JP6726954B2 - Sewage treatment control device - Google Patents

Sewage treatment control device Download PDF

Info

Publication number
JP6726954B2
JP6726954B2 JP2015236208A JP2015236208A JP6726954B2 JP 6726954 B2 JP6726954 B2 JP 6726954B2 JP 2015236208 A JP2015236208 A JP 2015236208A JP 2015236208 A JP2015236208 A JP 2015236208A JP 6726954 B2 JP6726954 B2 JP 6726954B2
Authority
JP
Japan
Prior art keywords
water quality
quality value
air volume
aerobic tank
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015236208A
Other languages
Japanese (ja)
Other versions
JP2017100092A (en
Inventor
一郎 山野井
一郎 山野井
佳記 西田
佳記 西田
信幸 中村
信幸 中村
剛 武本
剛 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015236208A priority Critical patent/JP6726954B2/en
Publication of JP2017100092A publication Critical patent/JP2017100092A/en
Application granted granted Critical
Publication of JP6726954B2 publication Critical patent/JP6726954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、下水処理場の処理水の水質を制御する下水処理制御装置に関する。 The present invention relates to a sewage treatment control device that controls the quality of treated water in a sewage treatment plant.

環境問題やコスト削減への対応が必須となった昨今、下水処理場においても、公共水域へ放流する処理水の水質向上、さらなる省エネ化、ICTを活用した維持管理性の向上が求められている。 Nowadays, it has become essential to deal with environmental problems and cost reductions, and even in sewage treatment plants, it is required to improve the quality of treated water discharged to public water bodies, further reduce energy consumption, and improve maintenance and management using ICT. ..

下水処理場では、活性汚泥と呼ばれる微生物懸濁液により、下水中の有機物や窒素などを除去する。ブロワにより活性汚泥に空気を吹き込む反応槽を好気槽と呼ぶが、好気槽では有機物は微生物による同化・異化反応により摂取・消費され、除去される。流入下水中の窒素の多くはアンモニア性窒素の形で含まれるが、これは酸素の存在下で硝化菌により硝酸性窒素に酸化される。この硝酸性窒素の一部は返送汚泥中に残留し、上流側に返送される。その際、窒素ガスへと還元する脱窒反応が生じて、窒素成分が除去される。一方、硝化不足により放流水中にアンモニア性窒素が残留すると、放流水域の水生生物への影響や溶存酸素(DO)の消費が懸念されることから、放流先の環境維持には硝化反応の適切な管理が要求される。そのためには電力を多く消費するブロワによる風量供給を適正に制御する必要がある。風量供給量が十分でない場合は、硝化不足による環境への悪影響を引きおこす。あるいは、風量供給量が過剰な場合、硝化完了後も風量が無駄に供給されるため消費電力が増大する。 At a sewage treatment plant, organic matter, nitrogen, etc. in sewage are removed by a microbial suspension called activated sludge. A reaction tank in which air is blown into activated sludge by a blower is called an aerobic tank. In the aerobic tank, organic matter is ingested/consumed and removed by assimilation/catabolization reaction by microorganisms. Most of the nitrogen in the incoming sewage is contained in the form of ammoniacal nitrogen, which is oxidized to nitric nitrogen by nitrifying bacteria in the presence of oxygen. A part of this nitrate nitrogen remains in the returned sludge and is returned to the upstream side. At that time, a denitrification reaction of reducing to nitrogen gas occurs, and the nitrogen component is removed. On the other hand, if ammoniacal nitrogen remains in the effluent due to insufficient nitrification, there is concern about the impact on aquatic organisms in the effluent area and consumption of dissolved oxygen (DO). Management is required. For that purpose, it is necessary to properly control the air volume supply by the blower that consumes a lot of electric power. If the amount of air supply is not sufficient, it will cause an adverse effect on the environment due to insufficient nitrification. Alternatively, when the air flow rate is excessive, the air flow rate is wastefully supplied even after nitrification is completed, resulting in an increase in power consumption.

下水処理の制御には、好気槽の下流側の末端に設置したDO計のDOを制御指標として
用いるDO制御がある。好気槽の下流側の末端DOを一定に保つようにブロワ風量を制御
することで、微生物の活性を維持し、有機物除去や硝化反応を制御する(例えば、非特
許文献1)。
Control of sewage treatment includes DO control using DO of a DO meter installed at the downstream end of the aerobic tank as a control index. By controlling the blower air volume so as to keep the terminal DO on the downstream side of the aerobic tank constant, the activity of microorganisms is maintained, and the removal of organic substances and the nitrification reaction are controlled (for example, Non-Patent Document 1).

近年、活性汚泥中のアンモニア性窒素濃度を計測するアンモニア計の精度の向上や、個
別の生物反応槽に適した小容量のブロワの制御性が向上したことから、生物反応槽へのブ
ロワ風量の制御に、アンモニア計を用いた制御方式が検討されている(特許文献1、非特許文献2)。
In recent years, the accuracy of the ammonia meter that measures the concentration of ammonia nitrogen in activated sludge has been improved, and the controllability of a small capacity blower suitable for individual biological reaction tanks has improved. A control method using an ammonia meter for control has been studied (Patent Document 1, Non-Patent Document 2).

特許第4509579号公報Japanese Patent No. 4509579

「下水道施設計画・設計指針と解説」2009年版、発行所日本下水道協会"Sewerage Facility Planning/Design Guidelines and Commentary", 2009 Edition, Japan Sewer Association 遠藤和広: アンモニア計とDO計を用いた送風量制御システムの開発、 第47回下水道研究発表会講演集、 pp.918-920 (2010)Kazuhiro Endo: Development of air flow control system using ammonia meter and DO meter, Proc. 47th Sewer Research Presentation, pp.918-920 (2010)

非特許文献1の方法において、DOは微生物の反応活性に関係するパラメータであるが、硝化反応で考慮すべきアンモニア性窒素そのものではない。そのため、流入流量や流入水質の変動により、風量不足による処理水質の悪化あるいは過剰風量となりやすい。 In the method of Non-Patent Document 1, DO is a parameter related to the reaction activity of microorganisms, but it is not the ammoniacal nitrogen itself that should be considered in the nitrification reaction. Therefore, due to fluctuations in the inflow flow rate and the inflow water quality, the treated water quality is likely to deteriorate due to insufficient air volume, or an excess air volume may result.

次にアンモニア計を用いた制御の場合の課題について述べる。なお、一般に、イオン電
極式のアンモニア計はアンモニア濃度が低下すると消耗品である電極の寿命が短くなるた
め、好気槽の最後段ではなく、少し上流側の中段に設置される。
Next, the problems in the case of control using an ammonia meter will be described. In general, the ion electrode type ammonia meter is installed not in the last stage of the aerobic tank but in the middle stage on the upstream side, because the life of the electrode, which is a consumable item, shortens when the ammonia concentration decreases.

特許文献1および非特許文献2の方法は、好気槽中段に設置に設置したアンモニア計と、好気槽後段に設置したDO計を制御に用いる。 The methods of Patent Document 1 and Non-Patent Document 2 use an ammonia meter installed in the middle stage of the aerobic tank and a DO meter installed in the latter stage of the aerobic tank for control.

特許文献1の方法では、計測されたアンモニア濃度が、あらかじめ設定されたアンモニア濃度に近づくようにアンモニア計による風量のフィードバック(FB)制御がなされるが、その際、あらかじめ設定したDOの下限値を下回ると、DOによるFB制御に切り替わる。しかし、次の場合に課題があった。それは、DOが下限値よりも大きいときに、アンモニア計によるFB制御により急激に風量を低減する結果となった場合にDOが想定よりも小さくなり、水質が急激に悪化する恐れがあった。あるいは、DOが下限値よりも小さい場合はDO計によるFB制御となるが、アンモニア濃度が急激に増加して硝化に必要な風量が増加したにも関わらず、DO濃度には直接的に反映されず、結果として風量が過小になり、水質が悪化する恐れがあった。 In the method of Patent Document 1, feedback (FB) control of the air volume by the ammonia meter is performed so that the measured ammonia concentration approaches the preset ammonia concentration, but at that time, the preset lower limit value of DO is set. When it falls below, it switches to FB control by DO. However, there were problems in the following cases. When the DO is larger than the lower limit value, if the FB control by the ammonia meter results in a rapid reduction of the air volume, the DO becomes smaller than expected and the water quality may deteriorate sharply. Alternatively, when DO is smaller than the lower limit value, the FB control is performed by the DO meter, but the DO concentration is directly reflected in spite of the rapid increase in the ammonia concentration and the increase in the air volume required for nitrification. As a result, there was a risk that the air volume would be too small and the water quality would deteriorate.

非特許文献2の方法は、好気槽の中段に設置したアンモニア計に基づいて好気槽の
後段のDO値の目標値を設定するカスケード型のフィードバック(FB)制御である。処
理途中あるいは処理された水質に基づいた制御のため、流入水質が変動した場合、その影
響がセンサ位置に到達するまで変動は考慮されず、風量不足による処理水質の悪化あるい
は過剰風量となる課題があった。詳細について述べると、例えば、日間変動が大きい場合
や急な降雨で一時的にアンモニアが希釈された下水が流入した場合である。中段のアンモ
ニア計で計測した濃度が大きいと、全体風量は増加する。その際、希釈されている上流側
では過剰処理となり、下流側に到達する前に処理水の目標値に達することがある。その結
果、その後、流下した下流側では最小風量下でも過剰処理となり、過剰曝気となる可能性が考えられる。一度中段のアンモニア計位置での目標値から大きく外れると、その後も風量が振動し、処理が安定しない可能性もある。もう一つの課題は維持管理性に関する課題である。制御に用いる中段地点のアンモニア濃度とDOの目標値の関係式は、オペレータ側で処理特性に合わせて試行錯誤的に、且つ、活性汚泥性状の季節変動に合わせて継続的に調整する必要があり、維持管理は必ずしも容易ではない。
The method of Non-Patent Document 2 is a cascade-type feedback (FB) control that sets a target value of a DO value in the latter stage of the aerobic tank based on an ammonia meter installed in the middle stage of the aerobic tank. Since the control is based on the quality of the treated water during or after the treatment, if the influent water quality changes, the variation is not considered until the effect reaches the sensor position, and there is a problem that the treated water quality deteriorates due to insufficient air volume or becomes excessive air volume. there were. More specifically, for example, there is a large daily fluctuation, or a case where sewage in which ammonia is temporarily diluted flows in due to sudden rainfall. When the concentration measured by the ammonia meter in the middle is large, the total air volume increases. At that time, the diluted upstream side may be over-treated, and the target value of the treated water may be reached before reaching the downstream side. As a result, there is a possibility that after that, excessive treatment will be performed on the downstream side even under the minimum air flow rate, resulting in excessive aeration. Once it deviates largely from the target value at the position of the ammonia meter in the middle stage, the air volume will continue to oscillate and the processing may not be stable. Another issue is the issue of maintenance. It is necessary for the operator to adjust the relational expression between the ammonia concentration at the middle point used for control and the target value of DO by trial and error according to the treatment characteristics, and continuously according to the seasonal fluctuation of the activated sludge properties. However, maintenance is not always easy.

非特許文献1、特許文献1、そして、非特許文献2の方法は、制御のためのパラメータが手動で与えられるものである。活性汚泥の特性は時間とともに変化していくため、パラメータは試行錯誤的に調整する必要があり、維持管理の労力が増大する傾向にある。 In the methods of Non-Patent Document 1, Patent Document 1 and Non-Patent Document 2, parameters for control are manually given. Since the characteristics of activated sludge change with time, it is necessary to adjust the parameters by trial and error, and the labor for maintenance tends to increase.

そこで、本発明の目的は、維持管理性を向上し、下水処理の水質を適切に制御しつつ消費エネルギーを抑制する下水処理制御装置を提供することにある。 Therefore, an object of the present invention is to provide a sewage treatment control device that improves maintenance and manages energy consumption while appropriately controlling the water quality of sewage treatment.

本発明の下水処理制御装置は、被処理水を酸化処理する好気槽と、前記好気槽に空気を送るブロワと、前記好気槽中の溶存酸素濃度を推定する溶存酸素濃度推定部と、前記好気槽中の溶存酸素濃度の目標値を設定する溶存酸素濃度目標設定部と、前記好気槽中の溶存酸素濃度以外の水質値を推定する好気槽中水質値推定部と、前記好気槽中の溶存酸素濃度以外の水質値の目標値を設定する好気槽中水質値目標設定部と、前記ブロワの風量を推定するブロワ風量推定部と、前記ブロワの風量を演算するブロワ風量演算部と、を備えた下水処理制御装置において、前記好気槽中水質値推定部で推定する水質値が、前記ブロワから酸素を吹き込むことで変動する水質値であり、前記ブロワ風量演算部が、前記好気槽中の溶存酸素濃度の目標値と前記溶存酸素濃度推定部による溶存酸素濃度の推定値との差分に基づき演算されたブロワ風量と、前記好気槽中の溶存酸素濃度以外の水質値の目標値と前記好気槽中水質値推定部による好気槽中の水質値の推定値との差分に基づき演算されたブロワ風量のうち、大きいブロワ風量を出力することを特徴とする。 The sewage treatment control device of the present invention includes an aerobic tank for oxidizing treated water, a blower for sending air to the aerobic tank, and a dissolved oxygen concentration estimation unit for estimating a dissolved oxygen concentration in the aerobic tank. A dissolved oxygen concentration target setting unit that sets a target value of the dissolved oxygen concentration in the aerobic tank, and an aerobic tank water quality value estimation unit that estimates a water quality value other than the dissolved oxygen concentration in the aerobic tank, An aerobic tank water quality value target setting unit that sets a target value of a water quality value other than the dissolved oxygen concentration in the aerobic tank, a blower air flow rate estimation unit that estimates the air flow rate of the blower, and an air flow rate of the blower is calculated. In the sewage treatment control device including a blower air flow rate calculation unit, the water quality value estimated by the aerobic tank water quality value estimation unit is a water quality value that fluctuates by blowing oxygen from the blower, and the blower air flow rate calculation unit. Part, the blower air volume calculated based on the difference between the target value of the dissolved oxygen concentration in the aerobic tank and the estimated value of the dissolved oxygen concentration by the dissolved oxygen concentration estimation unit, and the dissolved oxygen concentration in the aerobic tank Of the blower air volume calculated based on the difference between the target value of the water quality value other than and the estimated value of the water quality value in the aerobic tank by the aerobic tank water quality value estimation unit, a large blower air volume is output. And

本発明によれば、維持管理性を向上し、下水処理の水質を適切に制御しつつ消費エネルギーを抑制できる。 ADVANTAGE OF THE INVENTION According to this invention, maintainability can be improved and energy consumption can be suppressed, controlling the water quality of sewage treatment appropriately.

実施例1の下水処理制御装置の構成図。The block diagram of the sewage treatment control apparatus of Example 1. 実施例2の下水処理制御装置の構成図。The block diagram of the sewage treatment control apparatus of Example 2. 仮想流体塊による上流側風量演算を示す図。The figure which shows the upstream side air volume calculation by a virtual fluid mass. 処理特性関数を示す図。The figure which shows a processing characteristic function. 処理特性関数の更新の様子を示す図。The figure which shows the mode of update of a processing characteristic function. 抽出した処理特性の時間変化を示す図。The figure which shows the time change of the extracted processing characteristic.

本発明の各実施例を図面により説明する。 Embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例1の構成図である。 1 is a configuration diagram of a first embodiment of the present invention.

本実施例は嫌気好気活性汚泥法の下水処理場に下水処理制御装置200を適用した例である。上流側から最初沈殿池1、嫌気槽6、好気槽3、最終沈殿池4が連通し、好気
槽3はブロワ5と連通する。最初沈殿池1では、流入する下水100を重力沈降により上
澄液である初沈越流水101と沈降物である初沈汚泥に分離する。最終沈殿池4では、流
入する活性汚泥102を上澄み液である処理水103と沈降物である返送汚泥104に分離する。返送汚泥104は初沈越流水101と混合し、活性汚泥102として嫌気槽2に
流入する。ブロワ5からは好気槽3に空気106が送られる。
This embodiment is an example in which the sewage treatment control device 200 is applied to a sewage treatment plant of an anaerobic aerobic activated sludge method. From the upstream side, the first settling tank 1, the anaerobic tank 6, the aerobic tank 3, and the final settling tank 4 communicate with each other, and the aerobic tank 3 communicates with the blower 5. In the first settling basin 1, the inflowing sewage 100 is separated by gravity settling into a first settling overflow water 101 which is a supernatant and a first settling sludge which is a sediment. In the final settling tank 4, the inflowing activated sludge 102 is separated into treated water 103 which is a supernatant and return sludge 104 which is a sediment. The returned sludge 104 is mixed with the first settling water 101 and flows into the anaerobic tank 2 as activated sludge 102. Air 106 is sent from the blower 5 to the aerobic tank 3.

好気槽3には溶存酸素濃度推定部であるDO計16が設置されている。また、好気槽中水質値推定部である好気槽アンモニア計12が設置され、好気槽3のアンモニア性窒素濃度を計測する。ここでのアンモニア性窒素濃度は溶存酸素と同様にブロワから酸素を吹き込むことで変動する水質である。ブロワ5と好気槽3を連通する配管にはブロワ風量推定部である風量計13が設置され、好気槽3へ送られる空気の風量を計測する。 In the aerobic tank 3, a DO meter 16 which is a dissolved oxygen concentration estimation unit is installed. Further, an aerobic tank ammonia meter 12, which is a water quality value estimating unit in the aerobic tank, is installed to measure the concentration of ammonia nitrogen in the aerobic tank 3. The ammonia nitrogen concentration here is a water quality that changes by blowing oxygen from a blower like dissolved oxygen. An air flow meter 13, which is a blower air flow rate estimation unit, is installed in a pipe connecting the blower 5 and the aerobic tank 3 to measure the air flow rate of the air sent to the aerobic tank 3.

DO計16、好気槽アンモニア計12、風量計13での計測値、溶存酸素濃度目標値設定部22で設定されたDO値、好気槽中水質目標値設定部23で設定されたアンモニア性窒素濃度値は、ブロワ風量演算部20に送信される。ブロワ風量演算部20の演算結果はブロワ風量制御部21に送信され、ブロワ5の風量はブロワ風量演算部20で演算した風量に制御される。 Measured values by the DO meter 16, the aerobic tank ammonia meter 12, and the airflow meter 13, the DO value set by the dissolved oxygen concentration target value setting unit 22, and the ammoniacal property set by the aerobic tank water quality target value setting unit 23 The nitrogen concentration value is transmitted to the blower air volume calculation unit 20. The calculation result of the blower air volume calculation unit 20 is transmitted to the blower air volume control unit 21, and the air volume of the blower 5 is controlled to the air volume calculated by the blower air volume calculation unit 20.

実施例1での風量演算方法について説明する。溶存酸素濃度目標値設定部22で設定されたDO値を1.0mg/L、好気槽中水質目標値設定部23で設定されたアンモニア性窒素濃度値を3.5mg-N/Lとすると、ブロワ風量演算部20ではDO計が1.0mg/LになるようにPI制御によるFB演算(以下、DO制御)を実施して必要な風量を求める。並列して、アンモニア計が3.5mg-N/LになるようにPID制御によるFB演算(以下、硝化制御)を実施して必要な風量を求める。ブロワ風量演算部20では、この二つの風量の演算結果のうち、大きい風量を採用し、ブロワ風量制御部21に送信する。 The air volume calculation method in the first embodiment will be described. If the DO value set by the dissolved oxygen concentration target value setting unit 22 is 1.0 mg/L and the ammonia nitrogen concentration value set by the aerobic tank water quality target value setting unit 23 is 3.5 mg-N/L, the blower In the air volume calculation unit 20, FB calculation by PI control (hereinafter, DO control) is carried out so that the DO meter becomes 1.0 mg/L, and a necessary air volume is obtained. In parallel, FB calculation by PID control (hereinafter, nitrification control) is performed so that the ammonia meter becomes 3.5 mg-N/L, and the required air volume is obtained. The blower air volume calculation unit 20 adopts the larger air volume out of the calculation results of the two air volumes and transmits it to the blower air volume control unit 21.

制御方式の切替ではなく並列して計算した結果を選択とすることで、処理水の水質を良好に保つことができる。例えば溶存酸素濃度目標値設定部22で設定されたDO値よりもDOが大きい場合、硝化制御による急な風量低減指示に対しても設定されたDO値を目標とする計算結果を採用し、水質の維持を図ることができる。あるいは、設定されたDO値よりもDOが小さい場合でも、硝化制御による早急な風量増加指示に対応し、水質の維持を図ることができる。 By selecting the result calculated in parallel instead of switching the control method, the quality of the treated water can be kept good. For example, if the DO value is larger than the DO value set by the dissolved oxygen concentration target value setting unit 22, the calculation result that targets the set DO value is adopted even for a sudden air volume reduction instruction by nitrification control, and the water quality is Can be maintained. Alternatively, even when the DO is smaller than the set DO value, it is possible to maintain the water quality by responding to the prompt air volume increase instruction by the nitrification control.

本実施例では、適用例として嫌気好気活性汚泥法を取り上げたが、標準法や循環式硝化脱窒法、A2O法、準高度処理法やこれらにステップフィードを適用した方式など、好気槽で硝化を実施する方式であれば全ての方式に適用できる。 In this example, the anaerobic aerobic activated sludge method was taken up as an application example. Any method can be applied as long as it is a method for performing nitrification.

本実施例では、流入水水質で推定する水質としてアンモニア性窒素を例としてあげたが、これらに限定されるものではなく、流入水質推定部で推定する水質はブロワから酸素を吹き込むことで酸化などにより変動する水質であれば良い。本実施例ではブロワから酸素を吹き込むことで変動する水質値としてアンモニア性窒素濃度およびその推定手段としてアンモニア計を用いたが、硝酸性窒素濃度、全窒素濃度、リン酸性リン濃度、全リン濃度や、BOD、CODMn、CODCr、TOCなどの有機物濃度でもよい。 In the present embodiment, ammonia nitrogen was taken as an example of the water quality estimated by the inflow water quality, but the water quality estimated by the inflow water quality estimation unit is not limited to these, and oxidation by blowing oxygen from the blower, etc. The water quality may vary depending on. In this embodiment, the ammonia nitrogen was used as the water quality value fluctuating by blowing oxygen from the blower and the ammonia meter was used as its estimation means.However, the nitrate nitrogen concentration, the total nitrogen concentration, the phosphoric acid phosphorus concentration, the total phosphorus concentration and , BOD, COD Mn , COD Cr , TOC, etc. may be used.

本実施例では下流側風量の演算としてPI制御を用いたが、PID制御や他のフィードバッ
ク制御手法でも良い。
In this embodiment, PI control is used as the calculation of the downstream air volume, but PID control or another feedback control method may be used.

本実施例では、最初沈殿池1を設置したが、最初沈殿池1を除いた構成でも良い。また
、最終沈殿池4の代替として、活性汚泥と処理水の分離に膜を用いる膜分離活性汚泥法活
性汚泥法でも良い。その場合、例えば好気槽3に膜を浸漬させても良い。
Although the first settling tank 1 is installed in the present embodiment, the first settling tank 1 may be omitted. Further, as an alternative to the final settling tank 4, a membrane separation activated sludge method activated sludge method using a membrane for separating activated sludge and treated water may be used. In that case, for example, the membrane may be immersed in the aerobic tank 3.

図2は本発明の実施例2の構成図である。 FIG. 2 is a configuration diagram of the second embodiment of the present invention.

本実施例は循環式硝化脱窒法の下水処理場に下水処理制御装置200を適用した例である。上流側から最初沈殿池1、無酸素槽2、好気槽3、最終沈殿池4が連通し、好気
槽3はブロワ5と連通する。最初沈殿池1では、流入する下水100を重力沈降により上
澄液である初沈越流水101と沈降物である初沈汚泥に分離する。最終沈殿池4では、流
入する活性汚泥102を上澄み液である処理水103と沈降物である返送汚泥104に分離する。返送汚泥104は初沈越流水101と混合し、活性汚泥102として無酸素槽2に流入する。好気槽3の末端からは活性汚泥102の一部が無酸素槽2へと循環液105として循環する。ブロワ5からは好気槽3に空気106が送られる。
The present embodiment is an example in which the sewage treatment control device 200 is applied to a sewage treatment plant of a circulation type nitrification denitrification method. From the upstream side, the first settling tank 1, the anoxic tank 2, the aerobic tank 3, and the final settling tank 4 communicate with each other, and the aerobic tank 3 communicates with the blower 5. In the first settling basin 1, the inflowing sewage 100 is separated by gravity settling into a first settling overflow water 101 which is a supernatant and a first settling sludge which is a sediment. In the final settling tank 4, the inflowing activated sludge 102 is separated into treated water 103 which is a supernatant and return sludge 104 which is a sediment. The returned sludge 104 is mixed with the initial settling water 101 and flows into the anoxic tank 2 as activated sludge 102. From the end of the aerobic tank 3, a part of the activated sludge 102 circulates to the anoxic tank 2 as a circulating liquid 105. Air 106 is sent from the blower 5 to the aerobic tank 3.

制御系の構成では、実施例1の構成に加えて、無酸素槽3には流下流量推定部である流下流量計10と上流側水質値推定部である流入アンモニア計11が設置され、好気槽3へ流入する流入水の流量とアンモニア濃度を計測する。ここでのアンモニア濃度は溶存酸素と同様にブロワから酸素を吹き込むことで変動する水質である。 In the configuration of the control system, in addition to the configuration of the first embodiment, the anoxic tank 3 is provided with a downflow meter 10 that is a downflow rate estimation section and an inflow ammonia meter 11 that is an upstream side water quality value estimation section. The flow rate of inflow water flowing into the tank 3 and the ammonia concentration are measured. The ammonia concentration here is a water quality that changes by blowing oxygen from the blower like dissolved oxygen.

ブロワ風量演算部20へは、実施例1の項目に加えて、下流側水質値目標設定部24で設定された処理水のアンモニア性窒素濃度の目標値が送信される。ブロワ風量演算部20の演算結果はブロワ風量制御部21に送信され、ブロワ5の風量はブロワ風量演算部20で演算した風量に制御される。 In addition to the items of the first embodiment, the target value of the ammonia nitrogen concentration of the treated water set by the downstream side water quality value target setting unit 24 is transmitted to the blower air volume calculation unit 20. The calculation result of the blower air volume calculation unit 20 is transmitted to the blower air volume control unit 21, and the air volume of the blower 5 is controlled to the air volume calculated by the blower air volume calculation unit 20.

まず、実施例2の方法における効果の特徴について概説する。 First, the features of the effects of the method of the second embodiment will be outlined.

一般的なDO制御では好気槽の溶存酸素濃度を一定とすることで好気反応を促進させる。しかし、DOは放流基準となる直接的な水質ではないため、一般的には過剰処理側、すなわち過剰曝気、過剰消費電力で水質を維持する傾向がある。例えば、急な降雨で一時的に希釈された下水が流入した場合、(1)希釈前の好気槽末端でDO一定運転、(2)流量増加・滞留時間減少のため全体風量増加、(3)希釈されている上流側では過剰処理、(4)その後流下した下流側で最小風量下でも過剰処理、となり、過剰曝気となる可能性が考えられる。その後も風量が振動し、処理が安定しない可能性もある。さらに、維持管理性に関する課題がある。制御に用いるDOの目標値の関係式の設定値は、オペレータ側で処理特性に合わせて試行錯誤的に、且つ、活性汚泥性状の季節変動に合わせて継続的に調整する必要がある。 In general DO control, the aerobic reaction is promoted by keeping the dissolved oxygen concentration in the aerobic tank constant. However, since DO is not a direct water quality that is the standard for discharge, it generally tends to maintain water quality on the over-treatment side, that is, excessive aeration and excessive power consumption. For example, when sewage temporarily diluted by sudden rainfall flows in, (1) constant DO operation at the end of the aerobic tank before dilution, (2) increase in total air volume due to increase in flow rate/retention time, (3) ) There is a possibility of excessive aeration due to excessive treatment on the diluted upstream side, and (4) excessive treatment on the downstream side after flowing down even under the minimum air volume. Even after that, the air volume may vibrate and the processing may not be stable. Furthermore, there is a problem regarding maintainability. It is necessary for the operator to adjust the set value of the relational expression of the target value of DO used for control by trial and error according to the treatment characteristics, and continuously according to the seasonal fluctuation of the activated sludge properties.

上述の課題に対し、実施例2の方法では(1)上流側・下流側個別風量演算、(2)処理特性見える化、(3)制御モデル(制御パラメータ)自動更新により解決を図る。 The above-mentioned problem is solved by the method of the second embodiment by (1) upstream/downstream side individual air volume calculation, (2) visualization of processing characteristics, and (3) automatic update of control model (control parameter).

(1)上流側・下流側個別風量演算では、処理水アンモニア濃度目標値に加えて中間点アンモニア濃度を考慮した硝化運転制御により、処理を安定化して過剰曝気や曝気不足を抑制する。上流側風量は上流側のアンモニア濃度計測値と中間点アンモニア濃度演算値から演算する。下流側風量については、中間点のアンモニア濃度によるPI制御とする。ここでの上流側風量はフィードフォワード(FF)演算によるもので、下流側風量はフィードバック(FB)演算によるものである。硝化制御による風量としては、それぞれに重み付けをして、FF的な要素とFB的な要素をバランスする。最終的な硝化運転制御における風量としては、硝化制御による風量に、従来から利用されたDO制御による演算を並列させて、選択する。これは、これまでの維持管理上の経験的な要素及び安定した制御実績を取り込み、安定的な制御を実現するためである。 (1) In the upstream/downstream individual air volume calculation, the nitrification operation control that takes into consideration the intermediate point ammonia concentration in addition to the treated water ammonia concentration target value stabilizes the treatment and suppresses excessive aeration and insufficient aeration. The upstream air volume is calculated from the upstream ammonia concentration measurement value and the intermediate point ammonia concentration calculation value. For downstream air volume, PI control is performed based on the ammonia concentration at the midpoint. The upstream air volume here is based on the feed forward (FF) calculation, and the downstream air volume is based on the feedback (FB) operation. The air flow rate by nitrification control is weighted to balance FF-like elements and FB-like elements. The final air volume in the nitrification operation control is selected by paralleling the air volume in the nitrification control with the operation in the DO control conventionally used. This is to realize stable control by incorporating empirical factors and stable control results in maintenance and management so far.

(2)処理特性見える化では、処理特性を表すモデルとして可視化できる関数を用いる。さらに、処理実績による実測点をその上にプロットすることで、維持管理上重要な処理現況を見える化する。この見える化された処理特性モデルの関数を曝気風量演算に用いる。図3に上流側のフィードフォワード風量の演算方法を示す。好気槽入口から中間点アンモニア計が設置された好気槽までを上流側とする。処理特性グラフは、流入と中間点のアンモニア濃度の差分の処理アンモニア濃度と必要累積風量の関数で表される。必要累積風量[m3]は風量[m3/h]の積分に相当する。必要累積風量や上流側風量QBupの演算には、仮想流体塊を追跡するラグランジュ的な手法を用いた。一定制御周期毎に流入する仮想流体塊を考え、t = t0で流入した仮想流体塊(灰色部)は、t = tNで中間点アンモニア計が設置された好気槽の後端に到達する。累積風量は各時刻で仮想流体塊に吹き込まれた風量の加算である。それぞれの仮想流体塊はそれまでに累積した累積風量と、処理特性グラフと流入/目標アンモニア濃度より算出した必要累積風量を持つ。この差分と残滞留時間(予測値)から、流体塊ごとの適切な風量が算出され、この平均値から時刻tNの上流側風量QBup(tN)を導出できる。 (2) In the visualization of processing characteristics, a function that can be visualized as a model representing processing characteristics is used. Furthermore, by plotting the actual measurement points based on the processing results, the current processing status that is important for maintenance is visualized. The function of the visualized processing characteristic model is used for aeration air volume calculation. FIG. 3 shows a method of calculating the feedforward air volume on the upstream side. The upstream side is from the aerobic tank inlet to the aerobic tank where the midpoint ammonia meter is installed. The treatment characteristic graph is expressed as a function of the treatment ammonia concentration and the required cumulative air volume, which are the differences between the inflow and intermediate point ammonia concentrations. The required cumulative air volume [m 3 ] corresponds to the integral of the air volume [m 3 /h]. A Lagrangian method of tracking a virtual fluid mass was used to calculate the required cumulative air volume and the upstream air volume Q Bup . Considering the virtual fluid mass flowing in at every constant control cycle, the virtual fluid mass flowing in at t = t 0 (gray part) reaches the rear end of the aerobic tank where the midpoint ammonia meter is installed at t = t N. To do. The cumulative air volume is the addition of the air volume blown into the virtual fluid mass at each time. Each virtual fluid mass has the cumulative air volume accumulated up to that point and the required cumulative air volume calculated from the processing characteristic graph and the inflow/target ammonia concentration. From this difference and the remaining residence time (predicted value), an appropriate air volume for each fluid mass is calculated, and the upstream air volume Q Bup (t N ) at time t N can be derived from this average value.

(3)制御モデル(制御パラメータ)自動更新は、仮想流体塊の概念を用いることで実現できる。t = tNで中間点アンモニア計が設置された好気槽に到達した仮想流体塊は、流入アンモニア濃度、中間点アンモニア濃度、累積風量の情報を持つ。これより、処理アンモニア濃度と累積風量の関係を制御周期ごとに抽出し、処理特性グラフに現在の点をプロットできる。通年で見ると活性汚泥の性質は徐々に変化していくが、革新的技術では各センサ情報から処理特性グラフを自動更新できる。さらにその時間変化により、異常に対する気づきが早まる。実績値に基づいた制御パラメータの自動更新により制御精度を担保すると同時に維持管理性を向上する。 (3) The automatic updating of the control model (control parameter) can be realized by using the concept of the virtual fluid mass. At t = t N , the virtual fluid mass that reaches the aerobic tank where the midpoint ammonia meter is installed has information on the inflow ammonia concentration, midpoint ammonia concentration, and cumulative air volume. From this, the relationship between the treated ammonia concentration and the cumulative air flow can be extracted for each control cycle, and the current point can be plotted on the treatment characteristic graph. Although the properties of activated sludge gradually change over the whole year, the innovative technology can automatically update the treatment characteristic graph from each sensor information. Furthermore, the change with time accelerates the awareness of the abnormality. Automatically updating the control parameters based on the actual value ensures control accuracy and at the same time improves maintainability.

以下に、計算方法の詳細として、実施例2での風量演算方法について説明する。実施例2では、好気槽3のうち、好気槽アンモニア計12よりも上流側の好気槽を上流側好気槽、下流側の好気槽を下流側好気槽とする。 The air volume calculation method in the second embodiment will be described below as the details of the calculation method. In the second embodiment, of the aerobic tank 3, the aerobic tank upstream of the aerobic tank ammonia meter 12 is the upstream aerobic tank, and the downstream aerobic tank is the downstream aerobic tank.

実施例2では、上流側風量をフィードフォワード(FF)演算で、下流側風量をフィードバック(FB)演算で導出し、さらにDO制御による演算も実施し、これらを組み合わせて全体風量を演算する。FB演算では、流入アンモニア計11による過去のアンモニア性窒素濃度と、下流側水質値目標設定部24で設定された処理水のアンモニア性窒素濃度から演算した、時間により変動する水質演算値を、アンモニア性窒素濃度の目標値として設定して、好気槽アンモニア計12の現在のアンモニア性窒素濃度と比較するPI制御等を実施する。FB制御のみで制御は可能であるが、その過去の値を用いる計算メカニズムは、以下に述べるFF制御と同様のため、以下ではまず、FF演算について説明する。 In the second embodiment, the upstream air flow rate is calculated by the feed forward (FF) operation, the downstream air flow rate is calculated by the feedback (FB) operation, the DO control operation is further performed, and these are combined to calculate the overall air flow rate. In the FB calculation, a time-dependent water quality calculation value calculated from the past ammonia nitrogen concentration by the inflow ammonia meter 11 and the ammonia nitrogen concentration of the treated water set by the downstream water quality value target setting unit 24 The target value of the nitrogen concentration is set as a target value, and PI control for comparing with the current ammonia nitrogen concentration of the aerobic tank ammonia meter 12 is executed. The control is possible only by the FB control, but the calculation mechanism using the past value is the same as that of the FF control described below. Therefore, the FF operation will be described first below.

以下、アンモニア性窒素濃度という言葉をNH4と記す。FB比率FBrt [-]、上流側処理率UPrt [-]、処理水NH4目標値NH4out_tgt [mg-N/L]とした。ここでの上流側とは、中間点のアンモニア計までの好気槽を指す。時刻tにおける計測値は、流入NH4計測値NH4in(t) [mg-N/L]、中間NH4計測値NH4md(t) [mg-N/L]、好気槽を流下する(循環法の場合は下水流量、返送流量、循環流量の合計)流下流量Qin(t) [m3/h]、送風量計測値QB(t) [m3/h]、好気槽末端のDO計測値DO(t) [mg/L]である。ここでは変数を斜体で表した。 Hereinafter, the term ammonia nitrogen concentration is referred to as NH4. FB ratio FB rt [-], upstream side treatment rate UP rt [-], treated water NH4 target value NH4 out_tgt [mg-N/L]. The upstream side here refers to the aerobic tank up to the intermediate point ammonia meter. The measured values at time t are inflow NH4 measured value NH4 in (t) [mg-N/L], intermediate NH4 measured value NH4 md (t) [mg-N/L], and flow down the aerobic tank (circulation method. In the case of, total of sewage flow rate, return flow rate, circulation flow rate) Downflow rate Q in (t) [m 3 /h], measured air flow rate Q B (t) [m 3 /h], DO at aerobic tank end The measured value is DO(t) [mg/L]. Variables are shown here in italics.

フィードフォワード演算における中間NH4演算値NH4md_FFtgt(t) [mg-N/L]は、流入NH4計測値NH4in(t)が処理水NH4目標値NH4out_tgtになるための通過点の位置付けであり、NH4in(t)が大きくなれば大きくなる。NH4md_FFtgt(t)は上流側処理率UPrt を用いて式(1)で演算される。 The intermediate NH4 calculated value NH4 md_FFtgt (t) [mg-N/L] in the feedforward calculation is the position of the passing point for the inflow NH4 measured value NH4 in (t) to become the treated water NH4 target value NH4 out_tgt , The larger the NH4 in (t), the larger. NH4 md_FFtgt (t) is calculated by the equation (1) using the upstream processing rate UP rt .

Figure 0006726954
Figure 0006726954

フィードフォワード演算では、このNH4md_tgt(t)が通過点となるフィードフォワード演算風量QB_FF(t+Δt)を求める。 In the feed-forward calculation, the feed-forward calculation air volume QB_FF (t+Δt) at which this NH4 md_tgt (t) becomes a passing point is obtained.

まず、一定の制御周期Δt毎に計算系(ここでは上流側のアンモニア計から中間点のアンモニア計までの生物反応槽)に1次元的に流入する仮想流体塊を考え、これをラグランジュ的に追跡する(図1−2)。灰色で示した仮想流体塊は時刻t0で計算系に流入し、時刻tNで計算系後端に到達している。流下流量Qin(t)によって仮想流体塊の大きさは異なる。時刻tでの上流側からi番目の仮想流体塊iの位置をXvc、i(t) [m]とすると、Xvc、1(t)およびXvc、i(t+Δt)は式(2)(3)で表される。 First, consider a virtual fluid mass that one-dimensionally flows into the calculation system (here, the biological reaction tank from the ammonia meter on the upstream side to the ammonia meter at the intermediate point) at a constant control cycle Δt, and trace this in a Lagrangian manner. (Fig. 1-2). The virtual fluid mass shown in gray flows into the calculation system at time t 0 and reaches the rear end of the calculation system at time t N. The size of the virtual fluid mass depends on the flow rate Q in (t). If the position of the i-th virtual fluid mass i from the upstream side at time t is X vc, i (t) [m], then X vc, 1 (t) and X vc, i (t+Δt) are 2) It is represented by (3).

Figure 0006726954
Figure 0006726954

Figure 0006726954
Figure 0006726954

ここでS [m2]は生物反応槽流下方向の断面積である。それぞれの仮想流体塊は流入時に計測・演算される固有の値を保持しつつ流下していく。仮想流体塊iに対応する流入アンモニア濃度NH4in、i(t) [mg-N/L]は、式(4)で表される。 Here, S [m 2 ] is the cross-sectional area in the downward direction of the biological reaction tank. Each virtual fluid mass flows down while holding the unique value measured and calculated at the time of inflow. The inflowing ammonia concentration NH4 in, i (t) [mg-N/L] corresponding to the virtual fluid mass i is represented by the equation (4).

Figure 0006726954
Figure 0006726954

仮想流体塊iを演算値の水質に制御するために必要となる必要累積風量VB_tgt、i [m3]は処理特性モデルである式(5)の左の関数で表される。 The required cumulative air volume V B_tgt, i [m 3 ] required to control the virtual fluid mass i to the calculated water quality is represented by the function on the left side of equation (5), which is the processing characteristic model.

Figure 0006726954
Figure 0006726954

ここでa、bは係数、ΔNH4tgt(t) [mg-N/L]は処理アンモニア濃度目標値で式(6)となる。 Here, a and b are coefficients, and ΔNH4 tgt (t) [mg-N/L] is the treated ammonia concentration target value, which is given by equation (6).

Figure 0006726954
Figure 0006726954

仮想流体塊iが計算系へ流入した時刻をt0、i、上流側好気槽(中間点のアンモニア計までの好気槽)への曝気風量をQBup(t) [m3/h]、位置Xi(t)での風量配分密度をD(Xi(t)) [-]とすると、時刻tにおける仮想流体塊iへの累積風量VB、i(t) [m3]は式(7)で表される。 The time at which the virtual fluid mass i flows into the calculation system is t 0, i , and the aeration air volume to the upstream aerobic tank (aerobic tank up to the intermediate ammonia meter) is Q Bup (t) [m 3 /h] , And the airflow distribution density at the position X i (t) is D(X i (t)) [-], the cumulative airflow V B, i (t) [m 3 ] to the virtual fluid mass i at time t is It is expressed by equation (7).

Figure 0006726954
Figure 0006726954

ここで風量配分密度D(Xi(t))は上流側各好気槽へ曝気風量の配分率を表す関数で、上流側好気槽全体での配分比の平均を1とする。Vrt、i(t) [-]は上流側好気槽の全体積Vall [m3]に対する仮想流体塊iの体積比で、式(8)で表される。 Here, the air volume distribution density D(X i (t)) is a function that represents the distribution rate of the aeration air volume to each upstream aerobic tank, and the average of the distribution ratios in the entire upstream aerobic tank is 1. V rt, i (t) [-] is the volume ratio of the virtual fluid mass i to the total volume V all [m 3 ] of the upstream aerobic tank, and is represented by the equation (8).

Figure 0006726954
Figure 0006726954

仮想流体塊iは式(5)で示した必要累積風量VB_tgt、iを持つため、累積風量VB、i(t)との差分を残りの滞留時間で除した値が流体塊iに必要な風量となる。したがって、計算系がN個の仮想流体塊で満たされているとすると、時刻t+Δtの上流側風量の演算値QBup(t+Δt) [m3/h]は式(9)で表される。 Since the virtual fluid mass i has the required cumulative air volume V B_tgt,i shown in equation (5), the value obtained by dividing the difference with the cumulative air volume V B,i (t) by the remaining residence time is required for the fluid mass i. It will be a large air volume. Therefore, assuming that the calculation system is filled with N virtual fluid masses, the calculated value Q Bup (t+Δt) [m 3 /h] of the upstream air volume at time t+Δt is expressed by equation (9). To be done.

Figure 0006726954
Figure 0006726954

Lall [m]は上流側好気槽の全長である。中括弧内が流体塊iに必要な曝気風量であるが、実施設の運用にしたがって上限値、下限値を設けることで、分母が小さくなることによる過大値や負値を避けることができる。 L all [m] is the total length of the upstream aerobic tank. The amount of aeration air required for the fluid mass i is shown in the curly braces, but by setting the upper limit value and the lower limit value according to the operation of the implementation, it is possible to avoid an excessive value or a negative value due to a small denominator.

演算風量の評価としては、上流側に必要な風量を好気槽全体の風量とすることで、感覚的に理解しやすくなるため、フィードフォワード演算風量QB_FF(t+Δt)を、上流側の風量配分比Dup [-]、下流側の風量配分比Ddown [-]から、式(10)とする。なお、前出の風量配分密度D(Xi(t))はここでの風量配分比を関数として一般化した形式である。 For the evaluation of the calculated air flow rate, the feed-forward calculated air flow rate Q B_FF (t+Δt) is calculated as From the air volume distribution ratio D up [-] and the downstream air volume distribution ratio D down [-], the equation (10) is obtained. The airflow distribution density D(X i (t)) described above is a form in which the airflow distribution ratio here is generalized as a function.

Figure 0006726954
Figure 0006726954

式(5)の処理特性モデルは、投入する風量に対して処理できるアンモニア濃度で、対象としている下水処理場の処理能力を見える化したものである。モデルを表す関数は制御パラメータの一つであるが、その構築には、上流側好気槽末端に到達した仮想流体塊の情報(実測値)を用いる。時刻tの仮想流体塊の数がN(t) [個]とすると、中間点アンモニア計が設置されている好気槽末端の仮想流体塊N(t)は流入時の流入アンモニア濃度NH4in、N(t)(t)、中間点アンモニア濃度NH4md(t)、累積風量VB、N(t)(t)の情報を持つ。流下する間に処理されたアンモニア濃度である処理アンモニア濃度ΔNH4(t) [mg-N/L]は式(11)で表される。 The treatment characteristic model of equation (5) is a visualization of the treatment capacity of the target sewage treatment plant by the ammonia concentration that can be treated with respect to the input air volume. The function representing the model is one of the control parameters, and the information (measured value) of the virtual fluid mass reaching the end of the upstream aerobic tank is used for its construction. Assuming that the number of virtual fluid masses at time t is N(t) [pieces], the virtual fluid mass N(t) at the end of the aerobic tank where the midpoint ammonia meter is installed is the inflowing ammonia concentration NH4 in at inflow , It has information on N(t) (t), midpoint ammonia concentration NH4 md (t), cumulative air volume V B, and N(t) (t). The treated ammonia concentration ΔNH4(t) [mg-N/L], which is the concentration of ammonia treated while flowing down, is represented by the equation (11).

Figure 0006726954
Figure 0006726954

累積風量VB、N(t)(t)により処理されたアンモニアが、処理アンモニア濃度ΔNH4(t)であり、これらは処理特性そのものを表す。処理特性モデルの導出にはこれらの実測データに最小二乗法を適用した。関数形としては、一次関数、二次関数、対数関数など任意の関数形(図4)選択できるが、実施例2の式(5)では、一次関数とし、傾きaと切片bとした。処理特性グラフには処理特性関数と同時に、上記の実測値が刻々とプロットされる。これにより、処理特性の変化が見える化できる。 Ammonia treated with the cumulative air volume V B,N(t) (t) is the treated ammonia concentration ΔNH4(t), and these represent the treatment characteristics themselves. The least squares method was applied to these measured data to derive the processing characteristic model. As the function form, any function form (FIG. 4) such as a linear function, a quadratic function, and a logarithmic function can be selected, but in the formula (5) of the second embodiment, a linear function is used, and the slope a and the intercept b are used. On the processing characteristic graph, the actual measured values are plotted at the same time as the processing characteristic function. This makes it possible to visualize changes in processing characteristics.

本実施例で、処理特性関数として見える化された処理特性は、活性汚泥性状の季節変動
にともない変動するが、維持管理性の向上にはこの処理特性関数の更新方法が重要となる
。本実施例の実運用により、上流側好気槽の末端に到達した仮想流体塊には、実測値に基
づいた流入アンモニア濃度、好気槽アンモニア濃度、累積風量が蓄積する。この情報に基
づいて処理特性関数の現在値を統計的に更新できる。さらにその時間変化により、異常時
に対する気づきが早まる。開発制御では、実績値に基づいた制御パラメータの自動更新に
より制御精度を担保すると同時に維持管理性を向上することが可能となる。
In the present embodiment, the treatment characteristics visualized as a treatment characteristic function fluctuate according to the seasonal variation of the activated sludge property, but this method of updating the treatment characteristic function is important for improving the maintainability. By the actual operation of the present embodiment, the inflow ammonia concentration, the aerobic tank ammonia concentration, and the cumulative air volume based on the measured values are accumulated in the virtual fluid mass that has reached the end of the upstream aerobic tank. The current value of the processing characteristic function can be statistically updated based on this information. Further, the change with time accelerates the awareness of abnormal times. In the development control, it is possible to ensure control accuracy and improve maintainability by automatically updating the control parameters based on the actual values.

図5に更新の様子を示す。更新前の関数を用いて制御を実施していく毎に、流入アンモ
ニア濃度、好気槽アンモニア濃度、累積風量から実績値の情報が蓄積していく。任意のタ
イミング(一定間隔でも良いし、オペレータの判断でも良い)で、実績値群に対
して例えば回帰分析による近似曲線を引くことで実績値に基づいた処理特性関数に更新で
きる。ここでの近似曲線は、実測値を確からしく近似する曲線であればy=ax+bやy=ax-1+b
などのxの正負の累乗で表される単項式でも良いし、これらを組み合わせた多項式でもよ
い。また、指数や対数、三角関数などの数学関数との組み合わせでも良い。また必ずしも関数ではなく不連続で段階的な対応表でも良い。その場合は、あらかじめ用意したデータベースあるいはオペレータの判断に基づいた対応関係で処理特性関数を更新すれば良い。
FIG. 5 shows the state of updating. Every time the control is executed using the function before the update, the actual value information is accumulated from the inflow ammonia concentration, the aerobic tank ammonia concentration, and the cumulative air volume. It is possible to update the processing characteristic function based on the actual value by drawing an approximate curve by regression analysis for the actual value group at an arbitrary timing (at a constant interval or at the operator's discretion). The approximate curve here is y=ax +b or y=ax -1 +b if it is a curve that accurately approximates the measured value.
It may be a monomial expression represented by the positive or negative power of x, or a polynomial combining them. Further, it may be combined with a mathematical function such as exponential, logarithmic or trigonometric function. Further, it is not necessarily a function, and a discontinuous and stepwise correspondence table may be used. In that case, the processing characteristic function may be updated in a correspondence relation based on a database prepared in advance or the operator's judgment.

処理特性の時間変化については、例えば図6の処理特性関数から求めた指標の時間変化
を操作画面に表示すればよい。図6は指標として、アンモニア性窒素を25kg処理する際に必要となる風量を選び、時間変化をプロットした。一般的に低温期に硝化反応速度は小さくなるが、ここでは温度の影響は取り除いてある。これより、A処理場では10月に急激に風量が増加していることから、硝化菌量が減るなど何らかの異変があったことが推定される。処理特性を可視化して連続してモニタリングすることにより、この異変を即座に察知でき、図5のように、短期間の上昇とすることができる。またB処理場は通年を通じてA処理場より必要風量が大きい。A処理場はB処理場より効率よく運転されていることを表しており、A処理場の運用を参考に運用改善を検討するべきであることが示唆される。
Regarding the temporal change of the processing characteristic, for example, the temporal change of the index obtained from the processing characteristic function of FIG. 6 may be displayed on the operation screen. In FIG. 6, as an index, the amount of air required for treating 25 kg of ammonia nitrogen was selected and the time change was plotted. Generally, the nitrification reaction rate decreases in the low temperature period, but the effect of temperature is removed here. From this, it is estimated that there was something unusual such as a decrease in the amount of nitrifying bacteria at the A treatment plant because the air volume increased rapidly in October. By visualizing the treatment characteristics and continuously monitoring it, this anomaly can be immediately detected, and as shown in FIG. 5, it can be seen as an increase in a short period of time. Also, B treatment plant requires larger air volume than A treatment plant throughout the year. This indicates that the A treatment plant is operating more efficiently than the B treatment plant, suggesting that operational improvement should be considered with reference to the operation of the A treatment plant.

フィードバック演算では、式(12)に示すフィードバック制御における中間点アンモニア濃度の演算値NH4md_FBtgt(t)に対してPID制御によるフィードバック演算を実施する。 In the feedback calculation, the feedback calculation based on the PID control is performed on the calculated value NH4 md_FBtgt (t) of the intermediate point ammonia concentration in the feedback control shown in Expression (12).

Figure 0006726954
Figure 0006726954

NH4in、N(t)(t)は、上流側から下流側に到達した被処理水の流入時のアンモニア濃度の計測値であり、仮想流体塊の概念を用いることによる濃度変動の時間遅れが考慮されている。式(12)より中間点アンモニア濃度の演算値NH4md_FBtgt(t)は変動する流入側アンモニア濃度と固定された処理水アンモニア濃度の中間点として変動幅を持った値として計算される。これに基づいて演算される時刻t+Δtのフィードバック演算風量QB_FB(t+Δt) [m3/h]を式(13)に示す。 NH4 in, N(t) (t) is the measured value of the ammonia concentration at the time of inflow of the water to be treated that has reached from the upstream side to the downstream side, and the time delay of the concentration fluctuation due to the concept of virtual fluid mass is Is being considered. From the equation (12), the calculated value NH4 md_FBtgt (t) of the midpoint ammonia concentration is calculated as a value having a fluctuation range as the midpoint between the varying influent side ammonia concentration and the fixed treated water ammonia concentration. Equation (13) shows the feedback calculation air volume Q B_FB (t+Δt) [m 3 /h] at time t+Δt calculated based on this.

Figure 0006726954
Figure 0006726954

概念的には下流側の好気槽を適切に制御するための風量であるが、演算風量の評価としては、上流側と同様、好気槽全体の風量とすることで、感覚的に理解しやすくなるため、時刻tの風量QB(t) [m3/h]に基づいて求めた。Cpar(Z)は離散時間の並列PIコントローラの伝達関数で、比例項のパラメータをP、積分項のパラメータをI、サンプリング時間をTs [min](=60Δt)として式(14)となる。 Conceptually, it is the air volume for appropriately controlling the aerobic tank on the downstream side, but the evaluation of the calculated air volume is the same as that on the upstream side. Since it becomes easier, it was calculated based on the air volume Q B (t) [m 3 /h] at time t. C par (Z) is the transfer function of the discrete-time parallel PI controller, and the parameter of the proportional term is P, the parameter of the integral term is I, and the sampling time is T s [min](=60Δt). ..

Figure 0006726954
Figure 0006726954

以上より、硝化制御風量QB_NF(t+Δt) [m3/h]は、フィードフォワード演算風量QB_FF(t+Δt)、フィードバック演算風量QB_FB(t+Δt)、FB比率FBrtを用いて、式(15)で表される。 From the above, the nitrification control air volume Q B_NF (t+Δt) [m 3 /h] uses the feedforward calculated air volume Q B_FF (t+Δt), the feedback calculated air volume Q B_FB (t+Δt), and the FB ratio FB rt . Is expressed by equation (15).

Figure 0006726954
Figure 0006726954

前述した通り、硝化運転制御による最終的な風量は、FF制御とFB制御を組み合わせた硝化制御による風量に、従来から利用されたDO制御による演算を並列させて選択する。DO制御は式(14)のPI制御で、目標値としてDO(下側) [mg/L]とDO(上側) [mg/L]を設定する。また、風量上限値、風量下限値、単位時間当たりの風量増加の上下限値である、風量傾き上限値、風量傾き下限値も設定する。これは、これまでの維持管理上の経験的な要素及び安定した制御実績を取り込み、安定的な制御を実現するためである。 As described above, the final air volume by the nitrification operation control is selected by paralleling the air volume by the nitrification control combining the FF control and the FB control with the calculation by the DO control conventionally used. DO control is the PI control of equation (14), and DO (lower side) [mg/L] and DO (upper side) [mg/L] are set as target values. Further, the upper limit value of the air flow rate, the lower limit value of the air flow rate, and the upper and lower limit values of the increase in the air flow rate per unit time, that is, the upper limit value of the air flow rate and the lower limit value of the air flow rate are set. This is to realize stable control by incorporating empirical factors and stable control results in maintenance and management so far.

まず、式(15)で求めた硝化制御風量とDO(下側)制御で演算した風量を比較し、大きい風量を選択する。次に選択した風量とDO(上側)制御で演算した風量を比較し、小さい風量を選択する。制御方式の切替ではなく選択とすることで、処理水の水質を良好に保つことができる。例えばDO(下側)よりもDOが大きい場合、硝化制御による急な風量低減指示に対してもDO(下側)を目標とする計算結果を採用し、水質の維持を図ることができる。あるいは、DO(下側)よりもDOが小さい場合でも、硝化制御による早急な風量増加指示に対応し、水質の維持を図ることができる。最後に選択された風量に対して、曝気風量の上下限値や曝気風量の変化量の傾きの上下限値の範囲内に収まるよう補正することで、最低限の風量を保証あるいは過剰曝気の抑制、さらには風量の急変によるブロワ機器へのダメージを防ぐことができる。 First, the nitrification control air volume obtained by the equation (15) is compared with the air volume calculated by the DO (lower) control, and a large air volume is selected. Next, the selected air volume is compared with the air volume calculated by DO (upper) control, and a smaller air volume is selected. By selecting the control method instead of switching it, the quality of the treated water can be kept good. For example, when the DO is larger than the DO (lower side), it is possible to maintain the water quality by adopting the calculation result of targeting the DO (lower side) even for a sudden air volume reduction instruction by nitrification control. Alternatively, even when the DO is smaller than the DO (lower side), it is possible to maintain the water quality by responding to the prompt air volume increase instruction by the nitrification control. By correcting the last selected air volume so that it falls within the upper and lower limits of the aeration air volume and the upper and lower limits of the slope of the variation of the aeration air volume, the minimum air volume is guaranteed or excessive aeration is suppressed. Moreover, it is possible to prevent damage to the blower device due to a sudden change in the air volume.

演算で求めた時刻t+Δtの上流側風量と下流側風量を合算して求めた全風量QB(t+Δt)を
用いることで、水質の目標値への安定した追随で省エネを図れる風量を求めることができ
る。本実施例では、上流側風量と下流側風量をそのまま合算したが、例えば下流側のフィ
ードバック要素を重視するなど、要求に応じてその重み付けを変化させても良い。また、
複数のブロワや、上流側/下流側好気槽へ連通する弁の制御で、上流側/下流側好気槽へ個
別に送る風量を制御しても良い。その場合、式(1)による全風量を上流側/下流側風量に分
配する必要はなく、上流側風量と下流側風量を本実施例の方法により、それぞれ演算すれ
ばよい。
By using by summing the upstream airflow and the downstream side air volume at time t + Delta] t obtained by the calculation obtained Zenkazeryou Q B (t + Δt), air volume attained energy savings in a stable follow to the target value of the water Can be asked. In the present embodiment, the upstream air volume and the downstream air volume are summed up as they are, but the weighting may be changed according to the request, for example, by emphasizing the feedback element on the downstream side. Also,
By controlling a plurality of blowers and a valve that communicates with the upstream/downstream aerobic tank, the amount of air sent to the upstream/downstream aerobic tank may be controlled individually. In that case, it is not necessary to distribute the total air volume according to the equation (1) to the upstream/downstream air volumes, and the upstream air volume and the downstream air volume may be calculated by the method of this embodiment.

以上より、本実施例の下水処理制御装置を適用することで、処理水質の安定と省エネおよび維持管理性の向上を図ることが出来る。 As described above, by applying the sewage treatment control device of the present embodiment, it is possible to stabilize the treated water quality, save energy, and improve the maintainability.

本実施例では、好気槽に設置した流下流量計10を用いたが、制御対象となる領域の生
物反応槽を流下する流速が分かれば良いので、流下流量計の代替として、例えば、流入下
水流量計と返送汚泥流量計と循環流量計で計測した流量の合計値としても良い。
In the present embodiment, the downflow meter 10 installed in the aerobic tank was used, but since it is only necessary to know the flow velocity flowing down the biological reaction tank in the region to be controlled, as an alternative to the downflow meter, for example, inflow sewage is used. It may be the total value of the flow rates measured by the flow meter, the returned sludge flow meter, and the circulation flow meter.

本実施例では、適用例として循環式硝化脱窒法を取り上げたが、標準法やAO法、A2
O法、準高度処理法やこれらにステップフィードを適用した方式など、好気槽で硝化を実
施する方式であれば全ての方式に適用できる。その場合、例えば標準法やAO法では、流
下流量は流入下水流量と返送汚泥流量の合計となるため、流下流量計10の代替として、
流入下水流量計と返送汚泥流量計の合計値としても良い。
In this example, the circulation type nitrification denitrification method was taken up as an application example, but the standard method, the AO method, the A2 method
It can be applied to all methods such as the O method, the semi-advanced processing method, and the method in which step feed is applied to these methods, as long as the method performs nitrification in an aerobic tank. In that case, for example, in the standard method and the AO method, the downflow rate is the sum of the inflow sewage flow rate and the return sludge flow rate.
It may be the total value of the inflow sewage flowmeter and the returned sludge flowmeter.

本実施例では上流側好気槽でのフィードフォワード制御に対して、流入アンモニア計1
1によるアンモニア濃度を用いたが、下水100や初沈越流水101部分に設置したアン
モニア計やあるいはUV計など相関関係などからアンモニア濃度を推定する他の代替手段で
も良い。あるいは、流量変動、日間変動、季節変動からのアンモニア濃度の推定値でも良
い。これらの場合、好気槽に流入するアンモニア濃度を求める場合、下水100や初沈越
流水101のアンモニア濃度に対して、下水流量、返送汚泥流量、循環流量および、好気
槽アンモニア計12によるアンモニア濃度から推定される返送汚泥、循環液に含まれるア
ンモニア濃度を用いて、流入アンモニア濃度を推定すれば良い。
In this embodiment, inflow ammonia meter 1 is used for feedforward control in the upstream aerobic tank.
Although the ammonia concentration according to No. 1 is used, other alternative means for estimating the ammonia concentration from correlation such as an ammonia meter installed in the sewage 100 or the first settling running water 101 portion or a UV meter may be used. Alternatively, the estimated value of the ammonia concentration based on the flow rate fluctuation, the daily fluctuation, and the seasonal fluctuation may be used. In these cases, when the concentration of ammonia flowing into the aerobic tank is obtained, the sewage flow rate, the return sludge flow rate, the circulation flow rate, and the ammonia by the aerobic tank ammonia meter 12 are compared with the ammonia concentrations of the sewage 100 and the first settling runoff water 101. The inflow ammonia concentration may be estimated by using the returned sludge estimated from the concentration and the ammonia concentration contained in the circulating fluid.

本実施例では下流側風量の演算としてPI制御を用いたが、PID制御や他のフィードバッ
ク制御手法でも良い。
In this embodiment, PI control is used as the calculation of the downstream air volume, but PID control or another feedback control method may be used.

本実施例では、好気槽アンモニア計によるフィードバック制御を実施したが、実運用で
は施設の経験的な運転方針から、好気槽の下流側のDOに下限値を設け、好気槽下流側に設
置したDO計によるDO値が下限値を下回る場合、下限値を目標とするDO制御としてもよい。
In this example, feedback control was performed by the aerobic tank ammonia meter. When the DO value by the installed DO meter is lower than the lower limit value, the DO control targeting the lower limit value may be performed.

本実施例では、好気槽水質推定部としてアンモニア計を用いたが、DO計でも良い。その
場合、式(2)は目標DO値に基づくPI制御等のフィードバック制御としても良い。ここでの
目標DO値は一定の設定値でも良く、あるいは時間や季節や流量などに応じて変動させても
良い。時間の場合は、負荷の大きい昼間はDO設定値を大きく、小さい夜間はDO設定値を小さくすることが考えられる。季節の場合は、水温が低く反応速度が小さい冬季はDO設定値を大きく、大きい夏季はDO設定値を小さくすることが考えられる。流量の場合は、流量が大きく滞留時間が短い期間はDO設定値を大きく、滞留時間が長い期間はDO設定値を小さくすることが考えられる。
In this embodiment, the ammonia meter is used as the aerobic tank water quality estimation unit, but a DO meter may be used. In that case, the equation (2) may be feedback control such as PI control based on the target DO value. The target DO value here may be a fixed set value, or may be changed according to time, season, flow rate, or the like. In the case of time, it is conceivable to increase the DO setting value during the daytime when the load is heavy and decrease the DO setting value during the nighttime when the load is small. In the case of seasons, it is possible to increase the DO set value in winter when the water temperature is low and the reaction rate is small, and decrease the DO set value in large summer. In the case of flow rate, it is conceivable to increase the DO set value during the period when the flow rate is large and the residence time is short, and decrease the DO set value during the period where the residence time is long.

本実施例では、好気槽水質推定部としてアンモニア計を用いたが、その下流側に第二好
気槽水質測定部としてDO計を設置しても良い。その場合、式(2)は目標DO値に基づくPI制御等のフィードバック制御としても良い。ここでの目標DO値は好気槽アンモニア濃度の計測値NH4md(t)と対応させるカスケード制御としても良い。例えば、好気槽アンモニア濃度の計測値NH4md(t)が大きい場合は、処理水アンモニア濃度の目標値NH4out_tgtまでの差分が大きいため、DO設定値を大きく、好気槽アンモニア濃度の計測値NH4md(t)が小さい場合は、DO設定値を小さくすることが考えられる。
In the present embodiment, the ammonia meter is used as the aerobic tank water quality estimating section, but a DO meter may be installed as a second aerobic tank water quality measuring section on the downstream side thereof. In that case, the equation (2) may be feedback control such as PI control based on the target DO value. The target DO value here may be a cascade control corresponding to the measured value NH4 md (t) of the aerobic tank ammonia concentration. For example, if the measured value NH4 md (t) of the aerobic tank ammonia concentration is large, the DO set value is large and the measured value of the aerobic tank ammonia concentration is large because the difference between the treated water ammonia concentration and the target value NH4 out_tgt is large. If NH4 md (t) is small, it is possible to reduce the DO setting value.

本実施例では、最初沈殿池1を設置したが、最初沈殿池1を除いた構成でも良い。また
、最終沈殿池4の代替として、活性汚泥と処理水の分離に膜を用いる膜分離活性汚泥法活
性汚泥法でも良い。その場合、例えば好気槽3に膜を浸漬させても良い。
Although the first settling tank 1 is installed in the present embodiment, the first settling tank 1 may be omitted. Further, as an alternative to the final settling tank 4, a membrane separation activated sludge method activated sludge method using a membrane for separating activated sludge and treated water may be used. In that case, for example, the membrane may be immersed in the aerobic tank 3.

本実施例では、流入水水質で推定する水質としてアンモニア性窒素を例としてあげたが、これらに限定されるものではなく、流入水質推定部で推定する水質はブロワから酸素を吹き込むことで酸化などにより変動する水質であれば良い。 In the present embodiment, ammonia nitrogen was taken as an example of the water quality estimated by the inflow water quality, but the water quality estimated by the inflow water quality estimation unit is not limited to these, and oxidation by blowing oxygen from the blower, etc. The water quality may vary depending on.

1.最初沈殿池
2.無酸素槽
3.好気槽
4.最終沈殿池
5.ブロワ
6.嫌気槽
100.下水
101.初沈越流水
102.活性汚泥
103.処理水
104.返送汚泥
105.循環液
106.空気
10.流入流量計
11.流入アンモニア計
12.好気槽アンモニア計
13.風量計
16.DO計
20.ブロワ風量演算部
21.ブロワ風量制御部
22.溶存酸素濃度目標値設定部
23.好気槽中水質目標値設定部
24.下流側水質値目標設定部
200.下水処理制御装置
1. First settling tank 2. Anoxic tank 3. Aerobic tank 4. Final settling tank 5. Blower 6. Anaerobic tank 100. Sewage 101. First sinking water 102. Activated sludge 103. Treated water 104. Return sludge 105. Circulating fluid 106. Air 10. Inflow meter 11. Inflow ammonia meter 12. Aerobic tank ammonia meter 13. Air flow meter 16. DO total 20. Blower air flow calculation unit 21. Blower air flow controller 22. Dissolved oxygen concentration target value setting unit 23. Aerobic tank water quality target value setting unit 24. Downstream water quality target setting unit 200. Sewage treatment control device

Claims (7)

被処理水を酸化処理する好気槽と、
前記好気槽に空気を送るブロワと、
前記好気槽中の溶存酸素濃度を推定する溶存酸素濃度推定部と、
前記好気槽中の溶存酸素濃度の目標値を設定する溶存酸素濃度目標設定部と、
前記好気槽中の溶存酸素濃度以外の水質値を推定する好気槽中水質値推定部と、
前記好気槽中の溶存酸素濃度以外の水質値の目標値を設定する好気槽中水質値目標設定部と、
前記ブロワの風量を推定するブロワ風量推定部と、
前記ブロワの風量を演算するブロワ風量演算部と、
を備えた下水処理制御装置において、
前記好気槽中水質値推定部で推定する水質値が、前記ブロワから酸素を吹き込むことで変動する水質値であり、
前記ブロワ風量演算部が、前記好気槽中の溶存酸素濃度の目標値と前記溶存酸素濃度推定部による溶存酸素濃度の推定値との差分に基づき演算されたブロワ風量と、前記好気槽中の溶存酸素濃度以外の水質値の目標値と前記好気槽中水質値推定部による好気槽中の水質値の推定値との差分に基づき演算されたブロワ風量のうち、大きいブロワ風量を出力することを特徴とする下水処理制御装置。
An aerobic tank that oxidizes the water to be treated,
A blower that sends air to the aerobic tank,
A dissolved oxygen concentration estimating unit for estimating the dissolved oxygen concentration in the aerobic tank,
A dissolved oxygen concentration target setting unit for setting a target value of the dissolved oxygen concentration in the aerobic tank,
An aerobic tank water quality value estimation unit that estimates a water quality value other than the dissolved oxygen concentration in the aerobic tank,
An aerobic tank water quality value target setting unit for setting a target value of a water quality value other than the dissolved oxygen concentration in the aerobic tank,
A blower air volume estimation unit that estimates the air volume of the blower,
A blower air volume calculation unit for calculating the air volume of the blower,
In a sewage treatment control device equipped with
The water quality value estimated by the aerobic tank water quality value estimation unit is a water quality value that fluctuates by blowing oxygen from the blower,
The blower air volume calculation unit, the blower air volume calculated based on the difference between the target value of the dissolved oxygen concentration in the aerobic tank and the estimated value of the dissolved oxygen concentration by the dissolved oxygen concentration estimation unit, and in the aerobic tank Of the blower air volume calculated based on the difference between the target value of the water quality value other than the dissolved oxygen concentration and the estimated value of the water quality value in the aerobic tank by the aerobic tank water quality value estimation unit, a large blower air volume is output. A sewage treatment control device characterized by:
請求項1において、
前記好気槽中水質値推定部で推定する水質値が、アンモニア性窒素濃度であることを特徴とする下水処理制御装置。
In claim 1,
The sewage treatment control apparatus, wherein the water quality value estimated by the aerobic tank water quality value estimation unit is an ammonia nitrogen concentration.
請求項1または2において、
前記好気槽中の流下流速を推定する流下流量推定部と、
前記好気槽に流入する被処理水の溶存酸素濃度以外の水質値より上流側の水質値を推定する上流側水質値推定部と、
前記好気槽から流出する処理水の溶存酸素濃度以外の水質値より下流側の水質値の目標値を設定する下流側水質値目標設定部と、
を備え、
前記上流側水質値推定部で推定する水質値と、前記下流側水質値目標設定部で設定する水質値が、前記被処理水が前記好気槽に流入して前記ブロワから酸素を吹き込まれると変動する水質値であり、
前記好気槽中水質値目標設定部が、前記好気槽中水質値推定部で推定された現在の水質値と、前記上流側水質値推定部で推定された過去の水質値と、前記下流側水質値目標設定部で設定された水質値との差分から演算した時間により変動する水質値を、前記好気槽中の溶存酸素濃度以外の水質値の目標値として設定することを特徴とする下水処理制御装置。
In claim 1 or 2,
A downflow rate estimating unit for estimating downflow velocity in the aerobic tank,
An upstream water quality value estimation unit that estimates the upstream water quality value from a water quality value other than the dissolved oxygen concentration of the water to be treated that flows into the aerobic tank,
A downstream side water quality value target setting unit for setting a target value of the water quality value on the downstream side of the water quality value other than the dissolved oxygen concentration of the treated water flowing out from the aerobic tank,
Equipped with
And water quality value estimated by the upstream quality value estimator, the water quality value to be set in the downstream quality value target setting unit, write the water to be treated blown oxygen from the blower flows into the aerobic tank or Is the value of the water quality that fluctuates when
The aerobic tank water quality value target setting unit, the current water quality value estimated by the aerobic tank water quality value estimation unit, the past water quality value estimated by the upstream side water quality value estimation unit, and the downstream It is characterized in that a water quality value that varies with time calculated from a difference from the water quality value set in the side water quality value target setting unit is set as a target value of the water quality value other than the dissolved oxygen concentration in the aerobic tank. Sewage treatment control device.
請求項3において、
前記上流側水質値推定部で推定する水質値と、前記下流側水質値目標設定部で設定する水質値が、アンモニア性窒素濃度であることを特徴とする下水処理制御装置。
In claim 3,
The sewage treatment control device, wherein the water quality value estimated by the upstream side water quality value estimation unit and the water quality value set by the downstream side water quality value target setting unit are ammonia nitrogen concentrations.
請求項3または4において、
前記ブロワ風量演算部が、少なくとも前記上流側水質値推定部で推定した水質値と必要風量との関係を記述する必要風量演算機能を備え、
前記上流側水質値推定部で推定した水質値の現時刻の値に基づきフィードフォワード演算した必要風量と過去の値に基づきフィードバック演算した必要風量を用いてブロワ風量を演算することを特徴とする下水処理制御装置。
In Claim 3 or 4,
The blower air volume calculation unit has at least a necessary air volume calculation function that describes the relationship between the water quality value estimated by the upstream water quality value estimation unit and the required air volume,
The sewage characterized by calculating the blower air volume using the required air volume calculated by feedforward calculation based on the current time value of the water quality value estimated by the upstream side water quality value estimation section and the necessary air volume calculated by feedback calculation based on the past value Processing controller.
請求項5において、
前記ブロワ風量演算部が、演算した前記必要風量に基づき、前記必要風量演算機能における前記水質値と必要風量との関係を更新することを特徴とする下水処理制御装置。
In claim 5,
The sewage treatment control device, wherein the blower air volume calculation unit updates the relationship between the water quality value and the required air volume in the required air volume calculation function based on the calculated required air volume.
請求項6において、
前記水質値と必要風量との関係から抽出した処理特性情報を時系列で表示する処理特性表示部を備えたことを特徴とする下水処理制御装置。
In claim 6,
A sewage treatment control apparatus comprising: a treatment characteristic display unit that displays treatment characteristic information extracted from the relationship between the water quality value and the required air flow in time series.
JP2015236208A 2015-12-03 2015-12-03 Sewage treatment control device Active JP6726954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015236208A JP6726954B2 (en) 2015-12-03 2015-12-03 Sewage treatment control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015236208A JP6726954B2 (en) 2015-12-03 2015-12-03 Sewage treatment control device

Publications (2)

Publication Number Publication Date
JP2017100092A JP2017100092A (en) 2017-06-08
JP6726954B2 true JP6726954B2 (en) 2020-07-22

Family

ID=59017154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236208A Active JP6726954B2 (en) 2015-12-03 2015-12-03 Sewage treatment control device

Country Status (1)

Country Link
JP (1) JP6726954B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052399B2 (en) * 2018-02-19 2022-04-12 株式会社明電舎 Operation support device and operation support method for water treatment facilities
JP7002977B2 (en) * 2018-03-27 2022-02-10 株式会社九電工 Wastewater treatment equipment

Also Published As

Publication number Publication date
JP2017100092A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP7059989B2 (en) Control system and control method
CN109607770B (en) Multi-scene self-learning carbon source intelligent adding system and method for denitrification tank
JP3961835B2 (en) Sewage treatment plant water quality controller
JP4334317B2 (en) Sewage treatment system
EP3645469B1 (en) Wastewater treatment plant and method of controlling it
JP6219239B2 (en) Water treatment plant
Piotrowski et al. Mixed integer nonlinear optimization of biological processes in wastewater sequencing batch reactor
JP6655975B2 (en) Aeration control device and aeration control method
JP6726954B2 (en) Sewage treatment control device
JP4188200B2 (en) Plant-wide optimum process controller
JP2017113725A (en) Operation support system and operation support method of sewage treatment plant
JP6619242B2 (en) Water treatment system
JP4008694B2 (en) Sewage treatment plant water quality controller
EP3504163B1 (en) Treatment of wastewater
JP5175647B2 (en) Water quality prediction method and biological treatment method
WO2017207011A1 (en) Control of n2o-emissions by aeration
JP2003300093A (en) Operation support system and control system for water treatment process
CN116655130A (en) Method, system, device, equipment and storage medium for controlling aeration
JP2006315004A (en) Water quality control unit for sewage disposal plant
US20120292251A1 (en) Method and apparatus for monitoring biological activity and controlling aeration in an activated sludge plant
JP2015051389A (en) Water treatment controller
JP6499952B2 (en) Water treatment system
JP6621866B2 (en) Operation support device and operation support method for sewage treatment plant using activated sludge method
JP6430324B2 (en) Waste water treatment method and waste water treatment apparatus
JP7209905B1 (en) Water treatment system, aeration amount control device, and aeration amount control method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6726954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150