JP2017100092A - Sewage treatment control device - Google Patents

Sewage treatment control device Download PDF

Info

Publication number
JP2017100092A
JP2017100092A JP2015236208A JP2015236208A JP2017100092A JP 2017100092 A JP2017100092 A JP 2017100092A JP 2015236208 A JP2015236208 A JP 2015236208A JP 2015236208 A JP2015236208 A JP 2015236208A JP 2017100092 A JP2017100092 A JP 2017100092A
Authority
JP
Japan
Prior art keywords
water quality
air volume
quality value
aerobic tank
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015236208A
Other languages
Japanese (ja)
Other versions
JP6726954B2 (en
Inventor
一郎 山野井
Ichiro Yamanoi
一郎 山野井
佳記 西田
Yoshiki Nishida
佳記 西田
信幸 中村
Nobuyuki Nakamura
信幸 中村
剛 武本
Takeshi Takemoto
剛 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015236208A priority Critical patent/JP6726954B2/en
Publication of JP2017100092A publication Critical patent/JP2017100092A/en
Application granted granted Critical
Publication of JP6726954B2 publication Critical patent/JP6726954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a sewage treatment control device that improves maintenance and suppresses consumption energy while properly suppressing water quality of the sewage treatment.SOLUTION: A water quality value that is estimated by a water quality estimation part in an aerobic tank, which estimates a water quality value other than a dissolved oxygen concentration in the aerobic tank, which oxidizes water to be treated is a water quality value varying by blowing oxygen from a blower, a blower air volume calculation part for calculating an air volume of a blower outputs a larger blower air volume among a blower air volume calculated based on a target value of a dissolved oxygen concentration in the aerobic tank and an estimation value of the dissolved oxygen concentration by a dissolved oxygen concentration estimation part that estimates dissolved oxygen concentration in the aerobic tank, and a blower air volume calculated based on a target value of a water quality value other than the dissolved oxygen concentration in the aerobic tank and an estimation value of a water quality value in the aerobic tank by a water quality estimation part in the aerobic tank.SELECTED DRAWING: Figure 1

Description

本発明は、下水処理場の処理水の水質を制御する下水処理制御装置に関する。   The present invention relates to a sewage treatment control device for controlling the quality of treated water in a sewage treatment plant.

環境問題やコスト削減への対応が必須となった昨今、下水処理場においても、公共水域へ放流する処理水の水質向上、さらなる省エネ化、ICTを活用した維持管理性の向上が求められている。   Now that environmental issues and cost reductions have become essential, sewage treatment plants are also required to improve the quality of treated water discharged into public water areas, further energy savings, and improvement in maintainability using ICT. .

下水処理場では、活性汚泥と呼ばれる微生物懸濁液により、下水中の有機物や窒素などを除去する。ブロワにより活性汚泥に空気を吹き込む反応槽を好気槽と呼ぶが、好気槽では有機物は微生物による同化・異化反応により摂取・消費され、除去される。流入下水中の窒素の多くはアンモニア性窒素の形で含まれるが、これは酸素の存在下で硝化菌により硝酸性窒素に酸化される。この硝酸性窒素の一部は返送汚泥中に残留し、上流側に返送される。その際、窒素ガスへと還元する脱窒反応が生じて、窒素成分が除去される。一方、硝化不足により放流水中にアンモニア性窒素が残留すると、放流水域の水生生物への影響や溶存酸素(DO)の消費が懸念されることから、放流先の環境維持には硝化反応の適切な管理が要求される。そのためには電力を多く消費するブロワによる風量供給を適正に制御する必要がある。風量供給量が十分でない場合は、硝化不足による環境への悪影響を引きおこす。あるいは、風量供給量が過剰な場合、硝化完了後も風量が無駄に供給されるため消費電力が増大する。   In the sewage treatment plant, organic matter, nitrogen, etc. in the sewage are removed by a microbial suspension called activated sludge. A reaction tank in which air is blown into activated sludge by a blower is called an aerobic tank. In the aerobic tank, organic substances are ingested / consumed and removed by an assimilation / catabolic reaction by microorganisms. Most of the nitrogen in the influent sewage is contained in the form of ammoniacal nitrogen, which is oxidized to nitrate nitrogen by nitrifying bacteria in the presence of oxygen. Part of this nitrate nitrogen remains in the return sludge and is returned upstream. At that time, a denitrification reaction that reduces to nitrogen gas occurs, and the nitrogen component is removed. On the other hand, if ammonia nitrogen remains in the effluent due to insufficient nitrification, there are concerns about the impact on aquatic organisms in the effluent water area and consumption of dissolved oxygen (DO). Management is required. For this purpose, it is necessary to appropriately control the air volume supply by the blower that consumes a lot of electric power. If the air supply is not sufficient, it will cause adverse environmental effects due to insufficient nitrification. Alternatively, if the air volume supply amount is excessive, the air volume is supplied wastefully even after the completion of nitrification, resulting in an increase in power consumption.

下水処理の制御には、好気槽の下流側の末端に設置したDO計のDOを制御指標として
用いるDO制御がある。好気槽の下流側の末端DOを一定に保つようにブロワ風量を制御
することで、微生物の活性を維持し、有機物除去や硝化反応を制御する(例えば、非特
許文献1)。
The control of sewage treatment includes DO control using DO of a DO meter installed at the downstream end of the aerobic tank as a control index. By controlling the blower air volume so as to keep the terminal DO on the downstream side of the aerobic tank constant, the activity of microorganisms is maintained, and organic matter removal and nitrification reaction are controlled (for example, Non-Patent Document 1).

近年、活性汚泥中のアンモニア性窒素濃度を計測するアンモニア計の精度の向上や、個
別の生物反応槽に適した小容量のブロワの制御性が向上したことから、生物反応槽へのブ
ロワ風量の制御に、アンモニア計を用いた制御方式が検討されている(特許文献1、非特許文献2)。
In recent years, the accuracy of ammonia meters that measure the concentration of ammoniacal nitrogen in activated sludge and the controllability of small-capacity blowers suitable for individual biological reaction tanks have been improved. A control method using an ammonia meter has been studied for control (Patent Document 1, Non-Patent Document 2).

特許第4509579号公報Japanese Patent No. 4509579

「下水道施設計画・設計指針と解説」2009年版、発行所日本下水道協会“Sewerage Facility Planning and Design Guidelines and Explanations”, 2009 edition, Japan Sewerage Association 遠藤和広: アンモニア計とDO計を用いた送風量制御システムの開発、 第47回下水道研究発表会講演集、 pp.918-920 (2010)Kazuhiro Endo: Development of air flow control system using ammonia meter and DO meter, pp.918-920 (2010)

非特許文献1の方法において、DOは微生物の反応活性に関係するパラメータであるが、硝化反応で考慮すべきアンモニア性窒素そのものではない。そのため、流入流量や流入水質の変動により、風量不足による処理水質の悪化あるいは過剰風量となりやすい。   In the method of Non-Patent Document 1, DO is a parameter related to the reaction activity of microorganisms, but is not ammonia nitrogen itself to be considered in the nitrification reaction. For this reason, due to fluctuations in the inflow flow rate and inflow water quality, the quality of the treated water tends to deteriorate due to insufficient air volume or excessive air volume.

次にアンモニア計を用いた制御の場合の課題について述べる。なお、一般に、イオン電
極式のアンモニア計はアンモニア濃度が低下すると消耗品である電極の寿命が短くなるた
め、好気槽の最後段ではなく、少し上流側の中段に設置される。
Next, problems in the case of control using an ammonia meter will be described. In general, an ion electrode type ammonia meter is installed not in the last stage of the aerobic tank but in the middle stage slightly upstream because the life of the consumable electrode is shortened when the ammonia concentration is lowered.

特許文献1および非特許文献2の方法は、好気槽中段に設置に設置したアンモニア計と、好気槽後段に設置したDO計を制御に用いる。   The methods of Patent Literature 1 and Non-Patent Literature 2 use an ammonia meter installed in the middle of the aerobic tank and a DO meter installed in the rear of the aerobic tank for control.

特許文献1の方法では、計測されたアンモニア濃度が、あらかじめ設定されたアンモニア濃度に近づくようにアンモニア計による風量のフィードバック(FB)制御がなされるが、その際、あらかじめ設定したDOの下限値を下回ると、DOによるFB制御に切り替わる。しかし、次の場合に課題があった。それは、DOが下限値よりも大きいときに、アンモニア計によるFB制御により急激に風量を低減する結果となった場合にDOが想定よりも小さくなり、水質が急激に悪化する恐れがあった。あるいは、DOが下限値よりも小さい場合はDO計によるFB制御となるが、アンモニア濃度が急激に増加して硝化に必要な風量が増加したにも関わらず、DO濃度には直接的に反映されず、結果として風量が過小になり、水質が悪化する恐れがあった。   In the method of Patent Document 1, air volume feedback (FB) control is performed by an ammonia meter so that the measured ammonia concentration approaches a preset ammonia concentration. At that time, a lower limit value of DO set in advance is set. If it falls below, it switches to FB control by DO. However, there were problems in the following cases. That is, when the DO is larger than the lower limit value, if the result of abruptly reducing the air volume by the FB control by the ammonia meter, the DO becomes smaller than expected, and the water quality may be rapidly deteriorated. Alternatively, when DO is lower than the lower limit, FB control is performed by the DO meter. However, although the ammonia concentration rapidly increases and the air volume necessary for nitrification increases, it is directly reflected in the DO concentration. As a result, there was a risk that the air volume would become too small and the water quality would deteriorate.

非特許文献2の方法は、好気槽の中段に設置したアンモニア計に基づいて好気槽の
後段のDO値の目標値を設定するカスケード型のフィードバック(FB)制御である。処
理途中あるいは処理された水質に基づいた制御のため、流入水質が変動した場合、その影
響がセンサ位置に到達するまで変動は考慮されず、風量不足による処理水質の悪化あるい
は過剰風量となる課題があった。詳細について述べると、例えば、日間変動が大きい場合
や急な降雨で一時的にアンモニアが希釈された下水が流入した場合である。中段のアンモ
ニア計で計測した濃度が大きいと、全体風量は増加する。その際、希釈されている上流側
では過剰処理となり、下流側に到達する前に処理水の目標値に達することがある。その結
果、その後、流下した下流側では最小風量下でも過剰処理となり、過剰曝気となる可能性が考えられる。一度中段のアンモニア計位置での目標値から大きく外れると、その後も風量が振動し、処理が安定しない可能性もある。もう一つの課題は維持管理性に関する課題である。制御に用いる中段地点のアンモニア濃度とDOの目標値の関係式は、オペレータ側で処理特性に合わせて試行錯誤的に、且つ、活性汚泥性状の季節変動に合わせて継続的に調整する必要があり、維持管理は必ずしも容易ではない。
The method of Non-Patent Document 2 is cascade-type feedback (FB) control that sets a target value of the DO value at the rear stage of the aerobic tank based on an ammonia meter installed at the middle stage of the aerobic tank. Because of the control based on the quality of the treated or treated water, if the influent water quality fluctuates, the fluctuation is not taken into account until the effect reaches the sensor position. there were. More specifically, for example, when the daily fluctuation is large or when sewage in which ammonia is temporarily diluted flows due to sudden rain. If the concentration measured with the middle ammonia meter is large, the total air volume will increase. At this time, the diluted upstream side is excessively treated, and the target value of the treated water may be reached before reaching the downstream side. As a result, there is a possibility that the downstream side that has flowed down will be excessively processed even under the minimum air volume, resulting in excessive aeration. Once it deviates significantly from the target value at the middle ammonia meter position, the air volume may vibrate thereafter and the processing may not be stable. Another issue is related to maintenance. The relational expression between the ammonia concentration at the middle stage used for control and the target value of DO must be adjusted by the operator on a trial and error basis according to the treatment characteristics and continuously according to the seasonal variation of the activated sludge properties. Maintenance is not always easy.

非特許文献1、特許文献1、そして、非特許文献2の方法は、制御のためのパラメータが手動で与えられるものである。活性汚泥の特性は時間とともに変化していくため、パラメータは試行錯誤的に調整する必要があり、維持管理の労力が増大する傾向にある。   In the methods of Non-Patent Document 1, Patent Document 1, and Non-Patent Document 2, parameters for control are manually given. Since the characteristics of activated sludge change with time, the parameters need to be adjusted on a trial and error basis, and the maintenance effort tends to increase.

そこで、本発明の目的は、維持管理性を向上し、下水処理の水質を適切に制御しつつ消費エネルギーを抑制する下水処理制御装置を提供することにある。   Therefore, an object of the present invention is to provide a sewage treatment control device that improves maintenance and management and suppresses energy consumption while appropriately controlling the quality of sewage treatment.

本発明の下水処理制御装置は、被処理水を酸化処理する好気槽と、前記好気槽に空気を送るブロワと、前記好気槽中の溶存酸素濃度を推定する溶存酸素濃度推定部と、前記好気槽中の溶存酸素濃度の目標値を設定する溶存酸素濃度目標設定部と、前記好気槽中の溶存酸素濃度以外の水質値を推定する好気槽中水質値推定部と、前記好気槽中の溶存酸素濃度以外の水質値の目標値を設定する好気槽中水質値目標設定部と、前記ブロワの風量を推定するブロワ風量推定部と、前記ブロワの風量を演算するブロワ風量演算部と、を備えた下水処理制御装置において、前記好気槽中水質値推定部で推定する水質値が、前記ブロワから酸素を吹き込むことで変動する水質値であり、前記ブロワ風量演算部が、前記好気槽中の溶存酸素濃度の目標値と前記溶存酸素濃度推定部による溶存酸素濃度の推定値に基づき演算されたブロワ風量と、前記好気槽中の溶存酸素濃度以外の水質値の目標値と前記好気槽中水質値推定部による好気槽中の水質値の推定値に基づき演算されたブロワ風量のうち、大きいブロワ風量を出力することを特徴とする。   The sewage treatment control device of the present invention includes an aerobic tank for oxidizing the water to be treated, a blower for sending air to the aerobic tank, a dissolved oxygen concentration estimating unit for estimating a dissolved oxygen concentration in the aerobic tank, A dissolved oxygen concentration target setting unit for setting a target value of the dissolved oxygen concentration in the aerobic tank; a water quality value estimating unit in the aerobic tank for estimating a water quality value other than the dissolved oxygen concentration in the aerobic tank; An aerobic tank water quality value target setting unit that sets a target value of a water quality value other than the dissolved oxygen concentration in the aerobic tank, a blower air volume estimation unit that estimates the air volume of the blower, and calculates the air volume of the blower In the sewage treatment control device comprising a blower air volume calculation unit, the water quality value estimated by the aerobic tank water quality value estimation unit is a water quality value that varies when oxygen is blown from the blower, and the blower air volume calculation The target value of the dissolved oxygen concentration in the aerobic tank and the The blower air volume calculated based on the estimated value of the dissolved oxygen concentration by the existing oxygen concentration estimation unit, the target value of the water quality value other than the dissolved oxygen concentration in the aerobic tank, and the aerobic performance of the water value estimation unit in the aerobic tank Of the blower air volumes calculated based on the estimated value of the water quality value in the tank, a larger blower air volume is output.

本発明によれば、維持管理性を向上し、下水処理の水質を適切に制御しつつ消費エネルギーを抑制できる。   According to the present invention, it is possible to improve maintenance and manageability and suppress energy consumption while appropriately controlling the quality of sewage treatment.

実施例1の下水処理制御装置の構成図。The block diagram of the sewage treatment control apparatus of Example 1. FIG. 実施例2の下水処理制御装置の構成図。The block diagram of the sewage treatment control apparatus of Example 2. FIG. 仮想流体塊による上流側風量演算を示す図。The figure which shows the upstream air volume calculation by a virtual fluid lump. 処理特性関数を示す図。The figure which shows a process characteristic function. 処理特性関数の更新の様子を示す図。The figure which shows the mode of the update of a process characteristic function. 抽出した処理特性の時間変化を示す図。The figure which shows the time change of the extracted process characteristic.

本発明の各実施例を図面により説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例1の構成図である。   FIG. 1 is a configuration diagram of Embodiment 1 of the present invention.

本実施例は嫌気好気活性汚泥法の下水処理場に下水処理制御装置200を適用した例である。上流側から最初沈殿池1、嫌気槽6、好気槽3、最終沈殿池4が連通し、好気
槽3はブロワ5と連通する。最初沈殿池1では、流入する下水100を重力沈降により上
澄液である初沈越流水101と沈降物である初沈汚泥に分離する。最終沈殿池4では、流
入する活性汚泥102を上澄み液である処理水103と沈降物である返送汚泥104に分離する。返送汚泥104は初沈越流水101と混合し、活性汚泥102として嫌気槽2に
流入する。ブロワ5からは好気槽3に空気106が送られる。
The present embodiment is an example in which the sewage treatment control device 200 is applied to a sewage treatment plant with an anaerobic aerobic activated sludge method. From the upstream side, the first sedimentation tank 1, the anaerobic tank 6, the aerobic tank 3, and the final sedimentation tank 4 communicate with each other, and the aerobic tank 3 communicates with the blower 5. In the first sedimentation basin 1, the inflowing sewage 100 is separated by gravity sedimentation into first sedimentation water 101 as a supernatant and primary sedimentation sludge as a sediment. In the final sedimentation basin 4, the activated sludge 102 that flows in is separated into treated water 103 that is a supernatant and return sludge 104 that is a sediment. The returned sludge 104 is mixed with the first subsidence flowing water 101 and flows into the anaerobic tank 2 as the activated sludge 102. Air 106 is sent from the blower 5 to the aerobic tank 3.

好気槽3には溶存酸素濃度推定部であるDO計16が設置されている。また、好気槽中水質値推定部である好気槽アンモニア計12が設置され、好気槽3のアンモニア性窒素濃度を計測する。ここでのアンモニア性窒素濃度は溶存酸素と同様にブロワから酸素を吹き込むことで変動する水質である。ブロワ5と好気槽3を連通する配管にはブロワ風量推定部である風量計13が設置され、好気槽3へ送られる空気の風量を計測する。   The aerobic tank 3 is provided with a DO meter 16 which is a dissolved oxygen concentration estimation unit. Also, an aerobic tank ammonia meter 12 which is an aerobic tank water quality value estimation unit is installed to measure the ammoniacal nitrogen concentration in the aerobic tank 3. Here, the ammoniacal nitrogen concentration is a water quality that fluctuates by blowing oxygen from a blower in the same manner as dissolved oxygen. An air flow meter 13 that is a blower air volume estimating unit is installed in a pipe communicating the blower 5 and the aerobic tank 3 to measure the air volume of air sent to the aerobic tank 3.

DO計16、好気槽アンモニア計12、風量計13での計測値、溶存酸素濃度目標値設定部22で設定されたDO値、好気槽中水質目標値設定部23で設定されたアンモニア性窒素濃度値は、ブロワ風量演算部20に送信される。ブロワ風量演算部20の演算結果はブロワ風量制御部21に送信され、ブロワ5の風量はブロワ風量演算部20で演算した風量に制御される。   DO meter 16, aerobic tank ammonia meter 12, air flow meter 13 measured value, dissolved oxygen concentration target value setting unit 22 set DO value, aerobic tank water quality target value setting unit 23 ammoniacal The nitrogen concentration value is transmitted to the blower air volume calculator 20. The calculation result of the blower air volume calculation unit 20 is transmitted to the blower air volume control unit 21, and the air volume of the blower 5 is controlled to the air volume calculated by the blower air volume calculation unit 20.

