TWI303917B - Control circuit of dc-dc converter and its control method - Google Patents

Control circuit of dc-dc converter and its control method Download PDF

Info

Publication number
TWI303917B
TWI303917B TW094138970A TW94138970A TWI303917B TW I303917 B TWI303917 B TW I303917B TW 094138970 A TW094138970 A TW 094138970A TW 94138970 A TW94138970 A TW 94138970A TW I303917 B TWI303917 B TW I303917B
Authority
TW
Taiwan
Prior art keywords
voltage
converter
output
signal
input
Prior art date
Application number
TW094138970A
Other languages
English (en)
Other versions
TW200709542A (en
Inventor
Takahiro Yoshino
Original Assignee
Fujitsu Microelectronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Microelectronics Ltd filed Critical Fujitsu Microelectronics Ltd
Publication of TW200709542A publication Critical patent/TW200709542A/zh
Application granted granted Critical
Publication of TWI303917B publication Critical patent/TWI303917B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/43Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a single bit one
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/436Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
    • H03M3/456Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a first order loop filter in the feedforward path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step
    • H03M3/502Details of the final digital/analogue conversion following the digital delta-sigma modulation
    • H03M3/506Details of the final digital/analogue conversion following the digital delta-sigma modulation the final digital/analogue converter being constituted by a pulse width modulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Analogue/Digital Conversion (AREA)

