TWI292750B - - Google Patents

Download PDF

Info

Publication number
TWI292750B
TWI292750B TW093125871A TW93125871A TWI292750B TW I292750 B TWI292750 B TW I292750B TW 093125871 A TW093125871 A TW 093125871A TW 93125871 A TW93125871 A TW 93125871A TW I292750 B TWI292750 B TW I292750B
Authority
TW
Taiwan
Prior art keywords
tank
water quality
sewage treatment
quality control
target
Prior art date
Application number
TW093125871A
Other languages
Chinese (zh)
Other versions
TW200514755A (en
Inventor
Takumi Obara
Masahiko Tsutsumi
Osamu Yamanaka
Tadao Motogi
Yukio Hatsushika
Original Assignee
Toshiba Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Kk filed Critical Toshiba Kk
Publication of TW200514755A publication Critical patent/TW200514755A/en
Application granted granted Critical
Publication of TWI292750B publication Critical patent/TWI292750B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Description

1292750 (1) 九、發明說明 [發明所屬之技術領域】 本發明是關於用來處理都市污水或產業排水之污水處 理系統。 【先前技術】 經由污水處理系統處理過的水最終放流到河川等,不 過因這些放流的處理水,近年在於湖沼或海灣等的封閉性 水域已逐漸發生所謂『優氧化』的現象而造成問題。優氧 化現象係指含在排水中之氮或磷變成養分而大量發生植物 性浮游物的現象,也就是水質污濁或惡臭,或者對魚貝類 造成不良影響等之環境污染的一種形態。 爲了阻止這種優氧化現象的發生,必須抑制該原因物 質也就是氮或磷從污水處理系統流到封閉性水域的流出量 。此外,過去一般的污水處理系統只是利用被稱爲活性污 泥法的處理過程來除去有機物,但是這種活性污泥法無法 有效除去磷或氮。因而近年來的污水處理系統,如同日本 專利特開平9 一 248 5 96號公報以及特開平1 1 — 244 894號 公報中的記載,大多是採用不僅能除去有機物還能除去氮 或磷之高度處理系統的例子。 第7圖爲採用上述過的高度處理系統之過去的污水處 理系統之結構圖。在這第7圖中,從沉砂池流入的污水通 過流入閥1送到初步沉澱池2,在這裡把沉澱池所無法除 去的小顆粒砂或有機物除去。 1292750 (2) 通過初步沉澱池2的污水接著送到生物反應槽3。這 個生物反應槽3係進行所謂『凝結劑注入A20法』的過 程處理的形式,由厭氧槽4、無氧槽5以及有氧槽6所構 成。在於這個生物反應槽3,除去含在活性污泥中的有氧 微生物所形成的有機物,並且也同時除去氮和磷。 由生物反應槽3處理過的處理水接著送到最終沉澱池 7,在這裡被分離成活性污泥及上澄液,上澄液經過氯混 合池(未圖示)消毒過後放流到河川。 旁路閥8是爲了使存在於厭氧槽4之有屬細菌活性化 而直接供應多數含在流入污水中之有機物的時候才使用* 碳源注入幫浦1 〇是注入存放在碳源存放槽9的甲醇 、乙醇、醋酸、廢醋酸、葡萄糖等的碳源,用來使存在於 厭氧槽4的有磷細菌活性化。 凝結劑注入幫浦1 2是相對於有氧槽6來供應用來使 存放在凝結劑存放槽1 1的聚氯鋁、硫酸鋁、硫酸鐵等的 磷成分沈殿之凝結劑(PAC)。 在有氧槽6的下方安裝當作曝氣裝置的鼓風機13, 來自這個鼓風機1 3的空氣藉由裝配在有氧槽6內的散氣 管1 4供應到活性污泥中的有氧性微生物。有氧槽6內的 水經由曝氣來攪拌而成爲完全混合的狀態,利用這種狀態 下所供應的空氣,有氧性微生物被活性化來促進有機物的 分解資材化。 有氧槽6內之水的一部分利用循環幫浦1 5循環至無 氧槽5。另外從最終沈殿池7的底部所抽出的活性污泥利 -6 - 1292750 (3) 用回送幫浦1 6回送給厭氧槽4的入口部。 進而聚集在初步沈殿池2的底部之殘 抽取幫浦1 7抽出送出到污泥存放槽1 9, 池7的底部並利用回送幫浦1 6所沒有完 4側的殘留污泥也是送到污泥存放槽1 9。 在有氧槽6裝配氨態氮濃度計2 0, (Ν Η 4 ·· N )的濃度。另外監視裝置2 1具 値設定器22,輸出有氧槽6內有關氨態 。控制器23進行鼓風機1 3的控制來使經 20所量測過的氨態氮濃度與經由水質控< 22所設定的目標値一致。 接著針對第7圖的結構中之有關除氮 行說明。首先針對除氮作說明,有氧槽6 13所供應的氧,硝化菌把氨態氮(ΝΗ4·Ν 性氮(νο2-ν )、硝酸性氮(νο3-ν )。; 浦1 5從有氧槽6送入無氧槽5之亞硝酸 、硝酸性氮(Ν03-Ν ),利用在無氧條件 氧源之脫氮細菌的硝酸性呼吸或是亞硝酸 氮氣(Ν 2 ),往系統外除去。 這個時候,若沒有充分供應脫氮反應 就無法進行良好的除氮。用來塡補該有機 啓旁路閥8,把初步沉澱池旁路來把流入 槽4、或把存放在碳源存放槽9之甲醇、 醋酸、葡萄糖等的碳源注入到厭氧槽4、 留污泥利用初沈 聚集在最終沈殿 全回送到厭氧槽 用來量測氨態氮 有水質控制目標 氮濃度的目標値 由氨態氮濃度計 制目標値設定器 和除磷的作用進 利用經由鼓風機 )氧化成亞硝酸 然後利用循環幫 :性氮(νο2-ν ) 下以有機物爲優 性呼吸來還原爲 所必要的有機物 物之方法則有開 污水供應到厭氧 乙醇、醋酸、廢 或者把最終沈殿 1292750 (4) 池7所產生的抽出污泥投入到有氧槽6。 此處,除氮的反應以以下的化學式來表現。即是硝化 反應爲式(1)及式(2)。 NH4+ + 2〇2^N〇2~ + 2H2〇 .....式(i) NH2— + 1 / 20 广 N〇3 — -----式(2) 另外脫氮反應若是用甲醇來作爲有機物進行反應則爲 式(3 ) 〇 6N〇3 - + 5CH3OH— 3N2+5C02+7H20+60H:_____式(3) 控制器2 3根據來自氨態氮濃度計2 0的量測資料、以 及來自水質控制目標値設定器22之目標値的輸入來控制 鼓風機1 3的旋轉,促進上述的反應。 接著針對除磷作說明,在於厭氧槽4,活性污泥中的 磷儲存細菌,體內儲存有醋酸等的有機酸,釋出過剩的磷 酸(P〇4 )。該所釋放過剩的磷酸類型的磷送到有氧槽6 ’有氧槽6則利用磷儲存細菌的磷過剩攝取作用,厭氧槽 4所釋出之過多磷酸型態的磷就被吸收到活性污泥中。藉 此來進行除磷。 爲了使上述的反應進行,醋酸等的有機酸必須作爲給 氫體。但是與水流入時有機酸濃度變稀薄,而減少有磷體 所能利用的有機物,所以磷的吐出反應無法充分進行,之 -8- 1292750 (5) 後磷的過剩攝取反應也不完全。 爲了塡補該這重情況,採取與 除磷所必要的碳源,或是注入存放 聚氯鋁、硫酸鋁、硫酸鐵等的凝結 酸鋁或磷鐵酸形態使磷成分沉澱來 Α13+ + 3Ρ04~ A1 ( PO4 ) 3 [發明內容】 含在流入污水之氮的除去以及 生物反應來進行,控制器2 3則是 來使氮濃度和磷濃度達到目標値( 但是會有流入污水的流入量過 ,因而含在污水中之氮濃度和磷濃 此處,關於憐濃度,即使下雨時污 由使凝結劑或碳源等的注入量增加 ,因而幾乎不會造成問題。 此外,關於氮濃度,由於與生 滯留時間或生物反應速度的關係, 入量時,則會發生無法使水質達到 個時候,控制器23不論無法使氮 風機〗3的曝氣風量增加到最大値 會造成電力的浪費,而成爲導致電 本發明鑑於上述的問題,其目 除氮同樣的方法來確保 在凝結劑存放槽1 1之 劑(PAC ),經由以磷 把磷磷除去。 …式(4) 磷的除去是利用上述的 進行各處理機器的控制 固定値)。 大變動(例如下雨時) 度也大幅變動的情況。 水流入量急遽增大,經 很容易維持目標値水準 物反應槽3之處理水的 一定水準以上增加了流 目標値的情況。然且這 濃度達到目標仍然使鼓 水準爲止,但這種控制 力成本增加的原因。 的是提供即使無法使生 -9- 1292750 (6) 物反應槽的水質達到目標値水準的情況,仍能執行與情況 相對應之適當的水質控制之污水處理系統。 用來解決上述課題之手段,本發明的申請專利範圍第 1項之污水處理系統,是具備有包含有初步沉澱池、生物 反應槽以及最後沉澱池之污水處理過程,控制設置在這些 污水處理過程之預定處理機器的操作量,因而進行水質控 制來使前述生物反應槽的水質達到預先所設定的水質控制 目標値之污水處理系統,其特徵爲具備有:根據預定的量 測資料和預測資料當中的一方或是雙方之輸入來運算水質 最大預測値,再依照該水質最大預測値與前述水質控制目 標値的比較來判定是否能達到該水質控制目標値之水質控 制目標値判定手段、及前述水質控制目標値判定部判定了 無法達到的結論時,進行該判定結果的通知,並且把該水 質控制目標値變更成預定的水準或是把前述預定處理機器 的操作量保持在預定的水準之判定結果執行手段。 本發明的申請專利範圍第2項之污水處理系統,如同 本發明的申請專利範圍第1項,其中前述生物反應糟中的 水質爲構成該生物反應槽的一部分之有氧槽中的氨態氮濃 度’設置在Β ίΐ述污水處理過程之預定處理機器的操作量爲 設置在前述有氧槽之鼓風機的曝氣風量。 本發明的申請專利範圍第3項之污水處理系統,如同 本發明的申請專利範圍第]項,其中前述生物反應槽中的 水質爲構成該生物反應槽的一部分之有氧槽前段的無氧槽 或是該無氧槽前段的厭氧槽的硝酸性氮濃度,設置在前述 -10 - 1292750 (7) 污水處理過程之預定處理機器的操作量爲碳源注A幫彳甫對 前述無氧槽或是厭氧槽的碳源注入量。 本發明的申I靑專利範圍第4項之污水處理系統,如同 本發明的申I靑專利範圍第1 ' 2或3項,其中前述水菅控 制目標値判定手段只根據前述預定的量測資料來進行前述 的判斷,該量測資料包括有流入前述污水處理過程之污水 的流量以及全部氮濃度。 本發明的申請專利範圍第5項之污水處理系統,如同 本發明的申專利範圍第1、2或3項,其中前述水質控 制目標値判定手段根據前述預定的量測資料和預測資料的 雙方來進行前述的判斷,該量測資料爲流入前述污水處理 過程之污水的流量,該預測資料爲該流入之污水的全部氮 濃度之過去的時序資料。 本發明的申請專利範圍第6項之污水處理系統.,如同 本發明的申請專利範圍第i項,其中具備有:根據前述預 定的預測資料來作成目標値計畫,再把該作成的的目標値 計畫作爲前述水質控制目標値來設定之目標値計畫手段。 本發明的申請專利範圍第7項,其中前述水質控制目 標値判定手段只根據前述預定的量測資料來進行前述的判 斷’該量測資料包括有流入前述污水處理過程之污水的流 量以及由前述有氧槽循環到前述無氧槽之處理水的循環流 量和硝酸性氮濃度。 本發明的申請專利範圍第8項之污水處理系統,如同 本發明的申請專利範圍第3項,其中將設置在前述污水處 -11- 1292750 (8) 理過程之預定處理機器的操作量,取代爲前述碳源注入幫 浦對前述無氧槽或是厭氧槽的碳源注入量,並作爲對構成 前述生物反應槽的前述厭氧槽、前述無氧槽以及前述有氧 槽之各污水的階段流入量。 本發明的申請專利範圍第9項之污水處理系統,如同 本發明的申請專利範圍第3項,其中將設置在前述污水處 理過程之預定處理機器的操作量,取代爲前述碳源注入幫 浦對前述無氧槽或是厭氧槽的碳源注入量,並作爲把前述 初步沉澱池旁路而流入到前述生物反應槽之初步沉澱池旁 路流量。 本發明的申請專利範圍第1 〇項之污水處理系統,如 同本發明的申請專利範圍第3項,其中將設置在前述污水 處理過程之預定處理機器的操作量,取代爲前述碳源注入 幫浦對前述無氧槽或是厭氧槽的碳源注入量,並作爲由前 述初步沉澱池的底部對前述無氧槽或是厭氧槽之未處理污 泥投入量、或是使來自前述初步沉澱池的底部之未處理污 泥發酵所生成的發酵物對前述厭氧槽之未處理污泥發酵物 投入量。 本發明的申請專利範圍第1 1項之污水處理系統,如 同本發明的申請專利範圍第1、2、3、4、5、6 ' 7 ' 8、9 或1 0項,其中前述水質控制目標値判定手段係由運算決 定前述生物反應槽的水質之物質的收支之物質收支模式或 是輸出該物質的收支運算結果的過去資料之統計模式所構 成。 ^ 12- 1292750 (9) 本發明的申請專利範圍第1 2項之污水處理系統,如 同本發明的申請專利範圍第1、2、3、4、5、6、7、8、9 、1 〇或Π項,其中前述水質控制目標値判定手段係分成 複數個階段來運算前述水質最大預測値,並且依照該複數 個階段的各預測値與前述水質控制目標値之間的相差,複 數個階段進行前述的判定。 本發明的申請專利範圍第1 3項之污水處理系統,如 同本發明的申請專利範圍第12項,其中具備有:顯示前 述水質控制目標値判定手段之前述複數個階段的判定結果 之顯示部。 依據上述的構成,即使發生無法使生物反應槽的水質 達到目標値水準的情況,仍能執行與情況相對應之適當的 水質控制。 【實施方式】 以下用圖來說明本發明的各實施形態。只不過與第7 _相同的構成要件附註相同圖號,其說明則省略。另外, 以下的各實施形態,由於只有除氮的問題,碳源注入幫浦 1 0的注入口不是連接厭氧槽4而是連接無氧槽5,本發明 則是包含注入處爲厭氧槽4的構成以及注入處爲厭氧槽4 和無氧槽5的雙方的構成的其中一種。 第1圖爲本發明的第1實施形態之污水處理系統的結 構圖。第1圖與第7圖不同之點,除了上述碳源注入幫浦 1 0的注入口之外,還有監視裝置21爲監視裝置2 1 A之點 1292750 (10) 以及在厭氧槽4的入口側設有全部氮濃度計2 8之點 且監視裝置2 1 A除了有水質控制目標値設定器22之 還有水質控制目標値判定手段24、判定結果執行手| 以及顯示部26。 水質控制目標値判定手段24係根據來自流入流 27和全部氮濃度計28的量測資料、及利用某種方法 如試驗或是模擬等)所推定的硝化菌濃度推定値來判 否能達到由水質控制目標値設定器22所輸入的水質 目標値,即是判定是否能達到氨態氮濃度。然而水質 目標値判定手段24所進行之判定動作的週期可設定 意的時間,不過本實施形態則是推定爲大約每1小時 判定動作。 判定結果執行手段25係在水質控制目標値判定 24的判定結果爲無法達到時,把無法達到的通知顯 顯示部2 6來促使操作員的注意。另外這個時候,判 果執行手段2 5在設定於水質控制目標値設定器2 2的 値變更爲能達到的水準或是無法變更爲能達到的水準 控制器23保持對鼓風機1 3的操作量,依照指令來控 鼓風機1 3的曝氣風量不致於超作一定水準以上。 接著說明上述構成之第1實施形態的作用。安裝 氧槽6之安態氮濃度計20的量測値送到控制器23, 器2 3內運算鼓風機1 3的曝氣風量來與設在水質控制 値設定器22的氨態氮濃度目標値相接近。 硝化反應由於在氧氣不足的狀態是不進行反應, 。然 外, ^ 2 5 jm. e_L 里曰卞 (.例 定是 控制 控制 在任 進行 手段 示在 定結 目標 時, 制使 在有 控制 目標 因而 -14- 1292750 (11) 氨態氮濃度爲目標値以上時使曝氣風量增加,若爲目標値 以下時則使曝氣風量減少,就不會過不足而能進行適當的 曝氣量控制。 曝氣風量運算式例如控制器爲PI控制器時則以式( 1 .1 )的形式來表示。其中Q a i r ( t )爲時刻t的曝氣風量 目標値〔m3 / m i η〕,Q a i r 〇爲曝氣風量初始値〔m3 / m i η 〕,K p爲比例增益〔m6 / g · m i n〕 ,T i爲積分常數〔 min〕,△ t爲控制週期〔m i n〕,e ( t )爲偏差〔m g / L 〕,SVNH4 ( i )爲氨態氮濃度目標値〔mg/ L〕,PVNH4 (t)爲氨態氮濃度計量測値〔mg/L〕。 曝氣風量控制器爲式(1.1 )的形式所示的PI控制器 時,若是氨態氮濃度計量測値PVNH4比目標値SVNH4還大 時朝增大曝氣風量的方向來運算曝氣風量目標値;相反地 氨態氣濃度計量測値PVNH4比目標値SVNH4還小時則朝減 小曝氣風量的方向來運算曝氣風量目標値。 Q air ^ t ) = Q ai, 0 + Kp { e ( t ) + i- fe ( t ) d t } 丁】Λ e ( t) - PVnh4 ( t ) - SVNh4 ( t) .....-式(I」) 有氧槽6最好是只存能夠促進硝化之氨態氮濃度’所 以通常是在有氧槽6的末端附近設定0·5〜1 .〔 mg/ L〕的 氨態氣濃度目標値。不過流入流量與流入全部氣濃度的積 也就是流入負荷量很大時則會有即使增加一定的風量仍無 法除去氨態氮的情況。 -15 > 1292750 (12) 這種情況下目標値維持固定來進行控制’則會因直到 最大曝氣風量爲止增加風量而導致風量過大。因此水質控 制目標値判定手段24判定是否能達成這控制目標値° 第1圖中,厭氧槽4、無氧槽5、以及有氧槽6如果 分別是完全混合槽,則厭氧槽4和無氧槽5基本上是不發 生硝化,只有溶解出隨著液體的混合及加水分解之氮成分 〇 此處,計算厭氧槽4中之氨態氮的物質收支則成爲式 (1.2 )。其中Snh4 ( 1 )爲厭氧槽氨態氮濃度〔mg/ L〕 ,Qin爲流入流量〔πι3/ day〕,Snh4in爲流入水氨態氮 濃度〔mg / L〕 ’ Qret 爲回送流量〔m3/ day〕 ,Snh4 ( 4 )爲沉澱池氨態氮濃度〔m g / L〕 ,V ( 1 )爲厭氧槽容積 〔m3〕 ,△ x 1爲隨著厭氧槽加水分解而溶解出氨態氮的 速度〔g/ day〕。 dSnh4(l)一 Qin *Snli4in. -f Qret >Snh(4) (Qin + Qret) *Snh4(l) + △ xi __^__= - ^(1) …-式(1.2) 同樣地,計算無氧槽5中之氨態氮的物質收支則成爲 式(1 .3 )。其中Snh4 ( 2 )爲無氧槽氨態氮濃度〔mg / L 〕,Q i η爲流入流量〔m3 / d a y〕 ,Q c i r爲循環流量〔m31292750 (1) Description of the Invention [Technical Field of the Invention] The present invention relates to a sewage treatment system for treating urban sewage or industrial drainage. [Prior Art] The water treated by the sewage treatment system is finally discharged to the rivers, etc. However, in recent years, the so-called "excellent oxidation" phenomenon has occurred in closed waters such as lakes and bays. The phenomenon of superior oxidation refers to a phenomenon in which nitrogen or phosphorus contained in the drainage becomes nutrients and a large amount of plant floating matter occurs, that is, water pollution or foul odor, or environmental pollution such as adverse effects on fish and shellfish. In order to prevent this preferential oxidation from occurring, it is necessary to suppress the outflow of the causative substance, that is, nitrogen or phosphorus, from the sewage treatment system to the closed water. In addition, in the past, a general sewage treatment system only used a treatment called an active sludge method to remove organic matter, but this activated sludge method cannot effectively remove phosphorus or nitrogen. Therefore, in recent years, the sewage treatment system is generally described in Japanese Patent Application Laid-Open No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. An example of the system. Fig. 7 is a structural view of a conventional sewage treatment system using the above-described height treatment system. In this Fig. 7, the sewage flowing from the grit chamber is sent to the preliminary sedimentation tank 2 through the inflow valve 1, where small particles of sand or organic matter which cannot be removed by the sedimentation tank are removed. 1292750 (2) The sewage passing through the preliminary sedimentation tank 2 is then sent to the biological reaction tank 3. This bioreactor 3 is a process of performing a so-called "coagulant injection A20 method", and is composed of an anaerobic tank 4, an anaerobic tank 5, and an aerobic tank 6. In this biological reaction tank 3, the organic matter formed by the aerobic microorganisms contained in the activated sludge is removed, and nitrogen and phosphorus are also removed at the same time. The treated water treated by the biological reaction tank 3 is then sent to the final sedimentation tank 7, where it is separated into activated sludge and supernatant, which is sterilized by a chlorine mixing tank (not shown) and then discharged to the river. The bypass valve 8 is used to directly supply the organic substances contained in the inflowing sewage to activate the bacterium belonging to the anaerobic tank 4. * The carbon source is injected into the pump 1 and is injected into the carbon source storage tank. A carbon source of methanol, ethanol, acetic acid, waste acetic acid, glucose or the like is used to activate the phosphorus-producing bacteria present in the anaerobic tank 4. The coagulant injection pump 12 is a coagulant (PAC) for supplying a phosphorus component such as polyaluminum chloride, aluminum sulfate or iron sulfate stored in the coagulant storage tank 1 with respect to the aerobic tank 6. A blower 13 as an aeration device is installed below the aerobic tank 6, and air from this blower 13 is supplied to the aerobic microorganisms in the activated sludge by the diffuser pipe 14 fitted in the aerobic tank 6. The water in the aerobic tank 6 is agitated by aeration to be completely mixed, and the aerobic microorganisms are activated by the air supplied in this state to promote the decomposition of the organic matter. A portion of the water in the aerobic tank 6 is circulated to the anaerobic tank 5 by means of a circulation pump 15. Further, the activated sludge -6 - 1292750 (3) extracted from the bottom of the final Shen Dianchi 7 is returned to the inlet portion of the anaerobic tank 4 by the return pump 16 . Then, the residual pump collected at the bottom of the preliminary Shendian pool 2 is pumped out to the bottom of the sludge storage tank 197, and the residual sludge of the 4 sides of the pump is also sent to the sewage. Mud storage tanks 19. The concentration of the ammonia nitrogen concentration meter 20, (Ν Η 4 ·· N ) is assembled in the aerobic tank 6. Further, the monitoring device 2 1 has a setter 22 for outputting an ammonia state in the aerobic tank 6. The controller 23 controls the blower 13 to match the ammonia nitrogen concentration measured by 20 to the target enthalpy set by the water quality control <22. Next, the relevant nitrogen removal line in the structure of Fig. 7 will be described. First, for the purpose of nitrogen removal, the oxygen supplied by the aerobic tank 6 13 and the nitrifying bacteria are ammonia nitrogen (ΝΗ4·Ν nitrogen (νο2-ν), nitric nitrogen (νο3-ν); The oxygen tank 6 is sent to the anaerobic tank 5 of nitrous acid and nitric acid nitrogen (Ν03-Ν), and the nitric acid breathing of the denitrifying bacteria in the anaerobic condition oxygen source or the nitrous acid nitrogen gas (Ν 2 ) is used outside the system. At this time, if the denitrification reaction is not fully supplied, good nitrogen removal cannot be performed. It is used to supplement the organic bypass valve 8, bypassing the preliminary sedimentation tank to feed the inflow tank 4, or store it in the carbon source. The carbon source of methanol, acetic acid, glucose, etc. in the storage tank 9 is injected into the anaerobic tank 4, and the sludge is collected and collected in the final sedimentation hall and sent back to the anaerobic tank for measuring the ammonia concentration of the water quality control target ammonia nitrogen. The target 値 is determined by the ammonia nitrogen concentration, the target 値 setter and the action of phosphorus removal are oxidized to nitrous acid by the blower, and then the circulation is used: the nitrogen (vο2-ν) is reduced to the organic matter as the optimal breath. The method of organic matter has the supply of sewage to anaerobic Alcohol, acetic acid, or the final waste Shen 1,292,750 temple (4) generated by the cell 7 into the extracted sludge aerobic tank 6. Here, the reaction of removing nitrogen is expressed by the following chemical formula. That is, the nitration reaction is represented by the formula (1) and the formula (2). NH4+ + 2〇2^N〇2~ + 2H2〇.....Formula (i) NH2— + 1 / 20 广N〇3 — ----- (2) If the denitrification reaction is methanol The reaction is carried out as an organic compound (3) 〇6N〇3 - + 5CH3OH-3N2+5C02+7H20+60H: _____ (3) The controller 2 3 is based on the measurement data from the ammonia nitrogen concentration 20, And the input from the target 値 of the water quality control target 値 setter 22 controls the rotation of the blower 13 to promote the above reaction. Next, in the case of phosphorus removal, the anaerobic tank 4, the phosphorus in the activated sludge stores bacteria, and an organic acid such as acetic acid is stored in the body to release excess phosphoric acid (P〇4). The excess phosphoric acid of the released type is sent to the aerobic tank 6 'the aerobic tank 6 uses the excess phosphorus uptake of the phosphorus storage bacteria, and the excess phosphoric acid type phosphorus released by the anaerobic tank 4 is absorbed into the activity. In the sludge. This is used to remove phosphorus. In order to carry out the above reaction, an organic acid such as acetic acid must be used as a hydrogen donor. However, when the water is inflowed, the organic acid concentration becomes thinner, and the organic matter which can be utilized by the phosphorus is reduced, so that the phosphorus emission reaction cannot be sufficiently performed, and -8-1292750 (5) the excess uptake reaction of the phosphorus is not complete. In order to compensate for this heavy situation, the carbon source necessary for phosphorus removal, or the deposition of aluminum chloride or ferric ferrite in the form of polyaluminum chloride, aluminum sulfate, ferric sulfate, etc., precipitates the phosphorus component to Α13+ + 3Ρ04~ A1 (PO4) 3 [Summary of the Invention] The removal of nitrogen contained in the inflowing water and the biological reaction are