TWI388579B - 烯烴類聚合用觸媒成分及觸媒暨使用其之烯烴類聚合體之製造方法 - Google Patents

烯烴類聚合用觸媒成分及觸媒暨使用其之烯烴類聚合體之製造方法 Download PDF

Info

Publication number
TWI388579B
TWI388579B TW095119143A TW95119143A TWI388579B TW I388579 B TWI388579 B TW I388579B TW 095119143 A TW095119143 A TW 095119143A TW 95119143 A TW95119143 A TW 95119143A TW I388579 B TWI388579 B TW I388579B
Authority
TW
Taiwan
Prior art keywords
bis
decane
group
methylamino
ethylamino
Prior art date
Application number
TW095119143A
Other languages
English (en)
Other versions
TW200704656A (en
Inventor
Hosaka Motoki
Yano Takefumi
Sato Maki
Kimura Kohei
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Publication of TW200704656A publication Critical patent/TW200704656A/zh
Application granted granted Critical
Publication of TWI388579B publication Critical patent/TWI388579B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

烯烴類聚合用觸媒成分及觸媒暨使用其之烯烴類聚合體之製造方法
本發明提案新穎之胺基矽烷化合物,尤其是完全未含有習知作為烯烴類聚合用觸媒成分所必需之Si-OR鍵結的嶄新有機矽化合物,以及使用其之烯烴類的聚合用觸媒成分及觸媒,暨使用其之烯烴類聚合體之製造方法。
習知,於丙烯等烯烴類之聚合中,已知有含有鎂、鈦、電子供予性化合物及鹵素作為必需成分之固體觸媒成分。又,於由該固體觸媒成分、有機鋁化合物及有機矽化合物所構成之烴烯類聚合用觸媒的存在下使烯烴類聚合或共聚合的方法,已被大量提案。例如,於專利文獻1(日本專利特開昭57-63310號公報)及專利文獻2(日本專利特開昭57-63311號公報)中,提案了使用由鎂化合物、鈦化合物及具有Si-O-C鍵結之有機矽化合物之組合所構成的觸媒,使特別是碳數3以上之烯烴類進行聚合的方法。然而,此等方法未必能充分滿足以高產率得到高立體規則性聚合體,因而期盼更進一步的改善。
另一方面,於專利文獻3(日本專利特開昭63-3010號公報)中,提案了藉由將二烷氧基鎂、芳香族二羧酸二酯、芳香族碳氫化合物及鈦鹵化物接觸所得之生成物於粉末狀態下進行加熱處理所調製成之固體觸媒成分,與有機鋁化合物及有機矽化合物所構成之丙烯聚合用觸媒與丙烯的聚合方法。
另外,專利文獻4(日本專利特開平1-315406號公報)中,提案了於二乙氧基鎂與烷基苯所形成之懸濁液中,使四氯化鈦與之接觸,其次加入苯二甲酸氯化物使其反應,藉此得到固體生成物,將該固體生成物進一步於烷基苯存在下與四氯化鈦接觸反應而藉此所調製成之固體觸媒成分,與有機鋁化合物及有機矽化合物所構成之丙烯用觸媒及於該觸媒存在下之丙烯的聚合方法。
上述各習知技術中,其目的在於具有可省略將殘留於生成聚合體中之氯或鈦等觸媒殘渣去除的所謂脫灰步驟的高活性,同時著眼於提升立體規則性聚合體產率、或提高聚合時的觸媒活性之持續性,其成果雖可分別列舉,但仍持續期盼此種目標觸媒的改良。
此外,使用上述觸媒所得之聚合物,被利用於汽車或家電製品等之成型品、容器和薄膜等各種用途。此等係將由聚合所得之聚合物粉末進行熔融、顆粒化後,以各種成型機進行成型,但特別於利用射出成型且製造大型成型品時,要求較高的熔融聚合物的流動性(熔融流動速率,MFR),尤其是為了減低汽車材料用之高機能性嵌段共聚合體成本,於共聚合反應器內僅生產烯烴系熱可塑性彈性體(以下稱為「TPO」)生產所需的共聚合體,於製造後不添加新的另外合成之共聚合體而直接於聚合反應器內完成TPO的方法,亦即,於本領域中業界所謂的直接聚合之反應器製造(reactor made)之TPO之生產中,為了充分地將最終製品的熔融流動速率保持於較大,使射出成型容易,而有要求均聚合階段中之熔融流動速率為200以上之值的情況,因此,於維持聚合物之較高立體規則性之下,同時提升熔融流動速率的研究正被大量研究著。
熔融流動速率係大幅依存於聚合物的分子量。於本領域業界中,丙烯聚合時,一般係進行添加氫作為生成聚合物的分子量調節劑。此時,於製造低分子量聚合物的情況,亦即為了製造高熔融流動速率的聚合物,通常係添加較多的氫,但於整體聚合裝置中、尤其是反應器的耐壓上,於其安全性方面有界限,可添加的氫量亦有限制。
另外,於氣相聚合中,為了添加較多的氫亦必須降低進行聚合之單體的分壓,而此情況下生產性將降低。又,大量使用氫亦造成成本面的問題。為了解決此問題,專利文獻5(WO2004/16662號公報)中揭示了藉由使用Si(OR1 )3 (NR2 R3 )所示之化合物作為烯烴類聚合的觸媒成分,以製造高熔融流動速率且高立體規則性之聚合物,並列出其效果。
然而,此等並未充分根本性地解決上述直接聚合之TPO製造的問題,故期盼更進一步的改善。
(專利文獻1)日本專利特開昭57-63310號公報(申請專利範圍)(專利文獻2)日本專利特開昭57-63311號公報(申請專利範圍)(專利文獻3)日本專利特開昭63-3010號公報(申請專利範圍)(專利文獻4)日本專利特開平1-315406號公報(申請專利範圍)(專利文獻5)WO2004-16662號公報(申請專利範圍)
因此,本發明之目的在於提供可高度維持聚合物的立體規則性及產率,且以氫的少量添加便可得到高熔融流動速率者的效果,亦即為適合氫反應(hydrogen response)良好之烯烴類聚合用觸媒成分之胺基矽烷化合物、聚合用觸媒成分及觸媒,暨使用其之烯烴類聚合體之製造方法。
於相關實際情況中,本發明者等人經反覆潛心研究,結果發現,習知工業性烯烴類聚合用觸媒成分雖已知具有複數Si-OR鍵結的有機矽化合物,但發現含有2級胺基、不具有Si-OR之新穎烷基胺基矽烷化合物,以往並不知道其為有用之烯烴類聚合用觸媒成分,再者,由含有鎂、鈦、鹵素及電子供予性化合物之固體觸媒成分、有機鋁化合物、及具有上述特定構造之新穎烷基胺基矽烷化合物所形成之觸媒,較習知觸媒更適合作為烯烴類聚合用觸媒成分等情事,遂完成本發明。
亦即,本發明係提供以下述一般式(1):R1 2 Si(NHR2 )2 (1)(式中,R1 為碳數3~5之直鏈或分枝狀烷基或環戊基,可為相同或相異;R2 為甲基或乙基)所示之胺基矽烷化合物。
另外,本發明係提供一種烯烴類聚合用觸媒成分,其特徵為以下述一般式(2):R3 n Si(NR4 R5 )4 n (2)(式中,R3 為碳數1~20之直鏈或分枝狀烷基、環烷基及其等之衍生物、乙烯基、烯丙基、芳烷基,可為相同或相異;R4 為氫原子、碳數1~20之直鏈或分枝狀烷基、環烷基及其等之衍生物、乙烯基、烯丙基、芳烷基,可為相同或相異;R5 為碳數1~20之直鏈或分枝狀烷基、環烷基及其等之衍生物、乙烯基、烯丙基、芳烷基,可為相同或相異;R4 與R5 亦可結合形成環狀;n為0或1至3的整數;NR4 R5 基之至少一個為2級胺基。)所示。
另外,本發明係提供一種烯烴類聚合用觸媒,其特徵為,將以下述一般式(2):R3 n Si(NR4 R5 )4 n (2)(式中,R3 為碳數1~20之直鏈或分枝狀烷基、環烷基及其等之衍生物、乙烯基、烯丙基、芳烷基,可為相同或相異;R4 為氫原子、碳數1~20之直鏈或分枝狀烷基、環烷基及其等之衍生物、乙烯基、烯丙基、芳烷基,可為相同或相異;R5 為碳數1~20之直鏈或分枝狀烷基、環烷基及其等之衍生物、乙烯基、烯丙基、芳烷基,可為相同或相異;R4 與R5 亦可結合形成環狀;n為0或1至3的整數;NR4 R5 基之至少一個為2級胺基。)所示之胺基矽烷化合物作為必須成分所形成。
另外,本發明係提供一種烯烴類聚合體之製造方法,其特徵為,於上述烯烴類聚合用觸媒成分的存在下,進行烯烴類的聚合。
於將本發明新穎之胺基矽烷化合物及特定胺基矽烷化合物使用作為烯烴類聚合用觸媒成分的情況,可較習知觸媒高度地維持聚合物的立體規則性及產率,且以氫的少量添加即可得到獲得高熔融流動速率者的效果(以下有時簡稱為「氫反應」)。因此,藉由可削減聚合時所用之氫量和觸媒活性高等之機能,則可依低成本提供泛用聚烯烴,同時可期待於具有高機能性之烯烴類的聚合體製造中的有用性。
本發明之新穎胺基矽烷化合物,為上述一般式(1)所示之化合物,作為此種化合物,可舉例如雙(乙基胺基)二環戊基矽烷、雙(乙基胺基)二異丙基矽烷、雙(甲基胺基)二第三丁基矽烷。
以下針對本發明胺基矽烷化合物之合成方法進行說明。例如,將甲基胺或乙基胺等之一級胺化合物與溶媒一起於燒瓶中,在惰性氣體的環境下進行調製。作為溶媒可舉例如環狀醚、二烷基醚、甲苯或此等的混合物。將於該燒瓶中所調製的溶液冷卻至-50℃~l0℃,於攪拌之下,利用滴下漏斗,於惰性氣體的環境下將與一級胺化合物等莫耳量之市售格林納試劑(Grignard agent)之醚溶液或與一級胺化合物等莫耳量之胺基鋰的碳氫溶液,滴入至上述一級胺化合物溶液的冷卻溶液中。
滴入結束後,慢慢地升溫,於至少40℃以上的溫度下,反應數小時。此反應中,一級胺的一個氫原子將被變換為Mg或Li,生成各自的金屬鹽,於多數情況下將形成漿料狀態。其次,將二烷氧基二烷基矽烷化合物(以下稱為DADAS化合物)溶解於溶媒中,作成溶液,於惰性氣體的環境下置入附攪拌的燒杯中,將此冷卻至-50℃~10℃。作為將DADAS化合物溶解的溶媒可舉例如環狀醚、二烷基醚、甲苯等。接著,在將此DADAS化合物溶液攪拌之下,於惰性氣體的環境下滴入上述所調製之一級胺金屬鹽的漿料。此時,一級胺金屬鹽的量係於調整至DADAS化合物之2倍莫耳量之下實施。滴入結束後,慢慢地升溫,於至少40℃以上的溫度下,反應數小時。反應後,將由生成之金屬烷氧化物類所構成的固體成分,於惰性氣體的環境下進行過濾、或藉由離心分離方法而使其與溶液分離,將固體成分再度進行洗淨,並將洗淨液加入至溶液部。於惰性氣體的環境下,於常壓或減壓下餾去溶媒成分,將反應主生成物進行減壓蒸餾精製。尚且,反應溶媒除了上述以外,亦可使用環己烷、庚烷、己烷等之碳氫溶媒及與上述溶媒的混合溶媒。所得之胺基矽烷化合物係可藉由公知分析方法進行鑑定而決定其構造。
作為本發明之烯烴類聚合用觸媒成分,可使用上述一般式(2)所示之化合物。此胺基矽烷化合物係N原子直接結合至Si原子的化合物。一般式(2)中,最好於n為1或2的情況下,R3 為碳數1~12之直鏈或分枝狀烷基或環烷基,可為相同或相異,R4 為氫原子,R5 為碳數1~3之直鏈或分枝狀烷基。又,一般式(2)中,最好於n為0的情況下,4個NR4 R5 中的2個為二烷基胺基、全氫喹啉并(perhydroquinolino)基或全氫異喹啉并(perhydroisoquinolino)基,或4個NR4 R5 中的1個為R4 為氫原子的2級胺基。一般式(2)中,環烷基的衍生物為具有取代基之環烷基,具體可舉例如烷基取代環戊基、烷基取代環己基、烷基取代環庚基。
作為上述一般式(2)所示之胺基矽烷化合物,可舉例如(烷基胺基)三烷基矽烷、(烷基胺基)二烷基環烷基矽烷、(烷基胺基)烷基二環烷基矽烷、(烷基胺基)三環烷基矽烷、(烷基胺基)(二烷基胺基)二烷基矽烷及(烷基胺基)(二烷基胺基)二環烷基矽烷、雙(烷基胺基)二烷基矽烷、雙(烷基胺基)烷基環烷基矽烷、雙(烷基胺基)二環烷基矽烷、雙(烷基胺基)(二烷基胺基)烷基矽烷或雙(烷基胺基)(二烷基胺基)環烷基矽烷、二(烷基胺基)二烷基矽烷、二(烷基胺基)烷基環烷基矽烷、二(烷基胺基)二環烷基矽烷、二(環烷基胺基)二烷基矽烷、二(環烷基胺基)烷基環烷基矽烷、二(環烷基胺基)二環烷基矽烷、參(烷基胺基)烷基矽烷、參(烷基胺基)環烷基矽烷、三(烷基胺基)烷基矽烷、三(烷基胺基)環烷基矽烷、三(環烷基胺基)烷基矽烷、三(環烷基胺基)環烷基矽烷、四(烷基胺基)矽烷、參(烷基胺基)二烷基胺基矽烷、參(環烷基胺基)二烷基胺基矽烷、雙(二烷基胺基)雙(烷基胺基)矽烷、二烷基胺基參(烷基胺基)矽烷、雙(全氫異喹啉并基)雙(烷基胺基)矽烷、雙(全氫喹啉并基)雙(烷基胺基)矽烷、雙(環烷基胺基)雙(烷基胺基)矽烷、四(烷基胺基)矽烷、三(烷基胺基)二烷基胺基矽烷、三(環烷基胺基)二烷基胺基矽烷、二(二烷基胺基)二(烷基胺基)矽烷、二烷基胺基三(烷基胺基)矽烷、二(烷基取代全氫異喹啉并基)二(烷基胺基)矽烷、二(烷基取代全氫喹啉并基)二(烷基胺基)矽烷、二(環烷基胺基)二(烷基胺基)矽烷。
此等之中,以雙(烷基胺基)二環戊基矽烷、雙(烷基胺基)二異丙基矽烷、雙(烷基胺基)二第三丁基矽烷、雙(烷基胺基)第三丁基乙基矽烷、雙(烷基胺基)第三丁基甲基矽烷、雙(烷基胺基)二環己基矽烷、雙(烷基胺基)環己基甲基矽烷、雙(烷基胺基)雙(十氫萘基)矽烷、雙(烷基胺基)環戊基環己基矽烷、雙(全氫異喹啉并基)(烷基胺基)烷基矽烷、雙(全氫喹啉并基)(烷基胺基)烷基矽烷、二(烷基胺基)二環戊基矽烷、二(烷基胺基)二異丙基矽烷、二(烷基胺基)二第三丁基矽烷、二(烷基胺基)第三丁基乙基矽烷、二(烷基胺基)第三丁基甲基矽烷、二(烷基胺基)二環己基矽烷、二(烷基胺基)環己基甲基矽烷、二(烷基胺基)二(十氫萘基)矽烷、二(烷基胺基)環戊基環己基矽烷、二(烷基胺基)環己基噻西基(thexyl)矽烷、肆(甲基胺基)矽烷、參(烷基胺基)烷基矽烷、參(烷基胺基)環烷基矽烷、雙(二烷基胺基)雙(烷基胺基)矽烷、二烷基胺基、參(烷基胺基)矽烷、雙(全氫異喹啉并基)雙(烷基胺基)矽烷為較佳,又以雙(烷基胺基)二環戊基矽烷、雙(烷基胺基)二異丙基矽烷、雙(烷基胺基)二第三丁基矽烷、雙(烷基胺基)第三丁基乙基矽烷、雙(烷基胺基)第三丁基甲基矽烷、雙(烷基胺基)二環己基矽烷、雙(烷基胺基)環己基甲基矽烷、雙(烷基胺基)雙(十氫萘基)矽烷、雙(烷基胺基)環戊基環己基矽烷、雙(全氫異喹啉并基)(烷基胺基)烷基矽烷、雙(全氫喹啉并基)(烷基胺基)烷基矽烷為更佳。
上述胺基矽烷化合物的具體例係例示於下。參(甲基胺基)甲基矽烷、參(甲基胺基)乙基矽烷、參(甲基胺基)正丙基矽烷、參(甲基胺基)異丙基矽烷、參(甲基胺基)正丁基矽烷、參(甲基胺基)異丁基矽烷、參(甲基胺基)第三丁基矽烷、參(甲基胺基)環戊基矽烷、參(甲基胺基)環己基矽烷、參(甲基胺基)乙烯基矽烷;參(乙基胺基)甲基矽烷、參(乙基胺基)乙基矽烷、參(乙基胺基)正丙基矽烷、參(乙基胺基)異丙基矽烷、參(乙基胺基)正丁基矽烷、參(乙基胺基)異丁基矽烷、參(乙基胺基)環戊基矽烷、參(乙基胺基)環己基矽烷、參(乙基胺基)乙烯基矽烷、參(乙基胺基)苯基矽烷;參(正丙基胺基)甲基矽烷、參(正丙基胺基)乙基矽烷、參(正丙基胺基)正丙基矽烷、參(正丙基胺基)異丙基矽烷、參(正丙基胺基)正丁基矽烷、參(正丙基胺基)異丁基矽烷、參(正丙基胺基)環戊基矽烷、參(正丙基胺基)環己基矽烷、參(正丙基胺基)乙烯基矽烷;參(異丙基胺基)甲基矽烷、參(異丙基胺基)乙基矽烷、參(異丙基胺基)正丙基矽烷、參(異丙基胺基)異丙基矽烷、參(異丙基胺基)正丁基矽烷、參(異丙基胺基)異丁基矽烷、參(異丙基胺基)環戊基矽烷、參(異丙基胺基)環己基矽烷、參(異丙基胺基)乙烯基矽烷;參(正丁基胺基)異丙基矽烷、參(第二丁基胺基)乙基矽烷、參(第三丁基胺基)甲基矽烷、參(環戊基胺基)乙基矽烷、參(環戊基胺基)異丙基矽烷、參(環己基胺基)乙基矽烷、參(環己基胺基)異丙基矽烷、參(環己基胺基)苄基矽烷、參(環己基胺基)苯基矽烷、參(環己基胺基)乙烯基矽烷;雙(甲基胺基)(二甲基胺基)甲基矽烷、雙(甲基胺基)(二乙基胺基)甲基矽烷、雙(甲基胺基)(甲基乙基胺基)甲基矽烷、雙(甲基胺基)(二正丙基胺基)甲基矽烷、雙(甲基胺基)(甲基正丙基胺基)甲基矽烷、雙(甲基胺基)(甲基異丙基胺基)甲基矽烷、雙(甲基胺基)(甲基正丁基胺基)甲基矽烷、雙(甲基胺基)(乙基正丁基胺基)甲基矽烷、雙(甲基胺基)(乙基異丁基胺基)甲基矽烷、雙(甲基胺基)(乙基第二丁基胺基)甲基矽烷、雙(甲基胺基)(乙基第三丁基胺基)甲基矽烷、雙(甲基胺基)(甲基環戊基胺基)甲基矽烷、雙(甲基胺基)(乙基環戊基胺基)甲基矽烷、雙(甲基胺基)(甲基環己基胺基)甲基矽烷、雙(甲基胺基)(乙基環己基胺基)甲基矽烷;雙(甲基胺基)(二甲基胺基)乙基矽烷、雙(甲基胺基)(二乙基胺基)乙基矽烷、雙(甲基胺基)(甲基乙基胺基)乙基矽烷、雙(甲基胺基)(二正丙基胺基)乙基矽烷、雙(甲基胺基)(甲基正丙基胺基)乙基矽烷、雙(甲基胺基)(甲基異丙基胺基)乙基矽烷、雙(甲基胺基)(甲基正丁基胺基)乙基矽烷、雙(甲基胺基)(乙基正丁基胺基)乙基矽烷、雙(甲基胺基)(乙基異丁基胺基)乙基矽烷、雙(甲基胺基)(乙基第二丁基胺基)乙基矽烷、雙(甲基胺基)(乙基第三丁基胺基)乙基矽烷、雙(甲基胺基)(甲基環戊基胺基)乙基矽烷、雙(甲基胺基)(乙基環戊基胺基)乙基矽烷、雙(甲基胺基)(甲基環己基胺基)乙基矽烷、雙(甲基胺基)(乙基環己基胺基)乙基矽烷;雙(甲基胺基)(異丁基胺基)甲基矽烷、雙(甲基胺基)(異丁基胺基)乙基矽烷、雙(甲基胺基)(異丁基胺基)正丙基矽烷、雙(甲基胺基)(異丁基胺基)異丙基矽烷、雙(甲基胺基)(異丁基胺基)正丁基矽烷、雙(甲基胺基)(異丁基胺基)第二丁基矽烷、雙(甲基胺基)(異丁基胺基)異丁基矽烷、雙(甲基胺基)(異丁基胺基)第三丁基矽烷、雙(甲基胺基)(異丁基胺基)噻西基矽烷、雙(甲基胺基)(異丁基胺基)環戊基矽烷、雙(甲基胺基)(異丁基胺基)環己基矽烷、雙(甲基胺基)(異丁基胺基)全氫萘基矽烷、雙(甲基胺基)(異丁基胺基)金剛烷基矽烷;雙(甲基胺基)(第三丁基胺基)甲基矽烷、雙(甲基胺基)(第三丁基胺基)乙基矽烷、雙(甲基胺基)(第三丁基胺基)正丙基矽烷、雙(甲基胺基)(第三丁基胺基)異丙基矽烷、雙(甲基胺基)(第三丁基胺基)正丁基矽烷、雙(甲基胺基)(第三丁基胺基)第二丁基矽烷、雙(甲基胺基)(第三丁基胺基)異丁基矽烷、雙(甲基胺基)(第三丁基胺基)第三丁基矽烷、雙(甲基胺基)(第三丁基胺基)噻西基矽烷、雙(甲基胺基)(第三丁基胺基)環戊基矽烷、雙(甲基胺基)(第三丁基胺基)環己基矽烷、雙(甲基胺基)(第三丁基胺基)全氫萘基矽烷、雙(甲基胺基)(第三丁基胺基)金剛烷基矽烷;雙(甲基胺基)二甲基矽烷、雙(甲基胺基)二甲基矽烷、雙(甲基胺基)二乙烯基矽烷、雙(甲基胺基)二正丙基矽烷、雙(甲基胺基)二異丙基矽烷、雙(甲基胺基)二正丁基矽烷、雙(甲基胺基)二異丁基矽烷、雙(甲基胺基)二第二丁基矽烷、雙(甲基胺基)二第三丁基矽烷、雙(甲基胺基)二正新戊基矽烷、雙(甲基胺基)二環戊基矽烷、雙(甲基胺基)二環己基矽烷、雙(甲基胺基)二4-甲氧基苯基矽烷;雙(甲基胺基)甲基乙基矽烷、雙(甲基胺基)甲基第三丁基矽烷、雙(甲基胺基)甲基苯基矽烷、雙(甲基胺基)乙基第三丁基矽烷、雙(甲基胺基)第二丁基甲基矽烷、雙(甲基胺基)第二丁基乙基矽烷、雙(甲基胺基)甲基環戊基矽烷、雙(甲基胺基)乙基環戊基矽烷、雙(甲基胺基)環戊基環己基矽烷、雙(甲基胺基)甲基環己基矽烷、雙(甲基胺基)二(十氫萘基)矽烷、雙(甲基胺基)噻西基甲基矽烷;雙(乙基胺基)二甲基矽烷、雙(乙基胺基)二乙基矽烷、雙(乙基胺基)二乙烯基矽烷、雙(乙基胺基)二正丙基矽烷、雙(乙基胺基)二異丙基矽烷、雙(乙基胺基)二正丁基矽烷、雙(乙基胺基)二異丁基矽烷、雙(乙基胺基)二第二丁基矽烷、雙(乙基胺基)二第三丁基矽烷、雙(乙基胺基)二環戊基矽烷、雙(乙基胺基)二環己基矽烷、雙(乙基胺基)二(十氫萘基)矽烷;雙(乙基胺基)甲基乙基矽烷、雙(乙基胺基)甲基第三丁基矽烷、雙(乙基胺基)甲基苯基矽烷、雙(乙基胺基)乙基第三丁基矽烷、雙(乙基胺基)第二丁基甲基矽烷、雙(乙基胺基)第二丁基乙基矽烷、雙(乙基胺基)甲基環戊基矽烷、雙(乙基胺基)環戊基環己基矽烷、雙(乙基胺基)甲基環己基矽烷、雙(乙基胺基)第三丁基異丁基矽烷、雙(乙基胺基)環己基噻西基矽烷;雙(正丙基胺基)二甲基矽烷、雙(正丙基胺基)二乙基矽烷、雙(正丙基胺基)二乙烯基矽烷、雙(正丙基胺基)二正丙基矽烷、雙(正丙基胺基)二異丙基矽烷、雙(正丙基胺基)二正丁基矽烷、雙(正丙基胺基)二異丁基矽烷、雙(正丙基胺基)二第二丁基矽烷、雙(正丙基胺基)二第三丁基矽烷、雙(正丙基胺基)二正新戊基矽烷、雙(正丙基胺基)二環戊基矽烷、雙(正丙基胺基)二環己基矽烷;雙(異丙基胺基)二甲基矽烷、雙(異丙基胺基)二乙基矽烷、雙(異丙基胺基)二乙烯基矽烷、雙(異丙基胺基)二正丙基矽烷、雙(異丙基胺基)二異丙基矽烷、雙(異丙基胺基)二正丁基矽烷、雙(異丙基胺基)二異丁基矽烷、雙(異丙基胺基)二第二丁基矽烷、雙(異丙基胺基)二第三丁基矽烷、雙(異丙基胺基)二新戊基矽烷、雙(異丙基胺基)二環戊基矽烷、雙(異丙基胺基)二環己基矽烷、雙(異丙基胺基)二(十氫萘基)矽烷、雙(異丙基胺基)二(四氫萘基)矽烷、雙(異丙基胺基)二苄基矽烷、雙(異丙基胺基)二苯基矽烷;雙(異丙基胺基)甲基乙基矽烷、雙(異丙基胺基)甲基第三丁基矽烷、雙(異丙基胺基)乙基第三丁基矽烷、雙(異丙基胺基)第二丁基甲基矽烷、雙(異丙基胺基)第二丁基乙基矽烷、雙(異丙基胺基)甲基新戊基矽烷、雙(異丙基胺基)甲基環戊基矽烷、雙(異丙基胺基)異丙基環戊基矽烷、雙(異丙基胺基)異丁基環戊基矽烷、雙(異丙基胺基)環戊基環己基矽烷、雙(異丙基胺基)甲基環己基矽烷、肆(甲基胺基)矽烷、肆(乙基胺基)矽烷、肆(正丙基胺基)矽烷、肆(異丙基胺基)矽烷、肆(正丁基胺基)矽烷、肆(異丁基胺基)矽烷、肆(第二丁基胺基)矽烷、肆(正己基胺基)矽烷;參(甲基胺基)(乙基胺基)矽烷、參(甲基胺基)(正丙基胺基)矽烷、參(甲基胺基)(異丙基胺基)矽烷、參(甲基胺基)(正丁基胺基)矽烷、參(甲基胺基)(第二丁基胺基)矽烷、參(甲基胺基)(第三丁基胺基)矽烷、參(甲基胺基)(新戊基胺基)矽烷、參(甲基胺基)(二4-甲氧基苯基胺基)矽烷、參(甲基胺基)(二乙基胺基)矽烷、參(甲基胺基)(二異丙基胺基)矽烷、參(甲基胺基)(二異丁基胺基)矽烷、參(甲基胺基)(二第二丁基胺基)矽烷、參(甲基胺基)(二第三丁基胺基)矽烷、參(甲基胺基)(全氫異喹啉并基)矽烷、參(甲基胺基)(全氫喹啉并基)矽烷、參(甲基胺基)(二環戊基胺基)矽烷、參(甲基胺基)(二環己基胺基)矽烷、參(甲基胺基)(第三丁基乙基胺基)矽烷、參(甲基胺基)(第三丁基正丙基胺基)矽烷、參(甲基胺基)(第二丁基乙基胺基)矽烷、參(甲基胺基)(第二丁基異丙基胺基)矽烷、參(乙基胺基)(甲基胺基)矽烷、參(乙基胺基)(正丙基胺基)矽烷、參(乙基胺基)(異丙基胺基)矽烷、參(乙基胺基)(正丁基胺基)矽烷、參(乙基胺基)(第二丁基胺基)矽烷、參(乙基胺基)(第三丁基胺基)矽烷、參(乙基胺基)(新戊基胺基)矽烷、參(乙基胺基)(二乙基胺基)矽烷、參(乙基胺基)(二異丙基胺基)矽烷、參(乙基胺基)(二異丁基胺基)矽烷、參(乙基胺基)(二第二丁基胺基)矽烷、參(乙基胺基)(二第三丁基胺基)矽烷、參(乙基胺基)(二環戊基胺基)矽烷、參(乙基胺基)(二環己基胺基)矽烷、參(乙基胺基)(全氫異喹啉并基)矽烷、參(乙基胺基)(全氫喹啉并基)矽烷、參(乙基胺基)(第三丁基乙基胺基)矽烷、參(正丙基胺基)(甲基胺基)矽烷、參(正丙基)(異丁基胺基)矽烷、參(正丙基胺基)(第三丁基胺基)矽烷、參(正丙基胺基)(正丁基胺基)矽烷、參(正丙基胺基)(第二丁基胺基)矽烷、參(正丙基胺基)(環戊基胺基)矽烷、參(正丙基胺基)(環己基胺基)矽烷、參(正丙基胺基)(二乙基胺基)矽烷、參(正丙基胺基)(二異丙基胺基)矽烷、參(正丙基胺基)(二異丁基胺基)矽烷、參(正丙基胺基)(二第三丁基胺基)矽烷、參(正丙基胺基)(二環戊基胺基)矽烷、參(正丙基胺基)(二環己基胺基)矽烷、參(正丙基胺基)(全氫異喹啉并基)矽烷、參(正丙基胺基)(全氫喹啉并基)矽烷、雙(甲基胺基)雙(乙基胺基)矽烷、雙(甲基胺基)雙(正丙基胺基)矽烷、雙(甲基胺基)雙(異丙基胺基)矽烷、雙(甲基胺基)雙(正丁基胺基)矽烷、雙(甲基胺基)雙(異丁基胺基)矽烷、雙(甲基胺基)雙(第二丁基胺基)矽烷、雙(甲基胺基)雙(第三丁基胺基)矽烷、雙(甲基胺基)雙(環戊基胺基)矽烷、雙(甲基胺基)雙(環己基胺基)矽烷、雙(甲基胺基)雙(全氫異喹啉并基)矽烷、雙(甲基胺基)雙(四氫異喹啉基)矽烷、雙(甲基胺基)雙(全氫喹啉并基)矽烷、雙(甲基胺基)雙(二乙基胺基)矽烷、雙(甲基胺基)雙(二正丙基胺基)矽烷、雙(甲基胺基)雙(二異丙基胺基)矽烷、雙(甲基胺基)雙(二正丁基胺基)矽烷、雙(甲基胺基)雙(二異丁基胺基)矽烷、雙(甲基胺基)雙(二第二丁基胺基)矽烷、雙(甲基胺基)雙(二第三丁基胺基)矽烷、雙(甲基胺基)雙(二環戊基胺基)矽烷、雙(甲基胺基)雙(二環己基胺基)矽烷;雙(乙基胺基)雙(正丙基胺基)矽烷、雙(乙基胺基)雙(異丙基胺基)矽烷、雙(乙基胺基)雙(正丁基胺基)矽烷、雙(乙基胺基)雙(異丁基胺基)矽烷、雙(乙基胺基)雙(第二丁基胺基)矽烷、雙(乙基胺基)雙(第三丁基胺基)矽烷、雙(乙基胺基)雙(環戊基胺基)矽烷、雙(乙基胺基)雙(環己基胺基)矽烷、雙(乙基胺基)雙(全氫異喹啉并基)矽烷、雙(乙基胺基)雙(全氫喹啉并基)矽烷、雙(乙基胺基)雙(環八亞甲基亞胺基)矽烷、雙(乙基胺基)雙(二乙基胺基)矽烷、雙(乙基胺基)雙(二正丙基胺基)矽烷、雙(乙基胺基)雙(二異丙基胺基)矽烷、雙(乙基胺基)雙(二正丁基胺基)矽烷、雙(乙基胺基)雙(二異丁基胺基)矽烷、雙(乙基胺基)雙(二第二丁基胺基)矽烷、雙(乙基胺基)雙(二第三丁基胺基)矽烷、雙(乙基胺基)雙(二環戊基胺基)矽烷、雙(乙基胺基)雙(二環己基胺基)矽烷、雙(正丙基胺基)雙(環戊基胺基)矽烷、雙(正丙基胺基)雙(環己基胺基)矽烷、雙(正丙基胺基)雙(全氫異喹啉并基)矽烷、雙(正丙基胺基)雙(全氫異喹啉并基)矽烷、雙(正丙基胺基)雙(全氫喹啉并基)矽烷、雙(正丙基胺基)雙(二乙基胺基)矽烷、雙(丙基胺基)雙(二正丙基胺基)矽烷、雙(正丙基胺基)雙(二異丙基胺基)矽烷、雙(正丙基胺基)雙(二正丁基胺基)矽烷、雙(正丙基胺基)雙(二異丁基胺基)矽烷、雙(正丙基胺基)雙(二第二丁基胺基)矽烷、雙(正丙基胺基)雙(二第三丁基胺基)矽烷、雙(正丙基胺基)雙(二環戊基胺基)矽烷、雙(正丙基胺基)雙(二環己基胺基)矽烷;參(二甲基胺基)(甲基胺基)矽烷、參(二乙基胺基)(甲基胺基)矽烷、參(二正丙基胺基)(甲基胺基)矽烷、參(二異丙基胺基)(甲基胺基)矽烷、參(二正丁基胺基)(甲基胺基)矽烷、參(二異丁基胺基)(甲基胺基)矽烷、參(第三丁基胺基)(甲基胺基)矽烷、參(環戊基胺基)(甲基胺基)矽烷、參(環己基胺基)(甲基胺基)矽烷;參(二甲基胺基)(乙基胺基)矽烷、參(二乙基胺基)(乙基胺基)矽烷、參(二正丙基胺基)(乙基胺基)矽烷、參(二異丙基胺基)(乙基胺基)矽烷、參(二正丁基胺基)(乙基胺基)矽烷、參(二異丁基胺基)(乙基胺基)矽烷、參(第三丁基胺基)(乙基胺基)矽烷、參(環戊基胺基)(乙基胺基)矽烷、參(環己基胺基)(乙基胺基)矽烷、參(二甲基胺基)(正丙基胺基)矽烷、參(二乙基胺基)(正丙基胺基)矽烷、參(二正丙基胺基)(正丙基胺基)矽烷、參(二異丙基胺基)(正丙基胺基)矽烷、參(二正丁基胺基)(正丙基胺基)矽烷、參(二異丁基胺基)(正丙基胺基)矽烷、參(第三丁基胺基)(正丙基胺基)矽烷、參(環戊基胺基)(正丙基胺基)矽烷、參(環己基胺基)(正丙基胺基)矽烷等。
上述一般式(2)所示之化合物的合成係藉由氯交換法、利用有機鋰化合物之方法、利用格林納試劑之方法等公知合成方法或其等之組合則可容易合成。本發明之胺基矽烷化合物中,以雙(烷基胺基)二環戊基矽烷之合成方法為例,為二環戊基二烷氧基矽烷與2倍莫耳之烷基胺之Li鹽或烷基胺之Mg鹽的反應。於此,作為合成溶媒可舉例如THF、二烷基醚等之醚化合物;甲苯等芳香族化合物;戊烷、己烷、庚烷、環己烷等飽和碳氫化合物;或此等之混合物。又,一般式(2)中,於R3 為烷基胺的情況,一級胺金屬鹽的量係(烷氧基)n (烷基)4 n 矽烷化合物中的烷氧基,亦即,配合n之數字,將一級胺金屬鹽調整為(烷氧基)n (烷基)4 n 矽烷化合物的1~4倍莫耳量而實施即可。
本發明之烯烴類聚合用觸媒係以上述一般式(2)所示之胺基矽烷化合物作為必須成分而形成。形成本發明烯烴類聚合用觸媒之一般式(2)的較佳化合物及具體例,係與烯烴類聚合用觸媒成分中之一般式(2)的記載相同。又,本發明之烯烴類聚合用觸媒,除了上述一般式(2)所示之胺基矽烷化合物之外,可一起使用(A)含有鎂、鈦、鹵素及電子供予性化合物之固體觸媒成分及(B)下述一般式(3)所示之有機鋁化合物而形成:R6 p AlQ3 p (3)
(式中,R6 為碳數1~4烷基,Q為氫原子或鹵原子,p為0<p≦3之實數。)
本發明之烯烴類聚合用觸媒中之固體觸媒成分(A)(以下有時稱為「成分(A)」)係含有鎂、鈦、鹵素及電子供予性化合物,可與(a)鎂化合物、(b)4價鈦鹵化合物及(c)電子供予性化合物接觸而獲得。鎂化合物(以下有時稱為「成分(a)」)可舉例如二鹵化鎂、二烷基鎂、鹵化烷基鎂、二烷氧基鎂、二芳基氧基鎂、鹵化烷氧基鎂或脂肪酸鎂等。此等鎂化合物中以二鹵化鎂、二鹵化鎂與二烷氧基鎂之混合物、二烷氧基鎂為較佳,以二烷氧基鎂為特佳;具體可舉例如二甲氧基鎂、二乙氧基鎂、二丙氧基鎂、二丁氧基鎂、乙氧基甲氧基鎂、乙氧基丙氧基鎂、丁氧基乙氧基鎂等,其中以二乙氧基鎂為特佳。
另外,此等之二烷氧基鎂,亦可為將金屬鎂於含有鹵素之有機金屬等存在下與醇反應而獲得者。上述二烷氧基鎂可單獨或併用2種以上。
再者,適合使用之二烷氧基鎂為顆粒狀或粉末狀,其形狀可使用不規則或球狀。例如使用球狀的二烷氧基鎂的情況,將得到更良好之粒子形狀與具有狹窄粒度分布之聚合體粉末,使聚合操作時之生成聚合體粉末的處理操作性提升,而解決生成聚合體粉末所含之微粉所引起之聚合體分離裝置中之過濾器堵塞等問題。
上述球狀二烷氧基鎂並不一定必為真球狀,亦可使用楕圓形狀或馬鈴薯形狀。具體而言,其粒子形狀係長軸徑L與短軸徑W之比(L/W)為3以下,較佳為1~2,更佳為1~1.5。
另外,上述二烷氧基鎂的平均粒徑可使用1~200 μ m者。較佳為5~150 μ m。在球狀的二烷氧基鎂的情況,平均粒徑為1~100 μ m,較佳為5~50 μ m,更佳為10~40 μ m。又,關於其粒度,最好使用微粉及粗粉較少,且粒度分佈狹窄者。具體而言,5 μ m以下之粒子為20%以下,較佳為10%以下。另一方面,100 μ m以上的粒子為10%以下,較佳為5%以下。再者,將其粒度分佈以D90/D10(於此,D90係以累積粒度計90%之粒徑,D10係以累積粒度計10%之粒度)表示時為3以下,較佳為2以下。
上述之球狀的二烷氧基鎂的製造方法,可例示如日本專利特開昭58-4132號公報、特開昭62-51633號公報、特開平3-74341號公報、特開平4-368391號公報、特開平8-73388號公報等。
本發明中用於調製成分(A)之4價鈦鹵化物(b)(以下有時簡稱為「成分(b)」),係由一般式Ti(OR7 )n X4 n
(式中,R7 為碳數1~4之烷基,X為鹵原子,n為0≦n≦4之整數。)所示之鈦鹵化物或烷氧基鈦鹵化物群組選出之化合物的1種或2種以上。
具體可例示如:作為鈦鹵化物之四氯化鈦、四溴化鈦、四碘化鈦等之四鹵化鈦;作為烷氧基鈦鹵化物之甲氧基三氯化鈦、乙氧基三氯化鈦、丙氧基三氯化鈦、正丁氧基三氯化鈦、二甲氧基二氯化鈦、二乙氧基二氯化鈦、二丙氧基二氯化鈦、二正丁氧基二氯化鈦、三甲氧基氯化鈦、三乙氧基氯化鈦、三丙氧基氯化鈦、三正丁氧基氯化鈦等。此等之中,以四鹵化鈦為較佳,以四氯化鈦為特佳。此等鈦化合物可單獨或併用2種以上。
本發明中用於固體觸媒成分(A)之調製的電子供予性化合物(以下有時簡稱為「成分(c)」),為含有氧原子或氮原子之有機化合物,可舉例如醇類、酚類、醚類、酯類、酮類、鹵化酸類、醛類、胺類、醯胺類、腈類、異氰酸酯類、含有Si-O-C鍵結或Si-N-C鍵結之有機矽化合物等。
具體可舉例如:甲醇、乙醇、正丙醇、2-乙基己醇等之醇類;酚、甲酚等之酚類;二甲基醚、二乙基醚、二丙基醚、二丁基醚、二戊基醚、二苯基醚、9,9-雙(甲氧基甲基)茀、2-異丙基-2-異戊基-1、3-二甲氧基丙烷等之醚類;甲酸甲酯、醋酸乙酯、醋酸乙烯酯、醋酸丙酯、醋酸辛酯、醋酸環己酯、丙酸乙酯、丁酸乙酯、苯甲酸乙酯、苯甲酸丙酯、苯甲酸丁酯、苯甲酸辛酯、苯甲酸環己酯、苯甲酸苯酯、對甲苯甲酸甲酯、對甲苯甲酸乙酯、大茴香酸甲酯、大茴香酸乙酯等之單羧酸酯類;丙二酸二乙酯、丙二酸二丙酯、丙二酸二丁酯、丙二酸二異丁酯、丙二酸二戊酯、丙二酸二新戊酯、異丙基溴丙二酸二乙酯、丁基溴丙二酸二乙酯、二異丁基溴丙二酸二乙酯、二異丙基丙二酸二乙酯、二丁基丙二酸二乙酯、二異丁基丙二酸二乙酯、二異戊基丙二酸二乙酯、異丙基丁基丙二酸二乙酯、異丙基異戊基丙二酸二甲酯、雙(3-氯-正丙基)丙二酸二乙酯、雙(3-溴-正丙基)丙二酸二乙酯、順丁烯二酸二乙酯、順丁烯二酸二丁酯、2,3-二正丙基琥珀酸二甲酯、2,3-二正丙基琥珀酸二乙酯、2,3-二正丙基琥珀酸二丙酯、己二酸二甲酯、己二酸二乙酯、己二酸二丙酯、己二酸二丁酯、己二酸二異癸酯、己二酸二辛酯、苯二甲酸二酯、苯二甲酸二酯衍生物等之二羧酸二酯類;丙酮、甲基乙基酮、甲基丁基酮、苯乙酮、二苯基酮等之酮類;二氯化苯二甲酸;二氯化對苯二甲酸等之氯化酸類;乙醛、丙醛、辛醛、苯甲醛等之醛類;甲基胺、乙基胺、三丁基胺、哌啶、苯胺、吡啶等之胺類;油酸、醯胺、硬脂酸醯胺等之醯胺類;乙腈、苯甲腈、甲苯腈等之腈類;異氰酸甲酯、異氰酸乙酯等之異氰酸酯類;苯基烷氧基矽烷、烷基烷氧基矽烷、苯基烷基烷氧基矽烷、環烷基烷氧基矽烷、環烷基烷基烷氧基矽烷等之含有Si-O-C鍵結之有機矽化合物;雙(烷基胺基)二烷氧基矽烷、雙(環烷基胺基)二烷氧基矽烷、烷基(烷基胺基)二烷氧基矽烷、二烷基胺基三烷氧基矽烷、環烷基胺基三烷氧基矽烷等之含有Si-N-C鍵結之有機矽化合物。
上述電子供予性化合物中,最好使用酯類,尤其是芳香族二羧酸二酯,特別以苯二甲酸二酯及苯二甲酸二酯衍生物為適合。此等苯二甲酸二酯的具體例有如:苯二甲酸二甲酯、苯二甲酸二乙酯、苯二甲酸二正丙酯、苯二甲酸二異丙酯、苯二甲酸二正丁酯、苯二甲酸二異丁酯、苯二甲酸乙基甲酯、苯二甲酸甲基異丙酯、苯二甲酸乙基(正丙基)酯、苯二甲酸乙基(正丁基)酯、苯二甲酸乙基(異丁基)酯、苯二甲酸二正戊酯、苯二甲酸二異戊酯、苯二甲酸二新戊酯、苯二甲酸二己酯、苯二甲酸二正庚酯、苯二甲酸二正辛酯、苯二甲酸雙(2,2-二甲基己基)酯、苯二甲酸雙(2-乙基己基)酯、苯二甲酸二正壬酯、苯二甲酸二異癸酯、苯二甲酸雙(2,2-二甲基庚基)酯、苯二甲酸正丁基(異己基)酯、苯二甲酸正丁基(2-乙基己基)酯、苯二甲酸正戊基(己基)酯、苯二甲酸正戊基(異己基)酯、苯二甲酸異戊基(戊基)酯、苯二甲酸正戊基(2-乙基己基)酯、苯二甲酸正戊基(異壬基)酯、苯二甲酸異戊基(正癸基)酯、苯二甲酸正戊基(十一基)酯、苯二甲酸異戊基(異己基)酯、苯二甲酸正己基(2,2-二甲基己基)酯、苯二甲酸正己基(異壬基)酯、苯二甲酸正己基(正癸基)酯、苯二甲酸正庚基(2-乙基己基)酯、苯二甲酸正庚基(異壬基)酯、苯二甲酸正庚基(新癸基)酯、苯二甲酸2-乙基己基(異壬基)酯,此等苯二甲酸二酯可使用1種或2種以上。
另外,作為苯二甲酸二酯衍生物,可舉例如將上述苯二甲酸二酯之二個酯基所結合的苯環之l或2個氫原子,取代成碳數1~5之烷基或氯原子、溴原子及氟原子等之鹵素原子者。藉由將該苯二甲酸二酯衍生物使用作為電子供予性化合物而調製之固體觸媒成分,可進一步提升對氫量之流融流動率的極大效果,亦即可提升氫反應,即使聚合時所添加之氫為同量或少量,亦可提升聚合物的流融流動率。具體可舉例如4-甲基苯二甲酸二新戊酯、4-乙基苯二甲酸二新戊酯、4,5-二甲基苯二甲酸二新戊酯、4,5-二乙基苯二甲酸二新戊酯、4-氯化苯二甲酸二乙酯、4-氯化苯二甲酸二正丁酯、4-氯化苯二甲酸二新戊酯、4-氯化苯二甲酸二異丁酯、4-氯化苯二甲酸二異己酯、4-氯化苯二甲酸二異辛酯、4-溴化苯二甲酸二乙酯、4-溴化苯二甲酸二正丁酯、4-溴化苯二甲酸二新戊酯、4-溴化苯二甲酸二異丁酯、4-溴化苯二甲酸二異己酯、4-溴化苯二甲酸二異辛酯、4,5-二氯化苯二甲酸二乙酯、4,5-二氯化苯二甲酸二正丁酯、4,5-二氯化苯二甲酸二異己酯、4,5-二氯化苯二甲酸二異辛酯,其中,以4-溴化苯二甲酸二新戊酯、4-溴化苯二甲酸二正丁酯及4-溴化苯二甲酸二異丁酯為較佳。
尚且,上述酯類最好組合2種以上而使用,此時所用之酯的烷基之碳數合計與其他酯相比較,若其差為4以上,則最好組合該酯類。
另外,一般式(2)所示之胺基矽烷化合物,可使用作為固體觸媒成分(A)之電子供予性化合物(c)(內部予體)。使用作為內部予體之一般式(2)所示之胺基矽烷化合物的較佳化合物及具體例,係與烯烴類聚合用觸媒成分中之一般式(2)記載者相同。
本發明中,係以藉由使上述(a)、(b)及(C)於碳氫化合物(d)(以下有時簡稱為「成分(d)」)之存在下接觸而調製成分(A)之方法為較佳態樣,作為此成分(d),具體而言最好使用甲苯、二甲苯、乙基苯、環己烷、環己烯等之沸點50~l50℃之碳氫化合物。又,此等可單獨使用,亦可混合使用2種以上。
作為本發明之成分(A)的特佳調製方法,可舉例如:由成分(a)與成分(C)與沸點50~150℃之碳氫化合物(d)形成懸濁液,使由成分(b)與成分(d)所形成之混合溶液與該懸濁液接觸,其後使其反應而進行之調製方法。
本發明之固體觸媒成分(A)之調製中,除了上述成分之外,最好進一步使用聚矽氧烷(以下有時簡稱為「成分(e)」),藉由使用聚矽氧烷則可提升聚合物的立體規則性或結晶性,並可進一步減低生成聚合物的微粉。聚矽氧烷係於主鏈具有矽氧烷鍵結(-Si-0鍵結)之聚合體,亦通稱為聚矽氧油,25℃下之黏度為0.02~100cm2 /s(2~10000厘司托克士(centistokes)),常溫下呈液狀或黏稠狀之鏈狀、部分氫化、環狀或改質聚矽氧烷。
作為鏈狀聚矽氧烷,可例示如二甲基聚矽氧烷、甲基苯基聚矽氧烷;作為部份氫化聚矽氧烷,可例示如氫化率10~80%之甲基氫聚矽氧烷;作為環狀聚矽氧烷,可例示如六甲基環三矽氧烷、八甲基環四矽氧烷、十甲基環戊烷矽氧烷、2,4,6-三甲基環三矽氧烷、2,4,6,8-四甲基環四矽氧烷;又,作為改質聚矽氧烷,可例示如高級脂肪酸基取代二甲基矽氧烷、環氧基取代二甲基矽氧烷、聚氧化伸烷基取代二甲基矽氧烷。此等之中,以十甲基環戊烷矽氧烷及二甲基聚矽氧烷為較佳,以十甲基環戊烷矽氧烷為特佳。
本發明係使上述成分(a)、(b)及(c),及視需要之成分(d)或成分(e)接觸而形成成分(A),以下,針對本發明成分(A)之調製方法進行敘述。具體可舉例如將鎂化合物(a)懸濁於醇、鹵素碳氫溶媒、4價之鈦鹵化合物(b)或碳氫化合物(d)中,使苯二甲酸二酯等之電子供予性化合物(c)及/或4價之鈦鹵化合物(b)接觸而得到成分(A)的方法。該方法中,藉由使用球狀的鎂化合物,可得到球狀且粒度分布狹窄之成分(A);另外,即使不使用球狀鎂化合物,藉由例如使用噴霧裝置將溶液或懸濁液進行噴霧.乾燥(亦即所謂的噴霧乾燥法)而形成粒子,可同樣地得到球狀且粒度分布狹窄之成分(A)。
各成分的接觸,係於惰性氣體環境下,在將水分等去除的狀況下,在具備攪拌機之容器中一邊攪拌一邊進行。接觸溫度在各成分接觸時為各成分接觸時的溫度,可為與進行反應之溫度相同或相異之溫度。接觸溫度於僅進行接觸而攪拌混合之情況下或進行分散或懸濁而改質處理的之情況,亦可為較室溫附近低的溫度區域,在接觸後使其反應得到生成物的情況,以40~130℃的溫度區域為佳。反應時的溫度若未滿40℃則反應進行得不充分,結果所調製之固體觸媒成分的性能不足,若超過130℃則所使用之溶媒將顯著地蒸發,難以控制反應。反應時間為1分鐘以上,較佳為10分鐘以上,更佳為30分鐘以上。
本發明之較佳之成分(A)的調製方法,可舉例如:將成分(a)懸濁於成分(d),接著於使成分(b)接觸後使成分(c)及(d)接觸、反應而調製成分(A)的方法;或者,使成分(a)懸濁於成分(d),接著於使成分(c)接觸後使成分(b)接觸、反應而調製成分(A)的方法。又,使如此調製之成分(A)再次或複數次與成分(b)、或成分(b)及成分(c)接觸,藉此可提升最終之固體觸媒成分的性能。此時,最好於碳氫化合物(d)之存在下進行。
作為本發明成分(A)較佳之調製方法,可舉例如:由成分(a)與成分(c)與沸點50~150℃之碳氫化合物(d)形成懸濁液,使由成分(b)與成分(d)所形成之混合溶液接觸於該懸濁液,其後進行反應而進行之調製方法。
作為本發明成分(A)較佳之調製方法,可舉例如以下所示之方法。由上述成分(a)與成分(c)與沸點50~150℃之碳氫化合物(d)形成懸濁液。由成分(c)及沸點50~150℃之碳氫化合物(d)形成混合溶液,於此混合溶液中添加上述懸濁液。其後,將所得之混合溶液升溫而進行反應處理(第一次反應處理)。反應結束後,將所得之固體物質於常溫下以液體之碳氫化合物洗淨,將洗淨後之固體物質作為固體生成物。又,其後,使該洗淨後之固體物質進一步與新的成分(b)及沸點50~150℃之碳氫化合物(d)於-20~100℃下進行接觸,並進行升溫、反應處理(第二次反應處理),反應結束後,常溫下以液體之碳氫化合物洗淨,重覆此操作1~10次,則可得到成分(A)。
根據上述,作為本發明固體觸媒成分(A)特佳之調製方法,係使二烷氧基鎂(a)懸濁於沸點50~150℃之碳氫化合物(d),其次,於此懸濁液中使4價的鈦鹵化合物(b)接觸後,進行反應處理。此時,於在該懸濁液中使4價的鈦鹵化合物(b)接觸前或接觸後,使苯二甲酸二酯等之電子供予性化合物(c)之1種或2種以上,於-20~130℃下接觸,視需要使成分(e)接觸,進行反應處理,得到固體生成物(1)。此時,於使電子供予性化合物(c)之1種或2種以上接觸前或接觸後,最好於低溫下進行熟成反應。將此固體生成物(1)以常溫的液體碳氫化合物洗淨(中間洗淨)後,再度使4價的鈦鹵化合物(b)於碳氫化合物存在下,於-20~100℃下接觸,進行反應處理,得到固體生成物(2)。又,視需要亦可進一步複數次重覆中間洗淨及反應處理。接著,將固體生成物(2)藉由傾析法(decantation)於常溫下以液體碳氫化合物洗淨,得到固體觸媒成分(A)。
調製固體觸媒成分(A)時之各成分的使用量比,係因調製法而異,故無法一概地規定,例如每一莫耳鎂化合物(a)4價的鈦鹵化合物(b)為0.5~100莫耳、較佳為0.5~50莫耳、更佳為1~10莫耳,電子供予性化合物(c)為0.01~10莫耳、較佳為0.01~1莫耳、更佳為0.02~0.6莫耳,碳氫化合物(d)為0.001~500莫耳、較佳為0.001~100莫耳、更佳為0.005~10莫耳,聚矽氧烷(e)為0.01~100g、較佳為0.05~80g、更佳為1~50g。
另外,本發明之固體觸媒成分(A)中的鈦、鎂、鹵素原子、電子供予性化合物的含有量並無特別規定,最好為:鈦為0.5~8.0重量%、較佳為1.0~8.0重量%、更佳為2.0~8.0重量%,鎂為10~70重量%、更佳為10~50重量%、特佳為15~40重量%、進一步更佳為15~25重量%,鹵素原子為20~90重量%、更佳為30~85重量%、特佳為40~80重量%、進一步更佳為45~75重量%,或者電子供予性化合物為合計0.5~30重量%、更佳為合計1~25重量%、特佳為合計2~20重量%。
形成本發明之烯烴類聚合用觸媒時所用之有機鋁化合物(B)(以下有時簡稱為「成分(B)」),若為上述一般式(3)所示之化合物,則無特別限制,R6 最好為乙基、異丁基,Q最好為氫原子、氯原子、溴原子,p最好為2或3,以3為特佳。此種有機鋁化合物(B)的具體例可舉例如三乙基鋁、二乙基氯化鋁、三異丁基鋁、二乙基溴化鋁、二乙基氫化鋁,可使用1種或2種以上。較佳為三乙基鋁、三異丁基鋁。
形成本發明之烯烴類聚合觸媒時所用之胺基矽烷化合物(C)(以下有時簡稱為「成分(C)」),係上述一般式(2)所示之胺基矽烷化合物。使用作為成分(C)之一般式(2)的較佳化合物及具體例,係與烯烴類聚合用觸媒成分中之一般式(2)記載者相同。
本發明之烯烴類聚合用觸媒中,除了上述成分之外,有時亦使用上述之胺基矽烷化合物以外的有機矽化合物(以下有時簡稱為「成分(D)」)。此種有機矽化合物(D)係下述一般式R8 q Si(OR9 )4 q (式中,R8 為氫原子或碳數1~20之烷基、環烷基、苯基、乙烯基、烯丙基、芳烷基、烷基胺基、環烷基胺基及多環狀胺基,可為相同或相異;R9 為碳數1~20之直鏈或分枝狀烷基、環烷基、乙烯基、烯丙基、芳烷基,可為相同或相異;q為1~3之整數。)所示之有機矽化合物的1種或2種以上。
具體可舉例如烷基烷氧基矽烷、烷基(環烷基)烷氧基矽烷、環烷基烷氧基矽烷、苯基烷氧基矽烷、烷基(苯基)烷氧基矽烷、烷基(烷基胺基)烷氧基矽烷、烷基胺基烷氧基矽烷、環烷基(烷基胺基)烷氧基矽烷、烷基(環烷基胺基)烷氧基矽烷、多環狀胺基烷氧基矽烷、烷基(多環狀胺基)烷氧基矽烷等。
若具體例示上述有機矽化合物(D),最好使用二正丙基二甲氧基矽烷、二異丙基二甲氧基矽烷、二正丁基二甲氧基矽烷、二正丁基二乙氧基矽烷、第三丁基(甲基)二甲氧基矽烷、第三丁基(乙基)二甲氧基矽烷、二環己基二甲氧基矽烷、環己基(甲基)二甲氧基矽烷、二環戊基二甲氧基矽烷、環戊基(甲基)二乙氧基矽烷、環戊基(乙基)二甲氧基矽烷、環戊基(環己基)二甲氧基矽烷、3-甲基環己基(環戊基)二甲氧基矽烷、4-甲基環己基(環戊基)二甲氧基矽烷、3,5-二甲基環己基(環戊基)二甲氧基矽烷、雙(二乙基胺基)二甲氧基矽烷、雙(二正丙基胺基)二甲氧基矽烷、雙(二正丁基胺基)二甲氧基矽烷、雙(二第三丁基胺基)二甲氧基矽烷、雙(二環戊基胺基)二甲氧基矽烷、雙(二環己基胺基)二甲氧基矽烷、雙(二-2-甲基環己基胺基)二甲氧基矽烷、雙(全氫異喹啉并基)二甲氧基矽烷、雙(全氫喹啉并基)二甲氧基矽烷、雙(乙基-正丙基胺基)二甲氧基矽烷、雙(乙基異丙基胺基)二甲氧基矽烷、雙(乙基-正丁基胺基)二甲氧基矽烷、雙(乙基異丁基胺基)二甲氧基矽烷、雙(乙基-第三丁基胺基)二甲氧基矽烷、雙(異丁基-正丙基胺基)二甲氧基矽烷、雙(乙基環戊基胺基)二甲氧基矽烷、雙(乙基環己基胺基)二甲氧基矽烷、乙基(二乙基胺基)二甲氧基矽烷、正丙基(二異丙基胺基)二甲氧基矽烷、異丙基(二第三丁基胺基)二甲氧基矽烷、環己基(二乙基胺基)二甲氧基矽烷、乙基(二第三丁基胺基)二甲氧基矽烷、乙基(全氫異喹啉并基)二甲氧基矽烷、正丙基(全氫異喹啉并基)二甲氧基矽烷、異丙基(全氫異喹啉并基)二甲氧基矽烷、正丁基(全氫異喹啉并基)二甲氧基矽烷、乙基(全氫喹啉并基)二甲氧基矽烷、正丙基(全氫喹啉并基)二甲氧基矽烷、異丙基(全氫喹啉并基)二甲氧基矽烷、正丁基(全氫喹啉并基)二甲氧基矽烷、雙(二乙基胺基)二乙氧基矽烷、雙(二正丙基胺基)二乙氧基矽烷、雙(二正丁基胺基)二乙氧基矽烷、雙(二第三丁基胺基)二乙氧基矽烷、雙(二環戊基胺基)二乙氧基矽烷、雙(二環己基胺基)二乙氧基矽烷、雙(二-2-甲基環己基胺基)二乙氧基矽烷、雙(二全氫異喹啉并基)二乙氧基矽烷、雙(二全氫喹啉并基)二乙氧基矽烷、雙(乙基-正丙基胺基)二乙氧基矽烷、雙(乙基異丙基胺基)二乙氧基矽烷、雙(乙基-正丁基胺基)二乙氧基矽烷、雙(乙基-異丁基胺基)二乙氧基矽烷、雙(乙基-第三丁基胺基)二乙氧基矽烷、雙(異丁基-正丙基胺基)二乙氧基矽烷、雙(乙基環戊基胺基)二乙氧基矽烷、雙(乙基環己基胺基)二乙氧基矽烷、正丙基(二異丙基胺基)二乙氧基矽烷、乙基(全氫異喹啉并基)二乙氧基矽烷、正丙基(全氫異喹啉并基)二乙氧基矽烷、異丙基(全氫異喹啉并基)二乙氧基矽烷、正丁基(全氫異喹啉并基)二乙氧基矽烷、乙基(全氫喹啉并基)二乙氧基矽烷、正丙基(全氫喹啉并基)二乙氧基矽烷、異丙基(全氫喹啉并基)二乙氧基矽烷、正丁基(全氫喹啉并基)二乙氧基矽烷、噻西基三甲氧基矽烷、二乙基胺基三甲氧基矽烷、二正丙基胺基三甲氧基矽烷、二正丁基胺基三甲氧基矽烷、二第三丁基胺基三甲氧基矽烷、二環戊基胺基三甲氧基矽烷、二環己基胺基三甲氧基矽烷、二-2-甲基環己基胺基三甲氧基矽烷、全氫異喹啉并基胺基三甲氧基矽烷、全氫喹啉并基胺基三甲氧基矽烷、二乙基胺基三乙氧基矽烷、二正丙基胺基三乙氧基矽烷、二正丁基胺基三乙氧基矽烷、乙基第三丁基胺基三乙氧基矽烷、乙基第二丁基胺基三乙氧基矽烷、二環戊基胺基三乙氧基矽烷、二環己基胺基三乙氧基矽烷、二-2-甲基環己基胺基三乙氧基矽烷、全氫異喹啉并基三乙氧基矽烷、全氫喹啉并基三乙氧基矽烷、雙(第三丁基胺基)二甲氧基矽烷、雙(環己基胺基)二甲氧基矽烷、雙(第三丁基胺基)二乙氧基矽烷、雙(環己基胺基)二乙氧基矽烷、三乙烯基甲基矽烷、四乙烯基矽烷、環己基噻西基二甲氧基矽烷,該有機矽化合物(D)可使用1種或組合2種以上。
於本發明之烯烴類聚合用觸媒之存在下實施烯烴類的同元聚合、無規共聚合或嵌段共聚合。作為烯烴類有如乙烯、丙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、乙烯基環己烷等,此等烯烴類可使用1種或併用2種以上。尤其以乙烯、丙烯、1-丁烯較適合使用。特佳為丙烯。於丙烯的情況,可進行與其他烯烴類的共聚合。作為被共聚合之烯烴,有如乙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、乙烯基環己烷等,此等烯烴類可使用1種或併用2種以上。尤其以乙烯、1-丁烯較適合使用。作為丙烯與其他烯烴類之共聚合,代表性者有:以丙烯與少量乙烯作為共單體以一階段進行聚合之無規共聚合;與於第一階段(第一聚合槽)進行丙烯的同元聚合,於第二階段(第二聚合槽)或其以上之多階段(多階段聚合槽)進行丙烯與乙烯的共聚合之所謂丙烯-乙烯嵌段共聚合。於此種無規共聚合和嵌段共聚合中,由上述成分(A)、成分(B)及成分(C)所構成之本發明的觸媒係為有效,不僅觸媒活性、立體規則性及/或氫反應良好,共聚合特性和所得之共聚合體的特性亦良好。特別是除了屬於本發明觸媒成分之成分(C)之外,可混合使用上述之成分(D),或可於嵌段共聚合之多階段聚合槽中分別使用成分(C)與成分(D)。又,特別是於從丙烯之同元聚合移行至嵌段共聚合時,為了防止最終製品中的凝膠生成,可於聚合系統中添加醇類、氧氣或酮等已知的電子供予性化合物。作為醇類的具體例有如乙醇、異丙醇等,使用量係相對於成分(B)1莫耳為0.01~10莫耳、較佳為0.1~2莫耳。
各成分的使用量比,在不影響本發明效果的前提下則為任意,並無特別限定,通常成分(B)係於成分(A)中之每一莫耳鈦原子使用1~2000莫耳、較佳為50~1000莫耳的範圍。成分(C)係每一莫耳成分(B)使用0.002~10莫耳、較佳為0.01~2莫耳、特佳為0.1~0.5莫耳的範圍。於併用成分(D)的情況,每一莫耳成分(B)係使用0.002~10莫耳、較佳為0.01~2莫耳、特佳為0.01~0.5莫耳的範圍,又,每一莫耳成分(C)係使用0.001~10莫耳、較佳為0.01~10莫耳、特佳為0.01~2莫耳的範圍。
各成分的接觸順序為任意,最好於聚合系統內先裝入有機鋁化合物(B),其次,使胺基矽烷化合物(C)接觸、或使預先混合之成分(C)及成分(D)接觸、或者使成分(C)及成分(D)依任意順序接觸,再使固體觸媒成分(A)接觸。亦或是於聚合系統內先裝入有機鋁化合物(B),另一方面使成分(A)與成分(C)或成分(C)及成分(D)預先接觸,將已接觸之成分(A)與成分(C)或成分(C)及成分(D)裝入至聚合系統內進行接觸以形成觸媒,亦為較佳態樣。藉由如此預先使成分(A)與成分(B)或成分(C)及成分(D)進行接觸處理,則可更加提升觸媒的氫反應及生成聚合物的結晶性。
本發明中之聚合方法,可於有機溶媒之存在下或不存在下進行,又,丙烯等之烯烴單體,可依氣體及液體之任一狀態使用於聚合。聚合溫度為200℃以下、較佳為150℃以下,聚合壓力為10MPa以下、較佳為6MPa以下。又,可為連續聚合法、批次聚合法之任一種。再者,可依1階段進行聚合反應,亦可以2階段以上之多階段進行。
再者,本發明中使用由成分(A)、成分(B)及成分(C)所形成之觸媒使烯烴類進行聚合時(亦稱為「主聚合」),為了進一步改善觸媒活性、立體規則性及所生成之粒子性狀度等,最好於主聚合前進行預備聚合。於預備聚合時,可使用與主聚合相同之烯烴類或苯乙烯等之單體。具體而言,於烯烴類存在下使成分(A)、成分(B)及/或成分(C)接觸,每1g成分(A)係使0.1~100g之聚烯烴預備性地聚合,再進一步使成分(B)及/或成分(C)接觸而形成觸媒。又,於併用成分(D)的情況,係於上述預備聚合時在烯烴類存在下使成分(A)、成分(B)及成分(D)接觸,於主聚合時亦可使用成分(C)。進行預備聚合時,各成分及單體的接觸順序為任意,最好在設定為惰性氣體環境或進行丙烯等之聚合之氣體環境的預備聚合系統內,首先裝入成分(B),接著使成分(C)及/或成分(D)接觸,其次使成分(A)接觸後,再使丙烯等之烯烴及/或1種或2種以上之其他烯烴類接觸。預備聚合溫度為任意,並無特別限制,較佳為-10℃~70℃的範圍,更佳為-5℃~50℃的範圍。
於本發明之烯烴類聚合觸媒之存在下,進行烯烴類之聚合時,相較於使用習知觸媒的情況,將保持高立體規則性,並提升氫反應。又,藉由成分(C)之構造,相較於使用習知觸媒的情況,將提升觸媒活性與立體規則性。亦即,若將本發明觸媒用於烯烴類之聚合,則藉由成分(C)之構造,將保持高立體規則性,並改善氫反應,又,可確認到改善觸媒活性與立體規則性之作用。又,本發明之有機矽化合物亦可利用於導體絕緣膜材料、印刷佈線基材等之表面處理劑、光阻劑原料或其中間原料等。
以下,舉出實施例更具體說明本發明,惟此僅為例示,並非用以限制本發明。
(實施例1)
<胺基矽烷化合物之合成>於充分取代為氮氣之燒瓶中,於氮氣流下分取乙基胺之THF溶液,將此冷卻至-10℃~0℃,一邊攪拌,一邊利用滴下漏斗將與乙基胺等莫耳之市售丁基鋰的己烷溶液慢慢滴入。滴入結束後,慢慢地使溫度上升,於50℃下反應2小時,調製乙基胺之鋰鹽漿料。其次,於分取至充分取代為氮氣之燒瓶中、並冷卻至-10℃~0℃之二環戊基二甲氧基矽烷(市售品)之甲苯溶液中,於攪拌下、氮氣流下,使用注射器慢慢地添加二環戊基二甲氧基矽烷之2.1倍莫耳的上述乙基胺之鋰鹽漿料。添加結束後,慢慢地使溫度上升,於70℃下反應4小時。反應後,將固體成分於氮環境氣體下進行過濾,以少量的甲苯洗淨,將固液分離。從溶液餾去溶媒,藉由將屬於主生成物之雙(乙基胺基)二環戊基矽烷進行減壓蒸餾,進行精製。測定沸點之結果為118℃/2.4mmHg。又,產率為84.6%。藉由1 H-NMR、IR及元素分析確認此生成物為雙(乙基胺基)二環戊基矽烷。元素分析之結果係C為66.05%(66.07%)、H為11.86%(11.86%)、N為11.02%(11.01%)(括號內之數值為理論值)。又,由IR光譜於3350cm 1 附近觀察到典型之二級胺的N-H伸縮振動所進行之吸收。又,由1 H-NMR圖譜所得之歸屬於質子之位置及其位置處之圖譜強度係如第1表所示,此等分析結果係支持所得化合物為雙(乙基胺基)二環戊基矽烷。又,1 H-NMR及IR係依下述條件進行測定。1 H-NMR:測定裝置:JEOL 500MHZ,測定溶媒:CDCl3 ,Scan數:20次,測定溫度:20℃,內部基準:TMS IR:測定裝置:Nicolet公司製;Avatar 360FT/IR,NaCl sand法,測定溫度:室溫
(實施例2)
<胺基矽烷化合物之合成>於充分取代為氮氣之三口燒瓶中,於氮氣流下分取含有甲基胺0.04莫耳之THF溶液60ml,接著使用滴下漏斗將含有0.04莫耳BuLi的己烷溶液30ml慢慢滴入冷卻至-10℃的上述甲基胺溶液中。滴入結束後,慢慢地升溫,於50℃下反應2小時。於經氮氣沖洗之另外的容器中分取含有第三丁基乙基二甲氧基矽烷0.02莫耳之甲苯溶液60ml,冷卻至-10℃。將此冷卻之溶液於氮氣密封下慢慢滴入甲基胺之Li鹽漿料。滴下結束後,於50℃下反應3小時,將反應混合物藉離心分離法使固體與液體分離,再將固體以20ml之甲苯洗淨並追加至溶液。於減壓下餾去溶媒後,藉減壓蒸餾將生成物分離精製而得到雙(甲基胺基)第三丁基乙基矽烷。元素分析之結果係C為55.01%(55.11%)、H為12.57%(12.72%)、N為16.25%(16.07%)(括號內之數值為理論值)。
(實施例3)
<胺基矽烷化合物之合成>於充分取代為氮氣之燒瓶中,分取乙基胺之THF溶液,將此冷卻至-10℃~0℃,一邊攪拌,一邊利用滴下漏斗將與乙基胺等莫耳之市售丁基鋰的己烷溶液慢慢滴入。滴入結束後,慢慢地使溫度上升,於50℃下反應2小時,調製乙基胺之鋰鹽漿料。其次,於分取至充分取代為高純度氮氣之燒瓶中、並冷卻至-10℃~0℃之雙(甲氧基)二異丙基矽烷(市售品)之甲苯溶液中,於攪拌下、氮氣流下,使用注射器慢慢地添加雙(甲氧基)二異丙基矽烷之2.1倍莫耳的上述乙基胺之鋰鹽漿料。添加結束後,慢慢地使溫度上升,於70℃下反應4小時。反應後,將固體成分於氮環境氣體下進行過濾,以少量的甲苯洗淨,將固液分離。從溶液餾去溶媒,藉由將屬於主生成物之雙(乙基胺基)二異丙基矽烷進行減壓蒸餾,進行精製。測定沸點之結果為68℃/7mmHg。又,產率為87.2%。藉由1 H-NMR、IR及元素分析確認此生成物為雙(乙基胺基)二異丙基矽烷。元素分析之結果係C為59.35%(59.34%)、H為12.96%(12.95%)、N為13.82%(13.84%)(括號內之數值為理論值)。
IR光譜中,3400cm 1 附近觀察到典型之二級胺的N-H伸縮振動所進行之吸收。又,由1 H-NMR圖譜所得之歸屬於質子之位置及其位置處之圖譜強度係如第2表所示,此等分析結果係支持所得化合物為雙(乙基胺基)二異丙基矽烷。又,1 H-NMR及IR係依與實施例1相同之裝置及條件進行測定。
(實施例4)
<胺基矽烷化合物之合成>除了使用甲基胺0.02莫耳代替甲基胺0.04莫耳,使用含有0.02莫耳BuLi的己烷溶液代替含有0.04莫耳BuLi的己烷溶液,使用第三丁基甲基二甲氧基矽烷0.01莫耳代替第三丁基乙基二甲氧基矽烷0.02莫耳之外,其餘依與實施例2相同之方法進行合成,得到雙(甲基胺基)第三丁基甲基矽烷。元素分析之結果係C為52.30%(52.44%)、H為12.61%(12.57%)、N為17.51%(17.47%)(括號內之數值為理論值)。
(實施例5)
<胺基矽烷化合物之合成>除了使用二環己基二甲氧基矽烷代替第三丁基乙基二甲氧基矽烷之外,其餘依與實施例2相同之方法進行合成,得到雙(甲基胺基)二環己基矽烷。元素分析之結果係C為66.03%(66.07%)、H為11.86%(11.88%)、N為11.00%(11.01%)(括號內之數值為理論值)。
(實施例6)
<胺基矽烷化合物之合成>除了使用環己基甲基二甲氧基矽烷代替第三丁基乙基二甲氧基矽烷之外,其餘依與實施例2相同之方法進行合成,得到雙(甲基胺基)環己基甲基矽烷。元素分析之結果係C為57.91%(58.00%)、H為11.68%(11.90%)、N為15.00%(15.03%)(括號內之數值為理論值)。
(實施例7)
<胺基矽烷化合物之合成>將0.44莫耳之金屬鎂分取至經氮氣沖洗之燒瓶中,於此添加經脫水及脫氧之二異丙基醚60ml,再添加作為觸媒之微量碘並攪拌。於攪拌下冷卻至10℃,於其中慢慢滴入含有0.4莫耳2-氯十氫萘之二異丙基醚140ml。於控制溫度不致於上升至室溫以上之下進行滴入,滴入結束後,於30℃反應2小時。將反應混合物過濾,藉由酸鹼滴定求取所得之醚溶液中之格林納試藥的生成量。結果,產率為20%,濃度為0.04莫耳/100ml。於經充分氮氣沖洗之燒瓶中取含有0.02莫耳四甲氧基矽烷之甲苯溶液50ml,於攪拌下冷卻至-10℃,於此溶液中滴入上述合成之具有十氫萘基之格林納試藥之二異丙基醚100ml。滴入結束後,慢慢升溫於80℃下反應2小時,反應後,以離心分離法於氮氣流下分離固體成分,以甲苯10ml洗淨2次加入至溶液側。於減壓下餾去、濃縮溶媒後,進行加熱,將生成物蒸餾精製而分離。重覆2次此合成,於燒瓶中準備含有0.02莫耳雙(十氫萘基)二甲氧基矽烷之甲苯溶液50ml。
另一方面,於充分取代為氮氣之三口燒瓶中,於氮氣流下分取含有甲基胺0.04莫耳之甲苯溶液60ml,接著使用滴下漏斗將含有0.04莫耳BuLi的己烷溶液30ml慢慢滴入冷卻至-10℃的上述甲基胺溶液中。滴入結束後,慢慢地升溫,於50℃下反應2小時並結束。如此得到甲基胺之鋰鹽漿料。將含有上述雙(十氫萘基)二甲氧基矽烷0.02莫耳之甲苯溶液冷卻至-10℃,並滴入甲基胺之鋰鹽漿料。滴下結束後,於50℃下反應3小時,再於80℃下反應2小時。接著減壓下將溶媒蒸去,於減壓加熱下進行蒸餾,將生成物分離精製而得到雙(甲基胺基)雙(十氫萘基)矽烷。元素分析之結果係C為72.60%(72.86%)、H為11.61%(11.67%)、N為7.51%(7.72%)(括號內之數值為理論值)。
(實施例8)
<胺基矽烷化合物之合成>除了使用乙基胺代替甲基胺,使用環己基環戊基二甲氧基矽烷代替第三丁基乙基二甲氧基矽烷之外,其餘依與實施例2相同之方法進行合成,得到雙(乙基胺基)環己基環戊基矽烷。元素分析之結果係C為67.05%(67.10%)、H為12.00%(12.01%)、N為10.23%(10.43%)(括號內之數值為理論值)。
(實施例9)
<固體觸媒成分之調製>於具備攪拌機並充分取代為氮氣體之容量2000ml的圓底燒瓶中,裝入二乙氧基鎂150g及甲苯750ml,作成懸濁狀態。其次,將該懸濁液添加至預先裝入於具備攪拌機並充分取代為氮氣體之容量2000ml的圓底燒瓶中的甲苯450ml及四氯化鈦300ml之溶液中。其次,將該懸濁液於5℃下反應1小時。其後,添加苯二甲酸正丁酯22.5ml,升溫至100℃後,於攪拌下進行反應處理2小時。反應結束後,將生成物以80℃之甲苯1300ml洗淨4次,加添新的甲苯1200ml及四氯化鈦300ml,於攪拌下在110℃進行反應處理2小時。再一次重覆中間洗淨及第2處理。其次,將生成物以40℃的庚烷1300ml洗淨7次,並過濾、乾燥,得到粉末狀之固體觸媒成分。測定此固體成分中之鈦含量,結果為3.1重量%。
<聚合用觸媒之形成及聚合>於完全以氮氣取代之內容積2.0公升之附攪拌機高壓釜中,裝入三乙基鋁1.32毫莫耳、實施例1所得之雙(乙基胺基)二環戊基矽烷0.26毫莫耳及上述固體觸媒成分以鈦原子計0.0026毫莫耳,形成聚合觸媒。其後,裝入氫氣4公升、液化丙烯1.4公升,於20℃下進行預備聚合5分鐘後進行升溫,於70℃下進行聚合反應1小時。針對所得之聚合體,將觸媒活性、體比重(BD,g/ml),庚烷不溶部(HI,重量%),熔融流動速率根據ASTM以熔融指數(MI,g-PP/10分鐘)表示。其結果合併記載於表4。又,表4中,空欄部份表示未取得數據。
將表示固體觸媒成分每1g、聚合時間每1小時之生成聚合體量(F)g的觸媒活性藉下式算出。
觸媒活性=生成聚合體(F)g/固體觸媒成分g/1小時另外,將此聚合體(G)g以沸騰正庚烷連續萃取6小時後,將不溶解於正庚烷之聚合體(H)g乾燥後,測定重量,以下式算出聚合體中沸騰庚烷不溶解份(HI,重量%)之比例。
HI(重量%)=(H)g/(G)g×100
表示聚合體熔融流動速率之熔融指數(MI)的值係根據ASTEM D 1238、JIS K 7210而測定。
聚合體的分子量分佈係藉由利用色層分析法(CFC)(三菱化學公司製CFC T-150B)依以下條件測定所求得之重量平均分子量Mw及數量平均分子量Mn之比Mw/Mn所評價。
溶媒:鄰二氯苯(ODCB)溫度:140℃(SEC)管柱:Shodex GPC UT-806m2 樣品濃度:4g/1-ODCB(200mg/50ml-ODCB)注入量:0.5ml流量:1.0ml/min測定範圍:0℃~140℃
(實施例10)
除了使用實施例2所得之雙(甲基胺基)第三丁基乙基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。將所得結果示於表4。
(實施例11)
除了使用實施例3所得之雙(乙基胺基)二異丙基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。將所得結果示於表4。
(實施例12)
除了使用實施例4所得之雙(甲基胺基)第三丁基甲基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。將所得結果示於表4。
(實施例13)
除了使用實施例5所得之雙(甲基胺基)二環己基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。並測定聚合物之分子量分佈。將所得結果示於表4。
(實施例14)
除了使用實施例6所得之雙(甲基胺基)環己基甲基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。將所得結果示於表4。
(實施例15)
除了使用實施例7所得之雙(甲基胺基)雙(十氫萘基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。將所得結果示於表4。
(實施例16)
除了使用實施例8所得之雙(乙基胺基)環己基環戊基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。將所得結果示於表4。
(實施例17)
<固體觸媒成分之調製>於具備攪拌機並充分取代為氮氣之容量500ml的圓底燒瓶中,裝入無水氯化鎂4.76g、癸烷25ml及2-乙基己基醇23.4ml,於130℃反應2小時,形成均勻溶液。其次,於該均勻溶液添加苯二甲酸酐1.11g,於130℃下反應1小時。其次,將該溶液裝入於具備攪拌機並充分取代為氮氣之容量500ml的圓底燒瓶中,歷時1小時全量滴入至保持於-20℃之四氯化鈦200ml中。接著,將該混合溶液歷時4小時升溫至110℃後,添加苯二甲酸二異丁酯2.68ml,反應2小時。反應結束後,藉過濾去除液體部分,將剩餘固體成分於110℃下以癸烷及己烷洗淨直到無法檢測出遊離鈦化合物,並過濾、乾燥,得到粉末狀固體觸媒成分。測定此固體觸媒成分中之鈦含量,結果為3.1重量%。
<聚合用觸媒之形成及聚合>除了使用上述所得之固體觸媒成分之外,其餘與實施例9同樣地進行聚合觸媒之形成及聚合。將所得結果示於表4。
(實施例18)
<固體觸媒成分之調製>於具備攪拌機並充分取代為氮氣之容量1000ml的圓底燒瓶中,裝入格林納用削屑狀鎂32g。其次,將丁基氯化物120g及二丁基醚500ml的混合液,於50℃下歷時4小時滴入至該鎂中,其後於60℃反應1小時。反應結束後,將反應溶液冷卻至室溫,藉過濾去除固體部分,得到鎂化合物溶液。於具備攪拌機並充分取代為氮氣之容量500ml的圓底燒瓶中,裝入己烷240ml、四丁氧基鈦5.4g及四乙氧基矽烷61.4g並形成均勻溶液後,將該鎂化合物溶液150ml於5℃下歷時4小時滴入使其反應,其後於室溫下攪拌1小時。接著,將該反應溶液於室溫下過濾去除液狀部分後,將剩餘固體部分以己烷240ml洗淨8次,進行減壓乾燥,得到固體生成物。其次,於具備攪拌機並充分取代為氮氣之容量100ml的圓底燒瓶中,裝入該固體生成物8.6g,再加入甲苯48ml及苯二甲酸二異丁酯5.8ml,於95℃下反應1小時。其後,藉過濾去除液狀部分後,將剩餘固體部分以甲苯85ml洗淨8次。洗淨結束後,於燒瓶中加入甲苯21ml、苯二甲酸二異丁酯0.48ml及四氯化鈦12.8ml,於95℃下反應8小時。反應結束後,於95℃下進行固液分離,將固體部分以甲苯48ml洗淨2次,接著依同一條件再次進行上述苯二甲酸二異丁酯及四氯化鈦的混合物所進行的處理,以己烷48ml洗淨8次,並過濾.乾燥,得到粉末狀固體觸媒成分。測定此固體觸媒成分中之鈦含量,結果為2.1重量%。
<聚合用觸媒之形成及聚合>除了使用上述所得之固體觸媒成分之外,其餘與實施例9同樣地進行聚合觸媒之形成及聚合。將所得結果示於表4。
(實施例19)
除了將聚合時間以2小時代替1小時之外,其餘依與實施例9相同的條件進行聚合。將所得結果示於表4。
(實施例20)
除了使用參(甲基胺基)第三丁基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表5。
(實施例21)
除了使用雙(甲基胺基)二第三丁基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表5。
(實施例22)
除了使用雙(甲基胺基)環己基環戊基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表5。
(實施例23)
除了使用雙(甲基胺基)環己基噻西基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表5。
(實施例24)
除了使用雙(乙基胺基)第三丁基異丁基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表5。
(實施例25)
除了使用雙(甲基胺基)二4-甲氧基苯基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表5。
(實施例26)
除了使用雙(甲基胺基)噻西基甲基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表5。
(實施例27)
除了使用雙(甲基胺基)二(十氫萘基)矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表5。
(實施例28)
除了使用參(甲基胺基)環己基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表5。
(比較例1)除了使用環己基甲基二甲氧基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表4。
(比較例2)除了使用雙(二乙基胺基)二甲氧基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表4。
(比較例3)除了使用二異丙基胺基三乙氧基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表4。
(比較例4)除了使用參(二甲基胺基)甲氧基矽烷代替雙(乙基胺基)二環戊基矽烷而進行聚合觸媒的形成及聚合之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表4。
(比較例5)除了使用環己基甲基二甲氧基矽烷代替雙(乙基胺基)二環戊基矽烷,並將聚合時間1小時改為2小時之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表4。
(實施例29)
<胺基矽烷化合物之合成>除了使用甲基胺代替乙基胺之外,其餘依與實施例1相同之方法合成胺基矽烷化合物,得到雙(甲基胺基)二環戊基矽烷。產率為82.5%。藉由元素分析確認此生成物為雙(甲基胺基)二環戊基矽烷。C、H、N元素分析之結果係C為63.53%(63.65%)、H為11.56%(11.57%)、N為12.35%(12.37%)(括號內之數值為理論值)。
(實施例30)
<胺基矽烷化合物之合成>除了使用正丙基胺代替乙基胺之外,其餘依與實施例1相同之方法合成胺基矽烷化合物,得到雙(正丙基胺基)二環戊基矽烷。產率為82.5%。藉由元素分析確認此生成物為雙(正丙基胺基)二環戊基矽烷。C、H、N元素分析之結果係C為68.03%(68.02%)、H為12.15%(12.13%)、N為9.90%(9.91%)(括號內之數值為理論值)。
(實施例31)
[聚合觸媒之形成及聚合]除了使用實施例29所合成之雙(甲基胺基)二環戊基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表4。
(實施例32)
[聚合觸媒之形成及聚合]除了使用實施例30所合成之雙(正丙基胺基)二環戊基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地調製固體觸媒成分,進行聚合用觸媒的形成及聚合。將所得結果示於表4。
(實施例33)
<胺基矽烷化合物之合成>將含有經脫水及脫氧之甲基胺0.9莫耳的經脫水及脫氧處理之甲苯溶液(甲苯100ml),於氮氣流下分取至以乾燥氮氣充分取代之附攪拌機三口燒瓶中,冷卻至10℃。接著於攪拌下從滴下漏斗歷時30分鐘慢慢滴入含有0.2莫耳四氯化矽之甲苯(50ml)溶液。反應係發熱反應並與滴入同時生成含胺之鹽酸鹽的白色沉澱物。滴入結束後,放置冷卻至室溫,其後加熱至40℃並反應1小時。接著將反應混合物於氮氣體環境下進行過濾,以甲苯10ml洗淨2次,將固體與液體分離。
將所得之甲苯溶液於減壓下在50℃下濃縮至成為約4分之一體積,其次,添加經脫水及脫氧處理之正庚烷150ml,冷卻至10℃並放置一晝夜進行再結晶。將析出之針狀結晶過濾分離,於氮氣體環境下乾燥後,得到肆(甲基胺基)矽烷。由結晶重量一次再結晶的產率為50%。從殘液實施第二次的再結晶,若將所得結晶進行加算則產率達到55%。生成物藉由C、H、N元素分析進行鑑定。其結果係C為32.23%(32.40%)、H為10.67%(10.88%)、N為37.70%(37.78%)(括號內之數值為理論值)。
(實施例34)
<胺基矽烷化合物之合成>將含有0.2莫耳第三丁基胺之甲苯溶液50ml取至以氮氣充分沖洗之燒瓶中,於攪拌下冷卻至-10℃。於此冷卻溶液中,使用滴下漏斗慢慢滴入含有0.2莫耳BuMgCl之60mlTHF溶液。滴入結束後,將溫度慢慢上升,於40℃下反應2小時,結束反應。其次,將含有0.1莫耳四甲氧基矽烷之甲苯溶液50ml取至以氮氣充分沖洗之燒瓶中,於攪拌下冷卻至-10℃。一邊攪拌,一邊以滴下漏斗慢慢添加上述反應所得之第三丁基胺的Mg鹽漿料。滴入結束後,將溫度慢慢上升,於50℃下反應3小時,結束反應。所生成之固體於氮氣流下藉由離心分離使溶液分離。將固體以20ml甲苯洗淨2次,加入至溶液中。將溶媒於減壓下餾去,濃縮後,於減壓下加熱,將屬於主生成物之雙(第三丁基胺基)二甲氧基矽烷蒸餾精製。
將含有0.1莫耳乙基胺之甲苯溶液50ml取至以氮氣充分沖洗之燒瓶中,於攪拌下冷卻至-10℃。於此冷卻溶液中,使用滴下漏斗慢慢滴入含有0.1莫耳BuMgCl之60mlTHF溶液。滴入結束後,將溫度慢慢上升,於20℃下反應2小時,結束反應。其次,將含有0.05莫耳雙(第三丁基胺基)二甲氧基矽烷之甲苯溶液50ml取至以氮氣充分沖洗之燒瓶中,於攪拌下冷卻至-10℃。於攪拌下,於含有雙(第三基丁基胺基)二甲氧基矽烷之甲苯溶液中,以滴下漏斗慢慢添加上述反應所得之乙基胺的Mg鹽漿料。滴入結束後,於50℃下反應4小時,結束反應。將由反應所生成之固體於氮氣流下進行離心分離。將固體以20ml甲苯洗淨2次,加入至溶液中。從溶液將溶媒於減壓下餾去,濃縮後,於減壓下加熱,將屬於主生成物之雙(第三丁基胺基)雙(二乙基胺基)矽烷蒸餾精製。生成物藉由C、H、N元素分析進行鑑定。其結果係C為55.30%(55.33%)、H為12.32%(12.38%)、N為21.39%(21.51%)(括號內之數值為理論值)。
(實施例35)
<胺基矽烷化合物之合成>藉由公知的合成法,合成雙(全氫喹啉并基)二甲氧基矽烷。其次,依根據實施例34之方法,得到含有0.1莫耳二乙基胺Mg鹽之反應混合物110ml。將含有0.05莫耳雙(全氫喹啉并基)二甲氧基矽烷之甲苯溶液80ml取至以氮氣充分沖洗之燒瓶中,於攪拌下冷卻至-10℃。其次,於此上述溶液中,使用滴下漏斗慢慢滴入含有0.1莫耳二乙基胺Mg鹽之漿料狀反應混合物110ml。滴入結束後,於60℃下反應6小時,結束反應。將由反應所生成之固體於氮氣流下進行離心分離。將固體以20ml甲苯洗淨2次,加入至溶液中。從溶液將溶媒於減壓下餾去,濃縮後,於減壓下加熱,將屬於主生成物之雙(全氫喹啉并基)雙(乙基胺基)矽烷蒸餾精製。生成物藉由C、H、N元素分析進行鑑定。其結果係C為67.20%(67.29%)、H為11.30%(11.29%)、N為14.25%(14.27%)(括號內之數值為理論值)。
(實施例36)
<胺基矽烷化合物之合成>將含有0.05莫耳的二第三丁基胺之甲苯溶液80ml於氮氣流下分取至以氮氣充分沖洗之三口燒瓶中,於攪拌下冷卻至-10℃。於上述含有二第三丁基胺之甲苯溶液中,使用滴下漏斗慢慢滴入含有0.05莫耳BuMgCl之50mlTHF溶液。滴入結束後,進行升溫於40℃下反應2小時。如此得到二第三丁基胺之Mg鹽漿料。其次,將含有0.05莫耳四甲氧基矽烷之甲苯溶液50ml於氮氣流下分取至以氮氣充分沖洗之三口燒瓶中,於攪拌下冷卻至-10℃。於此含有四甲氧基矽烷之甲苯溶液中,以滴下漏斗慢慢添加上述之二第三丁基胺的Mg鹽漿料的全量。滴入結束後,升溫至50℃,於同溫度下反應4小時。其次,將溶液的溶媒於減壓下餾去,將屬於主生成物之(二第三丁基胺基)三甲氧基矽烷藉減壓蒸餾進行蒸餾精製。其次,將含有0.03莫耳(二第三丁基胺基)三甲氧基矽烷之甲苯溶液於氮氣流下分取至以氮氣充分沖洗之三口燒瓶中,於攪拌下冷卻至-10℃。與實施例35同樣地,於上述含有0.03莫耳(二第三丁基胺基)三甲氧基矽烷之甲苯溶液中,使用滴下漏斗慢慢滴入含有0.09莫耳之由二乙基胺與BuMgCl所合成之二乙基胺Mg鹽。滴入結束後,慢慢升溫,於50℃下反應4小時。反應後,將固體於氮氣流下藉由離心分離使溶液分離。將固體以20ml甲苯洗淨2次,加入至溶液部中。從溶液將溶媒於減壓下餾去,將屬於主生成物之參(乙基胺基)二第三丁基胺基矽烷藉減壓蒸餾進行精製。生成物藉由C、H、N元素分析進行鑑定。其結果係C為58.30%(58.27%)、H為12.41%(12.58%)、N為19.25%(19.42%)(括號內之數值為理論值)。
(實施例37)
<胺基矽烷化合物之合成>依與實施例36相同之合成法,得到0.1莫耳之二第三丁基胺之Mg鹽漿料。其次,將含有0.05莫耳四甲氧基矽烷之甲苯溶液50ml於氮氣流下分取至以氮氣充分沖洗之三口燒瓶中,於攪拌下冷卻至-10℃。於此甲苯溶液中,以滴下漏斗慢慢滴入上述0.1莫耳之第三丁基胺的Mg鹽漿料100ml。滴入結束後,於60℃下反應4小時。反應結束後,將固體於氮氣流下藉由離心分離而分離,再將固體以20ml甲苯洗淨,加入至溶液部中。將溶媒於減壓下從溶液中餾去後,將主生成物之雙(二第三丁基胺基)二甲氧基矽烷藉由減壓蒸餾進行精製。又,與實施例36同樣地藉由甲基胺與BuMgCl之反應,合成0.08莫耳甲基胺之Mg鹽漿料80ml。又,將含有0.04莫耳之雙(二第三丁基胺基)三甲氧基矽烷之甲苯溶液於氮氣流下分取至以氮氣充分沖洗之三口燒瓶中,於攪拌下冷卻至-10℃。於此溶液中,使用滴下漏斗慢慢滴入上述0.08莫耳甲基胺之Mg鹽漿料80ml。滴入結束後,慢慢升溫,於70℃下反應5小時。反應後,將固體於氮氣流下藉由離心分離使溶液分離。再將固體以20ml甲苯洗淨2次,加入至溶液部中。從溶液將溶媒於減壓下餾去,將屬於主生成物之雙(二第三丁基胺基)雙(甲基胺基)矽烷藉減壓蒸餾進行精製。生成物藉由C、H、N元素分析進行鑑定。其結果係C為62.48%(62.73%)、H為12.41%(12.87%)、N為16.20%(16.26%)(括號內之數值為理論值)。
(實施例38)
<胺基矽烷化合物之合成>將含有0.05莫耳乙基胺之THF溶液50ml分取至以氮氣充分取代之三口燒瓶中,冷卻至-10℃,滴入等莫耳之BuLi己烷溶液(0.01莫耳/ml溶液)5ml,得到乙基胺的Li鹽。於冷卻至-10℃之含有雙(全氫異喹啉并基)二甲氧基矽烷0.025毫莫耳的庚烷溶液滴入至上述反應混合物中。滴入後慢慢昇溫,於50℃下反應2小時而結束。反應結束後,將生成之固體於氮氣流下藉由離心分離而分離,並分取溶液。固體的洗淨以庚烷重覆2次。加入洗淨液,於減壓下實施溶液的濃縮。將濃縮液以氣體層析儀進行分析,除了殘餘溶媒與雙(全氫異喹啉并基)之順、反異構性造成之3根尖峰以外,亦觀測到可推定為極少量(1~2%)之一取代體的尖峰。試著進行減壓蒸餾,進行蒸餾精製得到雙(乙基胺基)雙(全氫異喹啉并基)矽烷。所得之化合物藉由C、H、N元素分析進行鑑定。其結果係C為67.41%(67.29%)、H為11.10%(11.29%)、N為14.11%(14.27%)(括號內之數值為理論值)。
(實施例39)
<胺基矽烷化合物之合成>將二乙基胺之THF溶液(0.1莫耳/50ml)50ml於氮氣流下分取至以氮氣充分取代之三口燒瓶中,於攪拌下冷卻至-10℃,使用滴下漏斗於此溶液中慢慢滴入BuMgCl之THF溶液(0.1莫耳/100ml溶液)100ml,滴入結束後,攪拌下於40℃反應2小時而結束。將如此得到之二乙基胺的Mg鹽漿料在攪拌下於-10℃下慢慢滴入至根據實施例33之方法所合成之肆(乙基胺基)矽烷的甲苯溶液(0.09莫耳/50ml)50ml。滴入結束後,於50℃中反應2小時。將所得之反應混合物於氮氣流下進行離心分離,使固體與溶液分離,以甲苯洗淨二次。將溶液濃縮後,於減壓下進行蒸餾精製。如此所得之參(乙基胺基)(二乙基胺基)矽烷進行元素分析,其結果係C為41.32%(51.67%)、H為12.10%(12.14%)、N為23.98%(24.10%)(括號內之數值為理論值)。
(實施例40)
<胺基矽烷化合物之合成>將二乙基胺之THF溶液(0.1莫耳/50ml)100ml於氮氣流下分取至以氮氣充分取代之三口燒瓶中,於攪拌下冷卻至-10℃,使用滴下漏斗於此溶液中慢慢滴入BuMgCl之THF溶液(0.1莫耳/100ml溶液)200ml。滴入結束後,攪拌下於40℃反應2小時而結束。將如此得到之二乙基胺的Mg鹽漿料在攪拌下於-10℃下慢慢滴入至根據實施例33之方法所合成之肆(乙基胺基)矽烷的甲苯溶液(0.09莫耳/50ml)50ml。滴入結束後,於60℃中反應3小時。將所得之反應混合物於氮氣流下進行離心分離,使固體與溶液分離,以甲苯洗淨二次。將溶液濃縮後,於減壓下進行蒸餾精製。如此所得之雙(乙基胺基)雙(二乙基胺基)矽烷進行元素分析,其結果係C為55.23%(55.33%)、H為12.30%(12.38%)、N為21.49%(24.51%)(括號內之數值為理論值)。
(實施例41)
<胺基矽烷化合物之合成>將第三丁基乙基胺之THF溶液(0.05莫耳/50ml)50ml於氮氣流下分取至以氮氣充分取代之三口燒瓶中,於攪拌下冷卻至-10℃,使用滴下漏斗於此溶液中慢慢滴入BuMgCl之THF溶液(0.05莫耳/50ml溶液)50ml。滴入結束後,於40℃反應2小時而結束。將如此得到之第三丁基乙基胺的Mg鹽漿料在攪拌下於-10℃下慢慢滴入至根據實施例33之方法所合成之肆(甲基胺基)矽烷的甲苯溶液(0.05莫耳/50ml)50ml。滴入結束後,於50℃中反應2小時。將所得之反應混合物於減壓下在室溫中濃縮為約容積1/2後,於氮氣流下進行離心分離,使固體與溶液分離,同樣地以甲苯15ml洗淨固體2次。將所得溶液於減壓下餾去溶媒,以減壓蒸餾精製生成物。產率為理論值之50%。如此所得之參(甲基胺基)雙(第三丁基乙基胺基)矽烷進行元素分析,其結果係C為49.41%(49.49%)、H為12.01%(12.00%)、N為25.61%(25.65%)(括號內之數值為理論值)。
(實施例42)
<胺基矽烷化合物之合成>將含有0.05莫耳之二異丙基胺之甲苯溶液80ml於氮氣流下分取至以氮氣充分取代之三口燒瓶中,於攪拌下冷卻至-10℃,使用滴下漏斗於上述含有二異丙基胺之甲苯溶液中慢慢滴入含有0.05莫耳BuMgCl之THF溶液50ml。滴入結束後進行昇溫,於50℃反應2小時。如此得到二異丙基胺之Mg鹽漿料。其次,將含有0.05莫耳之四甲氧基矽烷的50ml甲苯溶液分取至以氮氣充分取代之三口燒瓶中,於攪拌下冷卻至-10℃,於此含有四甲氧基矽烷的甲苯溶液中,使用滴下漏斗於上述二異丙基胺之Mg鹽漿料的全量。滴入結束後升溫至50℃,於同溫度反應3小時。其次,將溶液之溶媒於減壓下去除,藉由減壓蒸餾將主生成物之(二異丙基胺)三甲氧基矽烷進行精製分離。以根據實施例36之方法,藉由0.09莫耳之BuMgCl與等莫耳之甲基胺的反應,得到含有甲基胺Mg鹽之漿料。將含有0.03莫耳之(二異丙基胺基)二甲氧基矽烷之甲苯溶液於氮氣流下分取至以氮氣充分取代之三口燒瓶中,於攪拌下冷卻至-10℃。於此溶液中,使用滴下漏斗慢慢滴入含有0.09莫耳之甲基胺Mg鹽的漿料。滴入結束後,慢慢昇溫,於60℃反應5小時。反應結束後,於氮氣流下藉離心分離法使固體分離。再將固體以20ml甲苯洗淨2次,加入至溶液部中。從溶液將溶媒於減壓下餾去,藉由減壓蒸餾精製主生成物之參(甲基胺基)二異丙基胺基矽烷。生成物藉由C、H、N元素分析進行鑑定。其結果係C為49.42%(49.49%)、H為12.11%(12.00%)、N為25.45%(25.65%)(括號內之數值為理論值)。
(實施例43)
除了使用實施例33所得之肆(甲基胺基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。所得結果示於表6。
(實施例44)
於聚合用觸媒之形成及聚合中,除了將氫氣體量4公升變更為1公升之外,其餘與實施例43同樣地進行。所得結果示於表6。
(實施例45)
除了使用實施例34所得之雙(第三丁基胺基)雙(二乙基胺基)矽烷0.13毫莫耳代替雙(乙基胺基)二環戊基矽烷0.26毫莫耳之外,其餘與實施例9同樣地進行實驗。所得結果示於表6。
(實施例46)
除了使用實施例35所得之雙(全氫喹啉并基)雙(二乙基胺基)矽烷0.13毫莫耳代替雙(乙基胺基)二環戊基矽烷0.26毫莫耳之外,其餘與實施例9同樣地進行實驗。所得結果示於表6。
(實施例47)
除了使用實施例36所得之參(乙基胺基)二第三丁基胺基矽烷0.13毫莫耳代替雙(乙基胺基)二環戊基矽烷0.26毫莫耳之外,其餘與實施例9同樣地進行實驗。所得結果示於表6。
(實施例48)
除了使用實施例37所得之雙(二第三丁基胺基)雙(甲基胺基)矽烷0.13毫莫耳代替雙(乙基胺基)二環戊基矽烷0.26毫莫耳之外,其餘與實施例9同樣地進行實驗。所得結果示於表6。
(實施例49)
除了使用實施例38所得之雙(乙基胺基)雙(全氫異喹啉并基)矽烷0.13毫莫耳代替雙(乙基胺基)二環戊基矽烷0.26毫莫耳之外,其餘與實施例9同樣地進行實驗。所得結果示於表6。
(實施例50)
除了使用實施例39所得之參(乙基胺基)(二乙基胺基)矽烷0.13毫莫耳代替雙(乙基胺基)二環戊基矽烷0.26毫莫耳之外,其餘與實施例9同樣地進行實驗。所得結果示於表6。
(實施例51)
除了使用實施例40所得之雙(乙基胺基)雙(二乙基胺基)矽烷0.13毫莫耳代替雙(乙基胺基)二環戊基矽烷0.26毫莫耳之外,其餘與實施例9同樣地進行實驗。所得結果示於表6。
(實施例52)
除了使用實施例41所得之參(甲基胺基)(第三丁基乙基胺基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。所得結果示於表6。
(實施例53)
除了使用實施例42所得之參(甲基胺基)二異丙基胺基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。所得結果示於表6。
(實施例54)
除了使用實施例33所得之肆(甲基胺基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例17同樣地進行實驗。所得結果示於表6。
(實施例55)
除了使用實施例33所得之肆(甲基胺基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例18同樣地進行實驗。所得結果示於表6。
(實施例56)
除了使用參(甲基胺基)(二乙基胺基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。所得結果示於表7。
(實施例57)
除了使用參(甲基胺基)(二4-甲氧基苯基胺基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。所得結果示於表7。
(實施例58)
除了使用參(甲基胺基)(二環己基胺基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表7。
(實施例59)
除了使用雙(甲基胺基)雙(第三丁基胺基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘於同條件下實施丙烷的整體聚合。聚合結果示於表7。
(實施例60)
除了使用雙(甲基胺基)雙(全氫異喹啉并基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘於與實施例9同樣地進行實驗之同條件下實施丙烷的整體聚合。聚合結果示於表7。
(實施例61)
除了使用參(乙基胺基)雙(全氫異喹啉并基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘於與實施例9同樣地進行實驗之同條件下實施丙烷的整體聚合。聚合結果示於表7。
(實施例62)
除了使用參(甲基胺基)(二環己基胺基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表7。
(實施例63)
除了使用(甲基胺基)(乙基胺基)二異丙基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例64)
除了使用(甲基胺基)(正丙基胺基)二異丙基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例65)
除了使用(甲基胺基)(乙基胺基)二環戊基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例66)
除了使用(甲基胺基)(正丙基胺基)二環戊基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例67)
除了使用(甲基胺基)(乙基胺基)第三丁基乙基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例68)
除了使用(甲基胺基)(正丙基胺基)第三丁基乙基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例69)
除了使用(甲基胺基)(乙基胺基)二第三丁基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例70)
除了使用(甲基胺基)(正丙基胺基)二第三丁基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例71)
除了使用(甲基胺基)(正丙基胺基)(第三丁基胺基)乙基矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例72)
除了使用(甲基胺基)(正丙基胺基)雙(異喹啉基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例73)
除了使用(甲基胺基)(乙基胺基)雙(二乙基胺基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例74)
除了使用雙(甲基胺基)(正丙基胺基)(二乙基胺基)矽烷代替雙(乙基胺基)二環戊基矽烷之外,其餘與實施例9同樣地進行實驗。聚合結果示於表8。
(實施例75)
<胺基矽烷化合物之合成>將甲基胺之THF溶液分取至經高純度氮氣充分取代之燒瓶中,將此冷卻至-10℃~0℃,一邊攪拌一邊利用滴下漏斗慢慢滴入與乙基胺等莫耳之市售之丁基鋰的己烷溶液。滴入結束後,慢慢地使溫度上升,於50℃反應2小時,調製成甲基胺的鋰鹽漿料。其次,分取至經高純度氮氣充分取代之燒瓶中,於冷卻至-10℃~0℃之雙(甲氧基)二第三丁基矽烷(市售品)之甲苯溶液中,於攪拌下、氮氣流下,使用注射器慢慢添加上述之甲基胺的鋰鹽漿料(為雙(甲氧基)二第三丁基矽烷之2.1倍莫耳)。添加結束後,慢慢地使溫度上升,於70℃反應4小時。反應後,將固體成分於氮氣體環境下進行過濾,以少量甲苯進行洗淨,使固液分離。從溶液餾去溶媒,藉減壓蒸餾精製主生成物之雙(甲基胺基)二第三丁基矽烷。測定沸點結果為68℃/5mmHg。又,產率為86.5%。藉由1 H-NMR、IR及元素分析確認此生成物為雙(甲基胺基)二第三丁基矽烷。C、H、N元素分析之結果係C為62.33%(62.54%)、H為12.98%(13.12%)、N為12.02%(12.16%)(括號內之數值為理論值)。
由IR光譜於3400cm 1 附近觀察到典型之二級胺的N-H伸縮振動所進行之吸收。又,由1 H-NMR圖譜所得之歸屬於質子之位置及其圖譜強度係如第3表所示,此等分析結果係支持所得化合物為雙(甲基胺基)第三丁基矽烷。又,1 H-NMR及IR係依與實施例1同樣的裝置及條件進行測定。
(實施例76)
除了使用2,2-二(異丁基)-1,3-二甲氧基丙烷代替苯二甲酸二正丁酯之外,其餘依與實施例9同樣的方法,形成聚合用觸媒,並進行聚合。其結果示於表4。
(實施例77)
除了使用2,3-正丙基琥珀酸二乙酯代替苯二甲酸二正丁酯之外,其餘依與實施例9同樣的方法,形成聚合用觸媒,並進行聚合。其結果示於表4。
尚且,聚合物的分子量分佈的測定僅針對實施例13、15、16、21、23、27、31、32、46、47、48、49、52、60及比較例1而實施。由以上結果可知,聚合時若使用胺基矽烷化合物,則可產率佳地得到高立體規則性之聚合體,且氫反應良好。又,可知藉由胺基矽烷化合物所得之聚合物的分子量分佈較廣。
(產業上之可利用性)
本發明之新穎胺基矽烷化合物及特定之胺基矽烷化合物,於使用作為烯烴類聚合用觸媒成分的情況,可較習知觸媒更高度地維持聚合物之立體規則性及產率,且得到氫反應優異者。從而,藉由可削減聚合時所用之氫量和觸媒活性高等機能,除了可依低成本提供泛用聚烯烴,亦可期待本發明在具有高機能性之烯烴類聚合體製造中的可利用性。
圖1為表示調製本發明之觸媒成分及聚合觸媒之步驟的流程圖。

Claims (9)

  1. 一種烯烴類聚合用觸媒成分,其特徵為以下述一般式(2)表示:R3 n Si(NR4 R5 )4-n (2)(式中,R3 為碳數1~20之直鏈或分枝狀烷基、環烷基及其等之衍生物、乙烯基、芳烷基,可為相同或相異,至少一個為碳數3~20之分枝狀烷基、環烷基及其等之衍生物、乙烯基、芳烷基;R4 為氫原子、碳數1~20之直鏈或分枝狀烷基、環烷基及其等之衍生物、乙烯基、烯丙基、芳烷基,可為相同或相異;R5 為碳數1~20之直鏈或分枝狀烷基、環烷基及其等之衍生物、乙烯基、烯丙基、芳烷基,可為相同或相異;R4 與R5 亦可結合形成環狀;n為0或1至3的整數;NR4 R5 基之至少一個為2級胺基)。
  2. 如申請專利範圍第1項之烯烴類聚合用觸媒成分,其中,一般式(2)中,n為2;R3 為碳數3~20之分枝狀烷基或環烷基,可為相同或相異;R4 為氫原子;R5 為碳數1~3之直鏈或分枝狀烷基。
  3. 如申請專利範圍第1項之烯烴類聚合用觸媒成分,其中,一般式(2)中,n為1;R3 為碳數3~20之分枝狀烷基或環烷基,可為相同或相異;R4 為氫原子;R5 為碳數1~3之直鏈或分枝狀烷基。
  4. 如申請專利範圍第1項之烯烴類聚合用觸媒成分,其中,一般式(2)中,n為0;4個NR4 R5 基中的二個為全氫喹啉并(perhydroquinolino)基或全氫異喹啉并 (perhydroisoquinolino)基,或4個NR4 R5 基中的一個係R4 為氫原子之2級胺基。
  5. 一種烯烴類聚合用觸媒,其特徵為以下述一般式(2)表示之胺基矽烷化合物作為必須成分而形成:R3 n Si(NR4 R5 )4-n (2)(式中,R3 為碳數3~20之分枝狀烷基、環烷基及其等之衍生物、乙烯基、芳烷基,可為相同或相異;R4 為氫原子、碳數1~20之直鏈或分枝狀烷基、環烷基及其等之衍生物、乙烯基、烯丙基、芳烷基,可為相同或相異;R5 為碳數1~20之直鏈或分枝狀烷基、環烷基及其等之衍生物、乙烯基、烯丙基、芳烷基,可為相同或相異;R4 與R5 亦可結合形成環狀;n為0或1至3的整數;NR4 R5 基之至少一個為2級胺基)。
  6. 一種烯烴類聚合用觸媒,其特徵為含有下述物質:(A)含有鎂、鈦、鹵素及電子供予性化合物之固體觸媒成分;(B)下述一般式(3)所示之有機鋁化合物:R6 p AlQ3-p (3)(式中,R6 為碳數1~4烷基,Q為氫原子或鹵素原子,p為0<p≦3之實數);以及(C)申請專利範圍第1至4項中任一項之觸媒成分。
  7. 如申請專利範圍第6項之烯烴類聚合用觸媒,其中,上述固體觸媒成分(A)係藉由使鎂化合物(a)、四價鈦鹵化合物(b)及電子供予性化合物(c)接觸而調製。
  8. 一種烯烴類聚合體之製造方法,其特徵為,於申請專利範圍第6或7項之烯烴類聚合用觸媒的存在下,進行烯烴類的聚合。
  9. 如申請專利範圍第8項之烯烴類聚合體之製造方法,其中,上述烯烴類為丙烯。
TW095119143A 2005-05-31 2006-05-30 烯烴類聚合用觸媒成分及觸媒暨使用其之烯烴類聚合體之製造方法 TWI388579B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005158823 2005-05-31
JP2005158826 2005-05-31

Publications (2)

Publication Number Publication Date
TW200704656A TW200704656A (en) 2007-02-01
TWI388579B true TWI388579B (zh) 2013-03-11

Family

ID=37481701

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095119143A TWI388579B (zh) 2005-05-31 2006-05-30 烯烴類聚合用觸媒成分及觸媒暨使用其之烯烴類聚合體之製造方法

Country Status (9)

Country Link
US (2) US20100190942A1 (zh)
EP (1) EP1908767B1 (zh)
JP (1) JP5158856B2 (zh)
KR (1) KR101234427B1 (zh)
BR (1) BRPI0611189B1 (zh)
ES (1) ES2389665T3 (zh)
SG (1) SG162730A1 (zh)
TW (1) TWI388579B (zh)
WO (1) WO2006129773A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050883A1 (fr) * 2006-10-27 2008-05-02 Toho Catalyst Co., Ltd. Procede destine a produire un copolymere bloc d'ethylene-propylene
JP5143472B2 (ja) * 2007-05-14 2013-02-13 東邦チタニウム株式会社 オレフィン類重合用触媒及びこれを用いたオレフィン類重合体の製造方法
KR100993451B1 (ko) * 2007-06-05 2010-11-09 주식회사 엘지화학 광학 이방성 화합물 및 이를 포함하는 수지 조성물
US8580993B2 (en) * 2008-11-12 2013-11-12 Air Products And Chemicals, Inc. Amino vinylsilane precursors for stressed SiN films
SG173427A1 (en) * 2009-03-17 2011-09-29 Toho Titanium Co Ltd Solid catalyst component and catalyst for polymerization of olefins, and process for production of olefin polymers using same
US8889235B2 (en) * 2009-05-13 2014-11-18 Air Products And Chemicals, Inc. Dielectric barrier deposition using nitrogen containing precursor
WO2011082277A1 (en) 2009-12-31 2011-07-07 Bridgestone Corporation Aminosilane initiators and functionalized polymers prepared therefrom
JP2011256120A (ja) * 2010-06-07 2011-12-22 Toho Titanium Co Ltd オルガノアミノシラン化合物の製造方法
CN102453057B (zh) * 2010-10-25 2014-08-06 中国石油化工股份有限公司 一种外给电子体化合物
CN102453045B (zh) * 2010-10-25 2014-07-09 中国石油化工股份有限公司 一种含有杯芳烃基团的化合物及其制备方法
JP5740487B2 (ja) 2010-12-30 2015-06-24 株式会社ブリヂストン アミノシラン開始剤及びそれを用いた官能化ポリマー
SG192040A1 (en) * 2011-01-19 2013-08-30 China Petroleum & Chemical Solid catalyst component and catalyst for olefin polymerization
CN103764690B (zh) * 2011-08-25 2016-12-14 东邦钛株式会社 烯烃类聚合用固体催化剂成分的制造方法、烯烃类聚合用催化剂及烯烃类聚合物的制造方法
US9677178B2 (en) 2012-01-27 2017-06-13 Versum Materials Us, Llc Alkoxyaminosilane compounds and applications thereof
US9200167B2 (en) 2012-01-27 2015-12-01 Air Products And Chemicals, Inc. Alkoxyaminosilane compounds and applications thereof
SG11201408147TA (en) 2012-07-18 2015-02-27 Toho Titanium Co Ltd Method for producing solid catalyst component for use in polymerization of olefin, catalyst for use in polymerization of olefin, and method for producing olefin polymer
CN104640886B (zh) 2013-02-27 2018-04-27 东邦钛株式会社 用于聚合烯烃的固体催化剂组分的制造方法、用于聚合烯烃的催化剂和聚合烯烃的制造方法
KR102060850B1 (ko) 2013-02-27 2020-02-11 도호 티타늄 가부시키가이샤 올레핀류 중합용 고체 촉매 성분의 제조 방법, 올레핀류 중합용 촉매 및 올레핀류 중합체의 제조 방법
JP6297022B2 (ja) 2013-02-27 2018-03-20 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
CN103172653A (zh) * 2013-04-16 2013-06-26 上海宏锐新材料科技有限公司 三(二甲胺基)硅烷的制备方法
US9593184B2 (en) 2014-10-28 2017-03-14 Formosa Plastics Corporation, Usa Oxalic acid diamides as modifiers for polyolefin catalysts
JP6577964B2 (ja) * 2015-01-30 2019-09-18 東邦チタニウム株式会社 オレフィン類重合触媒の製造方法およびオレフィン類重合体の製造方法
US10421766B2 (en) 2015-02-13 2019-09-24 Versum Materials Us, Llc Bisaminoalkoxysilane compounds and methods for using same to deposit silicon-containing films
US9777084B2 (en) 2016-02-19 2017-10-03 Formosa Plastics Corporation, Usa Catalyst system for olefin polymerization and method for producing olefin polymer
US11427660B2 (en) 2016-08-17 2022-08-30 Formosa Plastics Corporation, Usa Organosilicon compounds as electron donors for olefin polymerization catalysts and methods of making and using same
US9815920B1 (en) 2016-10-14 2017-11-14 Formosa Plastics Corporation, Usa Olefin polymerization catalyst components and process for the production of olefin polymers therewith
US11735413B2 (en) * 2016-11-01 2023-08-22 Versum Materials Us, Llc Precursors and flowable CVD methods for making low-k films to fill surface features
US10124324B1 (en) 2017-05-09 2018-11-13 Formosa Plastics Corporation, Usa Olefin polymerization catalyst components and process for the production of olefin polymers therewith
US10822438B2 (en) * 2017-05-09 2020-11-03 Formosa Plastics Corporation Catalyst system for enhanced stereo-specificity of olefin polymerization and method for producing olefin polymer
EP3623393A4 (en) 2017-05-10 2021-01-06 Toho Titanium Co., Ltd. OLEFIN POLYMERIZATION CATALYST, OLEFIN POLYMER PRODUCTION PROCESS, AND PROPYLENE / -OLEFIN COPOLYMER
EP3707174A4 (en) * 2017-11-06 2021-11-03 ExxonMobil Chemical Patents Inc. IMPACT RESISTANT COPOLYMERS BASED ON PROPYLENE AND PRODUCTION PROCESS AND APPARATUS
TWI762127B (zh) * 2020-12-29 2022-04-21 臺灣塑膠工業股份有限公司 聚丙烯與其製作方法及熔噴纖維布
JP2023103559A (ja) 2022-01-14 2023-07-27 住友化学株式会社 ヘテロファジックプロピレン重合材料およびオレフィン重合体

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431222A (en) * 1967-06-22 1969-03-04 Monsanto Co High temperature resistant polymeric cyclosilazanes
FR2193864B1 (zh) * 1972-07-31 1974-12-27 Rhone Poulenc Sa
IT1209255B (it) 1980-08-13 1989-07-16 Montedison Spa Catalizzatori per la polimerizzazione di olefine.
JPH0830089B2 (ja) * 1986-06-24 1996-03-27 東邦チタニウム株式会社 オレフイン類重合用触媒
JP2764286B2 (ja) 1987-12-26 1998-06-11 東邦チタニウム株式会社 オレフイン類重合用固体触媒成分及び触媒
US5494872A (en) 1992-04-03 1996-02-27 Toho Titanium Company, Ltd. Catalyst and solid catalyst component for preparing polyolefins with broad molecular weight distribution
EP0578470B1 (en) 1992-07-06 1998-10-07 Nippon Oil Co. Ltd. Process for preparing polyolefins
JP3273211B2 (ja) * 1993-04-26 2002-04-08 日石三菱株式会社 ポリオレフィンの製造方法
JPH07292029A (ja) 1994-04-28 1995-11-07 Toho Titanium Co Ltd オレフィン類重合用触媒および重合方法
US5684173A (en) 1994-04-28 1997-11-04 Toho Titanium Co., Ltd. Organosilicon compound and ziegler-natta catalyst containing the same
JPH08157533A (ja) * 1994-12-09 1996-06-18 Sumitomo Chem Co Ltd 環状オレフィン系共重合体の製造法
ATE203756T1 (de) 1995-02-13 2001-08-15 Toho Titanium Co Ltd Fester katalysatorbestandteil zur olefinpolymerisation und katalysator
KR100408164B1 (ko) 1995-09-01 2004-04-14 도호 티타늄 가부시키가이샤 올레핀류중합용고체촉매성분및촉매
JPH1112316A (ja) 1997-06-26 1999-01-19 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分及び触媒
TW396168B (en) 1997-08-28 2000-07-01 Toho Titanium K K Solid catalyst component and catalyst for polymerization of olefins
US6664209B1 (en) 1998-12-25 2003-12-16 Toho Titanium Co., Ltd. Solid catalyst component for propylene polymerization and catalyst
KR20020022717A (ko) 2000-04-24 2002-03-27 아라이 요이치 프탈산디에스테르 유도체 및 전자 공여체
WO2001081434A1 (fr) 2000-04-24 2001-11-01 Toho Titanium Co., Ltd. Composant catalytique solide et catalyseur de polymerisation d'olefines
WO2002028915A1 (fr) 2000-09-29 2002-04-11 Toho Titanium Co., Ltd. Catalyseur de polymerisation d'olefines
ES2387885T5 (es) 2001-03-30 2019-11-28 Toho Titanium Co Ltd Procedimiento para producir un componente catalizador sólido para la polimerización de olefinas
JP2003231711A (ja) 2002-02-08 2003-08-19 Asahi Denka Kogyo Kk ポリオレフィン樹脂の安定化方法
US7238758B2 (en) * 2002-08-19 2007-07-03 Ube Industries, Ltd. Catalysts for polymerization or copolymerization of α-olefins, catalyst components thereof, and processes for polymerization of α-olefins with the catalysts
TWI253451B (en) 2002-08-29 2006-04-21 Toho Catalyst Co Ltd Solid catalyst component, catalyst for polymerization of olefins, and polymerizing method of olefins
JP2005320362A (ja) 2004-05-06 2005-11-17 Toho Catalyst Co Ltd オレフィン類重合用触媒およびオレフィン類の重合方法
WO2005111090A1 (ja) 2004-05-18 2005-11-24 Toho Catalyst Co., Ltd. オレフィン類重合用触媒およびオレフィン類の重合方法
US20090253873A1 (en) 2004-12-13 2009-10-08 Toho Catalyst Co., Ltd Solid catalyst component and catalyst for polymerization of olefin, and method for producing polymer or copolymer of olefin using the same
BRPI0615149B1 (pt) 2005-08-08 2017-06-27 Toho Titanium Co., Ltd. Component of a catalyst for polymerization of olefin, catalyst for polymerization of olefins, and process for production in polymer of olefin
WO2007026903A1 (ja) 2005-08-31 2007-03-08 Toho Catalyst Co., Ltd. オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
SG173427A1 (en) 2009-03-17 2011-09-29 Toho Titanium Co Ltd Solid catalyst component and catalyst for polymerization of olefins, and process for production of olefin polymers using same

Also Published As

Publication number Publication date
EP1908767A4 (en) 2010-09-01
WO2006129773A1 (ja) 2006-12-07
JP5158856B2 (ja) 2013-03-06
KR101234427B1 (ko) 2013-02-18
EP1908767A1 (en) 2008-04-09
ES2389665T3 (es) 2012-10-30
US20100190942A1 (en) 2010-07-29
JPWO2006129773A1 (ja) 2009-01-08
BRPI0611189A2 (pt) 2012-10-30
SG162730A1 (en) 2010-07-29
EP1908767B1 (en) 2012-06-13
US20120053310A1 (en) 2012-03-01
BRPI0611189B1 (pt) 2017-06-06
TW200704656A (en) 2007-02-01
US8648001B2 (en) 2014-02-11
KR20080017412A (ko) 2008-02-26

Similar Documents

Publication Publication Date Title
TWI388579B (zh) 烯烴類聚合用觸媒成分及觸媒暨使用其之烯烴類聚合體之製造方法
KR101314339B1 (ko) 올레핀류 중합용 촉매 성분 및 촉매 및 이것을 이용한올레핀류 중합체의 제조 방법
TWI471345B (zh) 烯烴類聚合用固體觸媒成份及觸媒暨使用其之烯烴類聚合體之製造方法
US7208435B2 (en) Solid catalyst component for olefin polymerization and catalyst
JP5623760B2 (ja) オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
JP5235673B2 (ja) エチレン・プロピレンブロック共重合体の製造方法
JP2007224097A (ja) オレフィン類重合用触媒及びこれを用いたオレフィン類重合体の製造方法
JP4947632B2 (ja) オレフィン類重合用触媒及びこれを用いたオレフィン類重合体の製造方法
KR101898315B1 (ko) 올레핀류 중합용 고체 촉매 성분의 제조 방법, 올레핀류 중합용 촉매 및 올레핀류 중합체의 제조 방법
WO2008066200A1 (fr) Composant de catalyseur pour la polymérisation d&#39;oléfines et catalyseur et procédé servant à produire un polymère d&#39;oléfine utilisant celui-ci
TWI414533B (zh) 烯烴類聚合用固體觸媒成分,聚合用觸媒及使用其之烯烴類聚合體之製造方法
JP4276554B2 (ja) オレフィン類重合用触媒
JP4841361B2 (ja) オレフィン類重合用触媒成分、触媒及びこれを用いたオレフィン類重合体の製造方法
JP4841362B2 (ja) オレフィン類重合用触媒成分、触媒およびこれを用いたオレフィン類重合体の製造方法
JP5143472B2 (ja) オレフィン類重合用触媒及びこれを用いたオレフィン類重合体の製造方法
JP4947622B2 (ja) オレフィン類重合用触媒及びこれを用いたオレフィン類重合体の製造方法
JP3469009B2 (ja) 結晶性ポリプロピレン
JP5745980B2 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
KR20080088019A (ko) 올레핀 중합 또는 공중합 방법