実施例1での風量演算方法について説明する。溶存酸素濃度目標値設定部22で設定されたDO値を1.0mg/L、好気槽中水質目標値設定部23で設定されたアンモニア性窒素濃度値を3.5mg-N/Lとすると、ブロワ風量演算部20ではDO計が1.0mg/LになるようにPI制御によるFB演算(以下、DO制御)を実施して必要な風量を求める。並列して、アンモニア計が3.5mg-N/LになるようにPID制御によるFB演算(以下、硝化制御)を実施して必要な風量を求める。ブロワ風量演算部20では、この二つの風量の演算結果のうち、大きい風量を採用し、ブロワ風量制御部21に送信する。   The air volume calculation method in Example 1 is demonstrated. When the DO value set in the dissolved oxygen concentration target value setting unit 22 is 1.0 mg / L and the ammonia nitrogen concentration value set in the aerobic tank water quality target value setting unit 23 is 3.5 mg-N / L, The air volume calculation unit 20 performs FB calculation (hereinafter referred to as DO control) by PI control so that the DO meter becomes 1.0 mg / L, and obtains a necessary air volume. In parallel, the FB calculation by PID control (hereinafter, nitrification control) is performed so that the ammonia meter becomes 3.5 mg-N / L, and the necessary air volume is obtained. The blower air volume calculation unit 20 adopts a large air volume among the calculation results of the two air volumes and transmits it to the blower air volume control unit 21.

制御方式の切替ではなく並列して計算した結果を選択とすることで、処理水の水質を良好に保つことができる。例えば溶存酸素濃度目標値設定部22で設定されたDO値よりもDOが大きい場合、硝化制御による急な風量低減指示に対しても設定されたDO値を目標とする計算結果を採用し、水質の維持を図ることができる。あるいは、設定されたDO値よりもDOが小さい場合でも、硝化制御による早急な風量増加指示に対応し、水質の維持を図ることができる。   By selecting the result calculated in parallel rather than switching the control method, the quality of treated water can be kept good. For example, when the DO value is larger than the DO value set by the dissolved oxygen concentration target value setting unit 22, the calculation result targeting the DO value set for a sudden air volume reduction instruction by nitrification control is adopted. Can be maintained. Alternatively, even when the DO is smaller than the set DO value, it is possible to maintain the water quality by responding to an immediate air volume increase instruction by nitrification control.

本実施例では、適用例として嫌気好気活性汚泥法を取り上げたが、標準法や循環式硝化脱窒法、A2O法、準高度処理法やこれらにステップフィードを適用した方式など、好気槽で硝化を実施する方式であれば全ての方式に適用できる。   In this example, the anaerobic aerobic activated sludge method was taken up as an application example. Any system that performs nitrification can be applied.

本実施例では、流入水水質で推定する水質としてアンモニア性窒素を例としてあげたが、これらに限定されるものではなく、流入水質推定部で推定する水質はブロワから酸素を吹き込むことで酸化などにより変動する水質であれば良い。本実施例ではブロワから酸素を吹き込むことで変動する水質値としてアンモニア性窒素濃度およびその推定手段としてアンモニア計を用いたが、硝酸性窒素濃度、全窒素濃度、リン酸性リン濃度、全リン濃度や、BOD、CODMn、CODCr、TOCなどの有機物濃度でもよい。 In this embodiment, ammonia nitrogen is taken as an example of the water quality estimated by the influent water quality, but the water quality estimated by the influent water quality estimation unit is not limited to these, and is oxidized by blowing oxygen from the blower. The water quality may vary depending on In this example, the ammonia nitrogen concentration was used as the water quality value that fluctuated by blowing oxygen from the blower, and the ammonia meter was used as its estimation means. However, nitrate nitrogen concentration, total nitrogen concentration, phosphoric acid phosphorus concentration, total phosphorus concentration, , BOD, COD Mn , COD Cr , TOC and other organic substance concentrations may be used.

本実施例では下流側風量の演算としてPI制御を用いたが、PID制御や他のフィードバッ
ク制御手法でも良い。
In this embodiment, PI control is used as the calculation of the downstream air volume, but PID control and other feedback control methods may be used.

本実施例では、最初沈殿池1を設置したが、最初沈殿池1を除いた構成でも良い。また
、最終沈殿池4の代替として、活性汚泥と処理水の分離に膜を用いる膜分離活性汚泥法活
性汚泥法でも良い。その場合、例えば好気槽3に膜を浸漬させても良い。
In this embodiment, the first settling basin 1 is installed, but a configuration excluding the first settling basin 1 may be used. As an alternative to the final sedimentation basin 4, a membrane separation activated sludge method activated sludge method using a membrane for separation of activated sludge and treated water may be used. In that case, for example, the membrane may be immersed in the aerobic tank 3.

図2は本発明の実施例2の構成図である。   FIG. 2 is a configuration diagram of Embodiment 2 of the present invention.

本実施例は循環式硝化脱窒法の下水処理場に下水処理制御装置200を適用した例である。上流側から最初沈殿池1、無酸素槽2、好気槽3、最終沈殿池4が連通し、好気
槽3はブロワ5と連通する。最初沈殿池1では、流入する下水100を重力沈降により上
澄液である初沈越流水101と沈降物である初沈汚泥に分離する。最終沈殿池4では、流
入する活性汚泥102を上澄み液である処理水103と沈降物である返送汚泥104に分離する。返送汚泥104は初沈越流水101と混合し、活性汚泥102として無酸素槽2に流入する。好気槽3の末端からは活性汚泥102の一部が無酸素槽2へと循環液105として循環する。ブロワ5からは好気槽3に空気106が送られる。
The present embodiment is an example in which the sewage treatment control device 200 is applied to a sewage treatment plant of a circulation type nitrification denitrification method. From the upstream side, the first sedimentation tank 1, the anoxic tank 2, the aerobic tank 3, and the final sedimentation tank 4 communicate with each other, and the aerobic tank 3 communicates with the blower 5. In the first sedimentation basin 1, the inflowing sewage 100 is separated by gravity sedimentation into first sedimentation water 101 as a supernatant and primary sedimentation sludge as a sediment. In the final sedimentation basin 4, the activated sludge 102 that flows in is separated into treated water 103 that is a supernatant and return sludge 104 that is a sediment. The return sludge 104 is mixed with the first subsidence flowing water 101 and flows into the anoxic tank 2 as the activated sludge 102. From the end of the aerobic tank 3, a part of the activated sludge 102 circulates as a circulating liquid 105 to the anoxic tank 2. Air 106 is sent from the blower 5 to the aerobic tank 3.

制御系の構成では、実施例1の構成に加えて、無酸素槽3には流下流量推定部である流下流量計10と上流側水質値推定部である流入アンモニア計11が設置され、好気槽3へ流入する流入水の流量とアンモニア濃度を計測する。ここでのアンモニア濃度は溶存酸素と同様にブロワから酸素を吹き込むことで変動する水質である。   In the configuration of the control system, in addition to the configuration of the first embodiment, the anaerobic tank 3 is provided with a downstream flow meter 10 that is a downstream flow rate estimation unit and an inflow ammonia meter 11 that is an upstream water quality estimation unit. The flow rate of the inflow water flowing into the tank 3 and the ammonia concentration are measured. The ammonia concentration here is a water quality that varies as oxygen is blown from a blower in the same manner as dissolved oxygen.

ブロワ風量演算部20へは、実施例1の項目に加えて、下流側水質値目標設定部24で設定された処理水のアンモニア性窒素濃度の目標値が送信される。ブロワ風量演算部20の演算結果はブロワ風量制御部21に送信され、ブロワ5の風量はブロワ風量演算部20で演算した風量に制御される。   In addition to the items of the first embodiment, the target value of the ammonia nitrogen concentration of the treated water set by the downstream water quality value target setting unit 24 is transmitted to the blower air volume calculation unit 20. The calculation result of the blower air volume calculation unit 20 is transmitted to the blower air volume control unit 21, and the air volume of the blower 5 is controlled to the air volume calculated by the blower air volume calculation unit 20.

まず、実施例2の方法における効果の特徴について概説する。   First, the characteristics of the effects in the method of Example 2 will be outlined.

一般的なDO制御では好気槽の溶存酸素濃度を一定とすることで好気反応を促進させる。しかし、DOは放流基準となる直接的な水質ではないため、一般的には過剰処理側、すなわち過剰曝気、過剰消費電力で水質を維持する傾向がある。例えば、急な降雨で一時的に希釈された下水が流入した場合、(1)希釈前の好気槽末端でDO一定運転、(2)流量増加・滞留時間減少のため全体風量増加、(3)希釈されている上流側では過剰処理、(4)その後流下した下流側で最小風量下でも過剰処理、となり、過剰曝気となる可能性が考えられる。その後も風量が振動し、処理が安定しない可能性もある。さらに、維持管理性に関する課題がある。制御に用いるDOの目標値の関係式の設定値は、オペレータ側で処理特性に合わせて試行錯誤的に、且つ、活性汚泥性状の季節変動に合わせて継続的に調整する必要がある。   In general DO control, the aerobic reaction is promoted by keeping the dissolved oxygen concentration in the aerobic tank constant. However, since DO is not a direct water quality that serves as a discharge standard, it generally tends to maintain water quality on the overtreatment side, that is, over-aeration and over-power consumption. For example, when sewage temporarily diluted due to sudden rain flows, (1) DO constant operation at the end of the aerobic tank before dilution, (2) Increase in overall air volume due to increase in flow rate and decrease in residence time, (3 There is a possibility of over-aeration on the upstream side that is diluted), and (4) over-treatment even on the downstream side that has flowed down, even under the minimum airflow. After that, the air volume may vibrate and the process may not be stable. In addition, there are issues regarding maintenance. The set value of the relational expression of the target value of DO used for the control needs to be adjusted by the operator on a trial and error basis according to the processing characteristics and continuously according to the seasonal variation of the activated sludge properties.

上述の課題に対し、実施例2の方法では(1)上流側・下流側個別風量演算、(2)処理特性見える化、(3)制御モデル(制御パラメータ)自動更新により解決を図る。   In the method of the second embodiment, the above-described problems are solved by (1) upstream / downstream individual air volume calculation, (2) visualization of processing characteristics, and (3) automatic update of the control model (control parameter).

(1)上流側・下流側個別風量演算では、処理水アンモニア濃度目標値に加えて中間点アンモニア濃度を考慮した硝化運転制御により、処理を安定化して過剰曝気や曝気不足を抑制する。上流側風量は上流側のアンモニア濃度計測値と中間点アンモニア濃度演算値から演算する。下流側風量については、中間点のアンモニア濃度によるPI制御とする。ここでの上流側風量はフィードフォワード(FF)演算によるもので、下流側風量はフィードバック(FB)演算によるものである。硝化制御による風量としては、それぞれに重み付けをして、FF的な要素とFB的な要素をバランスする。最終的な硝化運転制御における風量としては、硝化制御による風量に、従来から利用されたDO制御による演算を並列させて、選択する。これは、これまでの維持管理上の経験的な要素及び安定した制御実績を取り込み、安定的な制御を実現するためである。   (1) In the upstream / downstream individual air volume calculation, nitrification operation control that takes into account the intermediate ammonia concentration in addition to the target ammonia concentration in the treated water stabilizes the treatment and suppresses excessive aeration and shortage of aeration. The upstream air volume is calculated from the upstream ammonia concentration measurement value and the midpoint ammonia concentration calculation value. The downstream air volume will be PI controlled by the ammonia concentration at the midpoint. The upstream air volume here is based on the feed forward (FF) calculation, and the downstream air volume is based on the feedback (FB) calculation. The air volume by nitrification control is weighted to balance the FF and FB elements. The air volume in the final nitrification operation control is selected by paralleling the calculation based on the DO control that has been conventionally used to the air volume in the nitrification control. This is to incorporate empirical elements and stable control results so far in order to realize stable control.

(2)処理特性見える化では、処理特性を表すモデルとして可視化できる関数を用いる。さらに、処理実績による実測点をその上にプロットすることで、維持管理上重要な処理現況を見える化する。この見える化された処理特性モデルの関数を曝気風量演算に用いる。図3に上流側のフィードフォワード風量の演算方法を示す。好気槽入口から中間点アンモニア計が設置された好気槽までを上流側とする。処理特性グラフは、流入と中間点のアンモニア濃度の差分の処理アンモニア濃度と必要累積風量の関数で表される。必要累積風量[m3]は風量[m3/h]の積分に相当する。必要累積風量や上流側風量QBupの演算には、仮想流体塊を追跡するラグランジュ的な手法を用いた。一定制御周期毎に流入する仮想流体塊を考え、t = t0で流入した仮想流体塊(灰色部)は、t = tNで中間点アンモニア計が設置された好気槽の後端に到達する。累積風量は各時刻で仮想流体塊に吹き込まれた風量の加算である。それぞれの仮想流体塊はそれまでに累積した累積風量と、処理特性グラフと流入/目標アンモニア濃度より算出した必要累積風量を持つ。この差分と残滞留時間(予測値)から、流体塊ごとの適切な風量が算出され、この平均値から時刻tNの上流側風量QBup(tN)を導出できる。 (2) In the process characteristic visualization, a function that can be visualized as a model representing the process characteristic is used. Furthermore, by plotting the actual measurement points based on the processing results, it is possible to visualize the processing status important for maintenance. This visualized function of the processing characteristic model is used for aeration air volume calculation. FIG. 3 shows a method of calculating the upstream feedforward air volume. The upstream side is from the aerobic tank inlet to the aerobic tank where the midpoint ammonia meter is installed. The treatment characteristic graph is expressed as a function of the treatment ammonia concentration and the required accumulated air volume as the difference between the ammonia concentration at the inflow and the intermediate point. The required accumulated air volume [m 3 ] corresponds to the integration of the air volume [m 3 / h]. A Lagrangian method of tracking a virtual fluid mass was used to calculate the required cumulative air volume and upstream air volume Q Bup . Considering a virtual fluid mass that flows in every fixed control cycle, the virtual fluid mass (gray part) that flows in at t = t 0 reaches the rear end of the aerobic tank where the midpoint ammonia meter is installed at t = t N To do. The cumulative air volume is an addition of the air volume blown into the virtual fluid mass at each time. Each virtual fluid mass has a cumulative air volume accumulated so far and a required cumulative air volume calculated from the processing characteristic graph and the inflow / target ammonia concentration. From this difference and the remaining residence time (predicted value), an appropriate air volume for each fluid mass is calculated, and the upstream air volume Q Bup (t N ) at time t N can be derived from this average value.

(3)制御モデル(制御パラメータ)自動更新は、仮想流体塊の概念を用いることで実現できる。t = tNで中間点アンモニア計が設置された好気槽に到達した仮想流体塊は、流入アンモニア濃度、中間点アンモニア濃度、累積風量の情報を持つ。これより、処理アンモニア濃度と累積風量の関係を制御周期ごとに抽出し、処理特性グラフに現在の点をプロットできる。通年で見ると活性汚泥の性質は徐々に変化していくが、革新的技術では各センサ情報から処理特性グラフを自動更新できる。さらにその時間変化により、異常に対する気づきが早まる。実績値に基づいた制御パラメータの自動更新により制御精度を担保すると同時に維持管理性を向上する。 (3) Automatic update of the control model (control parameter) can be realized by using the concept of the virtual fluid mass. t = t N virtual fluid mass midpoint ammonia meter reaches the aerobic tank installed in has inlet ammonia concentration, midpoint ammonia concentration, the information of the cumulative airflow. As a result, the relationship between the treatment ammonia concentration and the cumulative air volume can be extracted for each control period, and the current point can be plotted on the treatment characteristic graph. Although the properties of activated sludge change gradually throughout the year, the innovative technology can automatically update the processing characteristic graph from each sensor information. Furthermore, the change in time accelerates the awareness of the abnormality. Maintenance accuracy is improved at the same time as ensuring control accuracy by automatically updating control parameters based on actual values.

以下に、計算方法の詳細として、実施例2での風量演算方法について説明する。実施例2では、好気槽3のうち、好気槽アンモニア計12よりも上流側の好気槽を上流側好気槽、下流側の好気槽を下流側好気槽とする。   Below, the air volume calculation method in Example 2 is demonstrated as the detail of the calculation method. In Example 2, an aerobic tank upstream of the aerobic tank ammonia meter 12 in the aerobic tank 3 is an upstream aerobic tank, and a downstream aerobic tank is a downstream aerobic tank.

実施例2では、上流側風量をフィードフォワード(FF)演算で、下流側風量をフィードバック(FB)演算で導出し、さらにDO制御による演算も実施し、これらを組み合わせて全体風量を演算する。FB演算では、流入アンモニア計11による過去のアンモニア性窒素濃度と、下流側水質値目標設定部24で設定された処理水のアンモニア性窒素濃度から演算した、時間により変動する水質演算値を、アンモニア性窒素濃度の目標値として設定して、好気槽アンモニア計12の現在のアンモニア性窒素濃度と比較するPI制御等を実施する。FB制御のみで制御は可能であるが、その過去の値を用いる計算メカニズムは、以下に述べるFF制御と同様のため、以下ではまず、FF演算について説明する。   In the second embodiment, the upstream air volume is derived by feed forward (FF) calculation, the downstream air volume is derived by feedback (FB) calculation, calculation by DO control is also performed, and these are combined to calculate the total air volume. In the FB calculation, a water quality calculation value that varies with time, calculated from the past ammonia nitrogen concentration by the inflow ammonia meter 11 and the ammonia nitrogen concentration of the treated water set by the downstream water quality value target setting unit 24, PI control or the like is performed as a target value for the nitrogen concentration and compared with the current ammonia nitrogen concentration of the aerobic tank ammonia meter 12. Although the control is possible only by the FB control, the calculation mechanism using the past value is the same as that of the FF control described below. Therefore, first, the FF calculation will be described below.

以下、アンモニア性窒素濃度という言葉をNH4と記す。FB比率FBrt [-]、上流側処理率UPrt [-]、処理水NH4目標値NH4out_tgt [mg-N/L]とした。ここでの上流側とは、中間点のアンモニア計までの好気槽を指す。時刻tにおける計測値は、流入NH4計測値NH4in(t) [mg-N/L]、中間NH4計測値NH4md(t) [mg-N/L]、好気槽を流下する(循環法の場合は下水流量、返送流量、循環流量の合計)流下流量Qin(t) [m3/h]、送風量計測値QB(t) [m3/h]、好気槽末端のDO計測値DO(t) [mg/L]である。ここでは変数を斜体で表した。 Hereinafter, the term ammonia nitrogen concentration is referred to as NH4. FB ratio FB rt [-], upstream treatment rate UP rt [-], treated water NH4 target value NH4 out_tgt [mg-N / L]. Here, the upstream side refers to the aerobic tank up to the ammonia meter at the midpoint. The measured values at time t are inflow NH4 measured value NH4 in (t) [mg-N / L], intermediate NH4 measured value NH4 md (t) [mg-N / L], flowing down the aerobic tank (circulation method) In this case, the sum of the sewage flow rate, the return flow rate, and the circulation flow rate) Downstream flow rate Q in (t) [m 3 / h], measured air flow rate Q B (t) [m 3 / h], DO at the aerobic tank end The measured value is DO (t) [mg / L]. Here, variables are shown in italics.

フィードフォワード演算における中間NH4演算値NH4md_FFtgt(t) [mg-N/L]は、流入NH4計測値NH4in(t)が処理水NH4目標値NH4out_tgtになるための通過点の位置付けであり、NH4in(t)が大きくなれば大きくなる。NH4md_FFtgt(t)は上流側処理率UPrt を用いて式(1)で演算される。 The intermediate NH4 operation value NH4 md_FFtgt (t) [mg-N / L] in the feedforward operation is the position of the passage point for the inflow NH4 measured value NH4 in (t) to be the treated water NH4 target value NH4 out_tgt , The larger NH4 in (t), the larger. NH4 md_FFtgt (t) is calculated by Expression (1) using the upstream processing rate UP rt .

Figure 2017100092
Figure 2017100092

フィードフォワード演算では、このNH4md_tgt(t)が通過点となるフィードフォワード演算風量QB_FF(t+Δt)を求める。 In the feed-forward calculation, a feed-forward calculation air volume Q B_FF (t + Δt) where NH4 md_tgt (t) is a passing point is obtained.

まず、一定の制御周期Δt毎に計算系(ここでは上流側のアンモニア計から中間点のアンモニア計までの生物反応槽)に1次元的に流入する仮想流体塊を考え、これをラグランジュ的に追跡する(図1−2)。灰色で示した仮想流体塊は時刻t0で計算系に流入し、時刻tNで計算系後端に到達している。流下流量Qin(t)によって仮想流体塊の大きさは異なる。時刻tでの上流側からi番目の仮想流体塊iの位置をXvc、i(t) [m]とすると、Xvc、1(t)およびXvc、i(t+Δt)は式(2)(3)で表される。 First, consider a virtual fluid mass that flows one-dimensionally into the calculation system (in this case, the biological reaction tank from the upstream ammonia meter to the intermediate ammonia meter) at a constant control period Δt, and track this in a Lagrangian manner. (FIG. 1-2). The virtual fluid mass shown in gray flows into the calculation system at time t 0 and reaches the rear end of the calculation system at time t N. The size of the virtual fluid mass varies depending on the flow rate Q in (t). Assuming that the position of the i-th virtual fluid mass i from the upstream side at time t is X vc, i (t) [m], X vc, 1 (t) and X vc, i (t + Δt) 2) It is expressed by (3).

Figure 2017100092
Figure 2017100092

Figure 2017100092
Figure 2017100092

ここでS [m2]は生物反応槽流下方向の断面積である。それぞれの仮想流体塊は流入時に計測・演算される固有の値を保持しつつ流下していく。仮想流体塊iに対応する流入アンモニア濃度NH4in、i(t) [mg-N/L]は、式(4)で表される。 Here, S [m 2 ] is a cross-sectional area in the downward direction of the biological reaction tank. Each virtual fluid mass flows down while maintaining a unique value measured and calculated at the time of inflow. The inflow ammonia concentration NH4 in, i (t) [mg-N / L] corresponding to the virtual fluid mass i is expressed by the equation (4).

Figure 2017100092
Figure 2017100092

仮想流体塊iを演算値の水質に制御するために必要となる必要累積風量VB_tgt、i [m3]は処理特性モデルである式(5)の左の関数で表される。 The necessary cumulative air volume V B_tgt, i [m 3 ] required to control the virtual fluid mass i to the calculated water quality is represented by the function on the left of Expression (5), which is a processing characteristic model.

Figure 2017100092
Figure 2017100092

ここでa、bは係数、ΔNH4tgt(t) [mg-N/L]は処理アンモニア濃度目標値で式(6)となる。 Here, a and b are coefficients, and ΔNH4 tgt (t) [mg-N / L] is the treatment ammonia concentration target value, which is given by equation (6).

Figure 2017100092
Figure 2017100092

仮想流体塊iが計算系へ流入した時刻をt0、i、上流側好気槽(中間点のアンモニア計までの好気槽)への曝気風量をQBup(t) [m3/h]、位置Xi(t)での風量配分密度をD(Xi(t)) [-]とすると、時刻tにおける仮想流体塊iへの累積風量VB、i(t) [m3]は式(7)で表される。 The time when virtual fluid mass i flows into the calculation system is t 0, i , and the amount of aeration air to the upstream aerobic tank (aerobic tank up to the middle point ammonia meter) is Q Bup (t) [m 3 / h] When the air volume distribution density at position X i (t) is D (X i (t)) [-], the cumulative air volume V B, i (t) [m 3 ] to the virtual fluid mass i at time t is It is expressed by equation (7).

Figure 2017100092
Figure 2017100092

ここで風量配分密度D(Xi(t))は上流側各好気槽へ曝気風量の配分率を表す関数で、上流側好気槽全体での配分比の平均を1とする。Vrt、i(t) [-]は上流側好気槽の全体積Vall [m3]に対する仮想流体塊iの体積比で、式(8)で表される。 Here, the air volume distribution density D (X i (t)) is a function representing the distribution ratio of the aeration air volume to each upstream aerobic tank, and the average of the distribution ratio in the entire upstream aerobic tank is 1. V rt, i (t) [−] is a volume ratio of the virtual fluid mass i to the total volume V all [m 3 ] of the upstream aerobic tank, and is expressed by the equation (8).

Figure 2017100092
Figure 2017100092

仮想流体塊iは式(5)で示した必要累積風量VB_tgt、iを持つため、累積風量VB、i(t)との差分を残りの滞留時間で除した値が流体塊iに必要な風量となる。したがって、計算系がN個の仮想流体塊で満たされているとすると、時刻t+Δtの上流側風量の演算値QBup(t+Δt) [m3/h]は式(9)で表される。 Since the virtual fluid mass i has the required cumulative air volume V B_tgt, i shown in equation (5), the value obtained by dividing the difference from the accumulated air volume V B, i (t) by the remaining residence time is required for the fluid mass i The air volume is large. Therefore, assuming that the calculation system is filled with N virtual fluid masses, the calculated value Q Bup (t + Δt) [m 3 / h] of the upstream air volume at time t + Δt is expressed by equation (9). Is done.

Figure 2017100092
Figure 2017100092

Lall [m]は上流側好気槽の全長である。中括弧内が流体塊iに必要な曝気風量であるが、実施設の運用にしたがって上限値、下限値を設けることで、分母が小さくなることによる過大値や負値を避けることができる。 L all [m] is the total length of the upstream aerobic tank. The amount of aeration required for the fluid mass i is in the curly brackets, but by setting the upper limit value and the lower limit value according to the operation of the implementation facility, it is possible to avoid an excessive value or a negative value due to a small denominator.

演算風量の評価としては、上流側に必要な風量を好気槽全体の風量とすることで、感覚的に理解しやすくなるため、フィードフォワード演算風量QB_FF(t+Δt)を、上流側の風量配分比Dup [-]、下流側の風量配分比Ddown [-]から、式(10)とする。なお、前出の風量配分密度D(Xi(t))はここでの風量配分比を関数として一般化した形式である。 For the evaluation of the calculated air volume, the air volume required upstream is set as the air volume of the entire aerobic tank, so that it becomes easier to understand sensuously, so the feedforward calculated air volume Q B_FF (t + Δt) is From the air volume distribution ratio D up [-] and the downstream air volume distribution ratio D down [-], Equation (10) is obtained. The air volume distribution density D (X i (t)) described above is a generalized form using the air volume distribution ratio here as a function.

Figure 2017100092
Figure 2017100092

式(5)の処理特性モデルは、投入する風量に対して処理できるアンモニア濃度で、対象としている下水処理場の処理能力を見える化したものである。モデルを表す関数は制御パラメータの一つであるが、その構築には、上流側好気槽末端に到達した仮想流体塊の情報(実測値)を用いる。時刻tの仮想流体塊の数がN(t) [個]とすると、中間点アンモニア計が設置されている好気槽末端の仮想流体塊N(t)は流入時の流入アンモニア濃度NH4in、N(t)(t)、中間点アンモニア濃度NH4md(t)、累積風量VB、N(t)(t)の情報を持つ。流下する間に処理されたアンモニア濃度である処理アンモニア濃度ΔNH4(t) [mg-N/L]は式(11)で表される。 The treatment characteristic model of Equation (5) visualizes the treatment capacity of the target sewage treatment plant with the ammonia concentration that can be treated with respect to the input air volume. The function representing the model is one of the control parameters, and information (actual measurement value) of the virtual fluid mass reaching the upstream aerobic tank end is used for the construction. If the number of virtual fluid masses at time t is N (t) [pieces], the virtual fluid mass N (t) at the end of the aerobic tank where the midpoint ammonia meter is installed is the inflow ammonia concentration NH4 in at the time of inflow , It has information on N (t) (t), intermediate point ammonia concentration NH4 md (t), cumulative air volume V B, and N (t) (t). The treated ammonia concentration ΔNH4 (t) [mg-N / L], which is the ammonia concentration treated during the flow down, is expressed by equation (11).

Figure 2017100092
Figure 2017100092

累積風量VB、N(t)(t)により処理されたアンモニアが、処理アンモニア濃度ΔNH4(t)であり、これらは処理特性そのものを表す。処理特性モデルの導出にはこれらの実測データに最小二乗法を適用した。関数形としては、一次関数、二次関数、対数関数など任意の関数形(図4)選択できるが、実施例2の式(5)では、一次関数とし、傾きaと切片bとした。処理特性グラフには処理特性関数と同時に、上記の実測値が刻々とプロットされる。これにより、処理特性の変化が見える化できる。 Ammonia treated with the cumulative air volume V B, N (t) (t) is the treated ammonia concentration ΔNH4 (t), and these represent the treatment characteristics themselves. The least square method was applied to these measured data to derive the processing characteristic model. As the function form, an arbitrary function form (FIG. 4) such as a linear function, a quadratic function, a logarithmic function or the like can be selected. However, in the expression (5) of Example 2, the linear function is assumed to have a slope a and an intercept b. In the processing characteristic graph, the measured values are plotted at the same time as the processing characteristic function. Thereby, a change in processing characteristics can be visualized.

本実施例で、処理特性関数として見える化された処理特性は、活性汚泥性状の季節変動
にともない変動するが、維持管理性の向上にはこの処理特性関数の更新方法が重要となる
。本実施例の実運用により、上流側好気槽の末端に到達した仮想流体塊には、実測値に基
づいた流入アンモニア濃度、好気槽アンモニア濃度、累積風量が蓄積する。この情報に基
づいて処理特性関数の現在値を統計的に更新できる。さらにその時間変化により、異常時
に対する気づきが早まる。開発制御では、実績値に基づいた制御パラメータの自動更新に
より制御精度を担保すると同時に維持管理性を向上することが可能となる。
In the present embodiment, the processing characteristics visualized as the processing characteristics function vary with the seasonal variation of the activated sludge properties. However, the updating method of the processing characteristics function is important for improving the maintainability. By actual operation of the present embodiment, the inflow ammonia concentration, the aerobic tank ammonia concentration, and the accumulated air volume based on the actually measured values are accumulated in the virtual fluid mass that has reached the end of the upstream aerobic tank. Based on this information, the current value of the processing characteristic function can be updated statistically. In addition, the change in time accelerates the awareness of abnormal times. In development control, control accuracy is ensured by automatically updating control parameters based on actual values, and at the same time, maintenance can be improved.

図5に更新の様子を示す。更新前の関数を用いて制御を実施していく毎に、流入アンモ
ニア濃度、好気槽アンモニア濃度、累積風量から実績値の情報が蓄積していく。任意のタ
イミング(一定間隔でも良いし、オペレータの判断でも良い)で、実績値群に対
して例えば回帰分析による近似曲線を引くことで実績値に基づいた処理特性関数に更新で
きる。ここでの近似曲線は、実測値を確からしく近似する曲線であればy=ax+bやy=ax-1+b
などのxの正負の累乗で表される単項式でも良いし、これらを組み合わせた多項式でもよ
い。また、指数や対数、三角関数などの数学関数との組み合わせでも良い。また必ずしも関数ではなく不連続で段階的な対応表でも良い。その場合は、あらかじめ用意したデータベースあるいはオペレータの判断に基づいた対応関係で処理特性関数を更新すれば良い。
FIG. 5 shows the update. Each time control is performed using the function before the update, information on the actual value is accumulated from the inflow ammonia concentration, the aerobic tank ammonia concentration, and the cumulative air volume. The processing characteristic function based on the actual value can be updated by drawing an approximate curve by, for example, regression analysis from the actual value group at an arbitrary timing (may be a fixed interval or an operator's judgment). The approximate curve here is y = ax + b or y = ax -1 + b if it is a curve that accurately approximates the measured value.
It may be a monomial represented by a positive or negative power of x, or a polynomial combining these. Also, combinations with mathematical functions such as exponents, logarithms, and trigonometric functions may be used. Moreover, it is not necessarily a function, and a discontinuous and stepwise correspondence table may be used. In that case, the processing characteristic function may be updated with a correspondence prepared based on a database prepared in advance or the operator's judgment.

処理特性の時間変化については、例えば図6の処理特性関数から求めた指標の時間変化
を操作画面に表示すればよい。図6は指標として、アンモニア性窒素を25kg処理する際に必要となる風量を選び、時間変化をプロットした。一般的に低温期に硝化反応速度は小さくなるが、ここでは温度の影響は取り除いてある。これより、A処理場では10月に急激に風量が増加していることから、硝化菌量が減るなど何らかの異変があったことが推定される。処理特性を可視化して連続してモニタリングすることにより、この異変を即座に察知でき、図5のように、短期間の上昇とすることができる。またB処理場は通年を通じてA処理場より必要風量が大きい。A処理場はB処理場より効率よく運転されていることを表しており、A処理場の運用を参考に運用改善を検討するべきであることが示唆される。
For example, the time change of the index obtained from the process characteristic function of FIG. 6 may be displayed on the operation screen. In FIG. 6, the air volume required for treating 25 kg of ammoniacal nitrogen was selected as an index, and the change with time was plotted. In general, the nitrification reaction rate decreases in the low temperature period, but the influence of temperature is removed here. From this, it is presumed that there was some change such as a decrease in the amount of nitrifying bacteria because the air volume suddenly increased in October at the A treatment plant. By visualizing the processing characteristics and monitoring them continuously, this anomaly can be immediately detected, and as shown in FIG. In addition, the B treatment plant requires a larger air volume than the A treatment plant throughout the year. This indicates that the A treatment plant is operating more efficiently than the B treatment plant, suggesting that operational improvements should be considered with reference to the operation of the A treatment plant.

フィードバック演算では、式(12)に示すフィードバック制御における中間点アンモニア濃度の演算値NH4md_FBtgt(t)に対してPID制御によるフィードバック演算を実施する。 In the feedback calculation, feedback calculation based on PID control is performed on the calculated value NH4 md_FBtgt (t) of the intermediate point ammonia concentration in the feedback control shown in Expression (12).

Figure 2017100092
Figure 2017100092

NH4in、N(t)(t)は、上流側から下流側に到達した被処理水の流入時のアンモニア濃度の計測値であり、仮想流体塊の概念を用いることによる濃度変動の時間遅れが考慮されている。式(12)より中間点アンモニア濃度の演算値NH4md_FBtgt(t)は変動する流入側アンモニア濃度と固定された処理水アンモニア濃度の中間点として変動幅を持った値として計算される。これに基づいて演算される時刻t+Δtのフィードバック演算風量QB_FB(t+Δt) [m3/h]を式(13)に示す。 NH4 in, N (t) (t) is a measured value of the ammonia concentration at the inflow of water to be treated that has reached the downstream side from the upstream side. Has been taken into account. From equation (12), the calculated value NH4 md_FBtgt (t) of the intermediate point ammonia concentration is calculated as a value having a fluctuation range as an intermediate point between the varying inflow side ammonia concentration and the fixed treated water ammonia concentration. The feedback calculation air volume Q B — FB (t + Δt) [m 3 / h] at time t + Δt calculated based on this is shown in equation (13).

Figure 2017100092
Figure 2017100092

概念的には下流側の好気槽を適切に制御するための風量であるが、演算風量の評価としては、上流側と同様、好気槽全体の風量とすることで、感覚的に理解しやすくなるため、時刻tの風量QB(t) [m3/h]に基づいて求めた。Cpar(Z)は離散時間の並列PIコントローラの伝達関数で、比例項のパラメータをP、積分項のパラメータをI、サンプリング時間をTs [min](=60Δt)として式(14)となる。 Conceptually, it is the air volume for properly controlling the downstream aerobic tank, but the evaluation of the calculated air volume is sensuously understood by using the air volume of the entire aerobic tank as with the upstream side. In order to facilitate, it was determined based on the air volume Q B (t) [m 3 / h] at time t. C par (Z) is a transfer function of a discrete-time parallel PI controller. The proportional term parameter is P, the integral term parameter is I, and the sampling time is T s [min] (= 60Δt). .

Figure 2017100092
Figure 2017100092

以上より、硝化制御風量QB_NF(t+Δt) [m3/h]は、フィードフォワード演算風量QB_FF(t+Δt)、フィードバック演算風量QB_FB(t+Δt)、FB比率FBrtを用いて、式(15)で表される。 From the above, the nitrification control air volume Q B_NF (t + Δt) [m 3 / h] uses the feedforward calculated air volume Q B_FF (t + Δt), the feedback calculated air volume Q B_FB (t + Δt), and the FB ratio FB rt This is expressed by equation (15).

Figure 2017100092
Figure 2017100092

前述した通り、硝化運転制御による最終的な風量は、FF制御とFB制御を組み合わせた硝化制御による風量に、従来から利用されたDO制御による演算を並列させて選択する。DO制御は式(14)のPI制御で、目標値としてDO(下側) [mg/L]とDO(上側) [mg/L]を設定する。また、風量上限値、風量下限値、単位時間当たりの風量増加の上下限値である、風量傾き上限値、風量傾き下限値も設定する。これは、これまでの維持管理上の経験的な要素及び安定した制御実績を取り込み、安定的な制御を実現するためである。   As described above, the final air volume by the nitrification operation control is selected by paralleling the calculation by the DO control that has been conventionally used to the air volume by nitrification control that combines FF control and FB control. DO control is PI control of equation (14), and sets DO (lower side) [mg / L] and DO (upper side) [mg / L] as target values. Also, an air volume upper limit value, an air volume lower limit value, and an air volume gradient upper limit value and an air volume gradient lower limit value, which are upper and lower limit values of the air volume increase per unit time, are set. This is to incorporate empirical elements and stable control results so far in order to realize stable control.

まず、式(15)で求めた硝化制御風量とDO(下側)制御で演算した風量を比較し、大きい風量を選択する。次に選択した風量とDO(上側)制御で演算した風量を比較し、小さい風量を選択する。制御方式の切替ではなく選択とすることで、処理水の水質を良好に保つことができる。例えばDO(下側)よりもDOが大きい場合、硝化制御による急な風量低減指示に対してもDO(下側)を目標とする計算結果を採用し、水質の維持を図ることができる。あるいは、DO(下側)よりもDOが小さい場合でも、硝化制御による早急な風量増加指示に対応し、水質の維持を図ることができる。最後に選択された風量に対して、曝気風量の上下限値や曝気風量の変化量の傾きの上下限値の範囲内に収まるよう補正することで、最低限の風量を保証あるいは過剰曝気の抑制、さらには風量の急変によるブロワ機器へのダメージを防ぐことができる。   First, the nitrification control air volume obtained by equation (15) is compared with the air volume calculated by DO (lower) control, and a large air volume is selected. Next, the selected air volume is compared with the air volume calculated by DO (upper) control, and a smaller air volume is selected. By selecting instead of switching the control method, the quality of the treated water can be kept good. For example, when DO is larger than DO (lower side), it is possible to maintain the water quality by adopting a calculation result targeting DO (lower side) even for a sudden air volume reduction instruction by nitrification control. Alternatively, even when DO is smaller than DO (lower side), it is possible to maintain the water quality by responding to an prompt air volume increase instruction by nitrification control. The minimum air volume is guaranteed or over-aeration is suppressed by correcting the air volume to be within the range of the upper and lower limits of the aeration air volume and the slope of the variation of the aeration air volume with respect to the last selected air volume. In addition, damage to the blower equipment due to sudden changes in airflow can be prevented.

演算で求めた時刻t+Δtの上流側風量と下流側風量を合算して求めた全風量QB(t+Δt)を
用いることで、水質の目標値への安定した追随で省エネを図れる風量を求めることができ
る。本実施例では、上流側風量と下流側風量をそのまま合算したが、例えば下流側のフィ
ードバック要素を重視するなど、要求に応じてその重み付けを変化させても良い。また、
複数のブロワや、上流側/下流側好気槽へ連通する弁の制御で、上流側/下流側好気槽へ個
別に送る風量を制御しても良い。その場合、式(1)による全風量を上流側/下流側風量に分
配する必要はなく、上流側風量と下流側風量を本実施例の方法により、それぞれ演算すれ
ばよい。
By using the total air volume Q B (t + Δt) obtained by adding the upstream air volume and downstream air volume at time t + Δt obtained by calculation, the air volume that can achieve energy conservation with stable tracking of the water quality target value Can be requested. In the present embodiment, the upstream air volume and the downstream air volume are added together, but the weight may be changed as required, for example, by placing importance on the downstream feedback element. Also,
The amount of air sent individually to the upstream / downstream aerobic tank may be controlled by controlling a plurality of blowers and valves communicating with the upstream / downstream aerobic tank. In this case, it is not necessary to distribute the total air volume according to the equation (1) to the upstream / downstream air volume, and the upstream air volume and the downstream air volume may be calculated by the method of this embodiment.

以上より、本実施例の下水処理制御装置を適用することで、処理水質の安定と省エネおよび維持管理性の向上を図ることが出来る。   From the above, by applying the sewage treatment control apparatus of the present embodiment, it is possible to stabilize the quality of treated water, save energy, and improve the maintainability.

本実施例では、好気槽に設置した流下流量計10を用いたが、制御対象となる領域の生
物反応槽を流下する流速が分かれば良いので、流下流量計の代替として、例えば、流入下
水流量計と返送汚泥流量計と循環流量計で計測した流量の合計値としても良い。
In this embodiment, the flow-down flow meter 10 installed in the aerobic tank is used. However, since it is sufficient to know the flow velocity flowing down the biological reaction tank in the region to be controlled, as an alternative to the flow-down flow meter, for example, inflow sewage It is good also as a total value of the flow rate measured with the flowmeter, the return sludge flowmeter, and the circulation flowmeter.

本実施例では、適用例として循環式硝化脱窒法を取り上げたが、標準法やAO法、A2
O法、準高度処理法やこれらにステップフィードを適用した方式など、好気槽で硝化を実
施する方式であれば全ての方式に適用できる。その場合、例えば標準法やAO法では、流
下流量は流入下水流量と返送汚泥流量の合計となるため、流下流量計10の代替として、
流入下水流量計と返送汚泥流量計の合計値としても良い。
In this example, the circulation nitrification denitrification method was taken up as an application example, but the standard method, AO method, A2
The present invention can be applied to all methods as long as nitrification is performed in an aerobic tank, such as the O method, the semi-advanced processing method, and a method in which step feed is applied thereto. In that case, for example, in the standard method or the AO method, the flow rate is the sum of the inflow sewage flow rate and the return sludge flow rate.
The total value of the inflow sewage flow meter and the return sludge flow meter may be used.

本実施例では上流側好気槽でのフィードフォワード制御に対して、流入アンモニア計1
1によるアンモニア濃度を用いたが、下水100や初沈越流水101部分に設置したアン
モニア計やあるいはUV計など相関関係などからアンモニア濃度を推定する他の代替手段で
も良い。あるいは、流量変動、日間変動、季節変動からのアンモニア濃度の推定値でも良
い。これらの場合、好気槽に流入するアンモニア濃度を求める場合、下水100や初沈越
流水101のアンモニア濃度に対して、下水流量、返送汚泥流量、循環流量および、好気
槽アンモニア計12によるアンモニア濃度から推定される返送汚泥、循環液に含まれるア
ンモニア濃度を用いて、流入アンモニア濃度を推定すれば良い。
In this embodiment, an inflow ammonia meter 1 is used for feedforward control in the upstream aerobic tank.
1 is used, but other alternative means for estimating the ammonia concentration from the correlation such as an ammonia meter or UV meter installed in the sewage 100 or the first subsidence water 101 portion may be used. Alternatively, an estimated value of ammonia concentration from flow rate fluctuation, daily fluctuation, and seasonal fluctuation may be used. In these cases, when obtaining the ammonia concentration flowing into the aerobic tank, the sewage flow rate, the return sludge flow rate, the circulation flow rate, and the ammonia by the aerobic tank ammonia meter 12 with respect to the ammonia concentration of the sewage 100 and the first overflow water 101. The inflow ammonia concentration may be estimated using the return sludge estimated from the concentration and the ammonia concentration contained in the circulating fluid.

本実施例では下流側風量の演算としてPI制御を用いたが、PID制御や他のフィードバッ
ク制御手法でも良い。
In this embodiment, PI control is used as the calculation of the downstream air volume, but PID control and other feedback control methods may be used.

本実施例では、好気槽アンモニア計によるフィードバック制御を実施したが、実運用で
は施設の経験的な運転方針から、好気槽の下流側のDOに下限値を設け、好気槽下流側に設
置したDO計によるDO値が下限値を下回る場合、下限値を目標とするDO制御としてもよい。
In this example, feedback control was performed using an aerobic tank ammonia meter, but in actual operation, a lower limit value was set for DO on the downstream side of the aerobic tank based on the empirical operating policy of the facility, and downstream of the aerobic tank. When the DO value by the installed DO meter is below the lower limit value, DO control with the lower limit value as the target may be used.

本実施例では、好気槽水質推定部としてアンモニア計を用いたが、DO計でも良い。その
場合、式(2)は目標DO値に基づくPI制御等のフィードバック制御としても良い。ここでの
目標DO値は一定の設定値でも良く、あるいは時間や季節や流量などに応じて変動させても
良い。時間の場合は、負荷の大きい昼間はDO設定値を大きく、小さい夜間はDO設定値を小さくすることが考えられる。季節の場合は、水温が低く反応速度が小さい冬季はDO設定値を大きく、大きい夏季はDO設定値を小さくすることが考えられる。流量の場合は、流量が大きく滞留時間が短い期間はDO設定値を大きく、滞留時間が長い期間はDO設定値を小さくすることが考えられる。
In this embodiment, an ammonia meter is used as the aerobic tank water quality estimation unit, but a DO meter may be used. In that case, equation (2) may be feedback control such as PI control based on the target DO value. The target DO value here may be a constant set value, or may be changed according to time, season, flow rate, or the like. In the case of time, it is conceivable to increase the DO setting value during the daytime when the load is large, and decrease the DO setting value during the nighttime when the load is small. In the case of the season, it is possible to increase the DO setting value in winter when the water temperature is low and the reaction speed is low, and to decrease the DO setting value in the large summer season. In the case of a flow rate, it is conceivable that the DO set value is increased during a period when the flow rate is large and the residence time is short, and the DO set value is decreased during a period where the residence time is long.

本実施例では、好気槽水質推定部としてアンモニア計を用いたが、その下流側に第二好
気槽水質測定部としてDO計を設置しても良い。その場合、式(2)は目標DO値に基づくPI制御等のフィードバック制御としても良い。ここでの目標DO値は好気槽アンモニア濃度の計測値NH4md(t)と対応させるカスケード制御としても良い。例えば、好気槽アンモニア濃度の計測値NH4md(t)が大きい場合は、処理水アンモニア濃度の目標値NH4out_tgtまでの差分が大きいため、DO設定値を大きく、好気槽アンモニア濃度の計測値NH4md(t)が小さい場合は、DO設定値を小さくすることが考えられる。
In this embodiment, an ammonia meter is used as the aerobic tank water quality estimation unit, but a DO meter may be installed as a second aerobic tank water quality measurement unit on the downstream side thereof. In that case, equation (2) may be feedback control such as PI control based on the target DO value. The target DO value here may be cascade control corresponding to the measured value NH4 md (t) of the aerobic tank ammonia concentration. For example, if the measured value NH4 md (t) of the aerobic tank ammonia concentration is large, the difference to the target value NH4 out_tgt of the treated water ammonia concentration is large, so the DO setting value is increased and the measured value of the aerobic tank ammonia concentration When NH4 md (t) is small, it is conceivable to decrease the DO set value.

本実施例では、最初沈殿池1を設置したが、最初沈殿池1を除いた構成でも良い。また
、最終沈殿池4の代替として、活性汚泥と処理水の分離に膜を用いる膜分離活性汚泥法活
性汚泥法でも良い。その場合、例えば好気槽3に膜を浸漬させても良い。
In this embodiment, the first settling basin 1 is installed, but a configuration excluding the first settling basin 1 may be used. As an alternative to the final sedimentation basin 4, a membrane separation activated sludge method activated sludge method using a membrane for separation of activated sludge and treated water may be used. In that case, for example, the membrane may be immersed in the aerobic tank 3.

本実施例では、流入水水質で推定する水質としてアンモニア性窒素を例としてあげたが、これらに限定されるものではなく、流入水質推定部で推定する水質はブロワから酸素を吹き込むことで酸化などにより変動する水質であれば良い。   In this embodiment, ammonia nitrogen is taken as an example of the water quality estimated by the influent water quality, but the water quality estimated by the influent water quality estimation unit is not limited to these, and is oxidized by blowing oxygen from the blower. The water quality may vary depending on

1.最初沈殿池
2.無酸素槽
3.好気槽
4.最終沈殿池
5.ブロワ
6.嫌気槽
100.下水
101.初沈越流水
102.活性汚泥
103.処理水
104.返送汚泥
105.循環液
106.空気
10.流入流量計
11.流入アンモニア計
12.好気槽アンモニア計
13.風量計
16.DO計
20.ブロワ風量演算部
21.ブロワ風量制御部
22.溶存酸素濃度目標値設定部
23.好気槽中水質目標値設定部
24.下流側水質値目標設定部
200.下水処理制御装置
1. First sedimentation basin 2. 2. Anoxic tank Aerobic tank 4. 4. Final sedimentation basin Blower 6. Anaerobic tank 100. Sewage 101. First subsidence water 102. Activated sludge 103. Treated water 104. Return sludge Circulating fluid 106. Air 10. 10. Inflow flow meter Inflow ammonia meter 12. Aerobic tank ammonia meter13. Air flow meter16. DO total 20. Blower air volume calculation unit 21. Blower air volume control unit 22. Dissolved oxygen concentration target value setting unit 23. Aerobic tank water quality target value setting unit 24. Downstream water quality target setting unit 200. Sewage treatment controller

Claims (7)

被処理水を酸化処理する好気槽と、
前記好気槽に空気を送るブロワと、
前記好気槽中の溶存酸素濃度を推定する溶存酸素濃度推定部と、
前記好気槽中の溶存酸素濃度の目標値を設定する溶存酸素濃度目標設定部と、
前記好気槽中の溶存酸素濃度以外の水質値を推定する好気槽中水質値推定部と、
前記好気槽中の溶存酸素濃度以外の水質値の目標値を設定する好気槽中水質値目標設定部と、
前記ブロワの風量を推定するブロワ風量推定部と、
前記ブロワの風量を演算するブロワ風量演算部と、
を備えた下水処理制御装置において、
前記好気槽中水質値推定部で推定する水質値が、前記ブロワから酸素を吹き込むことで変動する水質値であり、
前記ブロワ風量演算部が、前記好気槽中の溶存酸素濃度の目標値と前記溶存酸素濃度推定部による溶存酸素濃度の推定値に基づき演算されたブロワ風量と、前記好気槽中の溶存酸素濃度以外の水質値の目標値と前記好気槽中水質値推定部による好気槽中の水質値の推定値に基づき演算されたブロワ風量のうち、大きいブロワ風量を出力することを特徴とする下水処理制御装置。
An aerobic tank for oxidizing the water to be treated;
A blower for sending air to the aerobic tank;
A dissolved oxygen concentration estimating unit for estimating a dissolved oxygen concentration in the aerobic tank;
A dissolved oxygen concentration target setting unit for setting a target value of the dissolved oxygen concentration in the aerobic tank;
An aerobic tank water quality estimation unit for estimating a water quality value other than the dissolved oxygen concentration in the aerobic tank;
An aerobic tank water quality target setting unit for setting a target value of a water quality value other than the dissolved oxygen concentration in the aerobic tank;
A blower air volume estimating unit for estimating the air volume of the blower;
A blower air volume calculator for calculating the air volume of the blower;
In the sewage treatment control device comprising
The water quality value estimated by the aerobic tank water quality value estimation unit is a water quality value that varies by blowing oxygen from the blower,
The blower air volume calculation unit calculates the blower air volume calculated based on the target value of the dissolved oxygen concentration in the aerobic tank and the estimated value of the dissolved oxygen concentration by the dissolved oxygen concentration estimation unit, and the dissolved oxygen in the aerobic tank Of the blower air volume calculated based on the target value of the water quality value other than the concentration and the estimated value of the water quality value in the aerobic tank by the aerobic tank water quality value estimation unit, a large blower air volume is output. Sewage treatment control device.
請求項1において、
前記好気槽中水質値推定部で推定する水質値が、アンモニア性窒素濃度であることを特徴とする下水処理制御装置。
In claim 1,
The sewage treatment control apparatus, wherein the water quality value estimated by the aerobic tank water quality value estimation unit is an ammoniacal nitrogen concentration.
請求項1または2において、
前記好気槽中の流下流速を推定する流下流量推定部と、
前記好気槽中の溶存酸素濃度以外の水質値より上流側の水質値を推定する上流側水質値推定部と、
前記好気槽中の溶存酸素濃度以外の水質値より下流側の水質値の目標値を設定する下流側水質値目標設定部と、
を備え、
前記上流側水質値推定部で推定する水質値と、前記下流側水質値目標設定部で設定する水質値が、前記ブロワから酸素を吹き込むことで変動する水質値であり、
前記好気槽中水質値目標設定部が、前記好気槽中水質値推定部で推定された現在の水質値と、前記上流側水質値推定部で推定された過去の水質値と、前記下流側水質値目標設定部で設定された水質値から演算した時間により変動する演算水質値を、前記好気槽中の溶存酸素濃度以外の水質値の目標値として設定することを特徴とする下水処理制御装置。
In claim 1 or 2,
A flow rate estimator for estimating a flow velocity in the aerobic tank;
An upstream water quality estimation unit that estimates a water quality value upstream from a water quality value other than the dissolved oxygen concentration in the aerobic tank;
A downstream water quality value target setting unit for setting a target value of a downstream water quality value from a water quality value other than the dissolved oxygen concentration in the aerobic tank;
With
The water quality value estimated by the upstream water quality value estimation unit and the water quality value set by the downstream water quality value target setting unit are water quality values that vary by blowing oxygen from the blower,
The aerobic tank water quality value target setting unit includes a current water quality value estimated by the aerobic tank water quality value estimation unit, a past water quality value estimated by the upstream water quality value estimation unit, and the downstream A sewage treatment characterized by setting a calculated water quality value that varies depending on a time calculated from a water quality value set by a side water quality value target setting unit as a target value for a water quality value other than the dissolved oxygen concentration in the aerobic tank. Control device.
請求項3において、
前記上流側水質値推定部で推定する水質値と、前記下流側水質値目標設定部で設定する水質値が、アンモニア性窒素濃度であることを特徴とする下水処理制御装置。
In claim 3,
The sewage treatment control apparatus, wherein the water quality value estimated by the upstream water quality value estimation unit and the water quality value set by the downstream water quality value target setting unit are ammonia nitrogen concentrations.
請求項3または4において、
前記ブロワ風量演算部が、少なくとも前記上流側水質値推定部で推定した水質値と必要風量との関係を記述する必要風量演算機能を備え、
前記上流側水質値推定部で推定した水質値の現時刻の値に基づき演算した必要風量と過去の値に基づき演算した必要風量を用いてブロワ風量を演算することを特徴とする下水処理制御装置。
In claim 3 or 4,
The blower air volume calculation unit has a necessary air volume calculation function that describes a relationship between at least the water quality value estimated by the upstream water quality value estimation unit and the required air volume,
A sewage treatment control apparatus that calculates a blower air volume using a required air volume calculated based on a current time value of a water quality value estimated by the upstream water quality value estimating unit and a required air volume calculated based on a past value. .
請求項5において、
前記ブロワ風量演算部が、前記上流側水質値推定部と前記好気槽中水質値推定部と前記必要風量演算機能により演算した必要風量に基づき、前記必要風量演算機能における前記水質値と必要風量との関係を更新することを特徴とする下水処理制御装置。
In claim 5,
Based on the required air volume calculated by the upstream air quality value estimating unit, the aerobic tank water quality value estimating unit, and the required air volume calculating function, the blower air volume calculating unit calculates the water quality value and the required air volume in the required air volume calculating function. The sewage treatment control device characterized by updating the relationship with
請求項6において、
前記水質値と必要風量との関係から抽出した処理特性情報を時系列で表示する処理特性表示部を備えたことを特徴とする下水処理制御装置。
In claim 6,
A sewage treatment control apparatus comprising a treatment characteristic display unit that displays treatment characteristic information extracted from the relationship between the water quality value and the required air volume in time series.
JP2015236208A 2015-12-03 2015-12-03 Sewage treatment control device Active JP6726954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015236208A JP6726954B2 (en) 2015-12-03 2015-12-03 Sewage treatment control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015236208A JP6726954B2 (en) 2015-12-03 2015-12-03 Sewage treatment control device

Publications (2)

Publication Number Publication Date
JP2017100092A true JP2017100092A (en) 2017-06-08
JP6726954B2 JP6726954B2 (en) 2020-07-22

Family

ID=59017154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236208A Active JP6726954B2 (en) 2015-12-03 2015-12-03 Sewage treatment control device

Country Status (1)

Country Link
JP (1) JP6726954B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141763A (en) * 2018-02-19 2019-08-29 株式会社明電舎 Operation support apparatus and operation support method for water treatment facility
JP2019171235A (en) * 2018-03-27 2019-10-10 株式会社九電工 Wastewater treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019141763A (en) * 2018-02-19 2019-08-29 株式会社明電舎 Operation support apparatus and operation support method for water treatment facility
JP7052399B2 (en) 2018-02-19 2022-04-12 株式会社明電舎 Operation support device and operation support method for water treatment facilities
JP2019171235A (en) * 2018-03-27 2019-10-10 株式会社九電工 Wastewater treatment apparatus
JP7002977B2 (en) 2018-03-27 2022-02-10 株式会社九電工 Wastewater treatment equipment

Also Published As

Publication number Publication date
JP6726954B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP7059989B2 (en) Control system and control method
CN109607770B (en) Multi-scene self-learning carbon source intelligent adding system and method for denitrification tank
JP5775296B2 (en) Operation support apparatus and operation support method for sewage treatment plant
JP4334317B2 (en) Sewage treatment system
EP3645469B1 (en) Wastewater treatment plant and method of controlling it
JP2013034966A (en) Water treatment system and method for controlling amount of aeration
JP6219239B2 (en) Water treatment plant
JP6655975B2 (en) Aeration control device and aeration control method
JP2017113725A (en) Operation support system and operation support method of sewage treatment plant
JP6726954B2 (en) Sewage treatment control device
JP4188200B2 (en) Plant-wide optimum process controller
JP4008694B2 (en) Sewage treatment plant water quality controller
CN114380378A (en) Intelligent phosphorus-control drug feeding method and device and storage medium
WO2017207011A1 (en) Control of n2o-emissions by aeration
JP6619242B2 (en) Water treatment system
JP2003300093A (en) Operation support system and control system for water treatment process
JP6581856B2 (en) Blower control device
JP2012170883A (en) Activated sludge treating apparatus and treating method
KR20060092660A (en) Automatic control device and method for wastewater treatment using fuzzy control
CN104787875B (en) A kind of aeration control method and system of sequencing batch active sludge
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP6499952B2 (en) Water treatment system
JP2015051389A (en) Water treatment controller
JP6621866B2 (en) Operation support device and operation support method for sewage treatment plant using activated sludge method
JP6430324B2 (en) Waste water treatment method and waste water treatment apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6726954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150