carried out, and the controller 23 is configured to bring the nitrogen concentration and the phosphorus concentration to the target level (but there is an inflow of the inflowing sewage, Therefore, the concentration of nitrogen contained in the sewage and the concentration of phosphorus are concentrated here. Regarding the concentration of pour, even if the amount of injection of the coagulant or the carbon source is increased when it rains, there is almost no problem. The relationship with the residence time or the biological reaction rate, when the amount is entered, it will not be possible to make the water quality reach a certain time, and the controller 23 cannot increase the aeration air volume of the nitrogen fan 〖3 to the maximum 値, which will cause waste of electricity. In view of the above problems, the present invention has the same method of removing nitrogen to ensure the removal of phosphorus and phosphorus by phosphorus in the coagulant storage tank 1 (PAC). It is based on the above-mentioned control of each processing machine. Great changes (such as when it rains) have also changed dramatically. The inflow of water is rapidly increased, and it is easy to maintain the flow target enthalpy above a certain level of the treated water of the target hydrazine reaction tank 3. However, this concentration still reaches the target, but the cost of this control increases. It is a sewage treatment system that can provide an appropriate water quality control corresponding to the situation even if the water quality of the reaction tank of the -9-1292750 (6) cannot be achieved. Means for solving the above problems, the sewage treatment system of claim 1 of the present invention is provided with a sewage treatment process including a preliminary sedimentation tank, a biological reaction tank and a final sedimentation tank, and the control is set in the sewage treatment process. a sewage treatment system that is scheduled to process the amount of operation of the machine, thereby performing water quality control to bring the water quality of the biological reaction tank to a preset water quality control target, and is characterized in that: according to predetermined measurement data and prediction data The input of one or both parties is used to calculate the maximum water quality prediction, and then according to the comparison between the maximum water quality prediction and the water quality control target, the water quality control target, the water quality control target, and the water quality control are determined. When the target flaw determining unit determines the unreachable conclusion, the determination result is notified, and the water quality control target 値 is changed to a predetermined level or the determination result of the predetermined processing machine is maintained at a predetermined level. means. The sewage treatment system of claim 2 of the present invention is as in the first aspect of the invention, wherein the water quality in the biological reaction residue is ammonia nitrogen in the aerobic tank constituting a part of the biological reaction tank. The concentration of the predetermined processing machine of the sewage treatment process is set to the aeration air volume of the air blower provided in the aerobic tank. The sewage treatment system of claim 3 of the present invention is the same as the scope of the invention of the present invention, wherein the water quality in the biological reaction tank is an anaerobic tank in the front section of the aerobic tank constituting a part of the biological reaction tank. Or the nitrous oxide concentration of the anaerobic tank in the front section of the anaerobic tank is set in the above-mentioned -10 - 1292750 (7). The operation amount of the predetermined treatment machine for the sewage treatment process is carbon source injection A 彳甫 to the aforementioned anaerobic tank Or the amount of carbon source injected into the anaerobic tank. The sewage treatment system of the fourth aspect of the invention is in accordance with the first aspect of the invention, the first aspect of the patent scope 1 ' 2 or 3, wherein the foregoing water raft control target 値 determination means only based on the aforementioned predetermined measurement data To make the foregoing judgment, the measurement data includes the flow rate of the sewage flowing into the sewage treatment process and the total nitrogen concentration. The sewage treatment system of claim 5 of the present invention is as in the first, second or third aspect of the patent application of the present invention, wherein the water quality control target 値 determination means is based on both the predetermined measurement data and the prediction data. The foregoing determination is made, the measured data is the flow rate of the sewage flowing into the sewage treatment process, and the predicted data is the past time series data of the total nitrogen concentration of the inflowing sewage. A sewage treatment system according to claim 6 of the present invention, which is the i-th item of the patent application scope of the present invention, which is characterized in that: the target plan is created based on the predetermined prediction data, and the target is created. The plan is to set the target plan for the water quality control target. According to the seventh aspect of the invention, the water quality control target 値 determining means performs the foregoing determination based only on the predetermined measurement data, wherein the measurement data includes a flow rate of the sewage flowing into the sewage treatment process and the foregoing The circulating flow rate and the nitrate nitrogen concentration of the treated water which is circulated to the aforementioned anaerobic tank by the aerobic tank. The sewage treatment system of claim 8 of the present invention is as in the third aspect of the patent application scope of the present invention, wherein the operation amount of the predetermined processing machine disposed in the sewage treatment section -11-1292750 (8) is replaced. Injecting a carbon source into the aerobic tank or the anaerobic tank for the carbon source, and as the anaerobic tank, the anaerobic tank, and the aerobic tank of the aerobic tank Stage inflow. The sewage treatment system of claim 9 of the present invention is as in the third aspect of the patent application scope of the present invention, wherein the operation amount of the predetermined treatment machine disposed in the sewage treatment process is replaced by the injection of the aforementioned carbon source into the pump pair. The carbon source injection amount of the aerobic tank or the anaerobic tank is used as a preliminary sedimentation tank bypass flow rate which flows into the biological reaction tank by bypassing the preliminary sedimentation tank. The sewage treatment system of the first aspect of the invention is as in the third aspect of the invention, wherein the operation amount of the predetermined processing machine disposed in the sewage treatment process is replaced by the injection of the carbon source into the pump. The amount of carbon source injected into the aerobic tank or the anaerobic tank, and the amount of untreated sludge from the bottom of the preliminary sedimentation tank to the anaerobic tank or the anaerobic tank, or the preliminary sedimentation from the foregoing The fermented product produced by the untreated sludge fermentation at the bottom of the tank is the amount of the untreated sludge fermentate input to the anaerobic tank. The sewage treatment system of claim 1 of the present invention is as in the scope of the patent application of the present invention, the first, second, third, fourth, fifth, sixth, seventh, eighth, or tenth, wherein the aforementioned water quality control target The 値 determination means is composed of a material income and expenditure mode in which the calculation and determination of the substance of the water quality of the biological reaction tank is calculated, or a statistical pattern of past data outputting the calculation result of the income and expenditure of the substance. ^ 12- 1292750 (9) The sewage treatment system of claim 12 of the present invention, as in the scope of the patent application of the present invention, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1 Or the item, wherein the water quality control target 値 determining means is divided into a plurality of stages to calculate the water quality maximum prediction 値, and according to a difference between each prediction 値 of the plurality of stages and the water quality control target ,, in a plurality of stages The aforementioned determination. The sewage treatment system of the first aspect of the invention is the display unit of the above-mentioned plurality of stages of the water quality control target 値 determination means. According to the above configuration, even if the water quality of the biological reaction tank cannot be reached to the target level, appropriate water quality control corresponding to the situation can be performed. [Embodiment] Hereinafter, each embodiment of the present invention will be described with reference to the drawings. However, the same components as the 7th _ are the same as the same figure, and the description is omitted. In addition, in the following embodiments, since only the problem of nitrogen removal is performed, the injection port of the carbon source injection pump 10 is not connected to the anaerobic tank 4 but to the anaerobic tank 5, and the present invention includes the injection chamber as an anaerobic tank. The configuration of the fourth portion and the injection portion are one of the configurations of both the anaerobic tank 4 and the anaerobic tank 5. Fig. 1 is a block diagram showing a sewage treatment system according to a first embodiment of the present invention. 1 is different from FIG. 7 except that the above-mentioned carbon source is injected into the injection port of the pump 10, and the monitoring device 21 is the point 1292750 (10) of the monitoring device 2 1 A and the anaerobic tank 4 The inlet side is provided with all the nitrogen concentration meters 28, and the monitoring device 2 1 A includes the water quality control target 値 determining means 24, the water quality control target 値 determining means 24, the determination result execution hand|, and the display unit 26 in addition to the water quality control target 値 setting unit 22. The water quality control target 値 determination means 24 determines whether or not the nitration concentration estimation is based on the measurement data from the inflow stream 27 and the total nitrogen concentration meter 28, and the nitration concentration estimated by a certain method such as a test or a simulation. The water quality control target 水质 setting unit 22 inputs the water quality target 値, that is, whether or not the ammonia nitrogen concentration can be reached. However, the period of the determination operation performed by the water quality target determination means 24 can be set to the desired time. However, in the present embodiment, the determination operation is estimated to be approximately every one hour. When the determination result of the water quality control target 値 determination 24 is unreachable, the determination result execution means 25 causes the notification display unit 26 that is unreachable to prompt the operator's attention. At this time, the judgment execution means 25 changes the level set to the water quality control target setting unit 2 2 to the level that can be reached or the level controller 23 that cannot be changed to the level controller 23 to maintain the amount of operation on the blower 13. According to the instructions, the aeration air volume of the blower 13 is not exceeded to a certain level. Next, the action of the first embodiment of the above configuration will be described. The measurement of the installed nitrogen concentration meter 20 of the oxygen tank 6 is sent to the controller 23, and the amount of aeration air of the blower 13 is calculated in the unit 2 3 and the ammonia nitrogen concentration target set in the water quality control setter 22 Close to each other. The nitrification reaction is not carried out in the state of insufficient oxygen. However, ^ 2 5 jm. e_L Lie (. is determined to be the control of the in-service means when the target is set, the control is in the target of the target -14-1292750 (11) ammonia nitrogen concentration is the target In the above case, the aeration air volume is increased, and if the target air pressure is less than the target air volume, the aeration air volume is reduced, and the appropriate aeration amount control can be performed without excessive shortage. When the aeration air volume calculation type is, for example, the controller is a PI controller It is expressed by the formula (1.1), where Q air ( t ) is the aeration air volume target 値 [m3 / mi η] at time t, and Q air 〇 is the initial aeration air volume 値 [m3 / mi η], K p is the proportional gain [m6 / g · min], T i is the integral constant [min], Δ t is the control period [min], e ( t ) is the deviation [mg / L], and SVNH4 ( i ) is the ammonia state. The nitrogen concentration target 値 [mg / L], PVNH4 (t) is the ammonia nitrogen concentration measurement mg [mg / L]. When the aeration air volume controller is the PI controller shown in the form of (1.1), if Ammonia nitrogen concentration measurement 値 When PVNH4 is larger than the target 値SVNH4, the aeration air volume target is calculated by increasing the direction of the aeration air volume. Conversely, if the ammonia concentration measurement of PVNH4 is smaller than the target 値SVNH4, the aeration air volume target 运算 is calculated in the direction of decreasing the aeration air volume. Q air ^ t ) = Q ai, 0 + Kp { e ( t ) + i- fe ( t ) dt } Λ ]Λ e ( t) - PVnh4 ( t ) - SVNh4 ( t) .....-form (I") The aerobic tank 6 is preferably only capable of promoting The concentration of ammonia nitrogen in the nitrification is usually set to a target concentration of ammonia gas concentration of 0·5 to 1 [mg/L] near the end of the aerobic tank 6. However, if the inflow flow rate and the inflowing total gas concentration are large, the amount of the inflow load may be large, and even if a certain amount of air is added, the ammonia nitrogen cannot be removed. -15 > 1292750 (12) In this case, the target 値 remains fixed for control. The air volume is increased due to the increase in air volume up to the maximum aeration air volume. Therefore, the water quality control target 値 determination means 24 determines whether or not the control target can be achieved. 第 In Fig. 1, the anaerobic tank 4, the anaerobic tank 5, and the aerobic tank 6 are completely mixed tanks, respectively, and the anaerobic tank 4 and The anaerobic tank 5 basically does not undergo nitrification, and only dissolves the nitrogen component which is mixed with the liquid and hydrolyzed, and the amount of the ammonia nitrogen in the anaerobic tank 4 is calculated as the formula (1.2). Among them, Snh4 ( 1 ) is the ammonia nitrogen concentration [mg / L] of the anaerobic tank, Qin is the influx [πι3 / day], Snh4in is the influent ammonia nitrogen concentration [mg / L] ' Qret is the return flow [m3 / Day] , Snh4 ( 4 ) is the ammonia nitrogen concentration of the sedimentation tank [mg / L], V ( 1 ) is the volume of the anaerobic tank [m3], and △ x 1 is the ammonia nitrogen dissolved by the hydrolysis of the anaerobic tank. Speed [g/ day]. dSnh4(l)-Qin*Snli4in. -f Qret >Snh(4) (Qin + Qret) *Snh4(l) + △ xi __^__= - ^(1) ...-form (1.2) Similarly, calculation The material balance of the ammonia nitrogen in the anaerobic tank 5 becomes the formula (1.3). Where Snh4 ( 2 ) is the ammonia-free nitrogen concentration [mg / L] of the anaerobic tank, Q i η is the inflow flow rate [m3 / d a y], and Q c i r is the circulation flow rate [m3

/ day〕 ,Snh4 ( 3 )爲有氧槽氨態氮濃度〔mg/ L〕 ,V (2 )爲無氧槽容積〔3〕’△ x 2爲隨著無氧槽加水分解 而溶解出氨態氮的速度〔g / d a y〕。 -16 - 1292750 (13) dSnli4 (2) 一 (Qin + Qret) >Snh4(l). + Qcir >Snli4(3) V(2) (Qin + Qret + Qcir) >Snh4(2) V(2) Δ x: 式(1 .3 ) 因判斷是否能達到目標値正常狀態考量即可,所以把 式(1.2)、式(1.3 )的左邊成設爲0來進行整哩,則得 到式(1 .4 )。但是al、a2爲常數。/ day] , Snh4 ( 3 ) is the ammonia tank ammonia nitrogen concentration [mg / L], V (2) is the anaerobic tank volume [3] '△ x 2 is dissolved with ammonia in the anaerobic tank The rate of nitrogen (g / day). -16 - 1292750 (13) dSnli4 (2) one (Qin + Qret) >Snh4(l). + Qcir >Snli4(3) V(2) (Qin + Qret + Qcir) >Snh4(2) V (2) Δ x: Equation (1 . 3 ) It is only necessary to determine whether the target can be reached in the normal state. Therefore, if the left side of equations (1.2) and (1.3) is set to 0, the whole equation is obtained. (1. 4). However, al and a2 are constants.

Snh4 ( 2 )Snh4 ( 2 )

Qin ·8Ν1ι4ίη + Qret *Snh4(4). + Qcir ·8η1ι4(3) a j λ . (Qin + Qret + Qcir) x + a Δ x2 式(1 · 4 ) 然則考量有氧槽中之氨態氮濃度的物質收支則成爲式 (1.5 )。其中Snh4 ( 3 )爲有氧槽氨態氮濃度〔mg/ L〕 ,v(3)爲有氧槽容積〔ηι3〕,Δχ3爲隨著有氧槽加水 分解、有機物除去之氨態氮的溶解出速度〔g / day〕, Rnh4爲隨著硝化菌的增殖而減少氨態氮的速度〔g/ day ]° d Snh4 (3) 一 (Qin + Qcir + Qret) ^Snh4(2) _ (Qin + Qcir + Qret) >Snh4(3) + Λ ^ ^ ~"dt V(3) — V(3) 一 Rnh4 .....(1.5) 隨著硝化菌的增殖而減少氨態氮的速度以式(1 ·6 ) 來表示。其中μ aut爲硝化菌的最大比增殖速度,Yaut爲 硝化菌的得率,S 0 2 ( 3 )爲有氧槽溶解氧濃度〔ni g / L〕 ,S a 1 k ( 3 )爲有氧槽鹼濃度〔ni g / L〕 ,X a u t爲硝化菌 -17- 1292750 (14) 濃度〔mg/ L〕 ,K〇2、Knh4、Kalk爲半飽和常數。Qin ·8Ν1ι4ίη + Qret *Snh4(4). + Qcir ·8η1ι4(3) aj λ . (Qin + Qret + Qcir) x + a Δ x2 Equation (1 · 4 ) However, consider the ammonia nitrogen concentration in the aerobic tank The material income and expenditure will become the formula (1.5). Among them, Snh4 ( 3 ) is the ammonia nitrogen concentration of the aerobic tank [mg / L], v (3) is the aerobic tank volume [ηι3], and Δχ3 is the dissolution of the ammonia nitrogen with the hydrolysis of the aerobic tank and the removal of organic matter. Velocity [g / day], Rnh4 is the rate of reduction of ammonia nitrogen with the proliferation of nitrifying bacteria [g/ day]° d Snh4 (3) one (Qin + Qcir + Qret) ^Snh4(2) _ (Qin + Qcir + Qret) >Snh4(3) + Λ ^ ^ ~"dt V(3) — V(3) A Rnh4 .....(1.5) Decreasing ammonia nitrogen with the proliferation of nitrifying bacteria The speed is expressed by the formula (1 · 6 ). Where μ aut is the maximum specific growth rate of nitrifying bacteria, Yat is the yield of nitrifying bacteria, S 0 2 ( 3 ) is the dissolved oxygen concentration of the aerobic tank [ni g / L], and S a 1 k ( 3 ) is aerobic The tank alkali concentration [ni g / L], X aut is the nitrifying bacteria -17-1292750 (14) concentration [mg / L], K 〇 2, Knh4, Kalk is a semi-saturation constant.

Rnh4= · _S02⑶ · Snh4(3) · Salk⑶Rnh4= · _S02(3) · Snh4(3) · Salk(3)

Yaut S02(3) + K02 Snh4(3) + Knli4 Salk(3) + Kalk · Aa (3 ) .....式(1 .6 ) 溶解氧和鹼濃度之不會妨礙硝化的條件(最大效率引 起硝化的條件)則是式(1 · 6 )成爲式(1 .7 )。Yaut S02(3) + K02 Snh4(3) + Knli4 Salk(3) + Kalk · Aa (3 ) ..... (1 .6 ) Conditions for dissolving oxygen and alkali do not interfere with nitrification (maximum efficiency The condition causing the nitrification is that the formula (1·6) becomes the formula (1.7).

Rnh4 ^ max= β aut/Yaut · S n h 4 ( 3 ) / ( S nh4 ( 3 ) +Rnh4 ^ max= β aut/Yaut · S n h 4 ( 3 ) / ( S nh4 ( 3 ) +

Knh4 ) · Xaut ( 3 ) .....式(1 ·7 ) 若式(1 . 5 )的右邊=0就能夠計算正常狀態下的氨濃 度。將式(1 · 4 )、式(1 .7 )代入到式(1 .5 ),右邊0則 得到式(1 . 8 )。Knh4) · Xaut ( 3 ) ..... Formula (1 · 7 ) If the right side of the formula (1.5) = 0, the ammonia concentration in the normal state can be calculated. Substituting the formula (1·4), the formula (1. 7) into the formula (1.5), and the right side 0 yields the formula (1.8).

QineSnh4in Qin»Snh4(3) /^aut Snh4(3) ▽ ,,, 一--二-二——· -—- · Xaut ( 3 ) + al Δ V(3) V(3) Yaut Snh4(3) + Knh4 x 1 + a2 Δ x2 + Δ x3 = 0 .....(1.8) 此處,由於流入水的硝酸性氮、亞硝酸性氮被認爲幾 乎不存在,因而經由加水分解等所產生的氨態氮被認爲大 致是因流入水的有機性氮所引起。所以式(1 . 8 )可以改 寫成式(1.9)。此處,ST-N in爲流入水的全部氮濃度( mg / L )。另外把式(1 · 9 )解開來求出正解則成爲式( 1.10)。 -18 - 1292750 (15) Qiii.ST-Nin ~~V(3)—QineSnh4in Qin»Snh4(3) /^aut Snh4(3) ▽ ,,, 一--二-二——· -———— · Xaut ( 3 ) + al Δ V(3) V(3) Yaut Snh4(3 ) + Knh4 x 1 + a2 Δ x2 + Δ x3 = 0 (1.8) Here, since nitrate nitrogen and nitrite nitrogen which are inflow into water are considered to be scarcely present, they are hydrolyzed. The ammonia nitrogen produced is considered to be caused mainly by organic nitrogen flowing into the water. Therefore, the formula (1.8) can be rewritten into the formula (1.9). Here, ST-N in is the total nitrogen concentration (mg / L ) of the influent water. In addition, the equation (1·9) is solved to obtain a positive solution, and the equation (1.10) is obtained. -18 - 1292750 (15) Qiii.ST-Nin ~~V(3)—

Qin*Snh4(3) — "autQin*Snh4(3) — "aut

Snh4(3) V⑶Snh4(3) V(3)

Yaut Snli4(3) + Kiili4Yaut Snli4(3) + Kiili4

Xaut ( 3 ) S n h 4 ( 3 ) 1 i 一 b + Vb2 -4ac 式(1.9 ) 2aXaut ( 3 ) S n h 4 ( 3 ) 1 i a b + Vb2 -4ac (1.9 ) 2a

Qin bQin b

Qin (ST- Nin- Knh4 ) + •式(1.10),只不過 ^Xaut ( 3) V(3) ' V(3) · ST — Nin » Knh4,Snh4 ( 3 ) lim 爲有氧槽氨態氮 V(3)Qin (ST- Nin- Knh4 ) + • (1.10), except ^Xaut ( 3) V(3) ' V(3) · ST — Nin » Knh4,Snh4 ( 3 ) lim is the aerobic tank ammonia nitrogen V(3)

Yaut 濃度下限預測値。 // airt 爲依賴水溫 T ( °C )的參數,// aut = 1·12(Τ’2()) 、Yaut=0.24、Knh4=l。因式(1·10)爲由不會妨礙硝 化的條件(最大效率引起硝化的條件)所求出的解,所以 成爲氨態氮濃度的最大値。 ST — Nin用全部氮濃度計28來量測,Qin用流入流量 計2 7來量測,所以若知道X a u t ( 3 )的値,則用式(1 · 1 〇 )的判別式就能判定是否能控制在目標値。The lower limit of Yaut concentration is predicted. // airt is a parameter dependent on water temperature T ( °C ), // aut = 1·12(Τ’2()), Yat=0.24, Knh4=l. Since the formula (1·10) is a solution obtained by a condition that does not hinder the nitrification (a condition for causing nitrification by the maximum efficiency), it is the maximum enthalpy of the ammonia nitrogen concentration. ST - Nin is measured by the total nitrogen concentration meter 28, and Qin is measured by the inflow flow meter 27. Therefore, if the a of X aut ( 3 ) is known, the discriminant of the formula (1 · 1 〇) can be used to determine Is it possible to control the target?

Xaut ( 3 )(硝化菌濃度)因直接測定會有困難’所 以必須有時由那時硝化速度試驗的結果來推定,有時藉由 利用活性污泥模式的模擬等的任一方法來推定。 藉由模擬來求取時,Xaut ( 3 )取決於曝氣槽內之固 態物的滯留時間A — S RT耗費多少而變化,輸入之前的運 轉條件(1週期間程度)及流入水質、流入流量來進行模 擬,Xaut ( 3 )若已成爲正常狀態的値即可。通常被認爲 這個値會在50〜100程度的値才安定。這個値必須1週1 次〜1個月1次程度的週期就要更新。 若是經由這個方式就能推定X aut (硝化菌濃度)’ 則經由將硝化菌濃度推定値輸入到水質控制目標値判定手 -19 - 1292750 (16) 段2 4,就能夠用式(κ 1 〇 )來判斷是否能達到目標値。 例如第 1 條件爲 X au t ( 3 ) = 8 0〔 m g / L〕、S T - N i η —30〔 mg/L〕、水溫 20〔。(^〕N Snh4ref:= l [ mg/L] 、V3=l〇〇〇〔 m3〕 、Qin = 4000 ( m3 / day ]時,用式( 1 . 1 Ο )所求出的解(最大値)爲0.5 4〔 m g / L〕而滿足等 式’所以若沒有pH及DO的降下而造成的硝化妨礙則能 控制。 另外第 2 條件爲 Xaut (3)=80〔mg/L〕、ST— Nin =30〔 mg/L〕、水溫 20〔 °C〕、 Snh4ref = 1〔 mg/L〕 、V3=1000〔m3〕、Qin=8 00 0〔m3/day〕時,用式( 1·10)所求出的解(最大値)爲2.03〔mg/L〕,而得知 該目標値即使多少噴吹曝氣風量仍無法對滯留時間的關係 上進行控制。 若爲第2條件時,把無法進行目標値控制通知給操作 員,或者通知並同時進行能達成的目標値之反向運算(進 行(1 · 1 0 )式的運算)。本運算是以最大能除去的條件爲 基準來進行運算,所以並不是把反向運算過的値原樣當作 控制目標値來進行運算,而是設定比該値還大若干的値作 爲控制目標値來進行運算。 即是△ Snh4設爲偏流値(0.5程度),Snh4ref ( auto )設爲目標値自動運算値,則成爲式(1 · 1 1 )。這個時候 因解爲2.0 3〔 m g / L〕,所以取得偏流而把3程度來當作 控制目標値就能進行控制。 -20· 1292750 (17)Xaut (3) (nitrifying bacteria concentration) may be difficult to measure directly. Therefore, it may be estimated from the results of the nitrification rate test at that time, and may be estimated by any method such as simulation using activated sludge mode. When it is obtained by simulation, Xaut (3) varies depending on how much the residence time of the solid matter in the aeration tank A - S RT is consumed, and the previous operating conditions (degree of one cycle) and the inflow water quality and inflow flow are input. To simulate, Xaut ( 3 ) can be used as a normal state. Usually it is considered that this 値 will be stable at the level of 50~100. This 値 must be updated once a week ~ once a month. If it is possible to estimate X aut (concentration of nitrifying bacteria) by this method, it is possible to use the formula (κ 1 经由) by inputting the nitrifying bacteria concentration to the water quality control target 値 手 -19 - 1292750 (16) paragraph 2 4 ) to determine whether the goal can be achieved. For example, the first condition is X au t ( 3 ) = 8 0 [ m g / L], S T - N i η 30 (mg/L), and water temperature 20 [. (^)N Snh4ref:= l [ mg/L] , V3=l〇〇〇[ m3] , Qin = 4000 ( m3 / day ], the solution obtained by the formula (1.1 Ο ) (maximum 値) is 0.5 4 [mg / L] and satisfies the equation 'so that it can be controlled without nitrification caused by pH and DO drop. The second condition is Xaut (3) = 80 [mg/L], ST - When Nin = 30 [mg/L], water temperature 20 [ °C], Snh4ref = 1 [mg/L], V3 = 1000 [m3], Qin = 8 00 0 [m3/day], use formula (1· 10) The solution (maximum enthalpy) obtained is 2.03 [mg/L], and it is known that the target 値 can not control the relationship of residence time even if the amount of aeration air volume is blown. If the condition is 2, Notify the operator of the inability to perform the target control, or notify and perform the inverse calculation of the target that can be achieved at the same time (perform (1 · 1 0 )). This operation is based on the maximum removal condition. Since the calculation is performed, the inverse calculation is not performed as the control target, but the 値 which is larger than the 値 is set as the control target 进行. When Δ Snh4 is set to bias current 0.5 (0.5 degree) and Snh4ref ( auto ) is set to target 値 automatic calculation 値, it becomes equation (1 · 1 1 ). At this time, the solution is 2.0 3 [ mg / L], so the bias current is obtained. And by using 3 degrees as the control target, you can control it. -20· 1292750 (17)

Snh4ref ( auto)二 Snh4 ( 3) lim+ △ Snh4…一式(1.11) 依據以上說明過的第1實施形態’可以達到以下的效 果。 第1 :因自動運算能達成的目標値’所以在於流入負 荷量很大時,比利用過去的氨態氮濃度計之PI控制更能 削減風量。 第2 :以初步沉激的越流部分來測定流入水質而可以 準確掌握流入曝氣槽的氮成分,所以能更正確判定目標値 〇 然而第1實施形態除了上述過的實施形態以外’廣義 上也含包以下的形態。 (1) 流入流量計27和全部氮濃度計28的位置只要 在厭氧槽4的上游側處任何地方皆可,例如也可以在初步 沉澱池2的上游側或是流入閥1的上游側。‘ (2) 流入流量計27、全部氮濃度計28、以及氨態氮 濃度計2 0的量測値,也可以經由式(Γ. 1 2 )或是式( 1 . 1 3 )的運算式子進行過濾處理。其中P V ( t )爲時刻t 的感應量測値,FT爲0〜1的過濾係數,η爲整數。 PV(t)=(l-FT)· PV(t- At)+FT· PV(t)----式(1.12) PV ( t)二 PV ⑴ + PV(t - At) + PV(t,2At) + ……-fPV(t-nAt)式(1·13 ) η (3 )氨態氮濃度最大預測値並不侷限於式(1 · 1 0 ) -21 - 1292750 (18) ’若爲更詳細或是更簡單來操控物質收支的模式及統計模 式等輸出最大濃度的模式責任何一種皆可。例如也可以藉 由式(1 · 1 4 )的式子應用流入水質資料和流量資料來預測 有氧槽6的氨態氮濃度最大値。Snh4ref (auto) two Snh4 (3) lim + Δ Snh4 (1.11) According to the first embodiment described above, the following effects can be obtained. First: The target 値 can be achieved by the automatic calculation. Therefore, when the inflow load is large, the air volume can be reduced more than the PI control using the past ammonia nitrogen concentration. Secondly, since the influent water quality is measured in the initial flow and the nitrogen component flowing into the aeration tank can be accurately grasped, the target can be accurately determined. However, the first embodiment is not limited to the above-described embodiment. It also contains the following forms. (1) The position of the flow rate meter 27 and the entire nitrogen concentration meter 28 may be anywhere on the upstream side of the anaerobic tank 4, for example, on the upstream side of the preliminary sedimentation tank 2 or on the upstream side of the inflow valve 1. ' (2) The flow rate of the inflow meter 27, the total nitrogen concentration meter 28, and the ammonia nitrogen concentration meter 20 may be expressed by the formula (Γ. 1 2 ) or the formula (1.13). The child is filtered. Where P V ( t ) is the inductive measurement at time t, FT is a filter coefficient of 0 to 1, and η is an integer. PV(t)=(l-FT)· PV(t- At)+FT· PV(t)----Formula (1.12) PV (t)Two PV (1) + PV(t - At) + PV(t , 2At) + ......-fPV(t-nAt) Formula (1·13) η (3) The maximum prediction of ammonia nitrogen concentration is not limited to the formula (1 · 1 0 ) -21 - 1292750 (18) 'If Any mode that outputs the maximum concentration, such as the mode of controlling the material revenue and expenditure and the statistical mode, is more detailed or simpler. For example, it is also possible to predict the maximum ammonia concentration of the aerobic tank 6 by using the inflow water quality data and the flow data by the formula (1·14).

Snh4(3) lim=a· ST—Nin· Qin+b .....式(1.14) 其中a、b爲常數,ST — Nin爲流入全部氮濃度〔mg / L〕 ,Q i η 爲流入量(m 3 / d ay )。 (4) 式(1 · 1 〇 )之Xaut ( 3 )的測定方法並不侷限於 利用模擬來算出的方法,也可以由實際進行硝化速度試驗 的結果來推定Xaut ( 3 )的存在量,還可以用其他的方法 來取得。 (5) 第1實施形態中的生物反應槽3爲進行被稱爲 所謂『凝結劑A 2 0法』之過程處理的形態,但並不侷限 於此,其他也可以進行循環式硝化脫氮過程處理等的污水 處理過程,或者也可以採用載體投入、凝結劑倂用型的過 程處理或是AOAO法等的各種A20法的變形法。 (6) 進行鼓風機1 3的控制之控制器23並不侷限於 PI控制器’若爲PID控制器等根據目標値與量測値的偏 差來進行運算則任何一種皆可。 (7) 判定結果執行手段25也可以在水質控制目標値 判定手段24判定爲無法達到現在所設定的目標値時,不 把該目標値變更成能達到的預定水準,同時只進行該狀況 -22- 1292750 (19) 的通知,並只將鼓風機1 3的操作量保持在預定的水準。 (8)上述的運算是以沒有限制溶解氧的條件爲前提 ,但實際上進行曝氣之鼓風機1 3的容量已決定,即使噴 吹最大的風量而溶解氧濃度(DO)仍提高,而會有不產 生硝化的情況。因此最大可供應的曝氣風量設爲Qair, max,取得有氧槽6中之溶解氧濃度(DO )的物質收支就 成爲式(1.15)。其中Kla爲總和移動容量係數,Qair, max爲最大曝氣風量〔m3/ day〕,S02,sat爲飽和溶解 氧濃度〔mg/ L〕 ,RC0D爲從暑優養菌之氧消耗速度〔.〔 g/ m3〕/ day〕。也可以用這個式(1.15 )來求出氨態氧 最大値。 dS d —Kla· Qair, max· ( S 〇 2 , sat — S〇2 ( 3 ) ) — Re o d dt —R n h 4 — · S 〇 2 ( 3 ) .....式(1 · 1 5 ) 即是也可以以式(1.15)的右邊=0來解開S〇2( 3) ,計算最大風量時的DO ( SG2max, ( 3 )),而求出氨濃 度最大値Snh41im。然而最大風量DO ( SG2max, ( 3 )) 的運算並不侷限於式(1 · 1 4 ),以可以根據過去的統計用 ,式(1 · 1 6 )的運算式子來預測。其中a、b爲定數。 S 〇 2 m a X , (3) ~a· Qair, max+b -----式(1.16) (9 )因被認爲最大濃度預測模式會有誤差,所以例 -23 - 1292750 (20) 如也可以區分成『絕對不可能的目標値』、『達成會有困 難的目標値』、以及『達成邊緣的目標値』等的3種輸出 ,用3條線來顯示在顯示部26的監視畫面上。 接著根據第2圖的構成圖說明本發明的第2實施形態 。第2圖與第1圖主要不同之點爲控制器23的輸入輸出 不同之點以及監視裝置2 1 B之水質控制目標値判定手段的 輸入之點。 即是本實施形態,作爲控制對象的水値爲無氧槽5的 硝酸性氮濃度,控制器23控制碳源注入幫浦10的注入量 ,來使硝酸性氮濃度計3 1所量測之硝酸性氮濃度與水質 控制目標値設定器22所設定的目標値一致。 另外水質控制目標値判定手段24,根據來自流入流 量計2 7、循環流量計2 9、硝酸性氮濃度計3 0之量測資料 以及用某種方法(例如試驗或是模擬等)來推定之脫氮菌 濃度推定値,來判定是否能達到水質控制目標値設定器 22所輸入的水質控制目標値,即是判定是否能達到硝酸 性氮濃度。 ' 其次說明具有上述構成的第2實施形態的作用。由於 在有機物不足的狀態不進行脫氮反應,因而硝酸牲氮濃度 還有目標値以上時,控制器2 3使碳源注入幫浦1 〇的注入 量增加,此外硝酸性氮濃度爲目標値以下時控制器23使 碳源注入量減少,因而不會有過不足而能進行適當的碳源 投入量控制。 碳源投入量運算式子例如在控制器爲PI控制器時則 -24- 1292750 (21) 以式(2 · 1 )的形式來表示。其中q c a r ( t )爲時刻t的碳 源注入量目標値〔m3 / m i η〕,Q a i r G爲碳源注入量初始値 〔m3 / m i η〕 ,Kp 爲比例增益(m 3 / g · m i n〕 ’ T i 爲積Snh4(3) lim=a· ST—Nin· Qin+b ..... (1.14) where a and b are constants, ST—Nin is the total nitrogen concentration [mg / L], and Q i η is the inflow. Quantity (m 3 / d ay ). (4) The measurement method of Xaut (3) of the formula (1 · 1 〇) is not limited to the method calculated by simulation, and the amount of Xaut ( 3 ) present may be estimated from the result of the actual nitrification rate test. It can be obtained in other ways. (5) The biological reaction tank 3 in the first embodiment is in a form of a process called "coagulant A 2 0 method". However, the present invention is not limited thereto, and other cycles of nitrification and denitrification may be performed. The sewage treatment process such as treatment may be carried out by a process such as a carrier input, a coagulating agent type, or a deformation method of various A20 methods such as an AOAO method. (6) The controller 23 that controls the blower 13 is not limited to the PI controller. Any one of the PID controllers may perform calculation based on the deviation of the target 量 and the measurement 値. (7) The determination result execution means 25 may not change the target 値 to a predetermined level that can be achieved when the water quality control target 値 determination means 24 determines that the target 现在 is not set, and only performs the situation -22 - 1292750 (19) Notice and only maintain the operating level of blower 13 at a predetermined level. (8) The above calculation is based on the condition that the dissolved oxygen is not restricted. However, the capacity of the blower 13 that is actually aerated is determined, and the dissolved oxygen concentration (DO) is increased even if the maximum amount of air is blown. There is no case of nitrification. Therefore, the maximum supplyable aeration air volume is set to Qair, max, and the material balance of the dissolved oxygen concentration (DO) in the aerobic tank 6 is obtained as the formula (1.15). Where Kla is the total moving capacity coefficient, Qair, max is the maximum aeration air volume [m3/day], S02, sat is the saturated dissolved oxygen concentration [mg/L], and RC0D is the oxygen consumption rate from the heat-sustaining bacteria [. g/ m3]/ day]. This formula (1.15) can also be used to determine the maximum enthalpy of ammonia. dS d —Kla· Qair, max· ( S 〇2 , sat — S〇2 ( 3 ) ) — Re od dt —R nh 4 — · S 〇2 ( 3 ) ..... (1 · 1 5 In other words, S〇2(3) can be solved by the right side of the formula (1.15), and DO (SG2max, (3)) when the maximum air volume is calculated, and the maximum ammonia concentration 値Snh41im can be obtained. However, the operation of the maximum air volume DO (SG2max, (3)) is not limited to the equation (1 · 1 4 ), so that it can be predicted based on the past statistical formula (1 · 16). Where a and b are fixed numbers. S 〇2 ma X , (3) ~a· Qair, max+b -----Formula (1.16) (9) Because it is considered that there is an error in the maximum concentration prediction mode, Example -23 - 1292750 (20) For example, it is possible to distinguish three types of outputs, such as "absolutely impossible target", "achieve a difficult target", and "achieve the target of the edge", and display the display on the display unit 26 by three lines. On the screen. Next, a second embodiment of the present invention will be described based on the configuration diagram of Fig. 2 . The difference between Fig. 2 and Fig. 1 is the point at which the input and output of the controller 23 are different and the input of the water quality control target 値 determination means of the monitoring device 2 1 B. In the present embodiment, the water sputum to be controlled is the nitrous acid concentration of the anaerobic tank 5, and the controller 23 controls the injection amount of the carbon source injection pump 10 to measure the nitrate nitrogen concentration meter 31. The nitric acid nitrogen concentration coincides with the target 设定 set by the water quality control target 値 setter 22. Further, the water quality control target 値 determination means 24 is estimated based on the measurement data from the inflow flow meter 27, the circulation flow meter 29, the nitrate nitrogen concentration meter 30, and by some method (for example, test or simulation). The denitrifying bacteria concentration is estimated to determine whether or not the water quality control target 値 set by the water quality control target setter 22 is reached, that is, whether the nitrate nitrogen concentration can be reached. Next, the action of the second embodiment having the above configuration will be described. When the denitrification reaction is not performed in the state where the organic matter is insufficient, and the nitric acid nitrogen concentration is more than the target enthalpy, the controller 23 increases the injection amount of the carbon source into the pump 1 ,, and the nitrate nitrogen concentration is below the target 値. When the controller 23 reduces the amount of carbon source injection, it is possible to perform appropriate carbon source input amount control without excessive deficiency. The carbon source input amount calculation formula is expressed, for example, in the form of the equation (2 · 1 ) when the controller is a PI controller -24-1292750 (21). Where qcar ( t ) is the carbon source injection target 値 [m3 / mi η] at time t, Q air G is the initial 値 [m3 / mi η] of the carbon source injection, and Kp is the proportional gain (m 3 / g · min) ] ' T i is the product

分常數〔m i n〕,△ t爲控制週期〔m i n〕,e ( t )爲偏差 〔m g / L〕 ,S V N 〇 3 ( t )爲硝酸性氮濃度目標値〔m g / LThe fractional constant [m i n], Δ t is the control period [m i n], e ( t ) is the deviation [m g / L], and S V N 〇 3 ( t ) is the nitrate nitrogen concentration target 値 [m g / L

〕,PVN03 ( t )爲無氧槽硝酸性氮濃度計量測値〔mg/ L], PVN03 ( t ) is the measurement of nitrous acid concentration in anaerobic tank [mg / L

Qair (Ο — Qair0+Kp { e (t) e ( t ) = PVN〇3 ( t) - SVN〇3 ( t) ......式(2.1 ) 控制器爲式(2.1 )的形式所示的PI控制器時,若是 硝酸性氮濃度計量測値PVNG3比目標値SVNG3還大時朝增 大碳源注入量的方向來運算碳源注入量目標値;相反地硝 酸性氮濃度計量測値PVNG3比目標値SVNG3還小時則朝減 小碳源注入量的方向來運算碳源注入量目標値。 無氧槽5中,促進脫氮盡可能不要殘存硝酸性氮濃度 則水質較佳,所以通常是在有氧槽6的末端附近設定 0.1〜0.5〔 mg / L〕的硝酸性氮濃度目標値。不過流入無氧 槽5的硝酸性氮負荷量很大時,會發生無論注入多少碳源 仍無法除去的情況。 這種情況下目標値維持固定來進行控制,不僅無法促 進脫氮反應還直到最大碳源注入量爲止增大注入量,造成 注入過大的碳源。因此水質控制目標値判定手段對目標値 -25- 1292750 (22) 進行判斷。 第2圖中,厭氧槽4、無氧槽5、以及有氧槽 分別是完全混合槽,則可以視同流入的水幾乎不存 性氮,厭氧槽4也幾乎沒有存在。因此流入無氧槽 酸性氮可以看作只由有氧槽6藉由循環幫浦1 5循 〇 計算無氧槽之硝酸性淡的物質收支就成爲式 。其中Sn〇3 ( 2 )爲無氧槽硝酸性氮濃度〔mg/ L 爲流入流量〔m3/ day〕 ,Sno3 ( 3 )爲有氧.槽硝酸 度〔m g / L〕,Q r e t 爲回送流量〔m3 / d a y〕,Q c 環流量〔m3/ day〕,V ( 2 )爲無氧槽容積〔m3〕 爲隨著脫氮菌的增殖而硝酸性氮的減少〔g / d ay〕 dSno3(2) _ Qcir»Sno3(3) (Qin 4- Qret + Qcir) ·8ηο3(2) 0 -=-—-—K η o j dt Vp) V(2) .....式( 隨著脫氮菌的增殖而減少硝酸性氮的速度以: )來表示。其中//H從屬優氧菌(脫氮菌)的最大 速度,Y h.爲從屬優氧菌(脫氮菌)的得率,S 0 2 無氧槽溶解氧濃度〔mg / L〕 ,Sno3 ( 2 )爲無氧 性氮濃度〔g / L〕 ,S c 〇 d ( 2 )爲無氧槽有機物 mg / L〕 ,Xh ( 2 )爲無氧槽從屬優氧細菌濃度〔 6如果 在硝酸 5的硝 環到來 (2.2 ) 〕,Q i η 性氮濃 ir爲循 ,S η 〇 3Qair (Ο - Qair0+Kp { e (t) e ( t ) = PVN〇3 ( t) - SVN〇3 ( t) ...... (2.1 ) The controller is in the form of equation (2.1) In the case of the PI controller, if the nitrate nitrogen concentration is measured and the PVNG3 is larger than the target 値SVNG3, the carbon source injection amount is calculated in the direction of increasing the carbon source injection amount; instead, the nitrate nitrogen concentration is measured. When the PVNG3 is smaller than the target 値SVNG3, the target of the carbon source injection amount is calculated in the direction of reducing the amount of carbon source injection. In the anaerobic tank 5, the denitrification is promoted as much as possible, and the water quality is better. Therefore, a target of nitric acid concentration of 0.1 to 0.5 [mg / L] is usually set near the end of the aerobic tank 6. However, when the amount of nitrate nitrogen flowing into the anaerobic tank 5 is large, no matter how much carbon is injected, In this case, the target 値 remains fixed for control, which not only fails to promote the denitrification reaction, but also increases the injection amount until the maximum carbon source injection amount, resulting in injection of an excessive carbon source. Therefore, the water quality control target 値The judgment means judges the target 値-25-1292750 (22). In the middle, the anaerobic tank 4, the anaerobic tank 5, and the aerobic tank are completely mixed tanks, respectively, and the inflowing water can be regarded as having almost no nitrogen, and the anaerobic tank 4 is hardly present. Nitrogen can be regarded as a formula in which only the aerobic tank 6 calculates the nitric acid content of the anaerobic tank by the circulation pump. The Sn 〇 3 ( 2 ) is the oxy-free tank nitrate nitrogen concentration. [mg/L is the inflow rate [m3/day], Sno3 (3) is the aerobic. Tank nitric acid [mg / L], Q ret is the return flow [m3 / day], Q c ring flow [m3 / day] , V ( 2 ) is the anaerobic tank volume [m3] is the decrease of nitrate nitrogen with the proliferation of denitrifying bacteria [g / d ay] dSno3 (2) _ Qcir»Sno3 (3) (Qin 4- Qret + Qcir) ·8ηο3(2) 0 -=----K η oj dt Vp) V(2) ..... (Expression of decreasing nitric nitrogen with the proliferation of denitrifying bacteria is expressed as: ) . Among them, the maximum velocity of /H subordinate aerobic bacteria (deaza bacteria), Y h. is the yield of subordinate aerobic bacteria (deaza bacteria), S 0 2 anaerobic tank dissolved oxygen concentration [mg / L], Sno3 (2) is the anaerobic nitrogen concentration [g / L], S c 〇d ( 2 ) is the anaerobic tank organic matter mg / L], Xh (2) is the anaerobic tank dependent oxygen bacteria concentration [6 if in nitric acid 5 of the ring of the ring (2.2)], Q i η nitrogen rich ir for the cycle, S η 〇 3

:2.2) 式(2.3 比增殖 (2 )爲 槽硝酸 濃度〔 mg/ L - 26- (23) 1292750 p n 〇 3 — —3·(1 - · K02 · Sno3(2) · Scod(2) n〇 2.86YH S02(2) + K02 Sno3(2) + Kno3 · Scod(2) + Kcod • Xh ( 2 ) .....式(2·3 ) 因碳源被補充,所以碳源不是決定反應的速度。來自 有氧槽6溶解氧如果沒有帶入,則無氧槽5之硝酸性氮的 最大除去速度Sno3以式(2.4)來表示。:2.2) Formula (2.3 vs. proliferation (2) is the tank nitric acid concentration [mg/ L - 26- (23) 1292750 pn 〇3 — —3·(1 - · K02 · Sno3(2) · Scod(2) n〇 2.86YH S02(2) + K02 Sno3(2) + Kno3 · Scod(2) + Kcod • Xh ( 2 ) ..... (2·3 ) Since the carbon source is replenished, the carbon source is not the reaction The maximum removal rate Sno3 of the nitrate nitrogen in the anaerobic tank 5 is represented by the formula (2.4) if the dissolved oxygen from the aerobic tank 6 is not brought in.

Rno3 = η ηο3 · //Η· (1— ΥΗ) / 2.86ΥΗ· Sno3(2) / (Sno3 ( 2 ) + Κηο3 ) · Xh ( 2 ) .....式(2.4) 此處,式(2.2 )的右邊=0就可以計算正常狀態下的 硝酸性氮濃度。把式(2 · 4 )代入式(2.2 ).,右邊=0則 成爲式(2.5 )。至少沒有滿足本條件時2就無法控制在 目標値。 (1 - YH • Xh ( 2 • // H · + K η o 3 )Rno3 = η ηο3 · //Η· (1— ΥΗ) / 2.86ΥΗ· Sno3(2) / (Sno3 ( 2 ) + Κηο3 ) · Xh ( 2 ) ..... (2.4) Here, the formula ( The right side of the 2.2) can be used to calculate the concentration of nitrate nitrogen in the normal state. Substituting equation (2 · 4) into equation (2.2 )., right = 0 becomes equation (2.5). At least when the conditions are not met, 2 cannot be controlled at the target. (1 - YH • Xh ( 2 • // H · + K η o 3 )

Qcir*Sno3(3) (Qin + Qret + Qcir) ·8ηο3(2) , -—----—77 no· V(2) V ⑺ )/ 2.86YH · Sno3 ( 2 ) / ( Sno3 ( 2 ) 式(2.5 ) 把(2 · 5 )式解開所求出的Sn〇3 ( 2 )爲硝酸性氮濃度 的最大目標値(Sno31im)。然Qcir、Qin、Qret等的流量 是用流量計(也有省略圖示的情形)來量測,Sn〇3 ( 3 ) 則用硝酸性氮濃度計3 0來量測。另外V ( 2 ).已知是無氧 槽的容積。 -27- 1292750 (24) Μ Η爲依賴zK溫(°G )的參數,把國際的標準 就是把ASM2d的參數値作爲參考,則工 )時形成爲 ΥΗ= 〇·63,” no3== 〇 8,KnQ3== 〇」。 疋知道Xh ( 2 )(從屬優氧菌濃度)的値,就能根 2·5 )的判別式來判定是否能達到目標値。 此處,因Xh ( 2 )直接測定會有困難,所以必 利用活性污泥模式來推定,或者經由用來自MLSS 係數來進行換算或以M L V S S來代用等其中的一種 推定。MLVSS爲微生物量的指標,含在污泥中的 生物爲從屬優氧菌,因而Xh (2) = 0.9 X MLVSS 出槪略値。本推定値必須每周1次〜每月1次程度 進行更新。 若是用上述的其中一種方法就可以推定從屬優 度,即是推定脫氮菌濃度Xh ( 2 ),則能用式(2 判定是否能達到目標値。Qcir*Sno3(3) (Qin + Qret + Qcir) ·8ηο3(2) , -—-----77 no· V(2) V (7) )/ 2.86YH · Sno3 ( 2 ) / ( Sno3 ( 2 ) Equation (2.5) The Sn 〇 3 ( 2 ) obtained by solving the (2 · 5 ) equation is the maximum target 硝酸 (Sno31im) of the nitrate nitrogen concentration. However, the flow rates of Qcir, Qin, Qret, etc. are flowmeters ( There is also a case where the illustration is omitted), and Sn 〇 3 ( 3 ) is measured by a nitrate nitrogen concentration meter of 10. V ( 2 ) is known as the volume of the anaerobic tank. -27-1292750 ( 24) Μ Η is a parameter dependent on zK temperature (°G). The international standard is to use ASM2d parameter 値 as a reference, then the process is formed as ΥΗ=〇·63,” no3== 〇8, KnQ3== 〇".疋 Knowing the X of Xh ( 2 ) (subordinate to the concentration of aerobic bacteria), it is possible to determine whether the target 値 can be achieved by the discriminant of root 2·5). Here, since it is difficult to directly measure Xh ( 2 ), it must be estimated by the activated sludge mode or by using one of the MLSS coefficients or the M L V S S instead. MLVSS is an indicator of the amount of microorganisms, and the organism contained in the sludge is a subordinate aerobic bacterium, and thus Xh (2) = 0.9 X MLVSS is slightly sputum. This presumption must be updated once a week to once a month. If one of the above methods is used to estimate the subordination, that is, the denitrifying bacteria concentration Xh ( 2 ), the formula (2) can be used to determine whether the target enthalpy can be achieved.

Sno3ref(auto) = b+ (b2— 4ac) } / 2a+As .....式( 其中△ sno3爲偏流質(0·1程度)’ Sn〇3fef C 爲目標値自動運算値。另外a、b、c爲以下的定義 a=Qcir/V(2) 模式也 .0 7 ( 丁 _ 所以若 據式( 須經由 的校正 方法來 大半微 就能求 的頻率 氧囷濃 :·6 )來 η 〇 3 2.6 ) auto ) -28 - 1292750 (25) b- η n〇3 · β Η · (1— ΥΗ) / 2.86ΥΗ · Xh ( 2 ) + ( + Qret+ Qcir ) · Kno3/ V ( 2 ) - Qcir/ V ( 2 ) S η ο 3 ( 3 ) c = Qcir · Kno3/ V ( 2 ) 水質控制目標値判定手段24判定爲由式(2.6 ) 出的最大目標値來達到設定在水質控制目標値設定1 的目標値會有困難,則把該情形通知判定結果執行 25。 判定結果執行手段2 5藉由顯示部2 6來把無法進 到目標値爲止的控制通知操作員,同時反運算能達成 標値,把該運算値變更成水質控制目標値設定器22 的設定値。這個運算是以最大能除去的氮負荷量爲基 所以並不是把.該反運算的値原樣當作控制目標値,而 比該反運算還大若干的値設定爲控制目標値。 依據以上已說明過的第2實施形態,可以達到以 效果。 第1 :硝酸性氮流入無氧槽的流入負荷量很大時 動運算能達成的目標値,所以比利用通常的硝酸性氮 計來控制還能削減碳源注入量。 第2 :流入無氧槽的硝酸性氮濃度計設置在循環 上,因而直接運算流入無氧槽的硝酸性氮負荷量,能 確判定目標値。 然而第2實施形態除了上述過的形態以外,廣義Sno3ref(auto) = b+ (b2— 4ac) } / 2a+As ..... (where △ sno3 is a bias current (0·1 degree)' Sn〇3fef C is the target 値 automatic operation 値. b, c is the following definition a = Qcir / V (2) mode is also .0 7 ( Ding _ so if the formula (the frequency must be obtained by the correction method to most of the micro-Oxygen :: 6) to η 〇3 2.6 ) auto ) -28 - 1292750 (25) b- η n〇3 · β Η · (1— ΥΗ) / 2.86ΥΗ · Xh ( 2 ) + ( + Qret+ Qcir ) · Kno3/ V ( 2 ) - Qcir/ V ( 2 ) S η ο 3 ( 3 ) c = Qcir · Kno3 / V ( 2 ) The water quality control target 値 determination means 24 determines that the maximum target 式 from equation (2.6) is set to the water quality control target 値If it is difficult to set the target of 1, then the result is notified to the execution result 25. The determination result execution means 25 notifies the operator of the control that cannot enter the target 値 by the display unit 26, and the inverse calculation can achieve the target, and the calculation 値 is changed to the setting of the water quality control target 値 setting unit 値. This calculation is based on the maximum amount of nitrogen load that can be removed. Therefore, the inverse of the inverse operation is not taken as the control target, and the larger than the inverse is set as the control target. According to the second embodiment described above, the effect can be attained. First, when the amount of inflow of nitrate nitrogen into the anaerobic tank is large, the target enthalpy can be calculated. Therefore, it is possible to reduce the amount of carbon source injection by controlling with a normal nitric acid meter. Secondly, the nitric acid concentration meter flowing into the anaerobic tank is set in the cycle, so that the nitrate nitrogen load flowing into the anaerobic tank can be directly calculated, and the target enthalpy can be determined. However, the second embodiment is broad in addition to the above-described form.

Qin 所求 I 22 手段 行直 的目 之新 準, 是把. 下的 ,自 濃度 配管 更準 上還 -29- 1292750 (26) 包含以下的形態。另外在第1實施形態後半部已述說過的 (5 ) 、 ( 6) 、 ( 7 )、以及(9 )的形態,在於第2實施 形態也同樣包含。 U)硝酸性氮濃度計3 0無法裝設在循環配管上時,Qin's request for the I 22 means a straight line of the new standard, which is the following, from the concentration of the pipe is more accurate -29-1292750 (26) contains the following form. Further, the forms of (5), (6), (7), and (9) which have been described in the latter half of the first embodiment are also included in the second embodiment. U) When the nitrate nitrogen concentration meter 30 cannot be installed on the circulation piping,

也可以以裝配在最終沉澱池7的出口側或入口側的其中一 側之處理水全部氮濃度計3 2與裝設在有氧槽6內之氨態 氮濃度計20之間的各量測値之相差作爲基準,來運算所 循環的硝酸性氮濃度。 H (2)流入流量計27、循環流量計27、硝酸性氮濃度 計30和3 1的量測値也可以是進行過濾處理過的値。用在 這個時候的運算式與在於第1實施形態已述說過的式( 1 · 1 2 )或是(1 · 1 3 )相同。 (3 )用在目標値判定的判定式並不侷限於式(2 · 5 ). ,若爲物質收支更詳細或是.更·簡單操控的模式以及利用過 去的資料的統計模式等輸出最大濃度的模式則任何一種皆 接著根據第3圖的構成圖來說明發明的第3實施形態 。第3圖與第1圖主要不同之點爲在於監視裝置2丨c附設 有流入水質資料庫3 3以及流入水質預測手段3 4之點、省 略全部氮濃度計2 8之點。 即是本實施形態係流入水質預測手段3 4搜尋流入水 質資料庫3 3來預測與運轉當日類似的日子之全部氮濃度 。然後水質控制目標値判定手段2 4根據該預測値、及流 入流量計2 7的量測値、及硝化菌濃度推定値,進行水質 -30 - 1292750 (27) 控制目標値的判定。 桌4圖爲用來說明保存在流入水質資料庫3 3的資料 之說明圖;第4 ( a )圖爲表示保存資料例子的圖表,第4 (b )圖爲表示根據該保存資料例子所得到的流入全部氮 濃度之圖形例子的特性圖。 弟4 ( a )圖的保存資料係以每1小時的取樣週期來 記載某一日例如20 03年8月1日(星期二)之流入全部 氮濃度、流入流量、下雨量等的資料。流入水質資料庫 3 3含括複數日登錄這樣的資料。這登錄資料可以輸入操 作員進行分析的結果’或者也可以輸入用水質感應器所量 測的資料。 流入水質預測手段3 4從保存在流入水質資料庫3 3中 的登錄資料,抽取與運轉污水處理控制的該日最類似的日 子之登錄資料,將該抽取的資料作·爲流入水質預測値輸出 至水質控制目標値判定手段24。 第4 ( b )圖的特性圖爲以時序列來表示該所抽出的 保存資料。如這個圖所示,通常若是沒有下雨則形成爲尖 峰點在於中午時刻和黃昏時刻之山形狀的波形。 本實施形態的水質控制目標値判定手段24取代全部 氮濃度計2 8 (第1圖)的量測値改而輸入流入水質預測 手段3 4的預測値,在則與第1實施形態同樣,輸入流入 流量計2 7的量測値和硝化菌濃度推定値。然後根據這些 的輸入來判定是否能達到設定在水質控制目標値設定器 22的目標値。 -31 - 1292750 (28) 上述過的第3實施形態,因以過去的動向資料來預測 流入全部氮濃度,所以可以省略高價的全部氮濃度計,又 能有效率進行曝氣風量控制。因此有助於系統降低成本。 然而第3圖所示的例子是根據保存在資料庫中的資料 來預測流入全部氮濃度,不過進行這種預測的方法並不侷 限於用資料庫的方法。例如也可以用流入流量計2 7,其 他還用U V計和S S計等的的水質感測器,根據式(3 . 1 ) 來預測流入全部氮濃度Ρτ- N。其中Qin爲流入流量,SS 爲流入S S計量測値,U V i η爲流入U V計量測値,a、b、 c、d爲常數。 Ρ τ - n = a · Qin+b· SSin+c* UVin+d .....式(3.1) 另外在第1實施形態後半部已述說過的(1 )〜(9 ) 的形態,在於第3實施形態也包含。 接著根據第5圖來說明本發明的第4實施形態。第5 圖與第1圖主要不同之點爲在於監視裝置2 ;[ D附設有流 入負荷量資料庫3 5、流入負荷量預測手段3 6、目標値計 畫手段3 7之點以及省略全部氮濃度計2 8之點。· 即是本實施形態是流入負荷預測手段搜尋流入負荷量 資料庫3 5,抽取與運轉當日類似的日子之流入水質圖形 和流入流量圖形,預測這些積來作爲流入負荷量。然而保 存在流入負荷量資料庫35中之資料的內容,與第4(a) 圖所示的內容相同。 -32- (29) 1292750 第6 ( a )圖爲表示流入負荷量預測手段3 6所預測的 流入負荷量之圖形例子的特性圖。通常若是沒有下雨則形 成爲尖峰點在於中午時刻和黃昏時刻之山形狀的波形,但 由於尖峰點在於中午時刻和黃昏時刻,因而與只變動第4 (b )圖所示的水質作比較更大幅變動負荷量。 目標値計畫手段3 7根據流入負荷量預測手段3 6所預 測之流入氮負荷量來作成第6 ( b )圖所示的有氧槽6之 氨態氮濃度的目標値計畫。然後目標値計畫手段3 7所作 成的目標値計畫輸出至水質控制目標値設定器22,胃目 標値計畫的値當作水質控制目標値設定在水質控制目標Μ 設定器22。另外水質控制目標値判定手段24從流人負荷 量預測手段3 6來輸入流入負荷量的預測値。因此目標値 計畫手段3 7所作成的目標値一時設定在水質控制目標値 設定器22後,形成爲與第1實施形態同樣的作用。 因上述過的第4實施形態是以過去的動向資料來預測 用流入流量與流入水質的積所呈現的流入負荷量,m ^ 第3實施形態同樣,可以省略高價的全部氮濃度計,胃能 有效率進行曝氣風量控制。因此有助於系統降低成本。 另外在第1實施形態後半部已述說過的(1 )〜(9丨 的形態,在於第4實施形態也包含。 【圖式簡單說明】 第1圖爲本發明的第]實施形態之污水處理系統的結 構圖。 -33 - 1292750 (30) 第2圖爲本發明的第2實施形態之污水處理系統的,結 構圖。 第3圖爲本發明的第3實施形態之污水處理系統的,結 構圖。 第4圖爲針對保存在第3圖的流入水質資料庫3 3之 資料的說明圖;第4 ( a )圖爲表示保存資料例子的特性 圖,第4 ( b )圖爲表示根據該保存資料例子所得到的流 入全部氮濃度之圖形例子的特性圖。 第5圖爲本發明的第4實施形態之污水處理系統的結 構圖。 第6圖爲針對本發明的重要部位結構之說明圖;第6 (a )圖爲表示流入負荷量預測手段3 6所預測的流入氮負 荷量之圖形例子的特性圖,第6 ( b )圖爲目標値計畫手 段37所作成之目標値計畫的說明圖。 第7圖爲過去的污水處理系統之結構圖。 ^主要元件符號說明】 1 流入閥 2 初步沉澱池 ° 生物反應槽 4 厭氧管 5 無氧槽 6 厭氧管 7 最終沉澱池 1292750 (31) 8 旁路閥 9 碳源存放槽 10 碳源注入幫浦 11 凝結劑存放槽 12 凝結劑注入幫浦 13 鼓風機 1 4 散氣管 15 循環幫浦 16 回送幫浦 17 初沈抽取幫浦 18 殘留幫浦 19 污泥存放槽 2 0 氨態氮濃度計 2 1 監視裝置 2 2 水質控制目標値設定器 2 3 控制器 2 4 水質控制目標値判定手段 2 5 判定結果執行手段 2 6 顯示部 2 7 流入流量部 28 全部氮濃度計 29 循環流量計 3 0 硝酸性氮濃度計 3 1 硝酸性氮濃度計 -35- 1292750 (32) 3 2 處理水全部氮濃度計 3 3 流入水質資料庫 3 4 流入水質預測手段 3 5 流入負荷量資料庫 3 6 流入負荷量預測手段 3 7 目標値計畫手段It is also possible to measure each of the treated water total nitrogen concentration 3 2 and the ammonia nitrogen concentration meter 20 installed in the aerobic tank 6 on one side of the outlet side or the inlet side of the final sedimentation tank 7 The difference in enthalpy is used as a reference to calculate the concentration of nitrate nitrogen that is circulated. The measurement of the H (2) flow rate into the flow meter 27, the circulation flow meter 27, and the nitrate nitrogen concentration meters 30 and 31 may be a filtration treatment. The arithmetic expression used at this time is the same as the equation (1 · 1 2 ) or (1 · 1 3 ) which has been described in the first embodiment. (3) The judgment formula used for the determination of the target 并不 is not limited to the formula (2 · 5 ). If the material income is more detailed or the mode of the simpler control, and the statistical mode using the past data, the output is the largest. In the mode of the concentration, any of the third embodiments of the invention will be described based on the configuration diagram of Fig. 3. The main difference between Fig. 3 and Fig. 1 is that the monitoring device 2丨c is provided with a point of flowing into the water quality database 3 3 and flowing into the water quality predicting means 34, and omitting all the nitrogen concentration meters 28. That is, in the present embodiment, the inflow water quality predicting means 34 searches for the inflow water quality database 33 to predict the total nitrogen concentration on the day similar to the day of operation. Then, the water quality control target 値 determination means 24 determines the water quality -30 - 1292750 (27) control target 根据 based on the predicted enthalpy, the amount of enthalpy flowing into the flow meter 27, and the nitrifying bacteria concentration estimation 値. Table 4 is an explanatory diagram for explaining the data stored in the inflow water database 33; the fourth (a) is a graph showing an example of the saved data, and the fourth (b) is a graph based on the saved data example. A characteristic diagram of a graphical example of the inflow of all nitrogen concentrations. The data stored in the 4th (a) graph is the data of the inflow of all nitrogen concentration, inflow flow rate, and rainfall amount on a certain day, for example, on August 1, 20, 2003 (September 2). Inflow of water quality database 3 3 includes such information as multiple days of registration. This login data can be entered into the results of the analysis performed by the operator' or the data measured with the water sensor can also be entered. The inflow water quality prediction means 34 extracts the registration data of the day most similar to the day on which the sewage treatment control is operated, from the registration data stored in the inflow water quality database 33, and extracts the extracted data as the inflow water quality prediction output. To the water quality control target 値 determination means 24. The characteristic diagram of Fig. 4(b) shows the extracted data extracted in time series. As shown in this figure, if it is not raining, it is formed into a waveform in which the peak point is the mountain shape at noon time and dusk time. The water quality control target 値 determination means 24 of the present embodiment inputs the predicted enthalpy of the inflow water quality predicting means 34 in place of the measurement tampering of all the nitrogen concentration meters 28 (Fig. 1), and inputs it in the same manner as in the first embodiment. The measured enthalpy and nitrifying bacteria concentration inflow into the flow meter 27 are estimated. Then, based on these inputs, it is determined whether or not the target set in the water quality control target setter 22 can be reached. -31 - 1292750 (28) In the third embodiment described above, since the total nitrogen concentration is predicted from the past trend data, the high-priced all-nitrogen concentration meter can be omitted, and the aeration air volume control can be performed efficiently. This helps the system to reduce costs. However, the example shown in Figure 3 predicts the influx of all nitrogen concentrations based on the data stored in the database, but the method of making such predictions is not limited to the method of using the database. For example, it is also possible to use the inflow flow meter 2, and other water quality sensors such as a U V meter and an S S meter to predict the inflow of all nitrogen concentration Ρτ-N according to the equation (3.1). Among them, Qin is the inflow flow, SS is the inflow S S measurement, U V i η is the inflow U V measurement, and a, b, c, and d are constant. Ρ τ - n = a · Qin + b · SSin + c * UVin + d (3.1) The form of (1) to (9) which has been described in the latter half of the first embodiment is The third embodiment is also included. Next, a fourth embodiment of the present invention will be described based on Fig. 5 . The difference between Fig. 5 and Fig. 1 is mainly in the monitoring device 2; [D is attached with the inflow load amount database 35, the inflow load amount predicting means 36, the target plan means 37, and the omission of all nitrogen. The concentration meter is 2 points. In the present embodiment, the inflow load prediction means searches the inflow load amount database 35, extracts the inflow water quality pattern and the inflow flow rate pattern on the day similar to the operation day, and predicts these products as the inflow load amount. However, the contents of the data stored in the load amount database 35 are the same as those shown in Fig. 4(a). -32- (29) 1292750 Fig. 6(a) is a characteristic diagram showing an example of a pattern of the inflow load amount predicted by the inflow load amount predicting means 36. Usually, if there is no rain, the waveform of the mountain shape with the peak point at noon and dusk is formed, but since the peak point is at noon and dusk, it is more like changing the water quality shown in Fig. 4(b). Significantly change the load. The target sputum planning means 377 creates a target enthalpy of the ammonia nitrogen concentration of the aerobic tank 6 shown in Fig. 6(b) based on the inflowing nitrogen load amount predicted by the inflow load amount predicting means 36. Then, the target plan created by the target plan means 37 is output to the water quality control target setter 22, and the target of the stomach target plan is set as the water quality control target 値 set in the water quality control target 设定 setter 22. Further, the water quality control target 値 determination means 24 inputs the predicted enthalpy of the inflow load amount from the flow person load amount predicting means 36. Therefore, the target created by the target plan means 37 is set to the water quality control target 设定 setter 22 at a time, and is formed in the same manner as in the first embodiment. In the fourth embodiment, the amount of the inflow load due to the product of the inflow flow rate and the inflow water quality is predicted by the past trend data, and m ^ is the same as the third embodiment, and the high-priced all-nitrogen concentration meter can be omitted. Efficient aeration air volume control. This helps the system to reduce costs. In addition, the form of (1) to (9) which has been described in the latter half of the first embodiment is also included in the fourth embodiment. [Simplified description of the drawings] Fig. 1 is a sewage treatment according to the first embodiment of the present invention. (3) Fig. 2 is a structural view of a sewage treatment system according to a second embodiment of the present invention. Fig. 3 is a view showing the structure of a sewage treatment system according to a third embodiment of the present invention. Fig. 4 is an explanatory diagram of the data of the inflow water quality database 3 3 stored in Fig. 3; Fig. 4 (a) is a characteristic diagram showing an example of the preservation data, and Fig. 4 (b) is a diagram showing FIG. 5 is a structural diagram of a sewage treatment system according to a fourth embodiment of the present invention. FIG. 6 is an explanatory view showing a structure of an important portion of the present invention. Fig. 6(a) is a characteristic diagram showing an example of a graph of the inflowing nitrogen load amount predicted by the inflow load amount predicting means 36, and Fig. 6(b) is a target scheme made by the target trick scheme means 37. An illustration of Figure 7. Figure 7 shows the past Structure diagram of the treatment system. ^Main component symbol description] 1 Inflow valve 2 Preliminary sedimentation tank ° Bioreactor 4 Anaerobic tube 5 Anaerobic tank 6 Anaerobic tube 7 Final sedimentation tank 1292750 (31) 8 Bypass valve 9 Carbon source Storage tank 10 Carbon source injection pump 11 Condensate storage tank 12 Coagulant injection pump 13 Blower 1 4 Air pipe 15 Circulating pump 16 Return pump 17 Primary pumping pump 18 Residual pump 19 Sludge storage tank 2 0 Ammonia nitrogen concentration meter 2 1 Monitoring device 2 2 Water quality control target 値 setter 2 3 Controller 2 4 Water quality control target 値 determination means 2 5 Determination result execution means 2 6 Display unit 2 7 Inflow flow rate unit 28 Total nitrogen concentration meter 29 Circulating flowmeter 3 0 Nitrogen concentration meter 3 1 Nitrogen concentration meter -35-1292750 (32) 3 2 Total nitrogen concentration of treated water 3 3 Influent water quality database 3 4 Inflow water quality prediction means 3 5 Inflow load data Library 3 6 Inflow load forecasting means 3 7 Target plan means

-36--36-

Claims (1)

十、申請專利範圍 1 · 一種污水處理系統,是具備有包含初步沉澱池、生 物反應槽以及最後沉澱池之污水處理過程,控制設置在這 些污水處理過程之預定處理機器的操作量,因而進行水質 控制來使前述生物反應槽的水質達到預先所設定的水質控 制目標値之污水處理系統,其特徵爲具備有: 依據預定的量測資料和預測資料當中的一方或是雙方 之輸入來運算水質最大預測値,再根據該水質最大預測値 與前述水質控制目標値的比較來判定是否能達到該水質控 制目標値之水質控制目標値判定手段;及 前述水質控制目標値判定部判定了無法達到的結論時 ,進行該判定結果的通知’並且把該水質控制目標値變更 成預定的水準或是把前述預定處理機器的操作量保持在預 定的水準之判定結果執行手段。 2.如申請專利範圍第1項之污水處理系統’其中前述 生物反應槽中的水質爲構成該生物反應槽的一部分之有氧 槽中的氨態氮濃度’ 設置在前述污水處理過程之預定處理機器的操作量爲 設置在前述有氧槽之鼓風機的曝氣風量。 3 .如申請專利範圍第1項之污水處理系統,其中前述 生物反應槽中的水負爲構成5亥生物反應槽的一部分之有氧 槽前段的無氧槽或是該無氧槽前段的厭氧槽中的硝酸性氮 濃度, 設置在前述污水處理過程之預疋處理機器的操作量爲 -37- (2) 1292750 碳源注入幫浦對前述無氧槽或是厭氧槽的碳源注入量。 4.如申請專利範圍第〗項之污水處理系統,其中前述 水質控制目標値判定手段只根據前述預定的量測資料來進 行前述的判斷, 該量測資料包括有流入前述污水處理過程之污水的流 量和全部氮濃度。 5 .如申請專利範圍第丨項之污水處理系統,其中前述 水質控制目標値判定手段根據前述預定的量測資料和預測 資料的雙方來進行前述的判斷, 該量測資料爲流入前述污水處理過程之污水的流量, 該預測資料爲該流入之污水的全部氮濃度之過去的時 序資料。 6 ·如申請專利範圍第1項之污水處理系統,其中具備 有:根據前述預定的預測資料來作成目標値計晝,再把該 作成的的目標値計畫作爲前述水質控制目標値來設定之目 標値計畫手段。 7 .如申請專利範圍第3項之污水處理系統,其中前述 水質控制目標値判定手段只根據前述預定的量測資料來進 行前述的判斷, 該量測資料包括有流入前述污水處理過程之污水的流 量以及由前述有氧槽循環到前述無氧槽之處理水的循環流 量和硝酸性氮濃度。 8 ·如申請專利範圍第3項之污水處理系統,其中將設 置在前述污水處理過程之預定處理機器的操作量,取代爲 -38- 1292750 (3) 前述碳源注入幫浦對前述無氧槽或是厭氧槽的碳源注入量 ,並作爲對構成前述生物反應槽的前述厭氧槽、前述無氧 槽以及前述有氧槽之各污水的階段流入量。 9 .如申請專利範圍第3項之污水處理系統,其中將設 置在前述污水處理過程之預定處理機器的操作量,取代爲 前述碳源注入幫浦對前述無氧槽或是厭氧槽的碳源注入量 ,並作爲把則述初步沉澱池旁路而流入到前述生物反應槽 之初步沉澱池旁路流量。 1 〇 ·如申請專利範圍第3項之污水處理系統,其中將 設置在前述污水處理過程之預定處理機器的操作量,取代 爲前述碳源注入幫浦對前述無氧槽或是厭氧槽的碳源注入 量,並作爲由前述初步沉澱池的底部對前述無氧槽或是厭 氧槽之未處理污泥投入量、或是使來自前述初步沉澱池的 底部之未處理污泥發酵所生成的發酵物對前述厭氧槽之未 處理污泥發酵物投入量。 1 1 ·如申請專利範圍第1項之污水處理系統,其中前 述水質控制目標値判定手段係由運算決定前述生物反應槽 的水質之物質的收支之物質收支模式或是輸出該物質的收 支運算結果之過去資料之統計模式所構成。 1 2 .如申請專利範圍第1項之污水處理系統,其中前 述水質控制目標値判定手段係分成複數個階段來運算前述 水質最大預測値,並且依照該複數個階段的各預測値與前 述水質控制目標値之間的相差,複數個階段進行前述的判 定。 -39- 1292750 (4) 1 3 .如申請專利範圍第1 2項之污水處理系統,其中具 備有:顯示前述水質控制目標値判定手段之前述複數個階 段的判定結果之顯示部。X. Patent application scope 1 · A sewage treatment system is provided with a sewage treatment process including a preliminary sedimentation tank, a biological reaction tank and a final sedimentation tank, and controls the operation amount of a predetermined treatment machine disposed in the sewage treatment process, thereby performing water quality control The sewage treatment system for the water quality of the biological reaction tank to reach the preset water quality control target is characterized by: calculating the maximum water quality prediction based on input of one or both of the predetermined measurement data and the prediction data値, according to the comparison between the maximum water quality prediction 値 and the water quality control target 来, whether the water quality control target 値 water quality control target 値 determination means can be reached; and the water quality control target 値 determination unit determines the unreachable conclusion And the determination result execution means for performing the notification of the determination result and changing the water quality control target 成 to a predetermined level or maintaining the operation amount of the predetermined processing machine at a predetermined level. 2. The sewage treatment system of claim 1, wherein the water quality in the biological reaction tank is an ammonia nitrogen concentration in the aerobic tank constituting a part of the biological reaction tank is set in a predetermined treatment process of the sewage treatment process The amount of operation of the machine is the amount of aeration air blown by the blower provided in the aforementioned aerobic tank. 3. The sewage treatment system according to claim 1, wherein the water in the biological reaction tank is an anaerobic tank in front of the aerobic tank which forms part of the 5th biological reaction tank or the front part of the anaerobic tank The concentration of nitric acid in the oxygen tank is set to -37- (2) 1292750. The carbon source is injected into the pump to inject the carbon source of the aforementioned anaerobic tank or anaerobic tank. the amount. 4. The sewage treatment system of claim 1, wherein the water quality control target/determination means performs the foregoing determination based only on the predetermined measurement data, and the measurement data includes sewage flowing into the sewage treatment process. Flow rate and total nitrogen concentration. 5. The sewage treatment system of claim </ RTI> wherein the water quality control target 値 determining means performs the foregoing determination based on both the predetermined measurement data and the predicted data, the measurement data being flowing into the sewage treatment process The flow rate of the sewage, the predicted data is the past time series data of the total nitrogen concentration of the inflowing sewage. 6 . The sewage treatment system of claim 1 of the patent scope, wherein: the target is calculated according to the predetermined forecast data, and the created target plan is set as the water quality control target. Target tricks. 7. The sewage treatment system of claim 3, wherein the water quality control target/determination means performs the foregoing determination based only on the predetermined measurement data, and the measurement data includes sewage flowing into the sewage treatment process. The flow rate and the circulating flow rate and the nitrate nitrogen concentration of the treated water which is circulated to the aforementioned oxygen-free tank by the aforementioned aerobic tank. 8 · The sewage treatment system of claim 3, wherein the operation amount of the predetermined treatment machine set in the aforementioned sewage treatment process is replaced by -38-1292750 (3) the aforementioned carbon source is injected into the pump to the aforementioned anaerobic tank Or a carbon source injection amount of the anaerobic tank, and a stage inflow amount to each of the anaerobic tank, the anaerobic tank, and the aerobic tank constituting the biological reaction tank. 9. The sewage treatment system of claim 3, wherein the operation amount of the predetermined treatment machine disposed in the sewage treatment process is replaced by the carbon source injected into the pump to the aerobic tank or the anaerobic tank The amount of source injection is used as a preliminary sedimentation tank bypass flow rate which flows into the aforementioned biological reaction tank by bypassing the preliminary sedimentation tank. 1 〇 · The sewage treatment system of claim 3, wherein the operation amount of the predetermined treatment machine disposed in the sewage treatment process is replaced by the injection of the carbon source into the aerobic tank or the anaerobic tank The amount of carbon source injected, and is generated by the bottom of the preliminary sedimentation tank to the untreated sludge of the aerobic tank or the anaerobic tank, or the untreated sludge from the bottom of the preliminary sedimentation tank. The fermented product is input to the untreated sludge fermentate of the aforementioned anaerobic tank. 1 1 . The sewage treatment system of claim 1, wherein the water quality control target/determination means is a material income and expenditure mode for calculating the income and expenditure of the substance of the biological reaction tank or the output of the substance. The statistical model of the past data of the results of the calculation. 1 2 . The sewage treatment system of claim 1 , wherein the water quality control target 値 determination means is divided into a plurality of stages to calculate the maximum water quality prediction 値, and according to the predictions of the plurality of stages and the water quality control The phase difference between the target points is determined in a plurality of stages. In the sewage treatment system of claim 12, the display unit for displaying the determination result of the plurality of stages of the water quality control target/determination means is provided. - 40~- 40~
TW093125871A 2003-10-23 2004-08-27 Discharge water treatment system TW200514755A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363400A JP4334317B2 (en) 2003-10-23 2003-10-23 Sewage treatment system

Publications (2)

Publication Number Publication Date
TW200514755A TW200514755A (en) 2005-05-01
TWI292750B true TWI292750B (en) 2008-01-21

Family

ID=34642742

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093125871A TW200514755A (en) 2003-10-23 2004-08-27 Discharge water treatment system

Country Status (4)

Country Link
JP (1) JP4334317B2 (en)
KR (1) KR100638158B1 (en)
CN (1) CN1303010C (en)
TW (1) TW200514755A (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443422C (en) * 2005-05-24 2008-12-17 株式会社东芝 Dephosphorize apparatus of sewage treatment plant
JP2007000859A (en) * 2005-05-24 2007-01-11 Toshiba Corp Phosphorous removal device in sewage disposal plant
JP5300827B2 (en) * 2010-11-18 2013-09-25 株式会社東芝 Biological wastewater treatment equipment
JP5725869B2 (en) * 2011-01-11 2015-05-27 日本下水道事業団 Waste water treatment apparatus and operation method thereof
CA2826637A1 (en) * 2011-02-14 2012-08-23 Xylem Water Solutions Zelienople, Llc Method and system for controlling carbon source feed to denitrification filters
JP2012200705A (en) * 2011-03-28 2012-10-22 Swing Corp Nitrogen-containing wastewater treatment method and apparatus
KR101269056B1 (en) 2011-04-14 2013-05-29 한국건설기술연구원 Method for real-time evaluating process in drinking water treatment facility using unit-process analysis model
KR101087673B1 (en) 2011-07-29 2011-11-30 주식회사 경호엔지니어링 종합건축사사무소 Advanced wastewater treatment system using multi-story system and method for improvement of settling pond
JP5878231B2 (en) * 2012-03-09 2016-03-08 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
KR101229455B1 (en) * 2012-03-26 2013-02-06 한국바이오시스템(주) System for managing water quality of discharging water
KR101277377B1 (en) * 2012-06-10 2013-06-20 이은주 Hybrid-devices to treat wastewater with a synergy effect
KR101591443B1 (en) * 2013-10-31 2016-02-04 한경대학교 산학협력단 Anaerobic digestion system of agricultural byproduct for the alleviation of ammonia inhibition
JP6448192B2 (en) * 2014-01-09 2019-01-09 三菱重工エンジニアリング株式会社 Industrial wastewater treatment system and treatment method
JP6219239B2 (en) * 2014-06-25 2017-10-25 株式会社日立製作所 Water treatment plant
JP6430324B2 (en) * 2015-04-21 2018-11-28 メタウォーター株式会社 Waste water treatment method and waste water treatment apparatus
CN105157756B (en) * 2015-09-23 2017-11-21 北京智芯微电子科技有限公司 Control method and device are arranged in a kind of pollution sources anti-theft
KR20170123396A (en) * 2016-04-28 2017-11-08 대양엔바이오(주) Sewage treatment apparatus and methods using the same
JP6974795B2 (en) * 2018-03-06 2021-12-01 Jfeエンジニアリング株式会社 Aeration air volume control method and equipment for aeration tanks in sewage treatment equipment
CN109704463B (en) * 2019-02-26 2024-03-26 沧州市供水排水集团有限公司 Carbon optimization feeding system of AAO process sewage treatment plant
JP7209905B1 (en) * 2022-03-14 2023-01-20 三菱電機株式会社 Water treatment system, aeration amount control device, and aeration amount control method
WO2023181276A1 (en) * 2022-03-24 2023-09-28 三菱電機株式会社 Water treatment control system and control method for water treatment device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1422817A (en) * 1920-08-27 1922-07-18 Nat Biscuit Co Drier or oven
CN1189811A (en) * 1995-05-11 1998-08-05 生物平衡公司 Novel method for the control of biodegradation
JP2001314892A (en) * 2000-05-09 2001-11-13 Kawasaki City Method for controlling denitrification apparatus of wastewater
JP2003053375A (en) * 2001-08-22 2003-02-25 Toshiba Corp Device for controlling water quality
KR100428952B1 (en) * 2001-12-12 2004-04-29 주식회사 팬지아이십일 Automatic Nitrification And Denitrification Control System

Also Published As

Publication number Publication date
JP4334317B2 (en) 2009-09-30
KR20050039546A (en) 2005-04-29
KR100638158B1 (en) 2006-10-26
JP2005125229A (en) 2005-05-19
CN1609014A (en) 2005-04-27
CN1303010C (en) 2007-03-07
TW200514755A (en) 2005-05-01

Similar Documents

Publication Publication Date Title
TWI292750B (en)
JP3961835B2 (en) Sewage treatment plant water quality controller
Mannina et al. The fouling phenomenon in membrane bioreactors: assessment of different strategies for energy saving
CN101913699B (en) Methods of providing an aerobic medium in a wastewater treatment bioreactor compartment and related systems
Yongzhen et al. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system
JP5150560B2 (en) Sewage treatment method
Zhao et al. An analysis of nitrogen removal and control strategies in an alternating activated sludge process
Sayi-Ucar et al. Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor
KR20130118682A (en) Optimized coagulant feeding devices based on the prediction of phosphorus concentrations
CN105585226A (en) AAONAO continuous flow two-sludge denitrification advanced nitrogen removal and dephosphorization device and technology based on online control
JP4229999B2 (en) Biological nitrogen removal equipment
JP4367037B2 (en) Water quality information processing unit
CN100443422C (en) Dephosphorize apparatus of sewage treatment plant
CN114380378A (en) Intelligent phosphorus-control drug feeding method and device and storage medium
JP4008694B2 (en) Sewage treatment plant water quality controller
WO2017207011A1 (en) Control of n2o-emissions by aeration
JP3214489B2 (en) Sewage treatment method and sewage treatment device
Rajaei et al. Improving wastewater treatment plant performance based on effluent quality, operational costs, and reliability using control strategies for water and sludge lines
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP3707305B2 (en) Water treatment monitoring control method and apparatus
JP6726954B2 (en) Sewage treatment control device
JP2007000859A (en) Phosphorous removal device in sewage disposal plant
JP3384951B2 (en) Biological water treatment method and equipment
JP2004188268A (en) Water quality monitoring/controlling apparatus and sewage treating system
CN114560561B (en) Intelligent control system and method for denitrification and dephosphorization dosing coupling membrane pollution of MBR process

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees