JP2007144277A - System for controlling aeration - Google Patents

System for controlling aeration Download PDF

Info

Publication number
JP2007144277A
JP2007144277A JP2005340019A JP2005340019A JP2007144277A JP 2007144277 A JP2007144277 A JP 2007144277A JP 2005340019 A JP2005340019 A JP 2005340019A JP 2005340019 A JP2005340019 A JP 2005340019A JP 2007144277 A JP2007144277 A JP 2007144277A
Authority
JP
Japan
Prior art keywords
aeration
sewage
predicted
dissolved oxygen
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005340019A
Other languages
Japanese (ja)
Other versions
JP4836556B2 (en
Inventor
Katsunori Miura
勝範 三浦
Shoji Uchida
祥司 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005340019A priority Critical patent/JP4836556B2/en
Publication of JP2007144277A publication Critical patent/JP2007144277A/en
Application granted granted Critical
Publication of JP4836556B2 publication Critical patent/JP4836556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for controlling aeration which acquires information including weather information affecting an aeration load in real time, enables suitable aeration while maintaining a water quality and as a result, can also reduce aeration electric energy. <P>SOLUTION: Confluent sewage combining rainwater is introduced into an aeration tank 11 and aeration is carried out to the introduced sewage. The dissolved oxygen concentration of water to be treated which is aerated in the aeration tank 11 is measured by a dissolved oxygen meter. The predicted rainfall amount in mesh units at a drainage area where the rainwater flows out to the confluent sewage is inputted from a weather information system 17, the inflow amount of the confluent sewage is predicted, and aeration load amount prediction means 161 determine the concentration of an organic substance in inflow sewage from the predicted inflow amount as an aeration load amount. An aeration air flow rate computing means 162 determine an aeration air flow rate for achieving the target dissolved oxygen concentration of the water to be treated from the predicted aeration load amount and the dissolved oxygen concentration of the water to be treated to control the aeration air flow rate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、雨水が合流する合流式の下水に対して曝気を行い所定の溶存酸素濃度に制御する曝気制御システムに関する。   The present invention relates to an aeration control system that performs aeration on merged sewage combined with rainwater to control it to a predetermined dissolved oxygen concentration.

一般に、下水などの被処理水を好気性で水処理し、清浄化した後、河川などに放流することが広く行われている。この場合、被処理水に空気を吹き込んでいわゆる曝気を行う必要があり、この曝気に関して多くの提案が成されている(例えば、特許文献1参照)。   In general, water to be treated such as sewage is aerobically treated, purified, and then discharged into a river or the like. In this case, it is necessary to perform so-called aeration by blowing air into the water to be treated, and many proposals have been made regarding this aeration (for example, see Patent Document 1).

上記曝気は、下水などの被処理水を貯留したエアレーションタンク(曝気槽とも言う)の底部に散気装置を設け、この散気装置に送風機から空気を送り、散気装置からエアレーションタンク内の被処理水に気泡状に空気を送ることにより実行される。このような構成であることから、送風機を駆動するモータの消費電力が大きく、その電力量の削減が大きなテーマであった。   The aeration is provided with an air diffuser at the bottom of an aeration tank (also referred to as an aeration tank) storing treated water such as sewage, air is sent from the blower to the air diffuser, and the air in the aeration tank is supplied from the air diffuser. It is carried out by sending air in the form of bubbles to the treated water. Since it is such a structure, the power consumption of the motor which drives a fan is large, and the reduction of the electric energy was a big theme.

従来から行われている曝気機の電力量削減の手法としては、散気装置(エアレーター自体の構造を変えて)を改善する手法や、低負荷時の過曝気を防止するために、好気タンクのNH4−N濃度など測定値を使用して最適DO値を計算し、曝気量を制御するなど、監視制御における最適運転を支援するものが存在している。
特開平11−347585号公報
Conventional methods for reducing the power consumption of aerators include improving the diffuser (by changing the structure of the aerator itself) and aerobic to prevent over-aeration at low loads. Some exist that support optimal operation in supervisory control, such as calculating the optimal DO value using measured values such as NH4-N concentration in the tank and controlling the amount of aeration.
Japanese Patent Laid-Open No. 11-347585

上述した手法において、散気装置自体の構造を変える場合には、躯体更新に合わせて設置をおこなう等、処理場への通常運用に対する負荷を発生させ、好ましくない。一方、NH4−N濃度などの測定値を使用したDO値の計算結果を利用し、監視制御への運用フィードバックでは、リアルタイムな測定値を使用できないことで時間差が生じ、最適解であったかどうか疑問が残る。   In the above-described method, when the structure of the air diffuser itself is changed, it is not preferable because it causes a load on the normal operation to the processing plant, such as installing it in accordance with the casing update. On the other hand, using the calculation result of DO value using measured values such as NH4-N concentration, in operation feedback to monitoring control, there is a time difference due to the inability to use real-time measured values, and there is a question whether it was the optimal solution Remain.

また、上述の改善手法が諸事情により導入できていないか、有効な対策が行われていない処理場において、ほかに一般的におこなわれている手法としては、曝気風量(電力量)とDO値、MLSS値など水質データの相関を、測定値を元に経験で把握し、運用している。すなわち、水質維持をメインとした電力量の最低限ラインを経験で設定し、実施している。しかし、この手法もリアルタイムな情報に基づいていない経験則での運用という意味で改善が必要である。   In addition, in the treatment plant where the above-described improvement method has not been introduced due to various circumstances or effective measures have not been taken, other commonly used methods include aeration air volume (electric energy) and DO value. The correlation of water quality data, such as MLSS values, is grasped by experience based on the measured values and is used. In other words, experience has set and implemented a minimum line for power consumption mainly for maintaining water quality. However, this method also needs to be improved in the sense that it is operated with a rule of thumb that is not based on real-time information.

本発明の目的は、曝気負荷に影響を与える気象情報も含めてリアルタイムに情報を入手し、水質を維持しながら適切な曝気を可能とし、結果として曝気電力量をも削減可能な曝気制御システムを提供することにある。   An object of the present invention is to provide an aeration control system that obtains information in real time including weather information that affects the aeration load, enables appropriate aeration while maintaining water quality, and consequently reduces aeration power. It is to provide.

本発明にかかる曝気制御システムは、雨水が合流する合流式の下水に対して曝気を行い所定の溶存酸素濃度に制御する曝気制御システムであって、前記下水が導入され、この導入された下水に対して曝気が行なわれるエアレーションタンクと、このエアレーションタンクにおいて曝気された被処理水の溶存酸素濃度を測定する溶存酸素計と、雨水が前記合流式の下水に流出する流域をメッシュ状に区切り、これらメッシュ毎に予測される降雨量を入力し、これらメッシュ毎の予測降雨量から前記合流式下水の流入量を予測し、この予測流入量から流入下水の有機物濃度を求めてこれを曝気負荷量とする曝気負荷量予測手段と、この曝気負荷量予測手段で予測された曝気負荷量と前記被処理水の溶存酸素濃度とから、被処理水の目標溶存酸素濃度を達成するための曝気風量を求める曝気風量演算手段とを備えたことを特徴とする。   An aeration control system according to the present invention is an aeration control system that controls a predetermined dissolved oxygen concentration by aeration of combined sewage into which rainwater joins, and the sewage is introduced into the introduced sewage. An aeration tank that is aerated, a dissolved oxygen meter that measures the dissolved oxygen concentration of the treated water that has been aerated in the aeration tank, and a basin where rainwater flows into the combined sewage are divided into mesh shapes. The rainfall amount predicted for each mesh is input, the inflow amount of the combined sewage is predicted from the predicted rainfall amount for each mesh, the organic matter concentration of the inflow sewage is obtained from the predicted inflow amount, and this is referred to as the aeration load amount. The target dissolved oxygen concentration of the water to be treated from the aeration load amount predicting means, the aeration load amount predicted by the aeration load amount predicting means and the dissolved oxygen concentration of the water to be treated Characterized by comprising a aeration amount calculation means for obtaining the aeration amount to achieve the.

本発明によれば、雨水が下水に合流する領域におけるメッシュ毎の細密な気象情報を入手することにより、合流式下水の流入予測を行い、曝気負荷量を捕えて的確な曝気制御を行うので、過曝気などを防止して効率的な曝気を行うことができる。   According to the present invention, by obtaining detailed meteorological information for each mesh in the area where rainwater merges with sewage, the inflow prediction of the combined sewage is performed, and the aeration load is captured and accurate aeration control is performed. Efficient aeration can be performed by preventing excessive aeration.

以下、本発明にかかる曝気制御システムの一実施の形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of an aeration control system according to the present invention will be described in detail with reference to the drawings.

この曝気制御システムは、雨水が合流する合流式の下水に対して曝気を行い所定の溶存酸素濃度に制御するものであって、前記合流式下水管の終端部に設けられる処理場に構成される。図1において、11はエアレーションタンクで、前記処理場に設置され、前記合流式の下水管から下水が導入され、この導入された下水に対して曝気を行なう。12は曝気用の送風機で、曝気機モータ13により駆動され、エアレーションタンク11の底部に設置された図示しない散気装置に送風し、この散気装置から空気を気泡状に噴出させ、エアレーションタンク11内の下水(以下、被処理水と呼ぶ)を曝気する。   The aeration control system is configured to aerate the sewage combined with rainwater and control it to a predetermined dissolved oxygen concentration, and is configured in a treatment plant provided at a terminal portion of the merging sewage pipe. . In FIG. 1, 11 is an aeration tank which is installed in the treatment plant, and sewage is introduced from the combined sewage pipe, and the introduced sewage is aerated. Reference numeral 12 denotes a blower for aeration, which is driven by an aerator motor 13 and blows air to a diffuser (not shown) installed at the bottom of the aeration tank 11. Air is blown out from the diffuser in the form of bubbles, and the aeration tank 11. The sewage inside (hereinafter referred to as treated water) is aerated.

15は溶存酸素計(以下、DO計と呼ぶ)で、エアレーションタンク11において曝気された被処理水の溶存酸素濃度を測定する。このDO計15で計測されたDO値(溶存酸素濃度)は、中央監視制御システム16に入力される。この中央監視制御システム16は、前記処理場における水処理システムを監視制御するもので、曝気負荷量予測手段161と曝気風量演算手段162とを有する。   Reference numeral 15 denotes a dissolved oxygen meter (hereinafter referred to as DO meter), which measures the dissolved oxygen concentration of the water to be treated aerated in the aeration tank 11. The DO value (dissolved oxygen concentration) measured by the DO meter 15 is input to the central monitoring control system 16. The central monitoring control system 16 monitors and controls the water treatment system in the treatment plant, and includes an aeration load amount prediction unit 161 and an aeration air amount calculation unit 162.

17は気象情報システムで、合流式の下水管が配設され、降雨に伴い雨水が前記合流式の下水管に流出する流域を数km平方のメッシュ単位に区切り、このメッシュ毎に降雨量及び降雨タイミングなどの気象情報を予測し、提供するシステムである。このようなシステムは、例えば、民間の気象予報会社のように、メッシュ単位に予測された細密気象情報に基き、所謂ピンポイントの気象情報を作成し、顧客の要求によってインターネットなどを通じて提供するシステムとして構成される。   17 is a meteorological information system, and a combined sewer pipe is arranged, and a basin where rainwater flows into the combined sewer pipe in accordance with rainfall is divided into a mesh unit of several km squares. This system predicts and provides weather information such as timing. Such a system is, for example, a system that creates so-called pinpoint weather information based on detailed weather information predicted in mesh units and provides it through the Internet or the like according to customer requirements, such as a private weather forecast company. Composed.

ここで、メッシュ毎の細分化された気象観測は、例えば、公知のレーダによる気象観測で可能となる。すなわち、レーダにより雲の大きさや動き、降雨の有無などを観測し、その観測結果をメッシュ状に区分することにより、どのメッシュに何時どれだけの降水があるかを予測することができる。なお、メッシュの数及びその大きさは任意に設定することができる。   Here, subdivided meteorological observation for each mesh is possible, for example, by meteorological observation using a known radar. In other words, by observing the size and movement of clouds, the presence or absence of rainfall, etc. with a radar, and dividing the observation results into meshes, it is possible to predict how much precipitation and when and how much precipitation there is. The number of meshes and the size thereof can be set arbitrarily.

前記曝気負荷量予測手段161は、気象情報システム17から入手したメッシュ毎の細密気象情報(予測降雨量など)から、この雨量が下水管に流出する量を求め、下水管から処理場へ流入する合流式下水の流入量を予測する。すなわち、細密気象情報によりメッシュに区切られた特定地域に、何時、どの程度の降雨があるかが細密に予測される。そこで、この細密気象情報により、前記特定地域における降雨の程度を判断し、RRL法など公知の流入量予測方法により、特定地域への降雨による処理場への流入下水量をそれぞれ算出する。また、この予測された流入下水量から、この流入下水の濁度も予測できるので、この濁度もあわせて予測する。   The aeration load amount predicting means 161 obtains the amount of this rainfall flowing out to the sewer pipe from the fine meteorological information (predicted rainfall amount etc.) for each mesh obtained from the weather information system 17, and flows into the treatment plant from the sewer pipe. Predict the inflow of combined sewage. That is, when and how much rainfall is in a specific area divided into meshes by detailed weather information, it is precisely predicted. Therefore, the degree of rainfall in the specific area is judged from the detailed weather information, and the amount of sewage flowing into the treatment plant due to rainfall in the specific area is calculated by a known inflow amount prediction method such as the RRL method. Moreover, since the turbidity of this inflowing sewage can also be predicted from this predicted amount of inflowing sewage, this turbidity is also predicted.

ここで、流入下水の有機物濃度(以下、CODと呼ぶ)の算出には演算モデルを用いる。すなわち、下水の濁度とCODとの間には高い相関性が期待され、有機物濃度演算モデル式は以下の(1)式となる。   Here, an arithmetic model is used to calculate the organic matter concentration (hereinafter referred to as COD) of the inflowing sewage. That is, a high correlation is expected between the turbidity of sewage and COD, and the organic matter concentration calculation model formula is the following formula (1).

COD=a・CTurb+b ・・・・(1)
COD:流入下水の有機物濃度(COD) (mg/L)
Turb:流入下水の濁度 (度)
a:定数
b:定数
このように下水の流入量を予測し、この予測された流入量から流入下水の有機物濃度を求める。この有機物濃度が曝気負荷量となる。
C COD = a · C Turb + b (1)
C COD : Organic matter concentration of influent sewage (COD) (mg / L)
C Turb : Turbidity of incoming sewage (degree)
a: Constant b: Constant In this way, the inflow of sewage is predicted, and the organic matter concentration of the inflow sewage is obtained from the predicted inflow. This organic matter concentration becomes the aeration load.

曝気風量演算手段162は、この曝気負荷量予測手段161で予測された曝気負荷量と前記被処理水の溶存酸素濃度(DO値)とから、被処理水の目標溶存酸素濃度を達成するための曝気風量を求める。このようにして求められた曝気風量値に基き、曝気機モータ13に対する回転数指示情報を作成し、これを曝気機モータ13に対し出力し、その回転速度を制御する。   The aeration air volume calculation means 162 is used to achieve the target dissolved oxygen concentration of the water to be treated from the aeration load quantity predicted by the aeration load quantity prediction means 161 and the dissolved oxygen concentration (DO value) of the water to be treated. Obtain the aeration volume. Based on the aeration air volume value obtained in this way, the rotational speed instruction information for the aerator motor 13 is created and output to the aerator motor 13 to control the rotational speed.

上記構成において、気象情報システムが提供する細密気象情報により、下水管に雨水が流出する地域での、メッシュ毎の降雨量及び降雨時刻が予測されると、この細密気象情報から、処理場への下水流入量及びその流入時刻が予測され、さらに降雨量から流入下水の濁度も予測される。一般に、降雨が有った場合、初期雨水により下水の水質は一旦低下するが、それ以降は雨水により下水が希釈されるため水質は向上し、濁度も低くなる。また、雨水により下水中に酸素が供給されるため流入下水の溶存酸素量は上昇する。これらの値を実測し、データを蓄積しておけば相関関係が明らかになり、予測精度が向上する。   In the above configuration, when the rainfall amount and time for each mesh in the area where rainwater flows into the sewer pipe is predicted by the detailed weather information provided by the weather information system, the detailed weather information is sent to the treatment plant. The amount of sewage inflow and its inflow time are predicted, and the turbidity of the inflow sewage is also predicted from the rainfall. In general, when there is rainfall, the quality of sewage is temporarily lowered by the initial rainwater, but after that, the sewage is diluted by rainwater, so that the water quality is improved and the turbidity is also lowered. Further, since oxygen is supplied to the sewage by rainwater, the dissolved oxygen amount of the inflowing sewage increases. By actually measuring these values and accumulating data, the correlation becomes clear and the prediction accuracy improves.

上述のように、雨水が合流式の下水に流出する流域の降雨情報をメッシュ単位に入手することにより、下水管からの流入量及び流入タイミング、さらには濁度を高精度に予測できるので、曝気負荷量予測手段161は、前記濁度から有機物濃度を求め、これを曝気負荷量とする。曝気風量演算手段162は、被処理水の現状のDO値、目標とするDO値及上記求められた曝気負荷量から、雨水を含む下水流入時における曝気風量を算出し、曝気機モータ13に対して回転数指示情報として出力する。このため降雨に影響されることなく適切な風量による曝気を行うことができ、過曝気を防止して電力量を低減させることができる。   As described above, by obtaining rainfall information for each basin where rainwater flows into the combined sewage system in mesh units, the inflow volume and inflow timing from the sewer pipe, as well as turbidity, can be predicted with high accuracy. The load amount predicting means 161 obtains the organic substance concentration from the turbidity, and uses this as the aeration load amount. The aeration air volume calculating means 162 calculates the aeration air volume at the time of inflow of sewage including rainwater from the current DO value of the treated water, the target DO value, and the aeration load amount obtained as described above. And output as rotation speed instruction information. For this reason, it is possible to perform aeration with an appropriate air volume without being affected by rainfall, and it is possible to prevent excessive aeration and reduce the amount of electric power.

このように、目標とするDO値を維持するための最適で最低限な電力量に制御することが可能となる。特に、雨量情報など気象情報システムからの予測データを取り込み、曝気負荷量を予測しておくことにより、これを風量演算に反映させることとなる。このことにより曝気機運転の計画を自動で事前に作成することができ、かつ曝気機の消費使用電力を最適・最低限にする運転計画を効率よく作成することができる。   In this way, it is possible to control to the optimum and minimum amount of electric power for maintaining the target DO value. In particular, by taking prediction data from a weather information system such as rainfall information and predicting the aeration load, this is reflected in the air volume calculation. This makes it possible to automatically create an aerator operation plan in advance, and to efficiently create an operation plan that optimizes / minimizes the power consumption of the aerator.

本発明による曝気制御システムの一実施の形態を示すシステムブロック図である。1 is a system block diagram showing an embodiment of an aeration control system according to the present invention.

符号の説明Explanation of symbols

11 エアレーションタンク
12 送風機
15 溶存酸素計
161 曝気負荷量予測手段
162 曝気風量演算手段
17 気象情報システム
DESCRIPTION OF SYMBOLS 11 Aeration tank 12 Blower 15 Dissolved oxygen meter 161 Aeration load amount prediction means 162 Aeration air volume calculation means 17 Weather information system

Claims (1)

雨水が合流する合流式の下水に対して曝気を行い所定の溶存酸素濃度に制御する曝気制御システムであって、
前記下水が導入され、この導入された下水に対して曝気が行なわれるエアレーションタンクと、
このエアレーションタンクにおいて曝気された被処理水の溶存酸素濃度を測定する溶存酸素計と、
雨水が前記合流式の下水に流出する流域をメッシュ状に区切り、これらメッシュ毎に予測される降雨量を入力し、これらメッシュ毎の予測降雨量から前記合流式下水の流入量を予測し、この予測流入量から流入下水の有機物濃度を求めてこれを曝気負荷量とする曝気負荷量予測手段と、
この曝気負荷量予測手段で予測された曝気負荷量と前記被処理水の溶存酸素濃度とから、被処理水の目標溶存酸素濃度を達成するための曝気風量を求める曝気風量演算手段と、
を備えたことを特徴とする曝気制御システム。
An aeration control system for controlling a concentration of dissolved oxygen by performing aeration on sewage combined with rainwater,
An aeration tank in which the sewage is introduced and aeration is performed on the introduced sewage,
A dissolved oxygen meter for measuring the dissolved oxygen concentration of the treated water aerated in the aeration tank;
The basin where rainwater flows into the combined sewage is divided into meshes, the rainfall amount predicted for each mesh is input, and the inflow amount of the combined sewage is predicted from the predicted rainfall for each mesh. An aeration load amount predicting means that obtains the organic matter concentration of the inflow sewage from the predicted inflow amount and uses this as the aeration load amount;
An aeration air volume calculating means for obtaining an aeration air volume for achieving a target dissolved oxygen concentration of the water to be treated from the aeration load quantity predicted by the aeration load amount prediction means and the dissolved oxygen concentration of the water to be treated;
An aeration control system characterized by comprising:
JP2005340019A 2005-11-25 2005-11-25 Aeration control system Active JP4836556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005340019A JP4836556B2 (en) 2005-11-25 2005-11-25 Aeration control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005340019A JP4836556B2 (en) 2005-11-25 2005-11-25 Aeration control system

Publications (2)

Publication Number Publication Date
JP2007144277A true JP2007144277A (en) 2007-06-14
JP4836556B2 JP4836556B2 (en) 2011-12-14

Family

ID=38206318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340019A Active JP4836556B2 (en) 2005-11-25 2005-11-25 Aeration control system

Country Status (1)

Country Link
JP (1) JP4836556B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245457A (en) * 2011-05-26 2012-12-13 Metawater Co Ltd Sewage treatment method and sewage treatment apparatus
CN103553206A (en) * 2013-10-18 2014-02-05 上海市政工程设计研究总院(集团)有限公司 Control system and control method for low-concentration dissolved oxygen in biochemical reaction basin
JP2016218599A (en) * 2015-05-18 2016-12-22 三菱電機株式会社 Used power amount management device
JP2021000604A (en) * 2019-06-21 2021-01-07 株式会社Nttファシリティーズ Sewage treatment apparatus
CN116874067A (en) * 2023-07-27 2023-10-13 湖南菁卉节能科技有限公司 Method for improving capacity of sewage treatment plant in rainy days

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221998A (en) * 1988-07-08 1990-01-24 Ngk Insulators Ltd Method and device for aeration
JPH05134056A (en) * 1991-11-13 1993-05-28 Toshiba Corp Estimating apparatus for inflow of rain water
JP2001252691A (en) * 2000-03-10 2001-09-18 Toshiba Corp Water quality controlling device for sewage treatment plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221998A (en) * 1988-07-08 1990-01-24 Ngk Insulators Ltd Method and device for aeration
JPH05134056A (en) * 1991-11-13 1993-05-28 Toshiba Corp Estimating apparatus for inflow of rain water
JP2001252691A (en) * 2000-03-10 2001-09-18 Toshiba Corp Water quality controlling device for sewage treatment plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245457A (en) * 2011-05-26 2012-12-13 Metawater Co Ltd Sewage treatment method and sewage treatment apparatus
CN103553206A (en) * 2013-10-18 2014-02-05 上海市政工程设计研究总院(集团)有限公司 Control system and control method for low-concentration dissolved oxygen in biochemical reaction basin
JP2016218599A (en) * 2015-05-18 2016-12-22 三菱電機株式会社 Used power amount management device
JP2021000604A (en) * 2019-06-21 2021-01-07 株式会社Nttファシリティーズ Sewage treatment apparatus
JP7190397B2 (en) 2019-06-21 2022-12-15 株式会社Nttファシリティーズ sewage treatment equipment
CN116874067A (en) * 2023-07-27 2023-10-13 湖南菁卉节能科技有限公司 Method for improving capacity of sewage treatment plant in rainy days
CN116874067B (en) * 2023-07-27 2023-12-15 湖南菁卉节能科技有限公司 Method for improving capacity of sewage treatment plant in rainy days

Also Published As

Publication number Publication date
JP4836556B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4836556B2 (en) Aeration control system
CN103343570A (en) Flow combined system regulating storage tank real-time control system and control method thereof
JP4334317B2 (en) Sewage treatment system
JP6845775B2 (en) Water treatment control device and water treatment system
CN106759772A (en) A kind of early-stage rainwater runoff pollution prevents and treats system and method
KR20120038303A (en) Smart system for using rainwater and waterworks and control method thereof
JP4647250B2 (en) Water treatment operation support device, water treatment operation support software, water treatment plant
JP6219239B2 (en) Water treatment plant
JP6749254B2 (en) Sewer system monitoring control device and sewer pump station operation control method
JP6581856B2 (en) Blower control device
JP6168545B1 (en) Sewage discharge method and sewage purification system
JP4739293B2 (en) Rainwater pump control device
Wagner et al. Aeration and mixing
JP2020110747A (en) Water treatment system
JP2006187682A (en) Method for estimating quality of inflow sewage water and support system for discharging rain water
JP2006136866A (en) Control unit for sewage disposal plant
JP6603156B2 (en) Sewerage facility operation support apparatus, system and method thereof
JP6726954B2 (en) Sewage treatment control device
JPH0938683A (en) Biological water treating device
JP2002136987A (en) Sewage treatment system, inflow water processing arithmetic unit thereof, inflow water treatment method and memory medium
JP2017121595A (en) Monitor and control system using activated-sludge process
JP2002001381A (en) Sewage treatment system and waste water control system
JP2001219183A (en) Water quality control apparatus of sewerage equipment
JPH0626093A (en) Rain water pump operation supporting system
JP2009011901A (en) Pump controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4836556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3