Description

1303917 · 九、發明說明:
L發明所屬技冬好領域]I 相關申請案之交互參照 本案係基於日本專利申請案第2005-247554號,申請曰 5 2005年8月29日之優先權,全文内容以引用方式併入此處。 發明領域 本發明係有關直流對直流變換器的控制,更特別係有 關容易組成於邏輯電路的直流對直流變換器之控制電路及 其控制方法。 10 【先^捕T】 發明背景 於具有類比錯誤放大器的同步整流切換型DC-DC變換 态之控制電路中,類比錯誤放大器具有電阻器或電容器作 為回授電路。當DC-DC變換器的輸入電壓起伏波動時,或 5於DC DC受換為的輸出電壓的可變控制的情況下,錯爷放 大器無需振盪。為了設定具有裕度於回授電路相位之増兴 ’回授電路之相位補償必須考慮DC-DC變㉟器設計時白^ 入電壓與輸出電壓間之_來設計。換言之,需以々 式控制增益。 °方 2〇 其它相關技術係揭示於日本專利申請公開案第 9·154275號及日本專利申請公開案第10-323026號。 H考务日月】 發明概要 但右试圖設定增益來初步於回授電路相位具有袼度, 5 1303917 用於回授電路或增益設定的電阻器或電容器要求有高精度 此種電阻裔或電容器無法建立於半導體電路,DC_dc變 換杰的控制電路無法結合於邏輯電路。結果有問題,無法 組成可於任意電源供應器電壓來有效操作的LSI。 5 考慮將100430變換器的控制電路數位化,來消除類比 私路设计、雷射電路的相關相位補償設計、及錯誤放大器 的增益補償設計。但若單純將〇(:_1;)(:變換器的輸出電壓和 筝考電壓的錯誤放大加以數位化,則需要考慮輸入電壓與 輸出電壓關係之增益設定。結果有增益設定或〇;5]?處理電 1〇路需要大規模電路,電路規模加A,或耗用電流量增加的 問題。 從事本發明意圖解決背景技術之各項問題中之至少一 項問題,如此本發明之目的係提供一種可結合於邏輯電路 之DC DC、欠換杰的控制電路,經由具有數位錯誤放大器可 15依據輸入電壓和輸出電壓控制增益,換言之,可動態控制 增盈,且免除用於回授電路或增益設定的高精度電阻器或 電容器。 為了達成前述目的,提供一種切換調節器系統之 〇〇〇〇:、交換夯的控制電路,用來根據參考電壓而從輸入電 2〇壓產生輸出電壓,該控制電路包含:輸出輸出電壓與回授 信號間之差分信號的算術單元;積分單元其包括差分電壓 放大器用來輸入該參考電壓於非反相輸入,且輸入該差分 信唬於反相輸入,以及電容器其於一端係連結至該差分電 壓放大器之輸入端,而於另一端係連結至該差分電壓放大 1303917 器的輸出端,用來經由積分該差分信號而輸出整數信號; 用來藉量化該整數信號而輸出1位元數位信號的量化單元 ;依據輸入1位元數位信號而定,用來將輸入信號電壓或接 地電壓輸出至該算術單元作為回授信號的回授單元;以及 5 根據量化單元之脈波密度而定,用來判定DC-DC變換器之 主切換單元之操作中電壓的PWM單元。 藉算術單元、積分單元、量化單元及回授單元,組成 所謂的ΣΑ AD變換器。於本發明之ΣΑ AD變換器中, DC-DC變換器之輸出電壓係輸入至ΣΑ AD變換器之算術 10 單元,DC-DC變換器之輸入電壓係輸入至回授單元,以及 DC-DC變換器之參考電壓係輸入至差分電壓放大器之非反 相輸入。 算術單元輸出輸出電壓與回授信號之差分信號。該回 授信號為從後述回授單元所輸出的類比信號。為了計算差 15 值,可使用電流或電壓。 積分單元具有差分電壓放大器和電容器。於差分電壓 放大器之非反相輸入中,DC-DC變換器之參考電壓輸入, 而差分信號係輸入反相輸入。電容器之一端係連結至該差 分電壓放大器之反相輸入終端,而另一端係連結至差分電 20 壓放大器的輸出終端。積分單元係經由積分差信號來輸出 整數信號。 量化單元量化該整數信號,且輸出1位元數位信號。依 據輸入的1位元數位信號而定,回授單元輸出輸入電壓或接 地電壓予算術單元作為回授信號來執行DA變換。舉例言之 1303917 ,§輸入低位準信號時’輪出輸入電壓;而當輸入高位準 信號時,則輪出接地電壓。 於蘭單元中,輸入1位元數位信號。依據量化單元 之脈波③、度而定(於特定相產娜_號脈波數目),決 定DC-DC變換器的主切換元件的操作中電^ 10 15 如此當於算術單元中,從回授單元輪出的輸出電壓與 平均輸出電壓計算結果皆為參考電壓時,組成UAD變換 器’於該變換器中,於該回授單元之1位元數位資料輸入的 度為AD變換結果。該AD變換器係作為數位錯誤放 用來放大DC-DC變換器的輸出電壓與參考電壓之差 。依據從數位錯誤放大料出的錯誤放大結果之數位值,
rtPWM單元的主切換元件的操作中電壓控制,卿C 又換為的輸出電壓可被調節至參考電壓。 經由使用用於數位錯誤放大器之回授單元的【DC變 換器的輸入電壓,數位錯誤放大器的增益可依據輸入電壓 與輸出電壓來控制,換言之,增益可自動控制。因此於數 ㈣誤放大器中1僅考慮參考電壓與輪出電叙關係, 冋時也考慮參考電壓與輸入電壓之關係,可放大錯誤。由 於於平衡狀㈣錯誤放大結果(#回授單元的輸出電壓斑 平均輸出電壓鱗時,算術單元之輪人信號位準差為零)了 不僅輸出主域元件之鬚巾電㈣改變量,同時也可 出實際操作中的改變量。 扣 如此’於數位錯誤放大器中,並不需要初步經由輪入 電麼與輪出電叙關係,來決定差分_放大器的增益。 20 1303917 結果,無需用於回授電路或增益設定之具有高精度的電阻 器或電容器,本發明之DC_DC變換器的控制電路可建立於 邏輯電路,因而可組成可於任意供應器電壓有效操作的邏 輯LSI 〇 5 此外,根據本發明之一種切換調節器系統之DC-DC變 換器之控制方法為-種用來根據參考電壓而從輸入電壓產 生輸出電壓的切換調節器系統之直流對直流變換器之控制 方法’該方法包含:輪出該輸出電壓和回授信號之差分信 號的步驟;輸出經由積分該差分信號的整數信號的步驟; 10輸出經由量化該整數信號的!位元數位信號的步驟;依據所 輸入的1位元數位信號,來輪出該輸入電壓或接地電㈣ 為回授信號的步驟;以及根據該回授信號之脈波密度,來 判定該直流對直流變換器之主切換元件的操作中電㈣ 步驟。 15 戶斤謂之ΣΔ AD變換操作係於-種程序執行,該程序包 含輸出該輸出電壓和回授信號之差分信號的步驟;輸出經 由積分該差分信號的整數信號的步驟;輸出經由量化該整 數信號的1位元數位信號的步驟;以及輸出輸入電壓或接地 電壓作為回授信號的步驟。經由該項ΣΔ AD變換操作, 20 DC-DC變換器之輸出電壓和參考電壓之錯誤經放大。依據 回授信號之脈波密度作為錯誤放大結果,經由該主切換元 件之操作中電壓控制,DC_DC變換器之輸出電壓可被調節 至該參考電壓。 刖述及其它本發明之目的及新賴特色由後文詳細說明 1303917 連同附圖一起研讀將更為明瞭。但須了解圖式僅供舉例說 明之用而非意圖作為本發明之限制性定義。 圖式簡單說明 第1圖為直流對直流變換器1之電路圖; 5 第2圖為ΣΔ AD變換器型錯誤放大器10之電路圖·, 第3圖為數位pwM電路η之電路圖; 第4圖為切換電容器之算術單元2〇a之電路圖; 第5圖為ΣΔ AD變換器型錯誤放大器1〇b之電路圖;以 及 , 弟6圖為直流對直流變換器1〇〇之電路圖。 L實施方式3 較佳實施例之詳細說明 具有數位錯誤放大器之DC-DC變換器的控制電路之本 發明之特定實施例將參照第i圖至第6圖說明如後。首先, 15第6圖中,說明具有類比錯誤放大器之同步整流切換型 DC-DC變換器1〇〇。DC-DC變換器之輸出電壓Vout*輸入控 制單元109之終端FBI。於終端FBI與接地電壓vss間,電阻 器R1和電阻器R2係串聯,來劃分輸出電壓v〇ut。參考電壓 el係輸入錯誤放大器ERA1之非反相輸入,輸出電壓%讲的 20經劃分後的電壓輸入反相輸入。介於反相輸入端與錯誤放 大器ERA1的輸出端間,電阻器R3及電容gC2連結作為回授 電路。電阻器R3或電容器C2之串聯組抗為回授電阻器z。 錯誤放大器ERA1之輸出電壓VE係輸入PWM比較器1U之 非反相輸入。三角形波振盈器112之輸出電壓vc係輸入 10 1303917 PWM比較器hi之反相輸入。三角形波振盪器112之輸出電 壓於1.0伏特至2·〇伏特間為可變。Pwm比較器111之非反相 輸入係經由終端Q1而連結至主切換電晶體]?]£丁1之閘極,而 反相輸出係經由終端*Q1而連結至同步整流切換電晶體 5 FET2的閘極。 舉例說明其操作。輸出電壓Vout由電阻器Rl、R2劃分 ’劃分後電壓與參考電壓el之差係藉錯誤放大器ERA1放大 ,且輸入PWM比較器1H。PWM比較器ln輸出脈寬係與錯 疾放大态ERA1之輸出電壓成正比的脈波。此時通常輸出電 10 壓Vout係由下式(1)求出。
Vout=Ton/TxVin···式(1) 此處’時間Ton為主切換電晶體阳们之導通時間,以 及Toff為主切換電晶體1^丁1的非導通時間。時間τ為時間 Ton與時間Toff之和,時間τ為DC-DC變換器1〇〇的一個操作 15 週期的時間。 如此,於PWM控制系統的£)(:_]〇(;:變換器1〇〇中,經由 控制主切換電晶體FET1的時間Ton與時間T〇ff之比,可將輪 出電壓Vout調節為參考電壓ei。 將說明回授電路設計上的必要性。例如當參考電壓ei 加設定為輸入電壓心之1/2電壓時,主切換電晶體即们之操 作中電壓為5〇%。如此,判定電阻器^、R2和回授電阻器z 之阻抗,故錯誤放大器ERA1的輸出電壓VE可為15伏特, 亦即為三角形波振盡器112於平衡狀態的輸出電壓%之Μ 。同樣地,當參考電壓em定為輸人電壓Vm之1/4電壓時, 1303917 主切換電晶體FET1之操作中電壓為25%。如此,判定電阻 器Rl、R2和回授電阻器z之阻抗,故錯誤放大器ERA1的輪 出電壓VE可為1·25伏特,亦即為三角形波振盪器112於平衡 狀態的輸出電壓VC之1/4。 5 如此,錯誤放大器ERA1之增益必須以輸入電壓Vin與
輸出電壓Vom間之關係測定。此時,考慮於DC-DC變換器 1〇〇設計時輸入電壓與輸出電壓間之關係來設定增益,增益 必須設定為具有初步於回授電路相位之裕度,故若輸出電 壓未經可變性控制,則錯誤放大器EraI不會振盪。如此可 1〇獲得增益的靜態控制。結果,用於回授電路或增益設定的 電阻器R3及電容器C2要求高精度,且電阻器R3及電容器〇 無法結合於該半導體電路。 15 20 弟圖為本發明之直流對直流變換器1之電路圖。直流 對直M k換為1包含電源單元8和控制單元9。控制單元9包 括2AAD交換為型錯誤放大器1〇和數位電路η。 鹏電源單元8包括主切換電晶體FET1、同步整流切換電晶 feFET2、電軛線圈]^、及平順電容器〔丨。輸入電壓%係 么至主切換包曰曰體FET1的輸入終端,電耗線圈U的輸入 終端係連結至主切換電晶體FET1的輸出終端。於該輸出線 端與電輛_L1之接地電壓㈣,設置平順電容器C1。由 :輛線圈L1的輸出終端,輪出直流對直流變換 接地,輸出終:係連Γΐ切換電晶體FET2之輸入終端係 、而’、、’、口至電軛線圈li的輸入終端。控制單 12 1303917 元9的輸出終端*Q1係連結至同步整流切換電晶體FET2的 控制終端。直流對直流變換器i之輸出電壓vout係輸入控制 單元9的FBI終端。 控制單元9包括£△ AD變換器型錯誤放大器1〇、數位 5 PWM電路11、及振盪器〇SC。ΣΔ AD變換器型錯誤放大器 10具有异術單元20、積分單元21、1位元量化單元22、D/A 變換器23及第一計數器24。輸出電壓v〇ut和D/A變換器23 之輪出#號AS 1係輸入算術單元2〇。從算術單元2〇,因計算 結果輸出信號SS。信號SS和參考電壓el輸入積分單元21, 1〇輸出輸出電壓VA。輸出電壓VA和參考電壓el係輸入1位元 量化單元22,而輸出信號DS。信號DS和輸入電壓Vin輸入 D/A變換器23。 ΣΔ AD變換器型錯誤放大器1〇之細節圖顯示於第2圖 。算術單元20具有電阻器R11及R12。電阻器R12之輸入終 15端係連結至1變換器23之輸出終端。電阻器R11之輸入終 端係連結至終端FBI。電阻器Rn&R12之輸出終端係由節 點N1所共通連結,且係連結至運算放大器amp之反相輸入 終端和電容器C11之一端。 積分單元21具有運算放大器amp和電容器C11。電容器 20 C11之另一端係連結至運算放大器AMP的輸出終端。參考電 壓el係輸入運算放大器AMp之非反相輸入終端。 1位元量化單元22具有電壓比較器c〇MP和第一正反器 FF1。運算放大器AMP之輸出電壓VA係輸入電壓比較器 COMP之非反相輸入終端,以及參考電壓61係輸入反相輸入 13 1303917 終端。電壓比較器COMP之輸出係輸入第一正反器ffi和第 一計數器24。電壓比較器COMP之輸出終端係連結至第一正 反器FF1之終端D,振盪器OSC之輸出終端係連結至終端 CLK。第一正反器FF1之反相輸出終端*Q係連結至d/a變換 5 态23。第一正反器FF1為時鐘同步型正反器,第一正反器ffi 取樣電壓比較器COMP之輸出,且與時鐘信號CK同步來輸 出取樣結果。 D/A變換器23具有PMOS電晶體之電晶體SW1,和 NMOS電晶體之電晶體SW2。電晶體SW1之源極端係連結至 1〇 控制單元9之終端IN1。輸入電壓Vin係輸入源極端。電晶體 SW2之源極端係接地。接地電壓vss係輸入源極端。電晶體 SW1和SW2之汲極端係共通連結,且係連結至算術單元2〇 之電阻器R3。第一正反器FF1之反相輸出終端*Q係連結至 電晶體SW1和SW2之閘極。 15 D/A變換器23為1位元變換器,用來將來自1位元量化單 元22輸出的1或〇數位資料變換成為類比電壓。當數位資料i 從1位元量化單元22輸入D/A變換器23時,電晶體SW2導通 ,D/A變換器23輸出類比電壓〇(V)。另一方面,當數位資料 〇從1位元量化單元22輸入時,電晶體SW1導通,D/A變換 20器23輸出輸入電壓Vin(V)作為類比電壓。結果,D/A變換 杰23接收1位元數位輸入,輸出γ|η(ν)或〇(V)經歷一個時 鐘週期。 電壓比較器COMP之輸出電壓係連結I第一計數器24 之終端UP,振盪器〇sc之輸出終端係連結灵終端CLK。從 14 1303917 輸出的信號Α§2係輸人終端。於直流對 t义換的-個操作週期期間,從振盛器〇sc輸出的時 1信號CK的時鐘週期數假設為特定時鐘週期數η 。特定時 鐘週期數η之值為根據-個操作週期的持 續時間以及直流 5對直流變換器i的解析度決定之數值。於每個特定時鐘週期 數η二位準 >[吕就AS2輸入第一計數器的終端 第计數為24係依據時鐘信號CK來計算電壓比較器 COMP的輸出貧料Γι」的輪入次數。第一計數器計數數 目於每個特定時鐘週期數η時被復置為零。此時,特定時鐘 10週期數η中’輸入貢料Γι」的時鐘數目假設為計數細。容 後洋述计數值m為ΣΔ AD變換器型錯誤放大器1〇的人1)變 換結果。特定時鐘週期數η對計數值m之比(m/n)假設為脈波 岔度PD。於特定時鐘週期數n期間從D/A變換器巧輸出的平 均輸出電壓AV係與脈波密度PD成正比,且以下式表示。 15 AV=Vin X m/n [V]…式(2) 數位PWM電路11之細節電路顯示於第3圖。數位pwM 電路11包括暫存器31、比較器32、第二計數器33、AND電 路AD1和AD2,及第二正反1FF2。第一計數器24的輸出終 端係連結至暫存器31之輸入終端,而AND電路AD2的輸出 20終端係連結至載入終端L。振盪器OSC的輸出終端係連結至 第一计數态33之時鐘終端。振盈器〇;5c的輸出終端係連結 至比較态32的時鐘終端。來自暫存器31之輸出信號RS,和 來自第二計數器33之輸出信號CS2係輸入比較器32。輸出信 號0 S和來自比較器3 2之時鐘信號C K係輸入A N D電路A D1 15 1303917 5 15 20 ,和輸出信號AS1。輸出信號ZS和來自第二計數器33之時 號〇^輸入AND電路AD2,和輸出信號AS2。信號as2 係輸入暫存器31的載入終端L、第二正反器pF2之設定终端s 、和第一計數器24之終端RT。信號AS1係輸入第二正反哭 FF2之復置終端R,而信號as2係輸入設定終端s。第二正反 斋FF2之非反相終端Q2係連結至控制單元9之終端(第1 圖),而反相輸出終端*Q2係連結至控制單元9之終端*qi。 10 第二計數器33為與時鐘信號CK同步而從〇計數至 之循環計數器。暫存器31保持計數值m輸入作為來自第一叶 數器24的信號CS1。比較器32比較該暫存器31之輸出信號 RS與第二計數器33之輸出信號CS2。 ) 將說明直流對直流變換器!的操作。於第2圖所示電路 中’假設為平衡狀態’亦即輸出⑽係等於參考 小於平衡狀態,於特料鐘週期數顧輸人第= 24的數位輸人则計數細。此時㈣衡:: 的脈波密度D_/n。如此,於平衡狀態,於妓時_ 期數η期間,從D/A變換哭23鈐ψ从T i 、’週 下式表示。 洗。23輸出的平均輸出電壓係以 AVl = Vinxml/n(v)式⑶ 於平衡狀態,輸入積分單元21 塵:輸入電阻_之輸出__=^^ 變遷狀==Γ,=_ν的輸_-. 、而B1知加輪出電壓Vout㈣·” 係於輸入電阻器R11流動。 电抓 於电阻錢11流動的電流並未流 16 1303917
入運算放大器AMP之反相輸入,從此係從電容器cil流至電 阻器R11之方向。結果,電荷從電容器C11被提取出,節點 N1之電位下降,運算放大器AMP之輸出電壓VA升高。結果 ,輪入電壓比較器COMP之非反相輸入終端的輸出電壓VA 5係高於參考電壓€1,參考電壓和電壓比較器COMP輸出資料 「1」。 從電壓比較器COMP輸出的高位準信號r丨」係輸入第 正反為FF1之終ir而D。從弟一正反器FF1之反相輸出終端 *Q ’輸出資料「0」經歷一個時鐘信號的時鐘週期,且依據 1〇彳文電壓比較器C0MP輸出的資料「1」而定,輸入D/A變換 器23。 當資料「0」輸入D/A變換器23時,電晶體SW1導通, 而電晶體SW2未導通。如此,D/A變換器23依據時鐘信號 ck而疋輪出輸入電壓Vin( v)。從d/a變換器23輸出的輸入電 CVin^加至异術單元2〇的電阻器Rl2的輸入終端。直流對 直流k換益1屬於遞減型,具有關係丨Vingv⑽t,如此從d/a 變換㈣經由電阻器R12流至節麵的電流量係大於從節 流出而經由電阻器R11流入終端FBl之電流。結果,電 /爪抓入作為私分單元的運算放大器的電容器cn。 〇玖藉此方式,每次資料「〇」從第一正反器FF1的反相輸 輸出經歷一個時鐘週期期間,電流流入電容器
CU。§有足量電荷累積於電容器C11,於運算放大器AMP 、 輪入、冬纟而之電壓係高於參考電壓ei時,運算放大器 AMP之輸出電壓^ 土 VA下卩牛。結果,於電壓比較器c〇Mp,輸 17 1303917 入非反相輸入端的輸出電壓VA變成低於參考電壓el,電壓 比較器COMP輸出資料「〇」。從第一正反器FF1至D/A變換 器23,依據電壓比較器c〇MP之輸出「0」而定,輸出資料 「1」經歷時鐘信號CK的一個時鐘週期期間。於D/A變換器 5 23 ’電晶體SW2導通,而電晶體SW1也導通,從D/A變換器 23輸出類比電壓〇(v)。後來,轉向平衡態,於電容器c 11 於巨觀態流動的電流變成「〇」。 φ 當輸出電壓Vout下降至電壓AV時,第一計數器24的計 數值假設為計數值m2。如前述,計數值m2係大於於平衡態 10的計數值1111,達相應於差分電壓AV的計數值。假設此時的 脈波密度為PD2=(m2/n),則依據差分電壓AV而定,脈波 密度PD2也係大於平衡態的脈波密度PD1 = (ml/n)。於特定 時鐘週期數η期間,從d/Α變換器23輸出的平均輸出電壓 AV2係以下式表示: 15 AV2 = Vin X m2/n (V)…式(4) φ 從式(3)和式(4),已知平均輸出電壓AV2係大於平均輸 出電壓AV1達依據差分電壓AV決定之數量。 計數值m2從第一計數器24輸入數位pwM電路11之斬 存态31(第3圖)作為信號CS1。數位PWM電路11依據計數值 20 m2而定,控制主切換電晶體FET1的操作中電壓,且調節輸 出電壓Vout從(參考電壓ei]v)成為參考電壓el。此項調節 操作說明如後。 第3圖特別顯示第1圖之數位p\VM電路11。第二計數器 33輪出於初態(計數值為0)的高位準輸出信號zs。當高位準 18 1303917 輸出#號冗3輸人AND電路AD2時,AND電路AD2與時鐘信 號CK同步輸出高位準信號AS2。當高位準信號AS2輪入設 定終端S,且從非反相輸出終端Q2輸出高位準信號時,第二 正反态FF2轉成設定態。結果主切換電晶體]?]£丁1被轉成導 5通。當高位準信號八幻施加至載入終端L時,暫存器31保有 從第一什數裔24輸出的計數值m2。且同時,當高位準信號 AS2施加至終端RT時,第一計數器24將計數值復置為零。 經由第一計數器24及暫存器31,組成於直流對直流變換器工 的每一個操作週期操作的移位暫存器。 10 比較裔32比較暫存器31之輸出信號rS與第二計數器33 之輸出^號CS2。當屬於循環計數器的第二計數器%之計數 值(輸出^號CS2)係小於第一計數器24之計數值响輸出信 號RS)時,比較器32輸出低位準輸出信號〇s。結果and電 路AD1之輸出^號AS1維持於低位準,而第二正反器呢維 15持於設定態。依據時鐘信號⑶而定,主切換電晶舒謂 被導通’能量積聚於電軛線圈L1。
Ik著日守鐘的^進’當第二計數器33之計數值(輸出信號 cs2m成大於第—計數器24的計數值m2(輸出信號r幻時, 比較器32輸出高位準輸出信號OS。隨後AND電路AD1依據 2〇高位科鐘信號CK蚊,輸出高位準輸出信號asi。結果 ,杬置第一正反益FF2,從非反相輸出終端Q2輸出低位準 U依據日7½½號(^而定,主切換電晶體服罐轉成關 斷,同步整流切換電晶體附2被轉成導通,故能量從電輛 線圈U釋放。隨著時鐘的進一步前進,屬於循環計數器的 19 1303917 第—上 〜計數器33返回初始態(計數值〇)。隨後重複此項操作。 經由前述操作,數位PWM電路n於特定時鐘週期數n 月間,導通主切換電晶體FET1經歷計數值m2的時間。換言 5 數位PWM電路11係依據脈波密度PD2 (m2/n)來決定主 切換電晶體FET1的操作中電壓。 結果,當輸出電壓V〇ut從參考電壓el降至(參考電壓 ▲ AV)牯,積分單元21放大電壓Δν錯誤。第一計數器以之 數值依據而定,從計數值mi增至m2。依據電壓 1〇而< ’主切換電晶體FET1之操作中電壓從(ml/n)升高至 )、、、°果輸出電壓Vout被調整為從(參考電壓 升高至參考電壓el。 15 20 假狄直k對直流變換器i的輸出電壓化加被調整至參 考電壓el來達到平衡狀態。此處,平衡狀態表示實際操作 :,於巨觀態的平衡。於巨觀態的平衡為輸出電壓^之 時間平均值和平均輸出電壓AV鱗於參考電⑸,且於積 分單元21之電容器⑶之電流為零。另—方面,於微觀態,、 於。電容HC1卜電流係於每個時鐘週期流人及流出,電壓比 較器COMP係於每個時鐘信號(^輸出資料Γι」或「〇」。 於平衡態,於ΣΔ AD變換器型錯誤放大器腦入的輸 出電塵Vout係等於平均輪出電麼AV,和誤差為零。於此平 衡態,於特定時鐘週期數n期間,第一計數器_ %輸 入次數假設為計數值„1卜此時因平均輸出電係等於參 考電壓el,故計數值係以下式(5)表示。 、> ml=el X n/Vin ···式(5) 20 1303917 換言之,ΣΑ AD變換器型錯誤放大器10係即使於誤差為 零時,仍然輸出以式(5)表示之特定值計數值ml為其特徵。 計數值ml係經由第一計數器24而輸入數位PWM電路 Π。於數位PWM電路11中,當屬於循環計數器的第二計數 5 器33之輸出值(輸出信號CS2)係小於第一計數器24之計數 值ml(輸出信號RS),比較器32輸出低位準輸出信號〇s。結 果,依據時鐘信號CK而定,主切換電晶體FET1被導通。隨 著時鐘的前進,當第二計數器33的計數值m(輸出信號CS2) 變成大於第一計數器24之計數值m2(輸出信號RS)時,比較 10器32輸出高位準輸出信號OS。結果AND電路AD1輸出高位 準輸出信號AS1,第二正反器FF2被復置,主切換電晶體 FET1被轉成關斷。 經由前述操作,唯有於特定時鐘週期數n期間,經歷計 數值ml期間,數位PWM電路11才導通主切換電晶體FET1 15 。換言之,數位PWM電路11依據脈波密度PD1 (ml/n)決定 主切換電晶體FET1的操作中電壓,藉此維持DC-DC變換器 之輸出電壓Vout於參考電壓ei。 如前文說明,根據實施例之DC-DC變換器之控制電路 ’於積分單元21、1位元量化單元22及d/a變換器23所組成 20之2^ AD變換器中,輸出電壓Vout被輸入作為積分單元21 的輸入類比信號,參考電壓el係用作為運算放大器AMP之 參考電壓’輸入電壓Vin係輸入d/Α變換器23。如此,ΣΑ AD 變換器型錯誤放大器10將輸出電壓v〇ut輸入終端FB1以及 從D/A變換器23輸出的平均輸出電壓AV的錯誤放大結果, 21 1303917 輸出作為輸入D/A變換器23的脈波密度(於特定週期產生的 1或〇信號脈波數目)。依據從ΣΔ AD變換器型錯誤放大器1〇 輸出的錯疾放大結果的數位值而定,主切換電晶體FEti之 操作中電壓經控制,故DC-DC變換器之輸出電壓v〇m調整 5為蒼考電壓el。如此,經由使用AD變換器型錯誤放大 裔10,可組成依據參考電壓el而定,用來從輸入電壓vin產 生輸出龟壓Vout用之切換調節器型DC-DC變換器的控制電 路。 此外,經由使用DC-DC變換器的輸入電壓Vin作為施加 10於[A AD變換器型錯誤放大器的d/a變換器23的參考電 壓,ΣΔ AD變換器型錯誤放大器1〇之增益可依據輸入電壓 Vin和輸出電壓VouUa以控制,換言之,可動態控制增益。 於ΣΔ AD變換器型錯誤放大器1〇中,不僅考慮參考電壓ei 與輸出電壓Vout間之關係,同時也考慮參考電壓^與輸入 15電壓Vin間之關係,錯誤經放大。如此,由於於平衡態(輸 φ 出電壓V〇Ut係等於D/A變換器23的平均輸出電壓AV,而積 分單元21之輸入信號位準為零)的錯誤放大結果,主切換電 晶體FET1的操作中電壓改變量((m2-ml)/n)經輸出,同時也 輸出實際操作中電壓改變量ml/n。 20 結果,於ΣΔ AD變換器型錯誤放大器10中,無需初步 藉輸入電壓Vin與輸出電壓Vout間的關係來判定運算放大 器amp的增益。如此,無需回授電路,諸如第6圖中dc_dc 變換器100中的電容器C2或電阻器们。結果可免除用於回 授電路或增盈設定的高精度電阻器或電容器,Dc_dc變換 22 1303917 器、的控制電路可結合於該邏輯電路。如此,可實現於任意 供應電壓而可有效操作邏輯LSI。 田組成數位錯誤放大器時,無需相當於習知類比錯誤 放大杰使用的回授電路的複雜處理電路,而可簡化DC_dc 5變換器的控制電路,因此可節省成本。 本發明之ΣΔ AD變換器型錯誤放大器10無需使用高精 度電阻器或電容器的回授電路或增益設定電路。組成算術 單兀20的電阻器Rn及R12要求有滿意的相對精度,但不要 求、、、巴對精度。黾谷裔C11為檢測電流流動方向的元件,故也 10無需精度。如此,於ΣΔ AD變換器型錯誤放大器1〇中,可 實現南精度的數位錯誤放大,不要求於個別組成元件的高 類比精度。如此促成具有2^ AD變換器型錯誤放大器1〇的 DC-DC變換器控制電路的產率的提升。 本發明非僅限於前述實施例,反而可以數種形式修改 15 ,而未悖離本發明之根本特性之精髓。於第2圖所示算術單 元20中,加法器係由電阻器R11及R12組成。D/A變換器23 的輸出電壓Vout和平均輪出電壓AV係於電壓-電流轉換之 後計算,但本發明非僅限於此實例。例如於第4圖所示切換 電容為型算術單元20a中,可設置電容器C12來取代電阻器 20 R11 及 R12。 ^ 异術單元20a具有交換器SW3及SW4。交換器SW3具有 終端T1和T2。輸出電壓vout輸入終端们,平均輸出電壓^ 輸入終端T2。交換器SW4具有終端乃和丁4。終端们係連結 至運异放大器AMP之非反相輸入終端,終端Τ4係連結至反 23 1303917 相輸入終端。交換姦SW3和SW4另外依據時鐘信號CK而定 而父#重複运用終端T1與T3以及選用終端T2與T4之狀態。 當終端T1及T3經選定時,輸出電壓v〇m和參考電壓el 的差分電壓係於電容器C12積聚,當終端丁2和以經選定時 D/A受換為23的平均輸出電壓AV係於電容器c 12積聚,且 加法器進入操作中。電容器C12之電壓改變運算放大器AMp 的輸出,運算放大器AMP為經由電容器cu之積分單元。如 月文說明,本發明之ΣΔ AD變換器型錯誤放大器1〇也可使 用切換電容器型算術單元20a所組成。 ° 第5圖顯示當開始或停止DC-DC變換器時,可控制輸出 電壓斜坡斜率的!:△ AD變換器型錯誤放大器1〇b。ΣΑ AD變 換器型錯誤放大器l〇b包括積分單元211}及丨位元量化單元 22b。積分單元2ib包括具有第一非反相輸入終端和第二非 反相輸入終端之運算放大器AMP1。運算放大器AMP1之第 5 一非反相輸入終端係連結至交換器SW5,且係經由連結做 為外部元件之電容器CS來接地。交換器SW5具有連結至終 端T5或T6之電容器CS。供給恆定電流I的電流源PS係連結 至終端T5。終端T6經由電阻器RL接地。參考電壓el係輸入 第二非反相輸入終端。 0 依據輸出電壓至第一非反相輸入終端和第二非反相輸 入終端中的較低位準輸入電壓與反相輸入終端之輸入電壓 間之可能的差值決定,運算放大器AMP1輸出輸出電壓。 1位元量化單元22b包括具有第一反相輸入終端和第二 反相輸入終端之電壓比較器COMP1。電壓比較器COMP1 24 1303917 之第一反相輸入終端係連結至交換器SW5和電容器CS。參 考電壓el係輸入第二反相輸入終端。電壓比較器COMP1比 較輸入至第一反相輸入終端和第二反相輸入終端之輸入電 壓中的較低位準的輸入電壓與非反相輸入終端的輸入電壓 5 。其它建置係與第2圖所示的ZAAD變換器型錯誤放大器1〇 相同,於此處刪除其細節說明。 後文為安裝ΣΑ AD變換器型錯誤放大器10b的DC-DC 變換器之開始操作之說明。隨著DC-DC變換器的開始,交
換器SW5將電流源PS連結至電容器CS。結果,藉電流源PS 10 和電容gcs之時間常數,電容器CS之輸出電壓位準逐漸升 高。當電容器CS之輸出電壓位準係低於參考電壓61時,運 算放大器AMP1係基於輸出電壓v〇ut與電容器CS之輸出電 15 20 壓之比較而操作,電壓比較器COMP1係基於運算放大器 AMP1之輸出電壓VA1與電容器CS之輸出電壓間之比較而 操作。當輸入非反相輸入終端之輸出電壓VA1係高於電容 器cs之輸出電壓時,電壓比較器c〇MP1輸出高位準信號「 1」。連同電容器cs之輸出電壓位準的升高,計數和脈 波在、度PD逐漸增加,主切換電晶體]?]£71的操作中電壓也連 同電容器CS之輸出電壓位準的升高而徐緩升高。結果,主 切換電晶體FET1的操作中電壓^❻ 1XMX:㈣H之輸出電壓⑽可作可變性控制。如此,經 ΐ使用本發明之ΣΔ AD變換器型錯誤放大器,可實現輸出 電壓斜坡式斜率控制。 實例,電阻器Rll屬於第 D/A變換器23屬於回授電路的 25 1303917 一電阻元件的實例,電阻器R12屬於第二電阻元件的實例。 根據本發明,如此處所述,於切換調節器系統的DC-DC 變換器中,經由使用ΣΑ AD變換器作為數位錯誤放大器, 來放大DC-DC變換器之輸出電壓與參考電壓之差,以及依 5 據作為從ΣΑ AD變換器輸出的錯誤放大結果之數位值而 定,控制主切換元件的操作中電壓,DC-DC變換器的輸出 電壓可被調整為參考電壓。此外,經由使用用於數位錯誤 放大器的回授電路中的DC-DC變換器之輸入電壓,可依據 輸入電壓和輸出電壓來控制數位錯誤放大器的增益,換古 10之,增益可被動態控制。結果,無需用於回授電路或辩只 設定的高精度電阻器或電容器,因此可提供結合於邏輯電 路的DC-DC變換器之控制電路。 【圖式簡單說明】 第1圖為直流對直流變換器1之電路圖; 15 第2圖為ZAAD變換器型錯誤放大器1〇之電袼圖· 第3圖為數位PWM電路11之電路圖; 第4圖為切換電容器之算術單元2〇a之電路圖·, 第5圖為ΣΑ AD變換器型錯誤放大器1〇b之電路圖以 及 ° 5 第6圖為直流對直流變換器1〇〇之電路圖。 【主要元件符號說明】 1···直流對直流變換器 8.··電源早元 10、101>···ΣΔ AD變換器型錯誤 放大器 9...控制單元 11…數位PWM電路 26 1303917 20、20a...算術單元 D…終端 21、21b...積分單元 DS...輸出信號 22、22b...l-位元量化單元 el...參考電壓 23...D/A變換器 FBI…終端 24...第一計數器 FF...正反器 31…暫存器 FET1...主切換電晶體 32…比較器 FET2...同步整流切換電晶體 33…第二計數器 IN1…終端 100...直流對直流變換器 L1...電軛線圈、載入終端 109··.控制單元 m…計數值 111...PWM比較器 η...特定時鐘週期數 112·.·三角形波振盪器 Ν1.··節點 AD…AND電路 OS...輸出信號 AMR.運算放大器 OSC…振盪器 AS1...輸出信號 PD...脈波密度 AV...平均輸出電壓 Q1...輸出終端 C...電容器 反相輸出終端 C1...平順電容器 Q2…非反相終端 CK...時鐘信號 *Q2…反相輸出終端 CLK…終端 R…復置終端 COMP...電壓比較器 RT...終端 27 1303917 - s...設定終端 SS...輸出信號 SW...電晶體、交換器 T...時間 UP···終端 VA...輸出電壓
Vin…輸入電壓 Vout...輸出電壓 Vss…地電壓 Z...回授電阻 ZS...輸出信號
28

Claims (1)

1303917 十、申請專利範圍: 1. 一種切換調節器系統之DC-DC變換器的控制電路,用來 根據參考電壓而從輸入電壓產生輸出電壓,該控制電路 包含: 5 輸出輸出電壓與回授信號間之差分信號的算術單 元; 積分單元其包括差分電壓放大器用來輸入該參考 電壓於非反相輸入,且輸入該差分信號於反相輸入,以 及電容器其於一端係連結至該差分電壓放大器之輸入 10 端,而於另一端係連結至該差分電壓放大器的輸出端, 用來經由積分該差分信號而輸出整數信號; 用來藉量化該整數信號而輸出1位元數位信號的量 化單元; 依據輸入1位元數位信號而定,用來將輸入信號電 15 壓或接地電壓輸出至該算術單元作為回授信號的回授 單元;以及 根據量化單元之脈波密度而定,用來判定DC-DC 變換器之主切換單元之操作中電壓的PWM單元。 2. 如申請專利範圍第1項之切換調節器系統之直流對直流 20 變換器之控制電路, 其中該算術單元包括連結於該輸出電壓之輸入終 端與積分單元之輸入終端間的第一電阻元件,以及連結 於D/A變換器之輸出終端與積分單元之輸入終端間的第 二電阻元件。 29 1303917 3.如申請專利範圍第1項之切換調節器系統之直流對直流 變換器之控制電路, 其中該量化單元包括比較積分信號與參考電壓之 幅度之比較器,以及輸入比較器之輸出及時鐘信號,且 5 與該時鐘信號同步輸入該比較器之輸出信號予該回授 單元用之正反器。 4·如申請專利範圍第1項之切換調節器系統之直流對直流 變換器之控制電路, 其中該量化單元係依據時鐘信號來輸出1位元數位 10 信號,以及該脈波密度為依據積分單元之高位準輸出而 定,輸出1位元數位信號之輸出時鐘週期數,相對於作 為DC-DC變換器之操作週期的操作週期時鐘週期數之 比值。 5 ·如申請專利範圍第1項之切換調節器系統之直流對直流 15 變換器之控制電路, 其中該PWM單元包括依據該積分單元之高位準輸 出,而計數1位元數位資料之輸出次數之第一計數器; 計數操作週期時鐘週期重複次數之第二計數器;依據第 二計數器的計數值而定,於各操作週期取得第一計數器 20 的計數值用之暫存器;以及比較第二計數器之計數值與 暫存器中所保有的第一計數器之計數值用之計數值比 較器;以及該主切換元件係控制成當第二計數器之計數 值係小於第一計數器之計數值之週期期間導通;以及該 主切換元件係控制成當第二計數器之計數值係大於於 30 1303917 第一計數器之計數值之週期期間不導通。 6. —種切換調節器系統之直流對直流變換器,包含: 如申請專利範圍第1項之直流對直流變換器之控制 電路; 5 主切換元件和同步整流切換元件,其操作中電壓係 由該直流對直流變換器之控制電路來控制;以及 電輛線圈。 7. —種切換調節器系統之DC-DC變換器之控制方法為一 種用來根據參考電壓而從輸入電壓產生輸出電壓的切 10 換調節器系統之直流對直流變換器之控制方法,該方法 包含: 輸出該輸出電壓和回授信號之差分信號的步驟; 輸出經由積分該差分信號的整數信號的步驟; 輸出經由量化該整數信號的1位元數位信號的步 15 驟; 依據所輸入的1位元數位信號,來輸出該輸入電壓 或接地電壓作為回授信號的步驟;以及 根據該回授信號之脈波密度,來判定該直流對直流 變換器之主切換元件的操作中電壓的步驟。 31
TW094138970A 2005-08-29 2005-11-07 Control circuit of dc-dc converter and its control method TWI303917B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247554A JP4350075B2 (ja) 2005-08-29 2005-08-29 Dc−dcコンバータの制御回路およびその制御方法

Publications (2)

Publication Number Publication Date
TW200709542A TW200709542A (en) 2007-03-01
TWI303917B true TWI303917B (en) 2008-12-01

Family

ID=37072422

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094138970A TWI303917B (en) 2005-08-29 2005-11-07 Control circuit of dc-dc converter and its control method

Country Status (7)

Country Link
US (1) US7119525B1 (zh)
EP (1) EP1760866B1 (zh)
JP (1) JP4350075B2 (zh)
KR (1) KR100705379B1 (zh)
CN (1) CN100547893C (zh)
DE (1) DE602005022070D1 (zh)
TW (1) TWI303917B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456884B (zh) * 2010-12-13 2014-10-11 Monolithic Power Systems Inc 開關變換器電路和功率變換方法
US9178419B2 (en) 2010-04-16 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Power source circuit including transistor with oxide semiconductor

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459958B2 (en) * 2006-06-19 2008-12-02 International Business Machines Corporation Circuits to reduce threshold voltage tolerance and skew in multi-threshold voltage applications
US7696811B2 (en) * 2006-06-19 2010-04-13 International Business Machines Corporation Methods and circuits to reduce threshold voltage tolerance and skew in multi-threshold voltage applications
JP4997891B2 (ja) * 2006-09-15 2012-08-08 富士通セミコンダクター株式会社 Dc−dcコンバータ及びdc−dcコンバータの制御方法
JP4973404B2 (ja) * 2007-09-07 2012-07-11 トヨタ自動車株式会社 スイッチング電源装置
US7852057B2 (en) * 2007-10-02 2010-12-14 Mediatek Inc. DC-DC converter
US20090237959A1 (en) * 2008-03-20 2009-09-24 Eric Soenen Digital Control of Power Converters
JP4738442B2 (ja) 2008-05-28 2011-08-03 株式会社東芝 Dc−dcコンバータ
US20100045376A1 (en) * 2008-08-25 2010-02-25 Eric Soenen Class d amplifier control circuit and method
JP5165520B2 (ja) * 2008-10-01 2013-03-21 ソニー株式会社 固体撮像装置、撮像装置、および固体撮像装置のad変換方法
US7847634B2 (en) * 2009-01-22 2010-12-07 Analog Devices, Inc. Error amplifier structures
JP5245984B2 (ja) * 2009-03-30 2013-07-24 ソニー株式会社 撮像素子、読み出し信号の変換方法およびカメラ
JP2011040899A (ja) * 2009-08-07 2011-02-24 Renesas Electronics Corp アナログ・デジタル変換回路、半導体装置、及び電動パワーステアリング制御ユニット
EP2330870A1 (en) * 2009-08-28 2011-06-08 Freescale Semiconductor, Inc. Sampling trigger device and method thereof
CN101944902B (zh) * 2010-09-17 2013-01-16 上海辛克试验机有限公司 一种基于脉宽调制的跟踪积分电路及其控制方法
JP5625958B2 (ja) * 2011-01-31 2014-11-19 富士電機株式会社 出力電圧切替機能を備えたスイッチング電源装置
US8441235B2 (en) 2011-01-31 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. Battery charger digital control circuit and method
US20130127430A1 (en) * 2011-11-18 2013-05-23 Diodes Incorporated Power Regulator for Driving Pulse Width Modulator
US20130154594A1 (en) * 2011-12-16 2013-06-20 Texas Instruments Incorporated Electronic device and method for power measurement
US9146263B2 (en) 2013-03-07 2015-09-29 Texas Instruments Incorporated Electronic device and method for tracking energy consumption
US9013203B2 (en) * 2013-04-05 2015-04-21 Texas Instruments Incorporated Tracking energy consumption using a fly-back converter technique
US9523724B2 (en) 2013-04-05 2016-12-20 Texas Instruments Incorporated Tracking energy consumption using a boost technique
US9194896B2 (en) * 2013-04-05 2015-11-24 Texas Instruments Incorporated Tracking energy consumption using a sepic-converter technique
US9231476B2 (en) 2013-05-01 2016-01-05 Texas Instruments Incorporated Tracking energy consumption using a boost-buck technique
JP6382702B2 (ja) * 2014-12-12 2018-08-29 株式会社東芝 スイッチング電源回路
KR102101947B1 (ko) * 2017-05-26 2020-04-17 서울대학교산학협력단 실시간 최적화 태양 에너지-이산화탄소 환원 시스템
JP6725147B2 (ja) * 2017-05-31 2020-07-15 株式会社デンソーテン 充電制御装置
JP6961437B2 (ja) 2017-09-28 2021-11-05 キヤノン株式会社 電源装置及び画像形成装置
US10461641B2 (en) * 2018-03-01 2019-10-29 Infineon Technologies Austria Ag Reference voltage control in a power supply
WO2020047776A1 (zh) * 2018-09-05 2020-03-12 上海晶丰明源半导体股份有限公司 低通滤波器、开关控制电路、驱动系统、芯片及方法
CN110488901A (zh) * 2019-09-18 2019-11-22 深圳市友华通信技术有限公司 电源模块的输出电压调节方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191275B2 (ja) * 1993-02-22 2001-07-23 横河電機株式会社 スイッチング電源装置
JPH07254823A (ja) * 1994-03-14 1995-10-03 Kenwood Corp デルタシグマ変調増幅器
JP3405871B2 (ja) 1995-11-28 2003-05-12 富士通株式会社 直流−直流変換制御回路および直流−直流変換装置
US5901176A (en) * 1997-04-29 1999-05-04 Hewlett-Packard Company Delta-sigma pulse width modulator control circuit
JP3691635B2 (ja) 1997-05-15 2005-09-07 富士通株式会社 電圧制御回路及びdc/dcコンバータ
JP3744680B2 (ja) * 1998-03-31 2006-02-15 富士通株式会社 電源装置、および電源回路の制御方法
AU4777700A (en) 1999-05-18 2000-12-05 Lucent Technologies Inc. Digital amplifier
US6653960B2 (en) * 2001-03-08 2003-11-25 Shindengen Electric Manufacturing Co., Ltd. Stabilized power supply using delta sigma modulator
JP4220708B2 (ja) * 2002-03-06 2009-02-04 Tdk株式会社 電圧補正回路、並びに、電圧補正機能付き増幅器及びこれを用いたスイッチング電源装置
US20030174005A1 (en) * 2002-03-14 2003-09-18 Latham Paul W. Cmos digital pulse width modulation controller
CN100480940C (zh) * 2002-04-03 2009-04-22 国际整流器公司 同步降压转换器改进
KR100576373B1 (ko) * 2004-03-08 2006-05-03 학교법인 한양학원 디지털 모듈레이션 기법을 이용한 디지털 dc-dc 컨버터
JP2007083760A (ja) * 2005-09-20 2007-04-05 Aisin Seiki Co Ltd スタビライザ制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178419B2 (en) 2010-04-16 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Power source circuit including transistor with oxide semiconductor
TWI456884B (zh) * 2010-12-13 2014-10-11 Monolithic Power Systems Inc 開關變換器電路和功率變換方法

Also Published As

Publication number Publication date
EP1760866A2 (en) 2007-03-07
CN100547893C (zh) 2009-10-07
US7119525B1 (en) 2006-10-10
KR100705379B1 (ko) 2007-04-17
JP4350075B2 (ja) 2009-10-21
DE602005022070D1 (de) 2010-08-12
EP1760866A3 (en) 2008-04-02
KR20070025890A (ko) 2007-03-08
CN1925292A (zh) 2007-03-07
EP1760866B1 (en) 2010-06-30
TW200709542A (en) 2007-03-01
JP2007068254A (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
TWI303917B (en) Control circuit of dc-dc converter and its control method
JP4991935B2 (ja) 低電力dc−dcsmpsのためのプログラマブルアナログデジタル変換器
US9024606B2 (en) Low-to-medium power single chip digital controlled DC-DC regulator for point-of-load applications
US8232835B2 (en) Charge pump circuit and voltage converter using the same
TWI494733B (zh) 電源供應系統及方法
TWI475346B (zh) 用於將輸入電壓轉換成輸出電壓之切換模式調節器的控制器積體電路及方法,與使用其之電子裝置
US7642945B2 (en) AD converter circuit and microcontroller
US20160141957A1 (en) Output Current Monitor Circuit for Switching Regulator
TW201618454A (zh) 多級放大器
TWI665857B (zh) 調節電壓的方法及使用該方法的電子裝置
KR20090097828A (ko) 자동 셀 밸런스화를 이용한 커패시터 충전 시스템 및 방법
JP2013046496A (ja) 制御回路、電源装置及び電源の制御方法
US20190305683A1 (en) Boost and ldo hybrid converter with dual-loop control
US11879919B2 (en) Inductive sensing methods, devices and systems
US5521556A (en) Frequency converter utilizing a feedback control loop
CN109792233B (zh) 积分电路与用于提供输出信号的方法
CN116915047A (zh) Dc-dc转换器电路和对应的操作方法
US11867572B2 (en) Method for implementing Vptat multiplier in high accuracy thermal sensor
US7627072B2 (en) Frequency-to-current converter
Du et al. A digital PWM controlled KY step-up converter based on passive sigma-delta modulator
Khan et al. Time-based pwm controller for fully integrated high speed switching dc-dc converters—an alternative to conventional analog and digital controllers
Zhu et al. A voltage mode power converter with the function of digitally duty cycle tuning
JP2023013703A (ja) 降圧コンバータのコントロール回路、降圧コンバータおよび電子機器
Chan et al. Fully integrated digital controller IC for buck converter with a differential-sensing ADC
Grodzicki et al. A low ripple current mode voltage doubler

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees