JP6581856B2 - Blower control device - Google Patents
Blower control device Download PDFInfo
- Publication number
- JP6581856B2 JP6581856B2 JP2015177138A JP2015177138A JP6581856B2 JP 6581856 B2 JP6581856 B2 JP 6581856B2 JP 2015177138 A JP2015177138 A JP 2015177138A JP 2015177138 A JP2015177138 A JP 2015177138A JP 6581856 B2 JP6581856 B2 JP 6581856B2
- Authority
- JP
- Japan
- Prior art keywords
- air volume
- blower
- flow rate
- predicted
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Feedback Control In General (AREA)
Description
本発明は、例えば、下水処理場の処理水の水質を制御するブロワの台数制御装置に関する。 The present invention relates to an apparatus for controlling the number of blowers for controlling the quality of treated water in a sewage treatment plant, for example.
環境問題やコスト削減への対応が必須となった昨今、下水処理場においても、公共水域へ放流する処理水の水質向上、さらなる省エネ化、ICTを活用した維持管理性の向上が求められている。 Now that environmental issues and cost reductions have become essential, sewage treatment plants are also required to improve the quality of treated water discharged into public water areas, further energy savings, and improvement in maintainability using ICT. .
下水処理場では、活性汚泥と呼ばれる微生物縣濁液により、下水中の有機物や窒素などを除去する。ブロワにより活性汚泥に空気を吹き込む生物反応槽を好気槽と呼ぶが、好気槽では有機物は微生物による同化・異化反応により摂取・消費され、除去される。また、流入下水中の主たる窒素成分のアンモニア性窒素は、好気槽において酸化され、硝酸態窒素となる。硝酸態窒素はその後の無酸素槽で窒素まで還元され、大気中に放出・除去される。 In sewage treatment plants, organic matter, nitrogen, etc. in sewage are removed with a microbial suspension called activated sludge. A biological reaction tank in which air is blown into activated sludge by a blower is called an aerobic tank. In the aerobic tank, organic substances are ingested / consumed and removed by an assimilation / catabolic reaction by microorganisms. In addition, ammonia nitrogen, which is the main nitrogen component in the inflowing sewage, is oxidized in the aerobic tank to become nitrate nitrogen. Nitrate nitrogen is reduced to nitrogen in the subsequent oxygen-free tank and released into the atmosphere.
これらの水処理プロセスにおいて、活性汚泥に空気を吹き込むブロワは消費電力が大きい。したがって、ブロワの消費電力を低減させるため、例えば好気槽末端に設置した溶存酸素(DO)の濃度を一定制御にするDO一定制御により、ブロワを適切に制御し、必要な風量を好気槽に送り込む。 In these water treatment processes, a blower that blows air into activated sludge consumes a large amount of power. Therefore, in order to reduce the power consumption of the blower, for example, by controlling the blower appropriately by DO constant control that makes the concentration of dissolved oxygen (DO) installed at the end of the aerobic tank constant, the required air volume is controlled by the aerobic tank. To send.
ここでのブロワから生物反応槽に送り込む風量とブロワによる消費電力には、ある程度の相関関係はあるが、比例関係ではない。例えば複数台のブロワをON/OFFしてブロワの風量を制御する場合、演算された必要風量の、ある値を閾値としてブロワ台数を増減し、余った風量は放風弁より大気中に放風する。ブロワの台数と消費電力は比例するため、ブロワから送り込む風量(演算された必要風量)と消費電力はステップ状となる。一般に、頻繁にブロワ台数が増減することを防ぐため、例えばブロワ台数を1台から2台に増やす場合の風量の閾値より、ブロワ台数を2台から1台に減らす場合の風量の閾値が小さくなる。したがって、同じ風量に対してブロワの台数が異なる、すなわち消費電力が異なる場合が発生する。すなわち、風量に対する消費電力のグラフは一部がオーバーラップするステップ状の関係となる。 Here, there is a certain degree of correlation between the amount of air sent from the blower to the biological reaction tank and the power consumed by the blower, but it is not a proportional relationship. For example, when controlling the blower air flow by turning ON / OFF multiple blowers, the number of blowers is increased or decreased with a certain value of the calculated required air flow as a threshold, and the excess air flow is discharged into the atmosphere from the air discharge valve. To do. Since the number of blowers and power consumption are proportional, the air volume sent from the blower (calculated required air volume) and the power consumption are stepped. In general, in order to prevent frequent increase / decrease in the number of blowers, for example, the threshold of airflow when reducing the number of blowers from two to one is smaller than the threshold of airflow when increasing the number of blowers from one to two. . Therefore, there are cases where the number of blowers is different for the same air volume, that is, the power consumption is different. In other words, the graph of the power consumption with respect to the air volume has a step-like relationship that partly overlaps.
インバータやインレットベーンにより風量を制御するブロワの場合、風量と消費電力にはある程度の相関関係がある(非特許文献1)が、一般にブロワの最大風量点でもっとも効率が良い。複数台のブロワを制御するに当たり、ブロワの台数を増やすと同じ風量でも一台あたりの風量が低下し、効率が低下する。したがって、風量に対する消費電力のグラフは単調増加のステップの一部がオーバーラップする関係となる。 In the case of a blower that controls the air volume by means of an inverter or an inlet vane, there is a certain degree of correlation between the air volume and power consumption (Non-Patent Document 1), but generally the efficiency is highest at the maximum air volume point of the blower. In controlling a plurality of blowers, if the number of blowers is increased, the air flow per unit is reduced even with the same air flow, and the efficiency is lowered. Therefore, the graph of the power consumption against the air volume has a relationship in which a part of the monotonically increasing step overlaps.
ブロワの台数制御を適切に実施し、消費電力を削減するためには、このオーバーラップの部分、すなわち少ないブロワの台数で実現できる風量を多くのブロワの台数で実施している状態をできるだけ少なくすれば良い。 In order to properly control the number of blowers and reduce power consumption, the amount of air flow that can be achieved with this overlap, that is, with a small number of blowers, should be minimized as much as possible. It ’s fine.
特許文献1は、活性汚泥法を用いた下水処理場のエアレーションタンク内に送風すべき曝気風量を制御する送風機器の運転台数制御装置に係わり、特にエアレーションタンクの適切な溶存酸素量(以下、DO値と指称する)を確保するための曝気風量を送風する送風機器の運転台数制御装置に関する発明である。DO値の設置値変更に際して、DO値が減少傾向にない場合、すなわち流入してくる水質負荷が小さくなる傾向にある場合は、ブロワの台数増加を抑制することで無駄なブロワの台数増加を抑制する。
特許文献2は、晴天時と雨天時とでは流入流量の汚濁負荷が異なるために、手動操作を行なわざるを得ないという問題に対して、雨天モードでは晴天モードで演算する風量に対して補正を設けることで、すべての状態で自動制御を実現しようとするものであり、得られた風量に対して台数を決定する台数制御部を備える。
特許文献1においては、DO制御におけるDO値の設定値変更の際の対処法であるが、一般にDO制御は長期間一定値で運用するもので、PI制御によりDOを目標値に追随させる。その場合、DO値は目標値付近で頻繁に増減する。また、流入してくる水質負荷が増加する場合においても、例えば瞬間的に必要風量がブロワ台数増加の閾値を上回り、ブロワ台数を増加するも、その後はオーバーラップ部分の風量しか必要ない場合がある。 Japanese Patent Laid-Open No. 2004-228561 is a countermeasure for changing the set value of the DO value in DO control. In general, DO control is operated at a constant value for a long period of time, and the DO is caused to follow the target value by PI control. In that case, the DO value frequently increases or decreases near the target value. In addition, even when the incoming water quality load increases, for example, the required air volume momentarily exceeds the threshold for increasing the number of blowers, and the number of blowers increases, but after that, only the air volume of the overlap portion may be required thereafter. .
特許文献2においては、雨天モードを設けることで、晴天時だけでなく雨天時も効率よく必要風量を演算しているが、ブロワ台数についても効率化については触れられておらず、演算した必要風量に対してブロワ台数を効率化しにくい。
In
このような従来の構成が有していた問題を解決するため、本発明の目的は、下水処理の水質を適切に制御し、ブロワによる消費電力を抑制することが可能なブロワ制御装置を提供することにある。 In order to solve such a problem of the conventional configuration, an object of the present invention is to provide a blower control device capable of appropriately controlling the water quality of sewage treatment and suppressing power consumption by the blower. There is.
上記目的を達成するため、本発明のブロワ制御装置は、被処理水である流入水と、前記流入水の流量を計測する流量計と、前記流入水を酸化処理する好気槽と、前記好気槽に空気を送る複数のブロワと、前記好気槽に送られた空気の風量を計測する風量計と、前記好気槽に必要な風量を演算する必要風量演算部と、前記複数のブロワの風量および台数を制御するブロワ制御部と、を備えたブロワ制御装置において、前記流入水の通日の流量変動パターンおよび前記好気槽に送られる空気の通日の風量変動パターンを記憶する日間変動パターンデータベースと、ある時刻で前記流量計により計測された流量とある時刻で前記風量計により計測された風量が通常の範囲内であることを判定し、前記風量変動パターンから予測風量を演算する予測風量演算部と、を備え、前記ブロワ制御部が、前記必要風量演算部が算出した風量と前記予測風量で前記ブロワの台数増減の閾値判定を行うことを特徴とするものである。
In order to achieve the above object, a blower control device of the present invention includes inflow water that is treated water, a flow meter that measures the flow rate of the inflow water, an aerobic tank that oxidizes the inflow water, and the preferred A plurality of blowers for sending air to the air tank, an air flow meter for measuring the air volume of the air sent to the aerobic tank, a required air volume calculating unit for calculating the air volume required for the aerobic tank, and the plurality of blowers And a blower control unit that controls the flow rate and the number of units of air, and the flow rate variation pattern of the inflowing water and the flow rate variation pattern of the air that is sent to the aerobic tank It is determined that the flow rate measured by the flow meter at a certain time and the air flow measured by the air flow meter at a certain time are within a normal range, and the predicted air flow is calculated from the air flow variation pattern. Wind forecast Comprising an arithmetic unit, wherein the blower control unit is characterized in performing the threshold determination of the number increase or decrease of the blower in the predicted air volume and air volume the indispensable air volume calculation unit has calculated.
本発明によれば、ブロワの台数を適切に制御することで、下水処理の水質を適切に制御しつつブロワによる消費電力を抑制できる。 ADVANTAGE OF THE INVENTION According to this invention, the power consumption by a blower can be suppressed, controlling the water quality of a sewage process appropriately by controlling the number of blowers appropriately.
本発明の各実施例を図面により説明する。 Embodiments of the present invention will be described with reference to the drawings.
(実施例1)
図1は本発明の実施例1の構成図である。
Example 1
FIG. 1 is a configuration diagram of
本実施例は活性汚泥を用いた下水処理プラントにブロワ台数制御装置を適用した例である。生物反応槽1には、下水100が流入し、被処理水101として流出する。生物反応槽1には、散気管2が浸漬されており、第一ブロワ11と第二ブロワ12の2台のブロワが連通する。流入する下水100の流量は流量計21で計測される。生物反応槽1において、散気管2を通じて空気を送り込む部分は好気槽で、その末端の溶存酸素濃度は溶存酸素濃度計22で計測される。送り込まれる風量は風量計23で計測される。
This embodiment is an example in which a blower number control device is applied to a sewage treatment plant using activated sludge.
流量計21と溶存酸素濃度計22と風量計23の情報は必要風量演算部31に送られ、必要風量を演算する。演算された必要風量は予測風量演算部32に送られる。予測風量演算部32では、日間変動パターンデータベース33からの通日の風量変動パターン、流量変動パターンおよび演算された必要風量に基づき予測風量を演算し、ブロワ制御部34では、必要風量および演算された予測風量に基づき、ブロワの風量と台数増減の閾値判定をし、第一ブロワ11と第二ブロワ12を制御する。
Information on the
従来のブロワ台数制御方法について述べる。 A conventional method for controlling the number of blowers will be described.
図2はインレットベーンを備えたブロワ2台を使用して、従来のブロワ台数制御を実施した場合の、ブロワ風量とブロワ消費電力の関係を表す。ブロワ風量が増加に伴い消費電力は増加する。ブロワ2台ではブロワ1台よりも多くの風量を生成できるが、一部オーバーラップしている。 FIG. 2 shows the relationship between the blower air volume and the blower power consumption when the conventional blower number control is performed using two blowers equipped with inlet vanes. The power consumption increases as the blower air volume increases. Two blowers can generate more air volume than one blower, but some overlap.
図3は従来のブロワ台数制御の制御フロー(従来モード)である。必要風量演算部31で、例えば、溶存酸素濃度一定となるようにPID制御を用いて時刻tの必要風量QBr(t)[m3/hr]を制御した後、ブロワ1台運転を実施している場合(S1)、時刻tでの必要風量QBr(t)と閾値Th1 [m3/hr]を比較し(S2)、必要ブロワ風量QBr(t)[m3/hr]が閾値Th1以下の場合はブロワ1台運転を継続する(S1)。大きくなると、ブロワを1台起動し、ブロワ2台運転となる(S3)。この際、時刻tでの必要風量QBr(t)と閾値Th2 [m3/hr]を比較し(S4)、閾値Th2(<Th1)より小さい必要ブロワ風量QBとなると1台のブロワを停止し、ブロワ1台運転となる(S1)。図2より、閾値Th1とTh2の間の風量をブロワ2台で運転しているところをブロワ1台で運転できると、ブロワの消費電力を低減できる可能性があることが分かる。
FIG. 3 is a control flow (conventional mode) of conventional blower unit control. The required air
そのための方法として、本実施例1のブロワ台数制御の制御フロー(予測モード)を図4に示す。ブロワ台数1台運転の場合である(S1)。時刻tでの必要風量QBr(t)と閾値Th1 を比較し(S2)、時刻tでの必要風量QBr(t)が閾値Th1 より大きい場合、過去n時間にわたる下水流量Q(t)[m3/hr]とブロワ風量QB(t)[m3/hr]とそれらの日間変動パターンを比較する(S3)。 As a method therefor, FIG. 4 shows a control flow (prediction mode) for controlling the number of blowers according to the first embodiment. This is the case of operating one blower (S1). The required air volume Q Br (t) at time t is compared with the threshold Th 1 (S2). If the required air volume Q Br (t) at time t is greater than the threshold Th 1 , the sewage flow rate Q (t over the past n hours ) [m 3 / hr] and the blower air volume Q B (t) [m 3 / hr] are compared with their daily fluctuation patterns (S3).
図5は風量と流量の日間変動パターンの例である。実線がそれぞれの日間変動パターンである。点線はそれぞれの日間変動パターン±10%の値とした。図4での比較(S3)では、例えば現時刻が12時でn=24時間の場合、昨日の12時までの風量と流量の値がこの点線の範囲外であれば、通常と異なる条件と判断(S4)、必要ブロワ風量QBr(t)が閾値Th1 を超えたことに基づいてブロワ2台運転とする(S8)。一方、流量・風量とも範囲内であれば、日間変動パターンデータベースから、時間Δt(例えば15分)後の予測風量QBp(t+Δt)を導出する(S5)。予測風量QBp(t+Δt)と閾値Th1 を比較し(S6)、これも閾値Th1を上回った場合、ブロワの風量は現在も将来も増加させる必要があると判断して、ブロワ2台運転とする(S8)。閾値Th1以下の場合はブロワ台数増の要請は瞬間的なものであり、Δt後(例えば15分後)には現在のブロワ台数で必要な風量をまかなえると判断してブロワ1台運転を継続する(S1)。ただし、過去mΔtの間(例えば、m=4で、mΔt=60分)連続して必要ブロワ風量QBr(t)が閾値Th1 を上回った場合(S7)、日間変動パターンを外れる前兆として、予測風量によらず、ブロワ2台運転とする。 FIG. 5 shows an example of the daily fluctuation pattern of the air volume and the flow rate. The solid line is the daily fluctuation pattern. The dotted line is the value of the daily fluctuation pattern ± 10%. In the comparison (S3) in FIG. 4, for example, if the current time is 12:00 and n = 24 hours, if the air volume and flow rate values until 12:00 yesterday are outside the range of this dotted line, determining (S4), and two blower operation based on the required blower air volume Q Br (t) exceeds the threshold value Th 1 (S8). On the other hand, if both the flow rate and the air volume are within the range, the predicted air volume Q Bp (t + Δt) after time Δt (for example, 15 minutes) is derived from the daily fluctuation pattern database (S5). The predicted air volume Q Bp (t + Δt) is compared with the threshold value Th 1 (S6). If this also exceeds the threshold value Th 1 , it is determined that the air volume of the blower needs to be increased now and in the future, and the blower 2 A stand-alone operation is performed (S8). If the threshold is less than Th 1, the request to increase the number of blowers is instantaneous. After Δt (for example, after 15 minutes), it is determined that the required air volume can be provided by the current number of blowers, and the operation of one blower is continued. (S1). However, if the required blower air volume Q Br (t) continuously exceeds the threshold value Th 1 during the past mΔt (for example, m = 4, mΔt = 60 minutes) (S7), Regardless of the predicted air volume, two blowers are operated.
本実施例1における、ブロワ2台の場合(S1)のブロワ台数制御の制御フロー(予測モード)を図6に示す。消費電力削減するためには、閾値Th1より低い場合、できるだけブロワ台数を1台としたい。そのため、前述したように、時刻tでの必要ブロワ風量QBr(t)が閾値Th1 より小さい場合(S2)、過去n時間にわたる下水流量Q(t)とブロワ風量QB(t)とそれらの日間変動パターンを比較する(S3)。風量と流量の値が範囲外(S4)であれば、通常と異なる条件と判断し、従来モードと同様、必要ブロワ風量QBr(t)が閾値Th2 を下回った場合(S6)、ブロワ1台運転とする。一方、流量・風量とも範囲内(S4)であれば、通常日間変動パターンデータベースから、時間Δt(例えば15分)後の予測風量QBp(t+Δt)を導出する(S5)。これも閾値Th1を下回った場合(S7)、ブロワの風量は現在も将来も低減できると判断して、ブロワ1台運転とする(S9)。閾値Th1以上の場合はブロワ台数減の要請は瞬間的なものであり、Δt後(例えば15分後)には現在のブロワ台数で必要な風量をまかなう必要があると判断してブロワ2台運転を継続する(S1)。ただし、過去mΔtの間(例えば、m=4で、mΔt=60分)連続して必要ブロワ風量QBr(t)が閾値Th1 を下回った場合(S8)、日間変動パターンを外れる前兆として、予測風量によらず、ブロワ1台運転とする(S9)。
FIG. 6 shows a control flow (prediction mode) for controlling the number of blowers in the case of two blowers (S1) in the first embodiment. In order to reduce power consumption, if the threshold value is lower than Th 1 , the number of blowers should be set to one as much as possible. Therefore, as described above, when the required blower air volume Q Br (t) at time t is smaller than the threshold Th 1 (S2), the sewage flow rate Q (t) and the blower air volume Q B (t) over the past n hours and those Are compared (S3). If the air volume and flow rate are out of range (S4), it is determined that the condition is different from the normal condition. As in the conventional mode, if the required blower air volume Q Br (t) falls below the threshold Th 2 (S6), the
本実施例の方法により、ブロワ台数を過剰にかけて必要風量を算出する期間が短縮され、消費電力を抑制できる。 By the method of the present embodiment, the time period for calculating the necessary air volume by reducing the number of blowers is excessive, and the power consumption can be suppressed.
本実施例ではインレットベーンを備えたブロワを用いたが、インバータを備えたブロワでもよく、ON/OFFのみのブロワを用いても良い。その場合の生物反応槽への風量の制御は例えば、放風弁によって余剰の風量を大気中に放風する、などが考えられる。 In this embodiment, a blower provided with an inlet vane is used. However, a blower provided with an inverter may be used, or a blower having only ON / OFF may be used. In this case, for example, it is conceivable to control the air flow into the biological reaction tank by discharging a surplus air flow into the atmosphere using a discharge valve.
本実施例では、必要風量演算部31における必要風量の演算に溶存酸素濃度一定制御を用いたが、必要風量を与えるものであれば手法によらず、例えば空気倍率制御、アンモニア計を用いた硝化制御、実績値基づいたデータベース由来の制御などでも良い。
In the present embodiment, the dissolved oxygen concentration constant control is used for the calculation of the required air volume in the required air
本実施例では日間変動パターンを流量と風量でひとつずつとしたが、時期(例えば月、雨季、季節)やイベント(例えば、夏季休暇、年末年始)により変更してよい。また、流量と風量の実測値に基づき現在の日間変動パターンを、例えば通常時の平均値から作成しても良い。さらに、降雨量、降雨時間に応じた降雨時の流量、風量変動パターンを備え、降雨量、降雨時間に応じて日間変動パターンを変更しても良い。また、以下に記述するように風量の代わりに空気倍率を用いても良い。 In this embodiment, the daily fluctuation pattern is set to one for the flow rate and the air volume, but may be changed according to the time (for example, the month, the rainy season, the season) and the event (for example, summer vacation, year-end and New Year holidays). Further, the current daily fluctuation pattern may be created based on, for example, an average value at normal times based on the actual values of the flow rate and the air volume. Furthermore, it is possible to provide a rainfall flow rate and air volume fluctuation pattern according to the rainfall amount and the rainfall time, and change the daily fluctuation pattern according to the rainfall amount and the rainfall time. Moreover, you may use an air magnification instead of an air volume so that it may describe below.
本実施例では日間変動パターンとして流量と風量を用いて、現時刻の流量および風量が範囲内であるかを判定しているが、風量については、流量で無次元化した空気倍率を用いて、現時刻の流量および空気倍率が範囲内であるかを判定しても良い。 In this embodiment, using the flow rate and the air volume as the daily fluctuation pattern, it is determined whether the current flow rate and the air volume are within the range, but for the air volume, using the air magnification made dimensionless by the flow rate, It may be determined whether the flow rate and air magnification at the current time are within the range.
本実施例では下水処理におけるブロワ制御装置として説明したが、ブロワの必要風量を演算し、複数のブロワを制御する装置であれば、下水処理に限らず適用できる。 Although this embodiment has been described as a blower control device in sewage treatment, any device that calculates the necessary air volume of a blower and controls a plurality of blowers can be applied without being limited to sewage treatment.
(実施例2)
図7は本発明の実施例2の構成図である。実施例1の構成に降雨情報取得部41、降雨時予測風量補正部42が追加されており、降雨情報取得部41、降雨時予測風量補正部42、予測風量演算部32と信号が送られる。実施例1と同様にブロワ2台用いる場合について述べる。
(Example 2)
FIG. 7 is a configuration diagram of
降雨情報取得部41では、対象とする地域に関連する地域の降雨情報(例えば地域、降雨量、時刻など)が取得される。ブロワ台数制御には3つのモードがある。一つ目は図2で示した従来モードである。二つ目は実施例1の図4、図6で示した予測モードである。三つ目は以下に示す降雨時に予測風量を補正する、降雨時予測モードである。実施例1でも説明したが、降雨時に降雨時の日間変動パターンデータベースを用いる方法は、予測モードに属する。
The rainfall
図8にモード判別フローを示す。降雨情報取得部41で降雨が検知されない場合(S1)は予測モードとなる(S2)。降雨が検知された場合、実施例1と同様に、降雨前n時間にわたる下水流量Q(t)とブロワ風量QB(t)とそれらの日間変動パターンを比較する(S3)。例えばn=24の場合、過去24時間にわたり、風量と流量の値が範囲内であれば、降雨予測モードに移行する(S5)。範囲外であれば通常時と異なる状態での降雨のため、本発明における予測方法は用いず、従来モードで従来通りの方法にしたがってブロワ台数を決定する(S6)。 FIG. 8 shows a mode discrimination flow. When rainfall is not detected by the rainfall information acquisition unit 41 (S1), the prediction mode is set (S2). When rain is detected, the sewage flow rate Q (t) and the blower air volume Q B (t) over n hours before the rain and their daily fluctuation patterns are compared as in the first embodiment (S3). For example, in the case of n = 24, if the air volume and the flow rate are within the range over the past 24 hours, the process proceeds to the rain prediction mode (S5). If it is outside the range, it is raining in a state different from the normal time, so the prediction method in the present invention is not used, and the number of blowers is determined in the conventional mode according to the conventional method (S6).
ブロワ1台運転時の降雨予測モードの制御フロー例を図9に示す。時刻tでの必要ブロワ風量QBr(t)が閾値Th1 より大きい場合(S2)、通常日間変動パターンデータベースから、時間Δt(例えば15分)後の予測風量QBp(t+Δt)を導出(S3)した後、降雨時の流量と風量の関係に基づいて降雨時予測風量補正演算(S4)を実施する。 FIG. 9 shows an example of the control flow in the rain prediction mode when a single blower is operating. When the required blower air volume Q Br (t) at time t is larger than the threshold Th 1 (S2), the predicted air volume Q Bp (t + Δt) after time Δt (for example, 15 minutes) is derived from the normal daily fluctuation pattern database. After (S3), based on the relationship between the flow rate and the air volume at the time of rain, a predicted air volume correction calculation at the time of rain (S4) is performed.
図10は降雨時の流量と風量の関係の例である。降雨により下水流量が増加すると、必要となる風量が遅れて減少することを表す関数である。これは降雨により希釈された流入下水が生物反応槽に上流側から流下していく結果生じる現象である。流量増分ΔQ(t) [m3/hr]は通常時の下水流量Q(t)に対する増分で、予測風量増分ΔQBp(t+Δtx)は、Δtx時間後に必要となる風量の、通常日間変動パターンからの予測増分量である。過去の風量および流量と降雨情報から導出することができ、例えばΔtxは5時間となる。 FIG. 10 shows an example of the relationship between the flow rate and the air volume during rainfall. This function represents that the required air volume decreases with a delay when the sewage flow rate increases due to rainfall. This is a phenomenon that occurs as a result of the inflow sewage diluted by rainfall flowing down into the biological reaction tank from the upstream side. The flow rate increment ΔQ (t) [m 3 / hr] is the increment relative to the normal sewage flow rate Q (t), and the predicted air flow increment ΔQ Bp (t + Δt x ) is the normal amount of air required after Δt x hours. This is the predicted increment from the daily fluctuation pattern. It can be derived from past air volume and flow rate and rainfall information, for example, Δt x is 5 hours.
この降雨時風量関係を用いて、時間Δt後の予測風量QBp(t+Δt)を導出する。まず、時間Δtx -Δt前の流量増分であるΔQ(t-(Δtx -Δt ))を導出し(図9(S5))、降雨時の流量と風量の関係(図10)から、流量増分ΔQ(t-(Δtx -Δt ))に対する風量増分ΔQ(t+Δt )を導出する(S6)。次に、日間変動パターンデータベースでの時刻t+Δtの風量Q(t+Δt )に風量増分ΔQ(t+Δt )を加えて時間Δt後の予測風量QBp(t+Δt)を導出する(S7)。閾値Th1以上の場合はブロワ台数減の要請は瞬間的なものであり、Δt後(例えば15分後)には現在のブロワ台数で必要な風量をまかなう必要があると判断してブロワ2台運転を継続する(S10)。閾値Th1を下回った場合、ブロワの風量は現在も将来も低減できると判断して、ブロワ1台運転とする(S1)。ただし、過去mΔtの間(例えば、m=4で、mΔt=60分)連続して必要ブロワ風量QBr(t)が閾値Th1 を上回った場合、日間変動パターンに留まっていると判定して、ブロワ2台運転とする(S10)。 Using this rainfall-time air volume relationship, a predicted air volume Q Bp (t + Δt) after time Δt is derived. First, ΔQ (t− (Δt x −Δt)), which is the flow rate increment before time Δt x -Δt, is derived (FIG. 9 (S5)), and the flow rate is calculated from the relationship between the flow rate and the air volume during rainfall (FIG. 10). An air flow increment ΔQ (t + Δt) with respect to the increment ΔQ (t− (Δt x −Δt)) is derived (S6). Next, the predicted air volume Q Bp (t + Δt) after time Δt is derived by adding the air volume increment ΔQ (t + Δt) to the air volume Q (t + Δt) at time t + Δt in the daily fluctuation pattern database ( S7). If the threshold value is Th 1 or more, the request to reduce the number of blowers is instantaneous, and after Δt (for example, after 15 minutes), it is determined that it is necessary to cover the required air volume with the current number of blowers. The operation is continued (S10). When the lower threshold value Th 1, the air volume of the blower now be determined that it can be reduced in the future, and one blower operation (S1). However, if the required blower air volume Q Br (t) continuously exceeds the threshold Th 1 during the past mΔt (eg, m = 4, mΔt = 60 minutes), it is determined that the daily fluctuation pattern remains. The two blowers are operated (S10).
ブロワ2台運転時の降雨予測モードの制御フロー例を図11に示す。時刻tでの必要ブロワ風量QBr(t)が閾値Th1 より大きい場合(S2)、通常日間変動パターンデータベースから、時間Δt(例えば15分)後の予測風量QBp(t+Δt)を導出(S3)した後、降雨時の流量と風量の関係に基づいて降雨時予測風量補正演算(S4)を実施する。実施内容は上述のブロワ1台運転時と同様である。 FIG. 11 shows an example of the control flow in the rain prediction mode when operating two blowers. When the required blower air volume Q Br (t) at time t is larger than the threshold Th 1 (S2), the predicted air volume Q Bp (t + Δt) after time Δt (for example, 15 minutes) is derived from the normal daily fluctuation pattern database. After (S3), based on the relationship between the flow rate and the air volume at the time of rain, a predicted air volume correction calculation at the time of rain (S4) is performed. The contents of the implementation are the same as in the above-described operation of one blower.
補正された予測風量予測風量QBp(t+Δt)これも閾値Th1を下回った場合(S8)、ブロワの風量は現在も将来も低減できると判断して、ブロワ1台運転とする(S10)。閾値Th1以上の場合はブロワ台数減の要請は瞬間的なものであり、Δt後(例えば15分後)には現在のブロワ台数で必要な風量をまかなう必要があると判断してブロワ2台運転を継続する(S1)。ただし、過去mΔtの間(例えば、m=4で、mΔt=60分)連続して必要ブロワ風量QBr(t)が閾値Th1 を下回った場合(S9)、日間変動パターンを外れる前兆として、予測風量によらず、ブロワ1台運転とする(S10)。 Corrected predicted air volume predicted air volume Q Bp (t + Δt) If this also falls below the threshold Th 1 (S8), it is determined that the air volume of the blower can be reduced now and in the future, and one blower is operated (S10). ). If the threshold value is Th 1 or more, the request to reduce the number of blowers is instantaneous, and after Δt (for example, after 15 minutes), it is determined that it is necessary to cover the required air volume with the current number of blowers. The operation is continued (S1). However, if the required blower air volume Q Br (t) continuously falls below the threshold Th 1 during the past mΔt (eg, m = 4, mΔt = 60 minutes) (S9), Regardless of the predicted air volume, a single blower is operated (S10).
本実施例の方法により、ブロワ台数を過剰にかけて必要風量を算出する期間が短縮され、消費電力を抑制できる。 By the method of the present embodiment, the time period for calculating the necessary air volume by reducing the number of blowers is excessive, and the power consumption can be suppressed.
本実施例ではインレットベーンを備えたブロワを用いたが、インバータを備えたブロワでもよく、ON/OFFのみのブロワを用いても良い。その場合の生物反応槽への風量の制御は例えば、放風弁によって余剰の風量を大気中に放風する、などが考えられる。 In this embodiment, a blower provided with an inlet vane is used. However, a blower provided with an inverter may be used, or a blower having only ON / OFF may be used. In this case, for example, it is conceivable to control the air flow into the biological reaction tank by discharging a surplus air flow into the atmosphere using a discharge valve.
本実施例では、必要風量演算部31における必要風量の演算に溶存酸素濃度一定制御を用いたが、必要風量を与えるものであれば手法によらず、例えば空気倍率制御、アンモニア計を用いた硝化制御、実績値基づいたデータベース由来の制御などでも良い。
In the present embodiment, the dissolved oxygen concentration constant control is used for the calculation of the required air volume in the required air
本実施例では日間変動パターンを流量と風量でひとつずつとしたが、時期(例えば月、雨季、季節)やイベント(例えば、夏季休暇、年末年始)により変更してよい。また、流量と風量の実測値に基づき現在の日間変動パターンを、例えば通常時の平均値から作成しても良い。また、以下に記述するように風量の代わりに空気倍率を用いても良い。 In this embodiment, the daily fluctuation pattern is set to one for the flow rate and the air volume, but may be changed according to the time (for example, the month, the rainy season, the season) and the event (for example, summer vacation, year-end and New Year holidays). Further, the current daily fluctuation pattern may be created based on, for example, an average value at normal times based on the actual values of the flow rate and the air volume. Moreover, you may use an air magnification instead of an air volume so that it may describe below.
本実施例では日間変動パターンとして流量と風量を用いて、現時刻の流量および風量が範囲内であるかを判定しているが、風量については、流量で無次元化した空気倍率を用いて、現時刻の流量および空気倍率が範囲内であるかを判定しても良い。 In this embodiment, using the flow rate and the air volume as the daily fluctuation pattern, it is determined whether the current flow rate and the air volume are within the range, but for the air volume, using the air magnification made dimensionless by the flow rate, It may be determined whether the flow rate and air magnification at the current time are within the range.
本実施例では下水処理におけるブロワ制御装置として説明したが、ブロワの必要風量を演算し、複数のブロワを制御する装置であれば、下水処理に限らず適用できる。 Although this embodiment has been described as a blower control device in sewage treatment, any device that calculates the necessary air volume of a blower and controls a plurality of blowers can be applied without being limited to sewage treatment.
1 生物反応槽
2 散気管
11 第一ブロワ
12 第二ブロワ
21 流量計
22 溶存酸素濃度計
23 風量計
31 必要風量演算部
32 予測風量演算部
33 日間変動パターンデータベース
34 ブロワ制御部
41 降雨情報取得部
42 降雨時予測風量補正部
100 下水
101 被処理水
1 Biological reaction tank
2 Air diffuser
11 First blower
12 Second blower
21 Flow meter
22 dissolved oxygen concentration meter
23 Air flow meter
31 Required air volume calculator
32 Predicted air volume calculator
33-day fluctuation pattern database
34 Blower control unit
41 Rainfall information acquisition unit
42 Predicted air volume correction during rain
100 sewage
101 Water to be treated
Claims (5)
前記流入水の流量を計測する流量計と、
前記流入水を酸化処理する好気槽と、
前記好気槽に空気を送る複数のブロワと、
前記好気槽に送られた空気の風量を計測する風量計と、
前記好気槽に必要な風量を演算する必要風量演算部と、
前記複数のブロワの風量および台数を制御するブロワ制御部と、
を備えたブロワ制御装置において、
前記流入水の通日の流量変動パターンおよび前記好気槽に送られる空気の通日の風量変動パターンを記憶する日間変動パターンデータベースと、
ある時刻で前記流量計により計測された流量とある時刻で前記風量計により計測された風量が通常の範囲内であることを判定し、
前記風量変動パターンから予測風量を演算する予測風量演算部と、
を備え、
前記ブロワ制御部が、前記必要風量演算部が算出した風量と前記予測風量で前記ブロワの台数増減の閾値判定を行うことを特徴とするブロワ制御装置。 Inflow water to be treated,
A flow meter for measuring the flow rate of the influent water;
An aerobic tank for oxidizing the inflow water;
A plurality of blowers for sending air to the aerobic tank;
An air flow meter for measuring the air flow of the air sent to the aerobic tank;
A required air volume calculating unit for calculating the air volume required for the aerobic tank;
A blower control unit for controlling the air volume and the number of the plurality of blowers;
In a blower control device comprising
A daily fluctuation pattern database for storing a flow fluctuation pattern of the inflowing water throughout the day and an air flow fluctuation pattern of the daily flow of air sent to the aerobic tank;
Determining that the flow rate measured by the flow meter at a certain time and the air volume measured by the anemometer at a certain time are within a normal range;
A predicted air volume calculation unit for calculating a predicted air volume from the air volume fluctuation pattern;
With
The blower control device, wherein the blower control unit determines a threshold value for increasing / decreasing the number of blowers based on the air volume calculated by the necessary air volume calculating unit and the predicted air volume.
ある時刻で前記風量計により計測された風量が前記風量変動パターンによる風量に基づいて導出された許容風量範囲にあるかを判定し、
前記風量変動パターンから予測風量を演算する予測風量演算部であることを特徴とする請求項1記載のブロワ制御装置。 In the predicted air volume calculation unit, determining whether the flow rate measured by the flow meter at a certain time is within an allowable flow rate range derived based on the flow rate according to the flow rate variation pattern;
Determining whether the airflow measured by the airflow meter at a certain time is within an allowable airflow range derived based on the airflow according to the airflow fluctuation pattern;
The blower control device according to claim 1, wherein the blower control device is a predicted air volume calculation unit that calculates a predicted air volume from the air volume fluctuation pattern.
前記予測風量演算部で演算された予測風量を、前記降雨時予測風量補正部に基づき補正することを特徴とする請求項1または2記載のブロワ制御装置。 Furthermore, a rain information acquisition unit and a rain forecast air volume correction unit are provided,
The blower control device according to claim 1 or 2, wherein the predicted air volume calculated by the predicted air volume calculating unit is corrected based on the rain predicted air volume correcting unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015177138A JP6581856B2 (en) | 2015-09-09 | 2015-09-09 | Blower control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015177138A JP6581856B2 (en) | 2015-09-09 | 2015-09-09 | Blower control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017054272A JP2017054272A (en) | 2017-03-16 |
JP6581856B2 true JP6581856B2 (en) | 2019-09-25 |
Family
ID=58320785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015177138A Active JP6581856B2 (en) | 2015-09-09 | 2015-09-09 | Blower control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6581856B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6621866B2 (en) * | 2017-05-01 | 2019-12-18 | 株式会社ウォーターエージェンシー | Operation support device and operation support method for sewage treatment plant using activated sludge method |
JP7039201B2 (en) * | 2017-07-19 | 2022-03-22 | 株式会社東芝 | Air volume control device, air volume control method and computer program |
JP7209905B1 (en) * | 2022-03-14 | 2023-01-20 | 三菱電機株式会社 | Water treatment system, aeration amount control device, and aeration amount control method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3105060B2 (en) * | 1992-03-05 | 2000-10-30 | 株式会社東芝 | Water level control device |
JP3344141B2 (en) * | 1995-02-09 | 2002-11-11 | 株式会社明電舎 | Device for predicting the number of operating filter pumps |
-
2015
- 2015-09-09 JP JP2015177138A patent/JP6581856B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017054272A (en) | 2017-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109607770B (en) | Multi-scene self-learning carbon source intelligent adding system and method for denitrification tank | |
JP6581856B2 (en) | Blower control device | |
CN111943292B (en) | Method, device and system for treating high-load sewage by coupling storage tank | |
JP2010269254A (en) | Water treatment equipment | |
CN116253446B (en) | Intelligent aeration setting method for sewage treatment | |
JP6845775B2 (en) | Water treatment control device and water treatment system | |
JP2017109170A (en) | Aeration control apparatus, and aeration control method | |
US20160115058A1 (en) | Control apparatus and method for a sewage plant | |
JP6219239B2 (en) | Water treatment plant | |
CN215253278U (en) | Promote drainage system of pollution control facility operating efficiency | |
JP4008694B2 (en) | Sewage treatment plant water quality controller | |
JP5714355B2 (en) | Activated sludge treatment apparatus and treatment method thereof | |
JP4836556B2 (en) | Aeration control system | |
Sharma et al. | Aeration tank settling and real time control as a tool to improve the hydraulic capacity and treatment efficiency during wet weather: results from 7 years' full-scale operational data | |
CN110436609A (en) | A kind of Intellectualized sewage water processing aeration control method with self-learning function | |
KR101293581B1 (en) | Control method for amount of blast and energy reduction in sewage treatment process through oxygen uptake rate analyzing | |
JP7039201B2 (en) | Air volume control device, air volume control method and computer program | |
JP6726954B2 (en) | Sewage treatment control device | |
KR20180076454A (en) | Method of controlling electric energy in wastewater treatment operation for energy saving | |
JP6621866B2 (en) | Operation support device and operation support method for sewage treatment plant using activated sludge method | |
CN113089790B (en) | Drainage system for improving operation efficiency of pollution control facility and scheduling method | |
CN112624338B (en) | Self-adaptive adjustment method for operation mode of rural domestic sewage treatment facility under rainstorm or rainy season situation | |
JP2015051389A (en) | Water treatment controller | |
JP4248043B2 (en) | Biological phosphorus removal equipment | |
JP2002136987A (en) | Sewage treatment system, inflow water processing arithmetic unit thereof, inflow water treatment method and memory medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170111 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170113 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190514 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190619 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6581856 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |