述硅衬底的上表面,所述第二水平沟槽设置在所述硅衬底的下表面,所述竖直通孔贯通所述硅衬底的上表面和下表面;
    所述螺旋孔道中的任一所述第一水平沟槽的首尾分别与两个竖直通孔连通,且所述两个竖直通孔分别与两个相邻的第二水平沟槽连通。
  4. 根据权利要求1所述的MEMS环形螺线管电感器,其特征在于,还包括两个引脚和两个引脚槽;
    所述两个引脚槽设置在所述硅衬底的上表面,所述两个引脚槽分别与所述螺旋孔道的首尾连通,所述两个引脚分别设置在所述两个引脚槽中。
  5. 根据权利要求1所述的MEMS环形螺线管电感器,其特征在于,所述环形软磁铁芯由铁镍合金材料或铁钴合金材料制作而成。
  6. 根据权利要求1所述的MEMS环形螺线管电感器,其特征在于,所述螺线管由金属铜制作而成。
  7. 一种如权利要求1-6任一项所述的MEMS环形螺线管电感器的制造方法,其特征在于,包括:
    步骤1,分别制作上硅衬底和下硅衬底;其中,
    制作所述上硅衬底包括:
    对第一预设厚度的第一硅片进行第一次热氧化;
    根据螺旋孔道的结构,分别在经第一次氧化后的所述第一硅片的上表面、内部和下表面硅深刻蚀出多条第一水平沟槽、多个竖直通孔的上半部分以及铁芯槽;
    对经硅深刻蚀得到的所述第一硅片进行第二次热氧化,得到所述上硅衬底;
    制作所述下硅衬底包括:
    对第一预设厚度的第二硅片进行第一次热氧化;
    根据螺旋孔道的结构,分别在经第一次氧化后的所述第二硅片的上表面、内部和下表面硅深刻蚀出铁芯槽、多个竖直通孔的下半部分及多条第二水平沟槽;
    对所述第二硅片进行第二次热氧化,得到所述下硅衬底;
    步骤2,分别在所述上硅衬底和所述下硅衬底的铁芯槽内电镀形成上铁芯和下铁芯;
    步骤3,将所述上硅衬底的上表面和所述下硅衬底的下表面相互对准,且使所述上铁芯的下表面和所述下铁芯的上表面相互对准后,将所述上硅衬底和所述下硅衬底低温键合,键合后的所述上硅衬底和所述下硅衬底中形成所述螺旋孔道;
    步骤4,在所述螺旋孔道中电镀形成螺线管,即得到MEMS环形螺线管电感器。
  8. 根据权利要求7所述方法,其特征在于,所述在所述上硅衬底的铁芯槽内电镀形成上铁芯,具体包括:
    将带有铁芯槽图案的金属掩膜版与所述上硅衬底的下表面上的铁芯槽配准后,将所述金属掩膜版紧贴在所述上硅衬底的下表面;
    在所述上硅衬底的下表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述上硅衬底的铁芯槽内电镀第三预设厚度的铁镍合金或 铁钴合金即得到上铁芯;相应地,
    所述在所述下硅衬底的铁芯槽内电镀形成下铁芯,具体包括:
    将带有铁芯槽图案的金属掩膜版与所述下硅衬底的上表面上的铁芯槽配准后,将所述金属掩膜版紧贴在所述下硅衬底的上表面;
    在所述下硅衬底的上表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述下硅衬底的铁芯槽内电镀第三预设厚度的铁镍合金或铁钴合金即得到下铁芯。
  9. 根据权利要求7所述方法,其特征在于,所述在所述螺旋孔道中电镀形成螺线管,具体包括:
    在所述下硅衬底的下表面磁控溅射第四预设厚度的金属钛作为中间层,并在所述中间层上磁控溅射第五预设厚度的金属铜作为种子层,再在所述旋孔道的第二沟槽和竖直通孔内电镀金属铜直至金属铜填充至第一沟槽的下平面的位置;
    在所述上硅衬底的上表面磁控溅射金属铜作为种子层后,电镀金属铜直至所述螺旋孔道完全被金属铜填满,即得到所述螺线管。
  10. 根据权利要求7所述方法,其特征在于,所述制作所述上硅衬底还包括:
    根据两个引脚的结构和位置,在经第一次氧化后的所述第一硅片的上表面硅深刻蚀出两个引脚槽;相应地,
    在步骤S4中还包括:
    在所述两个引脚槽中电镀形成所述两个引脚。
  11. 一种MEMS直线形螺线管电感器,其特征在于,包括:硅衬底、直线形软磁铁芯和螺线管;其中,
    所述直线形软磁铁芯包裹在所述硅衬底内部,所述硅衬底上设置有螺旋孔道,且所述直线形软磁铁芯穿过所述螺旋孔道的中心,所述螺线管设置在所述螺旋孔道中。
  12. 根据权利要求11所述的MEMS直线形螺线管电感器,其特征在于,所述硅衬底分为上硅衬底和下硅衬底,所述直线形软磁铁芯分为上铁芯和下铁芯,且所述上铁芯和所述下铁芯形状相同;
    所述上硅衬底的下表面设置有与所述上铁芯形状相对应的铁芯槽,所 述下硅衬底的上表面设置有与所述下铁芯形状相对应的铁芯槽,所述上铁芯和所述下铁芯分别设置在对应的铁芯槽中,且所述上硅衬底的下表面和所述下硅衬底的上表面相互键合,使得所述上铁芯的下表面和所述下铁芯的上表面相互对准。
  13. 根据权利要求11所述的MEMS直线形螺线管电感器,其特征在于,所述螺旋孔道包括多条第一水平沟槽、多条第二水平沟槽以及多个竖直通孔;
    所述第一水平沟槽设置在所述硅衬底的上表面,所述第二水平沟槽设置在所述硅衬底的下表面,所述竖直通孔贯通所述硅衬底的上表面和下表面;
    所述螺旋孔道中的任一所述第一水平沟槽的首尾分别与两个竖直通孔连通,且所述两个竖直通孔分别与两个相邻的第二水平沟槽连通。
  14. 根据权利要求11所述的MEMS直线形螺线管电感器,其特征在于,还包括两个引脚和两个引脚槽;
    所述两个引脚槽设置在所述硅衬底的上表面,所述两个引脚槽分别与所述螺旋孔道的首尾连通,所述两个引脚分别设置在所述两个引脚槽中。
  15. 根据权利要求11所述的MEMS直线形螺线管电感器,其特征在于,所述直线形软磁铁芯由铁镍合金材料或铁钴合金材料制作而成。
  16. 根据权利要求11所述的MEMS直线形螺线管电感器,其特征在于,所述螺线管由金属铜制作而成。
  17. 一种如权利要求11-16任一项所述的MEMS直线形螺线管电感器的制造方法,其特征在于,包括:
    步骤1,分别制作上硅衬底和下硅衬底;其中,
    制作所述上硅衬底包括:
    对第一预设厚度的第一硅片进行第一次热氧化;
    根据螺旋孔道的结构,分别在经第一次氧化后的所述第一硅片的上表面、内部和下表面硅深刻蚀出多条平行的第一水平沟槽、多个竖直通孔的上半部分以及铁芯槽;
    对经硅深蚀刻得到的所述第一硅片进行第二次热氧化,得到所述上硅衬底;
    制作所述下硅衬底包括:
    对第一预设厚度的第二硅片进行第一次热氧化;
    根据螺旋孔道的结构,分别在经第一次氧化后的所述第二硅片的上表面、内部和下表面硅深刻蚀出铁芯槽、多个竖直通孔的下半部分及多条平行的第二水平沟槽;
    对所述第二硅片进行第二次热氧化,得到所述下硅衬底;
    步骤2,分别在所述上硅衬底和所述下硅衬底的铁芯槽内电镀形成上铁芯和下铁芯;
    步骤3,将所述上硅衬底的上表面和所述下硅衬底的下表面相互对准,将所述上硅衬底和所述下硅衬底低温键合,键合后的所述上硅衬底和所述下硅衬底中形成所述螺旋孔道;
    步骤4,在所述螺旋孔道中电镀形成螺线管,即得到MEMS直线形螺线管电感器。
  18. 根据权利要求17所述方法,其特征在于,所述在所述上硅衬底的铁芯槽内电镀形成上铁芯,具体包括:
    将带有铁芯槽图案的金属掩膜版与所述上硅衬底的下表面上的铁芯槽配准后,将所述金属掩膜版紧贴在所述上硅衬底的下表面;
    在所述上硅衬底的下表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述上硅衬底的铁芯槽内电镀第三预设厚度的铁镍合金或铁钴合金即得到上铁芯;相应地,
    所述在所述下硅衬底的铁芯槽内电镀形成下铁芯,具体包括:
    将带有铁芯槽图案的金属掩膜版与所述下硅衬底的上表面上的铁芯槽配准后,将所述金属掩膜版紧贴在所述下硅衬底的上表面;
    在所述下硅衬底的上表面磁控溅射第二预设厚度金属镍或金属钴作为种子层后,在所述下硅衬底的铁芯槽内电镀第三预设厚度的铁镍合金或铁钴合金即得到下铁芯。
  19. 根据权利要求17所述方法,其特征在于,在所述螺旋孔道中电镀形成螺线管,具体包括:
    在所述下硅衬底的下表面磁控溅射第四预设厚度的金属钛作为中间层,并在所述中间层上磁控溅射第五预设厚度的金属铜作为种子层,再在 所述旋孔道的第二沟槽和竖直通孔内电镀金属铜直至金属铜填充至第一沟槽的下平面的位置;
    在所述上硅衬底的上表面磁控溅射金属铜作为种子层后,电镀金属铜直至所述螺旋孔道完全被金属铜填满,即得到所述螺线管。
  20. 根据权利要求17所述方法,其特征在于,所述制作所述上硅衬底还包括:
    根据两个引脚的结构和位置,在经第一次氧化后的所述第一硅片的上表面硅深刻蚀出两个引脚槽;相应地,
    在步骤S4中还包括:
    在所述两个引脚槽中电镀形成所述两个引脚。
PCT/CN2019/095062 2018-10-30 2019-07-08 一种mems螺线管电感器及其制造方法 WO2020087972A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021523593A JP7267641B2 (ja) 2018-10-30 2019-07-08 Memsソレノイドインダクタ及びその製造方法
US17/290,553 US20220013275A1 (en) 2018-10-30 2019-07-08 Mems solenoid inductor and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811277260.8A CN109326421B (zh) 2018-10-30 2018-10-30 一种mems环形螺线管电感器及其制造方法
CN201811277260.8 2018-10-30
CN201811509400.X 2018-12-11
CN201811509400.XA CN109741903B (zh) 2018-12-11 2018-12-11 一种mems直线形螺线管电感器及其制造方法

Publications (1)

Publication Number Publication Date
WO2020087972A1 true WO2020087972A1 (zh) 2020-05-07

Family

ID=70461956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095062 WO2020087972A1 (zh) 2018-10-30 2019-07-08 一种mems螺线管电感器及其制造方法

Country Status (3)

Country Link
US (1) US20220013275A1 (zh)
JP (1) JP7267641B2 (zh)
WO (1) WO2020087972A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883083A (zh) * 2022-05-05 2022-08-09 北京航空航天大学 渐进型mems双层螺线管电感线圈及其集成化制备方法
CN114898986A (zh) * 2022-05-05 2022-08-12 北京航空航天大学 Z型mems双层螺线管电感双层线圈及集成化制备方法
WO2024000230A1 (zh) * 2022-06-29 2024-01-04 京东方科技集团股份有限公司 电感及其制备方法、滤波器、电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087973A1 (zh) * 2018-10-30 2020-05-07 北京航空航天大学 一种mems螺线管变压器及其制造方法
CN116022731B (zh) * 2023-02-17 2023-07-07 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种基于wlp工艺的mems磁通门传感器的制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101553890A (zh) * 2006-11-14 2009-10-07 美商·帕斯脉冲工程有限公司 无线感应装置及其制造方法
CN102682951A (zh) * 2012-05-25 2012-09-19 深圳市麦捷微电子科技股份有限公司 一种大功率扁平电感器及其制作方法
JP2016051765A (ja) * 2014-08-29 2016-04-11 株式会社村田製作所 インダクタ部品
CN109326421A (zh) * 2018-10-30 2019-02-12 北京航空航天大学 一种mems环形螺线管电感器及其制造方法
CN109741903A (zh) * 2018-12-11 2019-05-10 北京航空航天大学 一种mems直线形螺线管电感器及其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4030028B2 (ja) * 1996-12-26 2008-01-09 シチズン電子株式会社 Smd型回路装置及びその製造方法
JPH10208942A (ja) * 1997-01-17 1998-08-07 Citizen Electron Co Ltd 磁芯入りチップインダクタとその製造方法
US6249039B1 (en) 1998-09-10 2001-06-19 Bourns, Inc. Integrated inductive components and method of fabricating such components
KR100394875B1 (ko) * 2001-02-22 2003-08-19 주식회사 나노위즈 집적 3차원 솔레노이드 인덕터 및 그 제조 방법
US6696910B2 (en) 2001-07-12 2004-02-24 Custom One Design, Inc. Planar inductors and method of manufacturing thereof
JP2004006458A (ja) 2002-05-31 2004-01-08 Canon Inc コイル
JP2007214348A (ja) 2006-02-09 2007-08-23 Fuji Electric Device Technology Co Ltd 磁気誘導素子およびその製造方法
JP2008066592A (ja) 2006-09-08 2008-03-21 Fuji Electric Holdings Co Ltd 薄型磁気部品の製造方法
TWI347616B (en) * 2007-03-22 2011-08-21 Ind Tech Res Inst Inductor devices
CN101657938B (zh) * 2007-04-13 2014-05-14 株式会社村田制作所 磁场耦合型天线、磁场耦合型天线模块及磁场耦合型天线装置、及这些的制造方法
JP2009135325A (ja) 2007-11-30 2009-06-18 Asahi Kasei Electronics Co Ltd インダクタンス素子及びその製造方法
US7948346B2 (en) * 2008-06-30 2011-05-24 Alpha & Omega Semiconductor, Ltd Planar grooved power inductor structure and method
JP5421742B2 (ja) 2009-11-24 2014-02-19 パナソニック株式会社 トランス
CN102870175B (zh) * 2010-02-19 2014-06-04 王明亮 硅基功率电感
US20110291788A1 (en) 2010-05-26 2011-12-01 Tyco Electronics Corporation Planar inductor devices
US20150340338A1 (en) * 2014-05-23 2015-11-26 Texas Instruments Incorporated Conductor design for integrated magnetic devices
JP6838328B2 (ja) 2016-09-15 2021-03-03 大日本印刷株式会社 インダクタおよびインダクタの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101553890A (zh) * 2006-11-14 2009-10-07 美商·帕斯脉冲工程有限公司 无线感应装置及其制造方法
CN102682951A (zh) * 2012-05-25 2012-09-19 深圳市麦捷微电子科技股份有限公司 一种大功率扁平电感器及其制作方法
JP2016051765A (ja) * 2014-08-29 2016-04-11 株式会社村田製作所 インダクタ部品
CN109326421A (zh) * 2018-10-30 2019-02-12 北京航空航天大学 一种mems环形螺线管电感器及其制造方法
CN109741903A (zh) * 2018-12-11 2019-05-10 北京航空航天大学 一种mems直线形螺线管电感器及其制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883083A (zh) * 2022-05-05 2022-08-09 北京航空航天大学 渐进型mems双层螺线管电感线圈及其集成化制备方法
CN114898986A (zh) * 2022-05-05 2022-08-12 北京航空航天大学 Z型mems双层螺线管电感双层线圈及集成化制备方法
WO2024000230A1 (zh) * 2022-06-29 2024-01-04 京东方科技集团股份有限公司 电感及其制备方法、滤波器、电子设备

Also Published As

Publication number Publication date
JP2022506295A (ja) 2022-01-17
US20220013275A1 (en) 2022-01-13
JP7267641B2 (ja) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2020087972A1 (zh) 一种mems螺线管电感器及其制造方法
CN102446916B (zh) 具有磁芯电感器的集成电路及其制造方法
CN109326421B (zh) 一种mems环形螺线管电感器及其制造方法
CN109741903B (zh) 一种mems直线形螺线管电感器及其制造方法
US20030005569A1 (en) Ultra-miniature magnetic device
US20030070282A1 (en) Ultra-miniature magnetic device
US9735102B2 (en) High voltage device
TW201737272A (zh) 充電線圈及其製造方法
US8314676B1 (en) Method of making a controlled seam laminated magnetic core for high frequency on-chip power inductors
WO2022151691A1 (zh) 半导体结构及其制作方法
WO2020087973A1 (zh) 一种mems螺线管变压器及其制造方法
JP2008109139A (ja) いくつかのコイルブランチを有するコイル、及び当該コイルの一つを有するマイクロインダクタ
US7829799B2 (en) Method for manufacturing a miniaturized three-dimensional electric component
CN109390144B (zh) 一种mems环形螺线管变压器及其制造方法
AU2020101712A4 (en) A MEMS miniaturized solenoid transformer and its manufacturing method
CN109599249B (zh) 一种mems回形螺线管变压器及其制造方法
AU2020101768A4 (en) A MEMS miniaturized solenoid inductor and manufacturing method thereof
EP3393966B1 (en) A method for manufacturing a hollow mems structure
TWM527644U (zh) 充電線圈
CN111333020B (zh) 带有铁磁芯的螺线电感及其制备方法
KR102306712B1 (ko) 코일 부품 및 그 제조방법
CN117711767A (zh) 变压器及制备方法
CN116190356A (zh) 三维电感器的制备方法
CN111292950A (zh) 一种嵌入式磁心微型化三维电感的制作方法和电感
JP2011077372A (ja) 磁気デバイス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879264

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19879264

Country of ref document: EP

Kind code of ref document: A1