JP6219239B2 - Water treatment plant - Google Patents

Water treatment plant Download PDF

Info

Publication number
JP6219239B2
JP6219239B2 JP2014129810A JP2014129810A JP6219239B2 JP 6219239 B2 JP6219239 B2 JP 6219239B2 JP 2014129810 A JP2014129810 A JP 2014129810A JP 2014129810 A JP2014129810 A JP 2014129810A JP 6219239 B2 JP6219239 B2 JP 6219239B2
Authority
JP
Japan
Prior art keywords
aerobic tank
air volume
water quality
water
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014129810A
Other languages
Japanese (ja)
Other versions
JP2016007576A (en
Inventor
一郎 山野井
一郎 山野井
信幸 中村
信幸 中村
佳記 西田
佳記 西田
剛 武本
剛 武本
隆広 舘
隆広 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014129810A priority Critical patent/JP6219239B2/en
Priority to CN201510321343.2A priority patent/CN105271508A/en
Publication of JP2016007576A publication Critical patent/JP2016007576A/en
Application granted granted Critical
Publication of JP6219239B2 publication Critical patent/JP6219239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は,主として下水処理場の処理水の水質を制御する水処理制御システムを備えた水処理プラントに関する。
The present invention relates to a water treatment plant mainly equipped with a water treatment control system for controlling the quality of treated water at a sewage treatment plant.

環境問題やコスト削減への対応が必須となった昨今,下水処理場においても,公共水域へ放流する処理水の水質向上、さらなる省エネ化、ICTを活用した維持管理性の向上が求められている。   Now that environmental issues and cost reductions have become essential, sewage treatment plants are also required to improve the quality of treated water discharged into public water areas, further reduce energy consumption, and improve maintainability using ICT. .

下水処理場では,活性汚泥と呼ばれる微生物縣濁液により,下水中の有機物や窒素などを除去する。ブロワにより活性汚泥に空気を吹き込む反応槽を好気槽と呼ぶが,好気槽では有機物は微生物による同化・異化反応により摂取・消費され,除去される。流入下水中の窒素の多くはアンモニア性窒素の形で含まれるが,これは酸素の存在下で硝化菌により硝酸性窒素に酸化される。この硝酸性窒素の一部は返送汚泥中に残留し,上流側に返送される。その際,窒素ガスへと還元する脱窒反応が生じて,窒素成分が除去される。一方,硝化不足により放流水中にアンモニア性窒素が残留すると,放流水域の水生生物への影響や溶存酸素(DO)の消費が懸念されることから,放流先の環境維持には硝化反応の適切な管理が要求される。そのためには電力を多く消費するブロワによる風量供給を適正に制御する必要がある。風量供給量が十分でない場合は,硝化不足による環境への悪影響を引きおこす。あるいは,風量供給量が過剰な場合,硝化完了後も風量が無駄に供給されるため消費電力が増大する。   In sewage treatment plants, organic matter and nitrogen in sewage are removed with a microbial suspension called activated sludge. A reaction tank that blows air into activated sludge by a blower is called an aerobic tank. In the aerobic tank, organic substances are ingested and consumed by assimilation and catabolism by microorganisms and removed. Most of the nitrogen in the incoming sewage is contained in the form of ammoniacal nitrogen, which is oxidized to nitrate nitrogen by nitrifying bacteria in the presence of oxygen. Part of this nitrate nitrogen remains in the return sludge and is returned upstream. At that time, a denitrification reaction that reduces to nitrogen gas occurs, and the nitrogen component is removed. On the other hand, if ammonia nitrogen remains in the effluent due to insufficient nitrification, there are concerns about the impact on aquatic organisms in the effluent water area and consumption of dissolved oxygen (DO). Management is required. For this purpose, it is necessary to appropriately control the air volume supply by the blower that consumes a lot of electric power. If the air supply is not sufficient, it will cause adverse environmental effects due to insufficient nitrification. Alternatively, if the air volume supply amount is excessive, the air volume is wasted even after the completion of nitrification, increasing the power consumption.

下水処理の制御には,好気槽の下流側の末端に設置したDO計のDOを制御指標として用いるDO制御がある。好気槽の下流側の末端DOを一定に保つようにブロワ風量を制御することで,微生物の活性を維持し,有機物除去や硝化反応を制御する(例えば,[非特許文献1])。   The control of sewage treatment includes DO control using DO of a DO meter installed at the downstream end of the aerobic tank as a control index. By controlling the blower air volume so as to keep the terminal DO on the downstream side of the aerobic tank constant, the activity of microorganisms is maintained, and organic matter removal and nitrification reaction are controlled (for example, [Non-Patent Document 1]).

近年,活性汚泥中のアンモニア性窒素濃度を計測するアンモニア計の精度の向上や,個別の生物反応槽に適した小容量のブロワの制御性が向上したことから,生物反応槽へのブロワ風量の制御に,アンモニア計を用いた制御方式が検討されている([非特許文献2]、[非特許文献3])。   In recent years, the accuracy of ammonia meters that measure the concentration of ammoniacal nitrogen in activated sludge and the controllability of small-capacity blowers suitable for individual biological reaction tanks have improved. A control method using an ammonia meter has been studied for the control ([Non-Patent Document 2], [Non-Patent Document 3]).

[特許文献1]の方法では,生物反応槽へ流入する下水の流量,各好気槽への風量,およびそれぞれの好気槽に設置したアンモニア計の測定値から,あらかじめ設定した各好気槽間の硝化量に必要な各好気槽への風量を演算し,過不足ない風量で硝化を進行させる。   In the method of [Patent Document 1], each aerobic tank set in advance from the flow rate of sewage flowing into the biological reaction tank, the air volume to each aerobic tank, and the measured value of the ammonia meter installed in each aerobic tank. Calculate the air flow to each aerobic tank necessary for the amount of nitrification in the meantime, and proceed with nitrification with the air flow without excess or deficiency.

特開2012−170883号公報JP 2012-170883 A

「下水道施設計画・設計指針と解説」2009年版,発行所日本下水道協会"Sewerage facility planning and design guidelines and explanation" 2009 edition, Japan Sewerage Association 遠藤和広: アンモニア計とDO計を用いた送風量制御システムの開発, 第47回下水道研究発表会講演集, pp.918-920 (2010)Endo Kazuhiro: Development of air flow control system using ammonia meter and DO meter, pp.918-920 (2010) 奥大典: 効率的散気風量制御による電力量の削減−第2報 実設備における効果検証, 第50回下水道研究発表会講演集, pp.799-802 (2013)Oku Daisuke: Reduction of Electricity by Efficient Aeration Control-2nd Report, Verification of Effectiveness in Real Facilities, Proceedings of the 50th Sewerage Research Conference, pp.799-802 (2013)

[非特許文献1]の方法において,DOは微生物の反応活性に関係するパラメータであるが,硝化反応で考慮すべきアンモニア性窒素そのものではない。そのため,流入流量や流入水質の変動により,風量不足による処理水質の悪化あるいは過剰風量となる課題があった。   In the method of [Non-Patent Document 1], DO is a parameter related to the reaction activity of microorganisms, but it is not ammoniacal nitrogen itself to be considered in the nitrification reaction. For this reason, there was a problem that the quality of treated water deteriorated due to insufficient air flow or excessive air flow due to fluctuations in inflow flow rate and inflow water quality.

次にアンモニア計を用いた制御の場合の課題について述べる。なお、一般に、イオン電極式のアンモニア計はアンモニア濃度が低下すると消耗品である電極の寿命が短くなるため、好気槽の最後段ではなく、少し上流側の中段に設置される。   Next, problems in the case of control using an ammonia meter will be described. In general, an ion electrode type ammonia meter is installed not in the last stage of the aerobic tank but in the middle stage slightly upstream because the life of the consumable electrode is shortened when the ammonia concentration is lowered.

[非特許文献2]の方法は、好気槽の中段に設置したアンモニア計に基づいて好気槽の後段のDO値の目標値を設定するカスケード型のフィードバック(FB)制御である。処理途中あるいは処理された水質に基づいた制御のため、流入水質が変動した場合、その影響がセンサ位置に到達するまで変動は考慮されず、風量不足による処理水質の悪化あるいは過剰風量となる課題があった。詳細について述べると、例えば、日間変動が大きい場合や急な降雨で一時的にアンモニアが希釈された下水が流入した場合である。中段のアンモニア計で計測した濃度が大きいと、全体風量は増加する。その際、希釈されている上流側では過剰処理となり、下流側に到達する前に処理水の目標値に達することがある。その結果、その後流下した下流側では最小風量下でも過剰処理となり、過剰曝気となる可能性が考えられる。一度中段のアンモニア計位置での目標値から大きく外れると、その後も風量が振動し、処理が安定しない可能性もある。もう一つの課題は維持管理性に関する課題である。制御に用いる中段地点のアンモニア濃度とDOの目標値の関係式は、オペレータ側で処理特性に合わせて試行錯誤的に、且つ、活性汚泥性状の季節変動に合わせて継続的に調整する必要があり、維持管理は必ずしも容易ではない。   The method of [Non-Patent Document 2] is cascade-type feedback (FB) control in which a target value of the DO value at the rear stage of the aerobic tank is set based on an ammonia meter installed at the middle stage of the aerobic tank. Because of the control based on the quality of the treated or treated water, if the influent water quality fluctuates, the fluctuation is not taken into account until the effect reaches the sensor position. there were. More specifically, for example, when the daily fluctuation is large or when sewage in which ammonia is temporarily diluted flows due to sudden rain. If the concentration measured with the middle ammonia meter is large, the total air volume will increase. At this time, the diluted upstream side is excessively treated, and the target value of the treated water may be reached before reaching the downstream side. As a result, there is a possibility that excessive processing will occur due to excessive processing even under the minimum air volume on the downstream side after flowing down. Once it deviates significantly from the target value at the middle ammonia meter position, the air volume may vibrate thereafter and the processing may not be stable. Another issue is related to maintenance. The relational expression between the ammonia concentration at the middle stage used for control and the target value of DO must be adjusted by the operator on a trial and error basis according to the treatment characteristics and continuously according to the seasonal variation of the activated sludge properties. Maintenance is not always easy.

[非特許文献3]の方法は、流入側と好気槽中段にアンモニア計を設置し、好気槽中段のアンモニア計によるFB制御に、流入側のアンモニア計によるフィードフォワード(FF)制御を加えることで、水質負荷変動への追従を高めている。しかし、流入側のアンモニア計で計測したアンモニア濃度は現時刻のみの値である、既に好気槽へ流入した流体における流入時のアンモニア濃度(過去の流入アンモニア濃度)とは異なる。好気槽全体の風量を演算するために用いる値としては十分ではなく、必ずしも水質負荷変動への追従性を確保できず、風量不足による処理水質の悪化あるいは過剰風量となる課題があった。   In the method of [Non-Patent Document 3], an ammonia meter is installed on the inflow side and the middle stage of the aerobic tank, and feedforward (FF) control by the ammonia meter on the inflow side is added to the FB control by the ammonia meter in the middle stage of the aerobic tank. In this way, the follow-up to fluctuations in water quality load is enhanced. However, the ammonia concentration measured with the ammonia meter on the inflow side is a value only at the current time, and is different from the ammonia concentration at the time of inflow in the fluid that has already flowed into the aerobic tank (past inflow ammonia concentration). The value used to calculate the air volume of the entire aerobic tank is not sufficient, and it is not always possible to ensure followability to fluctuations in the water quality load.

[非特許文献1],[非特許文献2],そして、[非特許文献3]の方法は、制御のためのパラメータが手動で与えられるものである。活性汚泥の特性は時間とともに変化していくため、パラメータは試行錯誤的に調整する必要があり、維持管理の労力が増大する課題があった。   In the methods of [Non-patent document 1], [Non-patent document 2], and [Non-patent document 3], parameters for control are manually given. Since the characteristics of activated sludge change with time, it is necessary to adjust the parameters by trial and error, and there is a problem that the labor for maintenance increases.

[特許文献1]の方法は,好気各槽にアンモニア計を設置することで、各反応槽間で処理されたアンモニア濃度と風量の関係を計測し、その処理性能に基づいて必要風量を演算する。上流側のアンモニア濃度の計測値から必要風量を演算するFF制御の連結であり、制御の安定性を確保するためには、[特許文献1]のように全ての反応槽にアンモニア計を設置する必要がある。通常の処理場での設置が推奨される好気槽末端のDO計に加えて,全ての反応槽に高価なアンモニア計を設置することは,コスト的に不利であり、その維持管理が増大するといった課題があった。
In the method of [Patent Document 1], by installing an ammonia meter in each aerobic tank, the relationship between the ammonia concentration processed between each reaction tank and the air volume is measured, and the necessary air volume is calculated based on the processing performance. To do. This is a connection of FF control that calculates the required air volume from the measured value of the ammonia concentration on the upstream side, and in order to ensure the stability of the control, ammonia meters are installed in all reaction tanks as in [Patent Document 1]. There is a need. In addition to the DO meter at the end of the aerobic tank, which is recommended to be installed in a normal treatment plant, installing expensive ammonia meters in all the reaction tanks is disadvantageous in terms of cost and increases its maintenance. There was a problem.

上記課題を解決するため、本発明は、流入する被処理水を酸化処理する好気槽と、前記好気槽に空気を送るブロワと、好気槽内を上流側から下流側へと流れる流下流量を推定する流下流量推定部と、前記被処理水の水質を推定する被処理水水質推定部と、前記好気槽内に設置された好気槽水質推定部と、前記ブロワの風量を計測するブロワ風量計測部と、前記ブロワの風量を演算するブロワ風量演算部と、を備えた水処理プラントにおいて、前記被処理水水質推定部及び前記好気槽水質推定部で推定する水質が前記ブロワから酸素を吹き込むことで変動する水質であり、前記好気槽水質推定部より上流側の好気槽が上流側好気槽、前記好気槽水質推定部より下流側の好気槽が下流側好気槽であって、前記ブロワ風量演算部は、前記被処理水水質推定部から前記好気槽水質推定部までの好気槽へ一定の制御周期毎に流入する前記被処理水を仮想流体塊i(i=1〜N)とし、仮想流体塊iを目標水質に制御すための必要風量である必要累積風量を、前記必要累積風量と目標処理水質である目標処理アンモニア濃度の減少量との関係を規定する処理特性関数に基づき求めると共に、時刻tにおける仮想流体塊iへの累積風量を、少なくとも前記上流側好気槽への曝気風量及び風量配分密度に基づき求め、求めた前記必要累積風量と前記累積風量との差分を各仮想流体塊iの残りの滞留時間で除することで仮想流体塊iに必要な風量を求め、仮想流体塊iのN個の総和を前記上流側好気槽に必要な上流側風量とし、前記好気槽推定部により推定された水質及び目標水質である目標処理アンモニア濃度に基づき、前記下流側好気槽に必要な下流側風量を求め、求めた前記上流側風量と前記下流側風量を合算して求めた全風量をブロワの風量とすることを特徴とすることを特徴とするものである。 In order to solve the above problems, the present invention provides an aerobic tank that oxidizes inflowing water to be treated, a blower that sends air to the aerobic tank, and a flow that flows from the upstream side to the downstream side in the aerobic tank. Measure the flow rate of the blower, the flow rate estimation unit for estimating the flow rate, the treated water quality estimation unit for estimating the quality of the treated water, the aerobic tank water quality estimation unit installed in the aerobic tank, and the flow rate of the blower In the water treatment plant provided with a blower air volume measuring unit that performs an air flow of the blower, the water quality estimated by the treated water quality estimation unit and the aerobic tank water quality estimation unit is the blower. The aerobic tank upstream from the aerobic tank water quality estimation unit is an upstream aerobic tank, and the aerobic tank downstream from the aerobic tank water quality estimation unit is downstream. It is an aerobic tank, and the blower air volume calculation unit is the water to be treated. The treated water that flows into the aerobic tank from the estimation unit to the aerobic tank water quality estimation unit at a constant control cycle is defined as a virtual fluid mass i (i = 1 to N), and the virtual fluid mass i is set as a target water quality. the necessary cumulative air amount is required air volume for that control, the seek based on the processing characteristics function defining the relationship between the decrease amount of the target processed ammonia concentration is the required cumulative air amount and the target quality of treated water, a virtual fluid at time t The accumulated air volume to the mass i is obtained based on at least the aeration air volume to the upstream aerobic tank and the air volume distribution density, and the difference between the calculated required accumulated air volume and the accumulated air volume is retained for each remaining virtual fluid mass i. The air volume required for the virtual fluid mass i is obtained by dividing by time, and the N total of the virtual fluid mass i is set as the upstream air volume required for the upstream aerobic tank, which is estimated by the aerobic tank estimation unit. target processing a is the water quality and water quality goals Based on pneumoniae concentration, determine the downstream air volume required for the downstream aerobic tank, characterized in that the total air volume was calculated by summing the downstream air amount and the upstream air amount calculated and air volume of the blower It is characterized by this.

更に、本発明は水処理プラントにおいて、前記被処理水水質推定部及び前記好気槽水質推定部で推定する水質がアンモニア性窒素濃度であることを特徴とするものである。 Furthermore, in the water treatment plant, the present invention is characterized in that the water quality estimated by the treated water quality estimation unit and the aerobic tank water quality estimation unit is an ammoniacal nitrogen concentration.

更に、本発明は水処理プラントにおいて、前記推定する前記好気槽水質推定部に加えて、溶存酸素濃度を推定する第二好気槽水質推定部を備えたことを特徴とするものである。   Furthermore, the present invention is characterized in that, in the water treatment plant, a second aerobic tank water quality estimation unit for estimating the dissolved oxygen concentration is provided in addition to the aerobic tank water quality estimation unit to be estimated.

更に、本発明は水処理プラントにおいて、前記ブロワ風量演算部は、前記被処理水水質推定部と前記好気槽水質推定部で推定した水質の値と、前記上流側風量と前記下流側風量を合算して求めた全風量とに基づき、前記処理特性関数を更新することを特徴とするものである。 Further, in the water treatment plant according to the present invention, the blower air volume calculation unit includes a water quality value estimated by the treated water quality estimation unit, the aerobic tank water quality estimation unit , the upstream air volume, and the downstream air volume. The processing characteristic function is updated based on the total air volume obtained by adding together .

更に、本発明は水処理プラントにおいて、前記処理特性関数を時系列で表示する処理特性表示部を備えたことを特徴とするものである。 Furthermore, the present invention is characterized in that in the water treatment plant, a treatment characteristic display unit for displaying the treatment characteristic function in time series is provided.

本発明によれば,維持管理性を向上し、下水処理の水質を適切に制御しつつ消費エネルギーを抑制できる。
According to the present invention, it is possible to improve maintainability and suppress energy consumption while appropriately controlling the quality of sewage treatment.

実施例1の水処理プラントの構成図Configuration diagram of water treatment plant of Example 1 流下流量と好気槽アンモニア濃度の目標値の関係Relationship between flow rate and target value of aerobic tank ammonia concentration 仮想流体塊による上流側風量演算Upstream air volume calculation with virtual fluid mass 処理特性関数Processing characteristic function 処理特性関数の更新の様子Update of processing characteristic function 抽出した処理特性の時間変化Temporal change of extracted processing characteristics

本発明の各実施例を図面により説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例1の構成図である。   FIG. 1 is a configuration diagram of Embodiment 1 of the present invention.

本実施例は循環式硝化脱窒法の下水処理プラントに下水処理制御システムを適用した例である。上流側から最初沈殿池1、無酸素槽2、好気槽3、最終沈殿池4が連通し、好気槽3はブロワ5と連通する。最初沈殿池1では、流入する下水100を重力沈降により上澄液である初沈越流水101と沈降物である初沈汚泥に分離する。最終沈殿池4では、流入する活性汚泥102を上澄液である処理水103と沈降物である返送汚泥104に分離する。返送汚泥104は初沈越流水101と混合し、活性汚泥102として無酸素槽2に流入する。好気槽3の末端からは活性汚泥102の一部が無酸素槽2へと循環液105として循環する。ブロワ5からは好気槽3に空気106が送られる。   The present embodiment is an example in which a sewage treatment control system is applied to a sewage treatment plant of a circulation type nitrification denitrification method. From the upstream side, the first sedimentation tank 1, the anoxic tank 2, the aerobic tank 3, and the final sedimentation tank 4 communicate with each other, and the aerobic tank 3 communicates with the blower 5. In the first sedimentation basin 1, the inflowing sewage 100 is separated by gravity sedimentation into first sedimentation water 101 as a supernatant and primary sedimentation sludge as a sediment. In the final sedimentation basin 4, the activated sludge 102 that flows in is separated into treated water 103 that is a supernatant and return sludge 104 that is a sediment. The return sludge 104 is mixed with the first subsidence flowing water 101 and flows into the anoxic tank 2 as the activated sludge 102. From the end of the aerobic tank 3, a part of the activated sludge 102 circulates as a circulating liquid 105 to the anoxic tank 2. Air 106 is sent from the blower 5 to the aerobic tank 3.

無酸素槽は流下流量推定部である流下流量計10と流入水質推定部である流入アンモニア計11が設置され、好気槽3へ流入する流入水の流量とアンモニア濃度を計測する。ここでのアンモニア濃度は溶存酸素と同様にブロワから酸素を吹き込むことで変動する水質である。好気槽3には好気槽水質推定部である好気槽アンモニア計12が設置され、好気槽3のアンモニア濃度を計測する。ブロワ5と好気槽3を連通する配管にはブロワ風量計測部である風量計13が設置され、好気槽3へ送られる空気の風量を計測する。 The anaerobic tank 2 is provided with a flowing-down flow meter 10 that is a flowing-down flow estimation unit and an inflow ammonia meter 11 that is an inflowing water quality estimating unit, and measures the flow rate and ammonia concentration of the inflowing water flowing into the aerobic tank 3. The ammonia concentration here is a water quality that varies as oxygen is blown from a blower in the same manner as dissolved oxygen. The aerobic tank 3 is provided with an aerobic tank ammonia meter 12 which is an aerobic tank water quality estimation unit, and measures the ammonia concentration in the aerobic tank 3. An air flow meter 13 which is a blower air flow measuring unit is installed in a pipe communicating the blower 5 and the aerobic tank 3 to measure the air flow of the air sent to the aerobic tank 3.

流下流量計10、流入アンモニア計11、好気槽アンモニア計12、風量計13での計測値は、ブロワ風量演算部20に送信される。ブロワ風量演算部20の演算結果はブロワ風量制御部21に送信され、ブロワ5の風量はブロワ風量演算部20で演算した風量に制御される。   The values measured by the flow down flow meter 10, the inflow ammonia meter 11, the aerobic tank ammonia meter 12, and the air flow meter 13 are transmitted to the blower air flow calculation unit 20. The calculation result of the blower air volume calculation unit 20 is transmitted to the blower air volume control unit 21, and the air volume of the blower 5 is controlled to the air volume calculated by the blower air volume calculation unit 20.

実施例1での風量演算方法について説明する。実施例1では、好気槽3のうち、好気槽アンモニア計12よりも上流側の好気槽を上流側好気槽、下流側の好気槽を下流側好気槽とする。   The air volume calculation method in Example 1 is demonstrated. In Example 1, an aerobic tank upstream of the aerobic tank ammonia meter 12 in the aerobic tank 3 is an upstream aerobic tank, and a downstream aerobic tank is a downstream aerobic tank.

実施例1では、流入アンモニア濃度等の計測値および水質-必要風量関係である処理特性関数を用いてフィードフォワード演算で上流側好気槽に必要な上流側風量を演算し、好気槽アンモニア計等の計測値に基づいたフィードバック演算で下流側好気槽に必要な下流側風量を演算する。以下では下流側風量演算、上流側風量演算の順に説明する。   In the first embodiment, the upstream air volume necessary for the upstream aerobic tank is calculated by feedforward calculation using the measured value such as the inflow ammonia concentration and the processing characteristic function which is the water quality-necessary air volume relationship, and the aerobic tank ammonia meter is calculated. The downstream air volume required for the downstream aerobic tank is calculated by feedback calculation based on the measured values. Below, it demonstrates in order of downstream air volume calculation and upstream air volume calculation.

上流側、下流側の好気槽に対して個別の風量を適用できない場合、時刻tの全風量Q(t)[m/h]に対してDup[−]を好気槽全体に対する上流側好気槽への風量の配分比として、上流側好気槽への風量QBup(t)、下流側好気槽への風量QBdwn(t)は式(1)で表される。
下流側風量演算は、好気槽アンモニア濃度の目標値NHmd_tgt(t)[mg−N/L]と好気槽アンモニア濃度の計測値NHmd(t)[mg−N/L]に対してPI制御によるフィードバック演算を実施する。NHmd_tgt(t)は、例えば図2のように流下流量Q[m/h]に対するグラフより算出する。ここでNHout_tgt[mg−N/L]は処理水アンモニア濃度の目標値で、管理者の所望の水質で、本実施例では1.0mg−N/Lとした。流下流量Qが大きくなると滞留時間は短くなるため、同じ風量で処理できるアンモニア量は少なくなる。したがって、流下流量Qが大きい場合は好気槽アンモニア濃度の目標値NHmd_tgtを低減させることで、処理水アンモニア濃度の目標値NHout_tgtを達成できるようにする。
When the individual air volume cannot be applied to the upstream and downstream aerobic tanks, D up [−] is applied to the entire aerobic tank with respect to the total air volume Q B (t) [m 3 / h] at time t. as the distribution ratio of the volume of air to the upstream side aerobic tank, the air volume Q Bup to upstream aerobic tank (t), the air volume Q Bdwn the downstream aerobic tank (t) is expressed by equation (1).
Downstream air volume operation, against the target value NH Md_tgt aerobic tank ammonia concentration (t) [mg-N / L] and aerobic tank ammonia concentration measurement NH md (t) [mg- N / L] Perform feedback calculation by PI control. NH md_tgt (t) is calculated from a graph with respect to the flowing-down flow rate Q [m 3 / h] as shown in FIG. 2, for example. Here, NH out_tgt [mg-N / L] is a target value of the ammonia concentration of the treated water, which is a water quality desired by the administrator, and is 1.0 mg-N / L in this embodiment. Since the residence time is shortened when the flow-down flow rate Q is increased, the amount of ammonia that can be processed with the same air volume is reduced. Therefore, when the flow-down flow rate Q is large, the target value NH md_tgt of the aerobic tank ammonia concentration is reduced, so that the target value NH out_tgt of the treated water ammonia concentration can be achieved.

図2より好気槽アンモニア濃度の目標値NHmd_tgt(t)は変動する流下流量Qによる関数として変動幅を持った値として計算される。この目標値に基づいて演算される時刻t+Δtの下流側風量QBdwn(t+Δt) [m3/h]を式(2)に示す。Δt [h]は制御周期である。
Cpar(Z)は離散時間の並列PIコントローラの伝達関数で、比例項のパラメータをP、積分項のパラメータをI、サンプリング時間をTs [min](=60Δt)として式(3)で表される。
ここでの流下流量は生物反応槽を流下する流量である。本実施例では循環式硝化脱窒法を対象としているため、流下流量は流入流量、循環流量、返送流量の合計値となる。
From FIG. 2, the target value NH md_tgt (t) of the aerobic tank ammonia concentration is calculated as a value having a fluctuation range as a function of the changing flow rate Q. The downstream air volume Q Bdwn (t + Δt) [m 3 / h] at time t + Δt calculated based on this target value is shown in equation (2). Δt [h] is a control cycle.
C par (Z) is the transfer function of a discrete-time parallel PI controller, expressed by equation (3) with P as the proportional term parameter, I as the integral term parameter, and T s [min] (= 60Δt) as the sampling time. Is done.
The flow-down flow rate here is a flow rate flowing down the biological reaction tank. In this embodiment, since the circulation type nitrification denitrification method is targeted, the flow down flow is the total value of the inflow flow rate, the circulation flow rate, and the return flow rate.

上流側風量演算では、一定の制御周期Δt毎に計算系(ここでは上流側のアンモニア計11から中間点のアンモニア計12までの生物反応槽)に1次元的に流入する仮想流体塊を考え、これをラグランジュ的に追跡する。概念図を図3に示す。灰色で示した仮想流体塊は時刻tで計算系に流入し、時刻tで計算系後端に到達している。流下流量Qin(t)によって仮想流体塊の大きさは異なる。時刻tに上流側からi番目の仮想流体塊iの位置をXvc,i(t)[m]とすると、Xvc,1(t)およびXvc,i(t+Δt)は式(4)(5)で表される。
ここでS[m]は生物反応槽流下方向の断面積である。それぞれの仮想流体塊は流入時に計測・演算される固有の値を保持しつつ流下していく。流入時のアンモニア濃度の計測値をNHin(t)[mg−N/L]とすると、仮想流体塊iに対応する流入アンモニア濃度NHin,i(t)[mg−N/L]は、式(6)で表される。
仮想流体塊iを目標水質に制御するための必要風量である必要累積風量VB_tgt,i[m]は図4の処理特性関数と式(7)から算出される。
処理特性関数は上流側好気槽末端に到達した仮想流体塊の情報から構築する。ΔNHtgt(t)[mg−N/L]は目標処理アンモニア濃度減少量であり、上流側のアンモニア計11の計測値(NH in (t))と中間点のアンモニア計12の位置でのアンモニア濃度の目標値(NH md_tgt (t))との差分である。
In the upstream air volume calculation, a virtual fluid mass that flows one-dimensionally into a calculation system (in this case, a biological reaction tank from the upstream ammonia meter 11 to the intermediate ammonia meter 12 ) at every constant control period Δt, This is tracked in Lagrange. A conceptual diagram is shown in FIG. The virtual fluid mass shown in gray flows into the calculation system at time t 0 and reaches the rear end of the calculation system at time t N. The size of the virtual fluid mass varies depending on the flow rate Q in (t). Assuming that the position of the i-th virtual fluid mass i from the upstream side at the time t is X vc, i (t) [m], X vc, 1 (t) and X vc, i (t + Δt) are expressed by Equation (4) ( 5).
Here, S [m 2 ] is a cross-sectional area of the biological reactor flow direction. Each virtual fluid mass flows down while maintaining a unique value measured and calculated at the time of inflow. When the measured value of the ammonia concentration at the time of inflow is NH in (t) [mg-N / L], the inflow ammonia concentration NH in, i (t) [mg-N / L] corresponding to the virtual fluid mass i is It is represented by Formula (6).
The required cumulative air volume V B_tgt, i [m 3 ] , which is the air volume required for controlling the virtual fluid mass i to the target water quality, is calculated from the processing characteristic function of FIG. 4 and Expression (7).
The processing characteristic function is constructed from the information of the virtual fluid mass reaching the upstream aerobic tank end. ΔNH tgt (t) [mg- N / L] is Ri target process ammonia concentration decreases Ryodea, measurement value of the upstream side of the ammonia meter 11 (NH in (t)) and at the location of the ammonia total of 12 midpoints Ru difference der between the target value of the ammonia concentration (NH md_tgt (t)).

仮想流体塊iが計算系へ流入した時刻をt0,i、上流側好気槽(中間点のアンモニア計12までの好気槽)への曝気風量をQBup(t)[m/h]、位置X(t)での風量配分密度をD(X(t))[−]とすると、時刻tにおける仮想流体塊iへの累積風量VB,i(t)[m]は式(8)で表される。
ここで風量配分密度D(X(t))は上流側各好気槽へ曝気風量の配分率を表す関数で、上流側好気槽全体での配分比の平均を1とする。Vrt,i(t)[−]は上流側好気槽の全体積Vall[m]に対する仮想流体塊iの体積比で、式(9)で表される。
仮想流体塊iは図4で求める必要累積風量VB_tgt,iを持つため、累積風量VB,i(t)との差分を残りの滞留時間で除した値が流体塊iに必要な風量となる。したがって、計算系がN個の仮想流体塊で満たされているとすると、時刻t+Δtの上流側風量の演算値QBup(t+Δt)[m/h]は式(10)となる。
all[m]は上流側好気槽の全長である。中括弧内が流体塊iに必要な曝気風量であるが、実施設の運用にしたがって上限値、下限値を設けることで、分母が小さくなることによる過大値や負値を避けることができる。
The time when the virtual fluid mass i flows into the calculation system is t 0, i , and the amount of aeration air to the upstream aerobic tank (aerobic tank up to the ammonia meter 12 at the midpoint) is expressed as Q Bup (t) [m 3 / h ], If the air volume distribution density at the position X i (t) is D (X i (t)) [−], the cumulative air volume V B, i (t) [m 3 ] to the virtual fluid mass i at time t. Is represented by equation (8).
Here, the air volume distribution density D (X i (t)) is a function representing the distribution rate of the aeration air volume to each upstream aerobic tank, and the average of the distribution ratio in the entire upstream aerobic tank is 1. V rt, i (t) [−] is a volume ratio of the virtual fluid mass i to the total volume V all [m 3 ] of the upstream aerobic tank, and is represented by Expression (9).
Since the virtual fluid mass i has the necessary accumulated air volume V B_tgt, i obtained in FIG. 4, the value obtained by dividing the difference from the accumulated air volume V B, i (t) by the remaining residence time is the air volume necessary for the fluid mass i. Become. Accordingly, assuming that the calculation system is filled with N virtual fluid masses, the calculated value Q Bup (t + Δt) [m 3 / h] of the upstream air volume at time t + Δt is expressed by equation (10).
L all [m] is the total length of the upstream aerobic tank. The amount of aeration required for the fluid mass i is in the curly brackets, but by setting the upper limit value and the lower limit value according to the operation of the implementation facility, it is possible to avoid an excessive value or a negative value due to the denominator becoming small.

ここでi=1は現時刻tの流入アンモニア濃度に基づき求めた値であり、i≧2は過去の流入アンモニア濃度に基づき求めた値である。すなわち時刻t+Δtの上流側風量の演算値QBup(t+Δt)は、前流入水水質推定部で推定した水質である流入アンモニア濃度の現時刻の値に基づき演算した必要風量と過去の値に基づき演算した必要風量を用いて演算したブロワ風量となる。 Here, i = 1 is a value obtained based on the inflow ammonia concentration at the current time t, and i ≧ 2 is a value obtained based on the past inflow ammonia concentration. That time t + Delta] t of the upstream air volume calculation value Q Bup (t + Δt) on the basis of the prior SL indispensable air volume and past values computed based on the value of the current time of the inlet ammonia concentration is water estimated by the incoming water quality estimator The blower air volume calculated using the calculated necessary air volume is obtained.

演算で求めた時刻t+Δtの上流側風量と下流側風量を合算して求めた全風量QB(t+Δt)を用いることで、水質の目標値への安定した追随で省エネを図れる風量を求めることができる。本実施例では、上流側風量と下流側風量をそのまま合算したが、例えば下流側のフィードバック要素を重視するなど、要求に応じてその重み付けを変化させても良い。また、複数のブロワや、上流側/下流側好気槽へ連通する弁の制御で、上流側/下流側好気槽へ個別に送る風量を制御しても良い。その場合、式(1)による全風量を上流側/下流側風量に分配する必要はなく、上流側風量と下流側風量を本実施例の方法により、それぞれ演算すればよい。 By using the total air volume Q B (t + Δt) obtained by adding the upstream air volume and downstream air volume at time t + Δt obtained by calculation, the air volume that can achieve energy conservation with stable tracking of the water quality target value Can be requested. In the present embodiment, the upstream air volume and the downstream air volume are added together, but the weight may be changed as required, for example, by placing importance on the downstream feedback element. Further, the amount of air sent individually to the upstream / downstream aerobic tank may be controlled by controlling a plurality of blowers and valves communicating with the upstream / downstream aerobic tank. In this case, it is not necessary to distribute the total air volume according to the equation (1) to the upstream / downstream air volume, and the upstream air volume and the downstream air volume may be calculated by the method of this embodiment.

本実施例で、処理特性関数として見える化された処理特性は、活性汚泥性状の季節変動にともない変動するが、維持管理性の向上にはこの処理特性関数の更新方法が重要となる。本実施例の実運用により、上流側好気槽の末端に到達した仮想流体塊には、実測値に基づいた流入アンモニア濃度、好気槽アンモニア濃度、累積風量が蓄積する。この情報に基づいて処理特性関数の現在値を統計的に更新できる。さらにその時間変化により、異常時に対する気づきが早まる。上述の制御方式では、実績値に基づいた制御パラメータの自動更新により制御精度を担保すると同時に維持管理性を向上することが可能となる。 In the present embodiment, the processing characteristics visualized as the processing characteristics function vary with the seasonal variation of the activated sludge properties. However, the updating method of the processing characteristics function is important for improving the maintainability. Through actual operation of the present embodiment, the inflow ammonia concentration, the aerobic tank ammonia concentration, and the accumulated air volume based on the actual measurement values are accumulated in the virtual fluid mass N that has reached the end of the upstream aerobic tank. Based on this information, the current value of the processing characteristic function can be updated statistically. In addition, the change in time accelerates the awareness of abnormal times. In the above-described control method , it is possible to ensure the control accuracy by automatically updating the control parameter based on the actual value and at the same time improve the maintainability.

図5に更新の様子を示す。更新前の関数を用いて制御を実施していく毎に、流入アンモニア濃度、好気槽アンモニア濃度、累積風量から実績値の情報が蓄積していく。任意のタイミング(一定間隔でも良いし、オペレータの判断でも良い)で、実績値群に対して例えば回帰分析による近似曲線を引くことで実績値に基づいた処理特性関数に更新できる。ここでの近似曲線は、実測値を確からしく近似する曲線であればy=ax+bやy=ax−1+bなどのxの正負の累乗で表される単項式でも良いし、これらを組み合わせた多項式でもよい。また、指数や対数、三角関数などの数学関数との組み合わせでも良い。また必ずしも関数ではなく不連続で段階的な対応表でも良い。その場合は、あらかじめ用意したデータベースあるいはオペレータの判断に基づいた対応関係で処理特性関数を更新すれば良い。 FIG. 5 shows the update. Each time control is performed using the function before the update, information on the actual value is accumulated from the inflow ammonia concentration, the aerobic tank ammonia concentration, and the cumulative air volume. The processing characteristic function based on the actual value can be updated by drawing an approximate curve by, for example, regression analysis from the actual value group at an arbitrary timing (may be a fixed interval or an operator's judgment). The approximate curve here may be a monomial represented by positive and negative powers of x, such as y = ax + b and y = ax −1 + b, as long as it accurately approximates an actual measurement value, or a polynomial that combines these. Good. Also, combinations with mathematical functions such as exponents, logarithms, and trigonometric functions may be used. Moreover, it is not necessarily a function, and a discontinuous and stepwise correspondence table may be used. In that case, the processing characteristic function may be updated with a correspondence prepared based on a database prepared in advance or the operator's judgment.

処理特性の時間変化については、例えば図6の処理特性関数から求めた指標の時間変化を操作画面に表示すればよい。図6は指標として、アンモニア濃度を25kg処理する際に必要となる風量を選び、時間変化をプロットした。一般的に低温期に硝化反応速度は小さくなるが、ここでは温度の影響は取り除いてある。これより、A処理場では10月に急激に風量が増加していることから、硝化菌量が減るなど何らかの異変があったことが推定される。処理特性を可視化して連続してモニタリングすることにより、この異変を即座に察知でき、図のように、短期間の上昇とすることができる。またB処理場は通年を通じてA処理場より必要風量が大きい。A処理場はB処理場より効率よく運転されていることを表しており、A処理場の運用を参考に運用改善を検討するべきであることが示唆される。 For example, the time change of the index obtained from the process characteristic function of FIG. 6 may be displayed on the operation screen. In FIG. 6, as an index, the air volume necessary for treating 25 kg of ammonia concentration was selected, and the change with time was plotted. In general, the nitrification reaction rate decreases in the low temperature period, but the influence of temperature is removed here. From this, it is presumed that there was some abnormality such as a decrease in the amount of nitrifying bacteria because the air volume suddenly increased in October at the A treatment plant. The processing characteristics by monitoring continuously visualized, can perceive the anomalies in real as in FIG. 6, it is possible to increase the short term. The B treatment plant requires more air than the A treatment plant throughout the year. This shows that the A treatment plant is operating more efficiently than the B treatment plant, and it is suggested that operational improvements should be considered with reference to the operation of the A treatment plant.

以上より、本実施例の下水処理プラントによる制御システムを適用することで、処理水質の安定と省エネおよび維持管理性の向上を図ることが出来る。   From the above, by applying the control system by the sewage treatment plant of the present embodiment, it is possible to stabilize the quality of the treated water, save energy, and improve the maintainability.

本実施例では、好気槽に設置した流下流量計10を用いたが、制御対象となる領域の生物反応槽を流下する流速が分かれば良いので、流下流量計の代替として、例えば、流入下水流量計と返送汚泥流量計と循環流量計で計測した流量の合計値としても良い。   In this embodiment, the flow-down flow meter 10 installed in the aerobic tank is used. However, since it is sufficient to know the flow velocity flowing down the biological reaction tank in the region to be controlled, as an alternative to the flow-down flow meter, for example, inflow sewage It is good also as a total value of the flow rate measured with the flowmeter, the return sludge flowmeter, and the circulation flowmeter.

本実施例では、適用例として循環式硝化脱窒法を取り上げたが、標準法やAO法、A2O法、準高度処理法やこれらにステップフィードを適用した方式など、好気槽で硝化を実施する方式であれば全ての方式に適用できる。その場合、例えば標準法やAO法では、流下流量は流入下水流量と返送汚泥流量の合計となるため、流下流量計10の代替として、流入下水流量計と返送汚泥流量計の合計値としても良い。   In this example, the circulation type nitrification denitrification method was taken up as an application example, but nitrification is carried out in an aerobic tank such as a standard method, AO method, A2O method, semi-advanced treatment method, and a method in which step feed is applied to these methods. Any method can be applied. In that case, for example, in the standard method or the AO method, the flow rate is the sum of the inflow sewage flow rate and the return sludge flow rate. Therefore, the total value of the inflow sewage flow meter and the return sludge flow meter may be used instead of the flow rate flow meter 10. .

本実施例では上流側好気槽でのフィードフォワード制御に対して、流入アンモニア計11によるアンモニア濃度を用いたが、下水100や初沈越流水101部分に設置したアンモニア計やあるいはUV計など相関関係などからアンモニア濃度を推定する他の代替手段でも良い。あるいは、流量変動、日間変動、季節変動からのアンモニア濃度の推定値でも良い。これらの場合、好気槽に流入するアンモニア濃度を求める場合、下水100や初沈越流水101のアンモニア濃度に対して、下水流量、返送汚泥流量、循環流量および、好気槽アンモニア計12によるアンモニア濃度から推定される返送汚泥、循環液に含まれるアンモニア濃度を用いて、流入アンモニア濃度を推定すれば良い。   In this embodiment, the ammonia concentration by the inflow ammonia meter 11 is used for the feedforward control in the upstream aerobic tank, but the ammonia meter or UV meter installed in the sewage 100 or the first subsidence water 101 part is correlated. Other alternative means for estimating the ammonia concentration from the relationship or the like may be used. Alternatively, an estimated value of ammonia concentration from flow rate fluctuation, daily fluctuation, and seasonal fluctuation may be used. In these cases, when obtaining the ammonia concentration flowing into the aerobic tank, the sewage flow rate, the return sludge flow rate, the circulation flow rate, and the ammonia by the aerobic tank ammonia meter 12 with respect to the ammonia concentration of the sewage 100 and the first overflow water 101. The inflow ammonia concentration may be estimated using the return sludge estimated from the concentration and the ammonia concentration contained in the circulating fluid.

本実施例では下流側風量の演算としてPI制御を用いたが、PID制御や他のフィードバック制御手法でも良い。   In this embodiment, PI control is used as the calculation of the downstream air volume, but PID control and other feedback control methods may be used.

本実施例では、好気槽アンモニア計によるフィードバック制御を実施したが、実運用では施設の経験的な運転方針から、好気槽の下流側のDOに下限値を設け、好気槽下流側に設置したDO計によるDO値が下限値を下回る場合、下限値を目標とするDO制御としてもよい。   In this example, feedback control was performed using an aerobic tank ammonia meter, but in actual operation, a lower limit value was set for DO on the downstream side of the aerobic tank based on the empirical operating policy of the facility, and downstream of the aerobic tank. When the DO value by the installed DO meter is below the lower limit value, DO control with the lower limit value as the target may be used.

本実施例では、好気槽水質推定部としてアンモニア計を用いたが、DO計でも良い。その場合、式(2)は目標DO値に基づくPI制御等のフィードバック制御としても良い。ここでの目標DO値は一定の設定値でも良く、あるいは時間や季節や流量などに応じて変動させても良い。時間の場合は、負荷の大きい昼間はDO設定値を大きく、小さい夜間はDO設定値を小さくすることが考えられる。季節の場合は、水温が低く反応速度が小さい冬季はDO設定値を大きく、大きい夏季はDO設定値を小さくすることが考えられる。流量の場合は、流量が大きく滞留時間が短い期間はDO設定値を大きく、滞留時間が長い期間はDO設定値を小さくすることが考えられる。   In this embodiment, an ammonia meter is used as the aerobic tank water quality estimation unit, but a DO meter may be used. In that case, equation (2) may be feedback control such as PI control based on the target DO value. The target DO value here may be a constant set value, or may be changed according to time, season, flow rate, or the like. In the case of time, it is conceivable to increase the DO setting value during the daytime when the load is large, and decrease the DO setting value during the nighttime when the load is small. In the case of the season, it is possible to increase the DO setting value in winter when the water temperature is low and the reaction speed is low, and to decrease the DO setting value in the large summer season. In the case of a flow rate, it is conceivable that the DO set value is increased during a period when the flow rate is large and the residence time is short, and the DO set value is decreased during a period where the residence time is long.

本実施例では、好気槽水質推定部としてアンモニア計を用いたが、その下流側に第二好気槽水質測定部としてDO計を設置しても良い。その場合、式(2)は目標DO値に基づくPI制御等のフィードバック制御としても良い。ここでの目標DO値は好気槽アンモニア濃度の計測値NHmd(t)と対応させるカスケード制御としても良い。例えば、好気槽アンモニア濃度の計測値NHmd(t)が大きい場合は、処理水アンモニア濃度の目標値NHout_tgtまでの差分が大きいため、DO設定値を大きく、好気槽アンモニア濃度の計測値NHmd(t)が小さい場合は、DO設定値を小さくすることが考えられる。 In this embodiment, an ammonia meter is used as the aerobic tank water quality estimation unit, but a DO meter may be installed as a second aerobic tank water quality measurement unit on the downstream side thereof. In that case, equation (2) may be feedback control such as PI control based on the target DO value. The target DO value here may be cascade control corresponding to the measured value NH md (t) of the aerobic tank ammonia concentration. For example, if the measured value NH md (t) of the aerobic tank ammonia concentration is large, the difference to the target value NH out_tgt of the treated water ammonia concentration is large, so the DO setting value is increased and the measured value of the aerobic tank ammonia concentration When NH md (t) is small, it is conceivable to decrease the DO setting value.

本実施例では、最初沈殿池1を設置したが、最初沈殿池1を除いた構成でも良い。また、最終沈殿池4の代替として、活性汚泥と処理水の分離に膜を用いる膜分離活性汚泥法でも良い。その場合、例えば好気槽3に膜を浸漬させても良い。
本実施例では、被処理水として下水、流入水水質で推定する水質としてアンモニア性窒素を例としてあげたが、これらに限定されるものではなく、ブロワ風量を制御する制御システムを備えた水処理プラントに関わる発明として、流入水質推定部で推定する水質はブロワから酸素を吹き込むことで酸化などにより変動する水質であれば良い。
In this embodiment, the first settling basin 1 is installed, but a configuration excluding the first settling basin 1 may be used. As an alternative to the final sedimentation basin 4, a membrane separation activated sludge method using a membrane for separating activated sludge and treated water may be used. In that case, for example, the membrane may be immersed in the aerobic tank 3.
In this embodiment, sewage was treated as sewage and ammonia nitrogen was taken as an example of water quality to be estimated based on the quality of the influent water. However, the present invention is not limited thereto, and water treatment provided with a control system for controlling the blower air volume As an invention relating to the plant, the water quality estimated by the influent water quality estimation unit may be any water quality that varies due to oxidation or the like by blowing oxygen from the blower.

1.最初沈殿池
2.無酸素槽
3.好気槽
4.最終沈殿池
5.ブロワ
100.下水
101.初沈越流水
102.活性汚泥
103.処理水
104.返送汚泥
105.循環液
106.空気
10.流入流量計
11.流入アンモニア計
12.好気槽アンモニア計
13.風量計
20.ブロワ風量演算部
21.ブロワ風量制御部
1. First sedimentation basin 2. 2. Anoxic tank Aerobic tank 4. 4. Final sedimentation basin Blower 100. Sewage 101. First subsidence water 102. Activated sludge 103. Treated water 104. Return sludge Circulating fluid 106. Air 10. 10. Inflow flow meter Inflow ammonia meter 12. Aerobic tank ammonia meter13. Air flow meter20. Blower air volume calculation unit 21. Blower air volume control unit

Claims (6)

流入する被処理水を酸化処理する好気槽と、
前記好気槽に空気を送るブロワと、
前記好気槽内を上流側から下流側へと流れる流下流量を推定する流下流量推定部と、
前記被処理水の水質を推定する被処理水水質推定部と、
前記好気槽内に設置された好気槽水質推定部と、
前記ブロワの風量を計測するブロワ風量計測部と、
前記ブロワの風量を演算するブロワ風量演算部と、を備えた水処理プラントにおいて、
前記被処理水水質推定部及び前記好気槽水質推定部で推定する水質が前記ブロワから酸素を吹き込むことで変動する水質であり、前記好気槽水質推定部より上流側の好気槽が上流側好気槽、前記好気槽水質推定部より下流側の好気槽が下流側好気槽であって、
前記ブロワ風量演算部は、
前記被処理水水質推定部から前記好気槽水質推定部までの好気槽へ一定の制御周期毎に流入する前記被処理水を仮想流体塊i(i=1〜N)とし、仮想流体塊iを目標水質に制御すための必要風量である必要累積風量を、前記必要累積風量と目標処理水質である目標処理アンモニア濃度の減少量との関係を規定する処理特性関数に基づき求めると共に、時刻tにおける仮想流体塊iへの累積風量を、少なくとも前記上流側好気槽への曝気風量及び風量配分密度に基づき求め、求めた前記必要累積風量と前記累積風量との差分を各仮想流体塊iの残りの滞留時間で除することで仮想流体塊iに必要な風量を求め、仮想流体塊iのN個の総和を前記上流側好気槽に必要な上流側風量とし、
前記好気槽水質推定部により推定された水質及び目標水質である目標処理アンモニア濃度に基づき、前記下流側好気槽に必要な下流側風量を求め、
求めた前記上流側風量と前記下流側風量を合算して求めた全風量をブロワの風量とすることを特徴とする水処理プラント。
An aerobic tank that oxidizes the incoming treated water;
A blower for sending air to the aerobic tank;
A downstream flow rate estimating unit for estimating a downstream flow rate flowing from the upstream side to the downstream side in the aerobic tank;
A treated water quality estimating unit for estimating the quality of the treated water;
An aerobic tank water quality estimation unit installed in the aerobic tank;
A blower air volume measuring unit for measuring the air volume of the blower;
In a water treatment plant comprising a blower air volume calculating unit that calculates the air volume of the blower,
The water quality estimated by the treated water quality estimation unit and the aerobic tank water quality estimation unit is a water quality that varies by blowing oxygen from the blower, and the aerobic tank upstream from the aerobic tank water quality estimation unit is upstream. Side aerobic tank, aerobic tank downstream from the aerobic tank water quality estimation unit is a downstream aerobic tank,
The blower air volume calculator is
The treated water that flows into the aerobic tank from the treated water quality estimation unit to the aerobic tank water quality estimation unit at a constant control cycle is defined as a virtual fluid mass i (i = 1 to N), and a virtual fluid mass the necessary cumulative air amount is required air volume for that control to a target water quality i, with determined based on the processing characteristics function defining the relationship between the decrease amount of the target processed ammonia concentration is the required cumulative air amount and the target quality of treated water, The cumulative air volume to the virtual fluid mass i at time t is determined based on at least the aeration air volume and the air volume distribution density to the upstream aerobic tank, and the difference between the calculated required cumulative air volume and the cumulative air volume is calculated for each virtual fluid mass. By dividing by the remaining residence time of i, the air volume required for the virtual fluid mass i is obtained, and the N totals of the virtual fluid mass i are set as the upstream air volume required for the upstream aerobic tank,
Based on the target treatment ammonia concentration that is the water quality and the target water quality estimated by the aerobic tank water quality estimation unit, obtain the downstream air volume necessary for the downstream aerobic tank,
A water treatment plant characterized in that a total air volume obtained by adding the obtained upstream air volume and downstream air volume is used as a blower air volume.
請求項1に記載の水処理プラントにおいて、
前記被処理水水質推定部及び前記好気槽水質推定部で推定する水質がアンモニア性窒素濃度であることを特徴とする水処理プラント。
The water treatment plant according to claim 1,
The water quality estimated by the said to-be-processed water quality estimation part and the said aerobic tank water quality estimation part is ammonia nitrogen concentration, The water treatment plant characterized by the above-mentioned.
請求項1又は請求項2に記載の水処理プラントにおいて、
前記風量配分密度は、前記上流側好気槽への曝気風量の配分率を表す関数であることを特徴とする水処理プラント。
In the water treatment plant according to claim 1 or 2,
The water volume distribution density is a function representing a distribution rate of the aeration volume to the upstream aerobic tank.
請求項2又は請求項3に記載の水処理プラントにおいて、
前記推定する前記好気槽水質推定部に加えて、溶存酸素濃度を推定する第二好気槽水質推定部を備えたことを特徴とする水処理プラント。
In the water treatment plant according to claim 2 or claim 3,
A water treatment plant comprising a second aerobic tank water quality estimation unit for estimating a dissolved oxygen concentration in addition to the aerobic tank water quality estimation unit to be estimated.
請求項1から請求項4のうち、いずれか1項に記載の水処理プラントにおいて、
前記ブロワ風量演算部は、
前記被処理水水質推定部で推定した水質の値と、前記好気槽水質推定部で推定した水質の値と、前記上流側風量と前記下流側風量を合算して求めた全風量とに基づき、前記処理特性関数を更新することを特徴とする水処理プラント。
In the water treatment plant according to any one of claims 1 to 4,
The blower air volume calculator is
Based on the water quality value estimated by the treated water quality estimation unit, the water quality value estimated by the aerobic tank water quality estimation unit, and the total air volume obtained by adding the upstream air volume and the downstream air volume The water treatment plant is characterized in that the treatment characteristic function is updated.
請求項5に記載の水処理プラントにおいて、
前記処理特性関数を時系列で表示する処理特性表示部を備えたことを特徴とする水処理プラント。
In the water treatment plant according to claim 5,
A water treatment plant comprising a treatment characteristic display unit for displaying the treatment characteristic function in time series.
JP2014129810A 2014-06-25 2014-06-25 Water treatment plant Active JP6219239B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014129810A JP6219239B2 (en) 2014-06-25 2014-06-25 Water treatment plant
CN201510321343.2A CN105271508A (en) 2014-06-25 2015-06-12 Water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014129810A JP6219239B2 (en) 2014-06-25 2014-06-25 Water treatment plant

Publications (2)

Publication Number Publication Date
JP2016007576A JP2016007576A (en) 2016-01-18
JP6219239B2 true JP6219239B2 (en) 2017-10-25

Family

ID=55141446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014129810A Active JP6219239B2 (en) 2014-06-25 2014-06-25 Water treatment plant

Country Status (2)

Country Link
JP (1) JP6219239B2 (en)
CN (1) CN105271508A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6621866B2 (en) * 2017-05-01 2019-12-18 株式会社ウォーターエージェンシー Operation support device and operation support method for sewage treatment plant using activated sludge method
JP7321014B2 (en) * 2019-07-12 2023-08-04 株式会社日立製作所 Operation support equipment for water treatment plants
JP7209606B2 (en) * 2019-09-25 2023-01-20 三菱電機株式会社 water treatment equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334317B2 (en) * 2003-10-23 2009-09-30 株式会社東芝 Sewage treatment system
JP4131955B2 (en) * 2004-01-13 2008-08-13 株式会社東芝 Aeration air volume control device of sewage treatment plant
JP5608027B2 (en) * 2010-09-27 2014-10-15 川崎重工業株式会社 Water treatment system and aeration air volume control method thereof
JP5775296B2 (en) * 2010-12-27 2015-09-09 株式会社ウォーターエージェンシー Operation support apparatus and operation support method for sewage treatment plant
JP5685504B2 (en) * 2011-08-10 2015-03-18 川崎重工業株式会社 Water treatment system and aeration air volume control method thereof

Also Published As

Publication number Publication date
CN105271508A (en) 2016-01-27
JP2016007576A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
CN109607770B (en) Multi-scene self-learning carbon source intelligent adding system and method for denitrification tank
JP7059989B2 (en) Control system and control method
JP5775296B2 (en) Operation support apparatus and operation support method for sewage treatment plant
JP4906788B2 (en) Monitoring and control system for water and sewage treatment plants
JP3961835B2 (en) Sewage treatment plant water quality controller
JP4334317B2 (en) Sewage treatment system
JP6219239B2 (en) Water treatment plant
JP6655975B2 (en) Aeration control device and aeration control method
US20210094851A1 (en) Method of controlling a wastewater treatment plant
CN114380378B (en) Intelligent phosphorus control drug feeding method and device and storage medium
JP2017113725A (en) Operation support system and operation support method of sewage treatment plant
JP4008694B2 (en) Sewage treatment plant water quality controller
JP6726954B2 (en) Sewage treatment control device
JP6581856B2 (en) Blower control device
JP6619242B2 (en) Water treatment system
JP2012170883A (en) Activated sludge treating apparatus and treating method
JP2015051389A (en) Water treatment controller
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP2007144277A (en) System for controlling aeration
JP7039201B2 (en) Air volume control device, air volume control method and computer program
JP6499952B2 (en) Water treatment system
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
JP6621866B2 (en) Operation support device and operation support method for sewage treatment plant using activated sludge method
JP6430324B2 (en) Waste water treatment method and waste water treatment apparatus
JP2950661B2 (en) Control unit for water treatment plant

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170927

R150 Certificate of patent or registration of utility model

Ref document number: 6219239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150